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ABSTRACT 

Dark corridors have been suggested as conservation tool to restore landscape connectivity and enhance 
species movement across fragmented and artificially illuminated landscapes. Bats are known to use 
dark corridors for commuting between roost and foraging habitats. Thus, bats can serve as model spe-
cies to evaluate efforts in urban and land-use planning. Such plans aim at restoring connectivity and at 
establishing an ecological infrastructure network that links remaining habitat patches through corri-
dors. While foraging areas and roosts have been investigated in numerous studies, state of knowledge 
about the bat commuting corridors is scarce. To contribute to a better understanding of how corridors 
are chosen by bats and to expand data basis for planners from expert opinion to a general, reproducible 
conservation tool, a corridor model was developed. In this study, the numeric bat corridor model has 
been validated by means of empirical data and expert opinions. The activity of Myotis myotis has been 
recorded at 34 locations in the community of Veltheim (Canton of Aargau, Switzerland), the church of 
which is home to a large maternity roost of this species. The empirical activity measures were then 
compared to the corridors predicted by the numeric corridor model and to corridors identified by the 
regional bat expert. The delineation of corridors by the expert was found to outperform the corridors 
by the numeric model and the strong negative influence of artificial light on the activity of M. myotis 
was confirmed. Further relations between the activity recorded and a large number of variables associ-
ated to artificial light and the ecological infrastructure network was modelled, using the two modelling 
approaches Multiple Linear Regression and Random Forest. Among light variables derived from ISS 
images and streetlight position we could not account for a variable to overcome current data gap in the 
extensively representation of night lighting. The activity of M. myotis was found to be related to land-
scape elements of the ecological infrastructure networks, revealing the potential of this approach.  
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 INTRODUCTION 
Massive human pressure on landscapes is seen as major threat to global biodiversity (Grimm et al., 
2008; Elmqvist et al., 2013). The most severe impacts are land use changes that alter landscapes heter-
ogeneity and composition, reduce habitat areas and lead to fragmentation (Concepción et al., 2015; 
Scolozzi & Geneletti, 2012; Grimm et al., 2008). The progressive fragmentation reduces connectivity 
of remaining habitat patches (Trakhtenbrot et al., 2005). The provision of corridors to link landscape 
fragments has been suggested to enhance the conservation value of landscapes (Diamond, 1975; Ben-
nett, 2003; Bloemmen &van der Sluis, 2004).  
 
Although corridors are important conservation tools, only recently they made their way onto the polit-
ical agenda. Land-use and urban planning politics in Europe and Switzerland aim to restore human-
impacted landscapes by implementing a functional network of ecological corridors to facilitate species 
movement (Ricketts, 2001; Bundesamt für Umwelt BAFU, 2017). The concept of ecosystems as infra-
structures has evolved in the late 1980’s as scientists and conservationists transferred the concept of 
man-made infrastructure, that provide essential goods and services, on ecosystems (Cardoso da Silva 
& Wheeler, 2017; Garmendia et al., 2016). The concept of the ecological infrastructure network has 
recently been defined as “the structural landscape network that is composed of the critical landscape 
elements and spatial patterns that are of strategic significance in preserving the integrity and identity of 
the natural and cultural landscapes […]” (Yu, 2012).  
 
Greater mouse-eared bats (M. myotis) use corridors along vertical structures to commute from the 
roost to their foraging habitats (Bohnenstengel et al., 2014). Among other bat species, M. myotis use 
man-made structures such as large roofs and church attics as breeding roosts and well may live in ur-
banized areas (Zahn, 1999; Rudolph & Liegl, 1990). Living in the vicinity of humans, makes them 
particularly sensitive to land-use and illumination changes. Interrupted and artificially lit corridors, 
inappropriate renovation of buildings hosting a roost, reduced food supply due to insecticides and un-
suitable forest management have led to a strong decline in bat populations in the second half of the 
20th century (Voigt &Kingston, 2015; Bohnenstengel et al., 2014). Many recent studies reveal an over-
all negative effect of artificial night lighting on bats, even if the strength of the impact differs among 
species (Pauwels et al., 2019; Azam et al., 2018; Hale et al., 2015; Stone, Jones &Harris, 2009). Yet, 
assessing the extensive impact of light pollution, first requires the ability to measure it. Pauwels et al. 
(2019) demonstrated the potential of remote sensing data to account for artificial light impact in cities. 
However, it is not assessed whether this approach is suitable for rural, less heavily light-polluted areas.  
 
By EU (Council Directive 92/43/EEC, 1992) and Swiss (Art. 20 NHG) legislation, all bat species are 
protected. Since 2012 an international agreement for bat conservation (UNEP/ Eurobats) has coordi-
nated Europe wide efforts to protect bats. Establishing and protecting corridors is a major goal in bat 
conservation (Hutson et al., 2015). Although different studies have been assessing the suitability of 
buildings as roosts (Berková et al., 2014) and potential foraging areas (Güttinger, 1997), the current 
knowledge about commuting corridors is scarce (Ravessoud et al., 2017). Most known bat roosts in 
Switzerland are looked after by a professional Bat Protection Responsible. Thus, expert knowledge 
mainly on the roost, yet also on corridors is available. Nevertheless, expert opinion is often seen as 
biased by unilateral observation (Stevenson-Holt et al., 2014). Often, quantitative models are em-
ployed to provide unbiased, reproducible information to practitioners and planners.  
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Ravessoud et al. (2017) developed a numeric corridor model to predict commuting corridors of M. 
myotis. The corridor model was fitted to empirical bat activity records. It can serve as helpful tool to 
effectively contribute to bat protection, by directly demonstrating areas in need of action. In addition, 
it may help to enhance knowledge on how corridors are used by bats (Ravessoud et al., 2017).  
 
Bat conservationists and landscape planners have recognized the value of such models and have de-
clared interest in pursuing this approach. Before applying the model to all known roosts in Switzer-
land, the present study evaluated the modelled outcomes by comparing them to an expert opinion and 
experimentally assessed bat activity on a roost independent of their prior modeling approach. The 
study area included the colony of M. myotis in the community of Veltheim (Canton of Aargau, Swit-
zerland), the church of which is home to a maternity colony of more than 1000 individuals of this spe-
cies. The aims of this master thesis were to  
 
i) evaluate the quality of the outcomes of the numeric corridor model by means of empirical data 

and comparison to expert-derived prediction, 
ii) assess the influence of artificial light and evaluate different methods of measurements of artificial 

light at night, 
iii) and to investigate the potential of bats as model species for implementation into recent planning 

efforts for ecological infrastructure networks. 
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Fig. 1: Representation of the study area and the sampling design with (a) the location of the community of Veltheim. The 
church attic hosts a well-known roost of M. myotis; (b) the position of the 34 sampling locations to record bat activity with 
the outcome of the qualitative corridor model (colour gradient), the model (stippled lines) and expert opinion derived corri-
dors (solid lines) and the roost.  
 

 

 MATERIAL AND METHODS 
STUDY AREA 
The study was conducted in the community of Veltheim (Canton of Aargau) in northern Switzerland 
(Fig 1a). Since at least 50 years the church attic in the community of Veltheim (2’653’461 / 
1’254’405) hosts over 1000 individuals, thus the second largest maternity roost of M. myotis nation-
wide (Andres Beck, Bat Protection Responsible, pers. communication).The community of Veltheim is 
situated within the perimeter of the regional nature park of national interest ‘Jurapark Aargau’. The 
‘Jurapark Aargau’ has been established in 2012, encompassing 241 km2. The perimeter is embedded in 
the Jura plateau, bounded by the two rivers Rhein and Aare. It is a rural area, characterized by valuable 
and structured cultural landscapes. The perimeter includes four areas graded as areas of national inter-
est (BLN) and two amphibian spawning areas of national interests, constituting an important, large-
scale and coherent natural environment (Jurapark Aargau, 2017).  
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STUDY SPECIES 
M. myotis is a widespread bat species of central Europe and one of the largest of the 30 bat species in 
Switzerland (Güttinger et al., 2003; SFF, 2018). Due to the strong decline of the species in the 1970’s / 
1980’s, it is currently still classified as a vulnerable bat species (Bohnenstengel et al., 2014) and is 
considered a species of highest priority (Bundesamt für Umwelt BAFU, 2011). Additionally, M. myo-
tis is a target species in the context of ecological infrastructure. This bat , is representative of highly 
mobile, structure-dependent species (Marti, 2017). Thus, M. myotis  is an excellent model species to 
assess how the concept of ecological infrastructure can be integrated into conservation management.  
 
In April females of M. myotis congregate to form the nursery colonies, where each rears a single pup. 
At night, they leave roost shortly after sunset to commute to foraging areas. Carabid beetles (Cara-
bidae) are their most important category of prey (Steck & Güttinger, 2006). Deciduous forests, freshly 
mown meadows, pastures and open areas with no or only low growing vegetation are the most im-
portant foraging habitats of M .myotis (Arlettaz, 1996; Liegl &von Helversen, 1987; Güttinger, 1997). 
While females congregate to form nursery colonies, males mostly live solitarily.  
 
 
PREDICTING M. myotis COMMUTING CORRIDORS 
EXPERT PREDICTION - M. myotis corridors as assessed by expert knowledge  

Since over 30 years the colony of M. myotis in the community of Veltheim is monitored by Andres 
Beck (Bat Protection Responsible, Canton of Aargau). Based on his long-time experiences he qualita-
tively estimated commuting corridors of the colony on a 1:25’000 map (Fig. 1b).  
 
NUMERIC MODEL – M. myotis corridors as assessed by a quantitative corridor modelling frame-
work  

The numeric corridor model includes eleven environmental variables accounting for trees, structures, 
terrain ruggedness, structure ruggedness and canopy ruggedness (see supplement material S2 for de-
tail; Ravessoud et al., 2017). Variables were statistically evaluated on empirical data. The optimal set 
of variables was applied on every 1x1m cell within a 5x5 km frame, resulting in a Habitat Suitability 
Map (HSM). The HSM was then transformed into a resistance map, each resistance value calculated 
by the inverse of the quality values (Ravessoud et al., 2017; Stevenson-Holt et al., 2014). The resulting 
resistance map was used to identify cumulative costs of routes connecting roost and foraging areas. 
Only routes with low cumulative costs were retained. Results were visualized as current running 
through a ‘curcuitscape’, with high current density value representing attractive and channeling land-
scape features regarding commuting activity. The current density layer for the colony of M. myotis in 
the community of Veltheim already existed and was used to identify model assessed corridors of the 
colony. For stratification of sampling locations, corridors were visually identified.  
 
FIELD SURVEY – M. myotis corridors as assessed by experimental field data  

Bat activity was recorded in two sampling campaigns at the end of July and the beginning of August 
2018 (27.07.-31.07. and 03.08.-07.08.). Bat echolocation calls were recorded with autonomous ultra-
sound recorders (BATLOGGER; Elekon AG, Lucerne, Switzerland). Along with the vocalizations, the 
temperature, GPS position and time were recorded in real time. Bat activity was recorded from 15 
minutes before sunset to 15 minutes after sunrise. The microphones of the BATLOGGER were fixed 
at ~1.5 meters above ground, facing towards the church (roost) and slightly pointing towards the 
ground to protect it from rain damage. Weather conditions were constantly dry and hot during both 
sampling periods.  
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34 sampling locations around the roost were defined. To ensure powerful stratification of the sampling 
locations, landscape matrix surrounding the roost was divided in eight categories by means of two 
criteria; corridor predictions and artificial light pollution. Firstly, landscape was discerned in areas 
without corridors and areas representing assessed corridors. Areas representing a corridor were further 
divided by the criteria of corridor predictor, model or expert. Thus, the following four categories were 
constituted: [1] the area is attributed to a corridor that is equally predicted by model and expert;  
the area is attributed to a corridor that is divergent predicted by model and expert and is therefore at-
tributed to either [2] expert prediction or [3] corridor model prediction; [4] the area is not predicted to 
be a corridor by either method. Attribution to corridors was made visually by proximity estimates.  
These four landscape categories were further divided by artificial light conditions into ‘dark [D]’ or ‘lit 
[L]’ locations (Fig.2). The allocation was made visually on the map indicating public street lighting. 
Classification was done to ensure powerful stratification of sampling locations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sampling locations were selected to equally cover all eight landscape categories. In the final arrange-
ment of the sampling location, the light regime, the ownership structure and the nearby environment 
was also taken into account. Locations too close to hard surfaces such as streets were avoided as re-
sulting echoes could deteriorate the quality of the recordings. Finally, locations positioned directly 
underneath light sources were avoided.  
 
 
ANALYSIS OF BAT ACTIVITY  

Bat recordings were processed with BatScope version 4.0. BatScope is a semiautomated software to 
process acoustic high frequency recordings of bats used for surveys of bat activity, habitat use and 
monitoring (Obrist & Boesch, 2018). Records processing consists of 6 steps including import, detec-
tion and cutting of calls, inspection for parameter, classification, verification and export. While classi-
fication is an automated process relying on a reference base covering 27 EU species, verification has 
to be done manually by the user. Here successive filters regarding classification and characteristics of 
the calls were used to verify genuine calls of M. myotis.  
 
 
EXPLANATORY VARIABLES: SELECTION AND PROCESSING 
To complement the visual classification of the landscape described above, further variables related to 
expert and model prediction were extracted (Tab. 1). All variables were processed and calculated in 
ArcMap GIS 10.3 (ESRI, 2016).  
 

 

 

Fig.2: Representation of the sampling 
design. The landscape matrix was 
divided into eight categories by asso-
ciating to corridors and light condi-
tions. Corridors can either be predict-
ed equally by expert and model [1], by 
only one of them [2], [3] or none of 
them [4]. Association to corridors and 
assessment of light conditions [L: lit, 
D: dark] was made visually to ensure 
useful stratification. 
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Fig.3: Workflow of model processing and variable extraction. In total five variables were extracted from model predictions 
(left hand side) and expert prediction (right hand side).  
 
 
VARIABLES EXTRACTED FROM THE CORRIDOR MODEL 

Three variables were extracted from the corridor model (Fig.3). Firstly, the mean current density value 
within a 10 meter buffer for each sampling location was extracted (PMF10), using the GIS tool zonal 
statistics as table. A 10m radius was chosen for construction of the buffer as this covers the reach of 
the BATLOGGER microphone. Secondly, linear paths were derived by processing the model and cal-
culating least cost paths (see supplement material S1 for detail). Fictitious destinations had to be creat-
ed to force the construction of several least cost paths, to become consistent with visually assessed 
corridors (Fig. 1b). Subsequently, a new raster layer was created by calculating kernel density (Kernel 
density, width: 50m) for every least cost path. Mean density value of this newly created layer within a 
10m radius was calculated as a third variable (PMK10). 
 
 
VARIABLES EXTRACTED FROM EXPERT-DERIVED PREDICTION 

The analogue 1:25’000 map with indicated expert corridors was scanned and then imported in 
ArcMap. Manual georeferencing by means of striking landscape elements such as road crosses was 
performed. Corridors were then digitized by creating new line features. Consecutively, a new raster 
layer was created by calculating kernel density (with: 50m) for every corridor predicted by the expert. 
The mean value extracted within a radius of 10m around each sampling location represented the expert 
prediction value per sampling location. As second variable derived from expert prediction, the distance 
from a sampling location to the closest commuting corridor predicted by the expert was calculated 
(EL.2).  
 
 
LIGHT VARIABLES 

To assess the influence of artificial night lighting on bat activity, different approaches to account for 
light pollution were pursued. Three sources of information were used to identify four variables repre-
senting night lighting (Tab. 1).  Firstly, the light intensities were measured at the sampling location 
once per recording period between 22:00 and 23:00h. At each location, measurements were repeated 
in all four compass directions in ~1.5 m distance from the microphone of the BATLOGGER and a 
final average was calculated. The Luxmeter used (Luxmeter testo 540; Testo AG, Mönchenaltdorf, 
Switzerland) was sensitive 1 lx.  
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The second source of information was the location of streetlights. The positions of the streetlights 
were determined with a GPS device (Garmin Oregon 700). The nearest distance from each sampling 
locations to the closest streetlight was extracted using the GIS tool Near (SL.2).  
Azam et al. (2018) found that light from street lighting has an effect on low flying M. myotis up to 
25m away from a light source. Accordingly, the number of streetlights within that distance was count-
ed (SL.3). 
As third information source night photographs taken by astronauts on the International Space Station 
(ISS) showing the study area were used. The images were corrected for linearity, optical vignetting, 
the camera settings, and calibrated based upon star fields (Hale & Arlettaz, 2017). The calibrated ISS 
images were supplied as four raster layers for each of the four colour bands Red (R), Green1(G1), 
Green2 (G2) and Blue (B). The value of each cell corresponds to the radiance of the cell surface 
(nW/cm2/sr) (Hale & Arlettaz, 2017). In order to improve accordance of clear features such as lake 
boarders and crossroads between ISS images and the ortho-image, the ISS image was shifted 50 me-
ters to the east using the GIS tool Shift. Then, pixel value of each of the four raster layers at each sam-
pling location was extracted using the Extract value to point GIS tool. Final radiance value per sam-
pling location (ISS.50) was calculated from extracted values as follow: R+ ((G1+G2)/2) +B.   
 
 
VARIABLES TO REPRESENT ECOLOGICAL INFRASTRUCTURE 

Based on literature research (Klaus and Pauli, 2012; Kuttner et al., 2013; Marti, 2017) we have com-
piled a list of ecological elements potentially important for the implementation of an ecological infra-
structure network. After screening available data, some variables were skipped, as they were not pre-
sent in meaningful distance to the roost. In total seven variables that describe elements to establish the 
ecological infrastructure network were remaining (Tab. 1). The remaining variables account for single 
trees (Eb.2, Eb.4), hedgerows (HiK.2, GhiB.2), open water bodies (GewO.2) and land management 
(EgW.1a, Wa.1a). For the analysis of the variables representing the ecological infrastructure, a buffer 
distance of 35 meters was chosen , thereby avoiding an overlap of buffers between sites. To investi-
gate whether feature diversity influences bat activity, the number of elements positively associated to 
the ecological infrastructure network present within 35m radius was counted (OI.6).  
 
Variable collection was broadened by variables representing landscape infrastructure elements not 
associated to the ecological infrastructure but still known to have an influence on bat activity. Roads 
represent barriers to commuting bats due to collision danger and noise emission (Bennett &Zurcher, 
2013). Correspondingly, a variable to quantify influence of roads was built, by calculating distance 
from each sampling location to the closest road broader than three meters (Str.2). The road network 
from swissTLM3D (Bundesamt für Landestopografie swisstopo, 2013) was used to select roads broader 
than 3 meters, representing illuminated roads with regular car traffic.  
  
Background structures provide relevant information to bats for navigation. Thus, bats often fly parallel 
to linear landscape elements such as tree lines and hedge groves (Limpens & Kapteyn 1991). Schaub 
& Schnitzler (2007) showed that bat commuting corridors are similar regardless of whether edges 
consisted of a house wall or vegetation. In accordance, distance to the closest building was calculated 
by using the GIS tool Near (Geb.2). Building data was derived from swissTLM3D (Bundesamt für 
Landestopografie swisstopo, 2013). Finally, distance to the roost was calculated (Roost.2), as general-
ly activity is expected to decline with increasing distance to roost as a consequence of thinning effects.   
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Tab.1: Selection of variables used to model the recorded activity of M. myotis.  

Variable type Variable name Code Source and Reference Value 
range 

Variables ex-
tracted from 
corridor model   

Mean value of current density 
within 10m radius  

PMF10        Numeric corridor model 
                   (Ravessoud et al., 2017) 

0-0.0219 

Distance to closest corridor 
assessed by the corridor 
model  

ML.2 Numeric corridor model  
(Ravessoud et al., 2017) 

0-0.0393 

Mean value of kernel density 
within 10m radius  

PMK10 Numeric corridor model  
(Ravessoud et al., 2017) 

0-461.75 

Variables ex-
tracted expert 
corridor predic-
tion  

Distance to closest corridor 
assessed by the expert 

EL.2 Expert corridor prediction  
(Andres Beck, 2018) 

0-543.91 

Mean value of kernel density 
within 10m radius 

PEK10 Expert corridor prediction  
(Andres Beck, 2018) 

0-0.0209 

Variables to 
represent eco-
logical infra-
structure   

Total area of extensively used 
meadow within 35m  EgW.1a Kanton Aargau_1669_ökologische Aus-

gleichsflächen 
0-2807.8 

Total area of forest (unclassi-
fied) within 35m radius Wa.1a swissTLM3D_BB (Bundesamt für Landesto-

pografie swisstopo, 2013) 
0-2405.1 

Distance to open streams GewO.2 swissTLM3D_GEWAESSER (Bundesamt für 
Landestopografie swisstopo, 2013) 

7.5-579.2 

Count of single trees within 
35 m radius Eb.4 SwissTopo 1:25’000 (Bundesamt für Lande-

stopografie swisstopo, 2019) 
0-12 

Distance to closest single tree Eb.2 
swissTLM3D_EINZELBAUM_GEBUESCHE 

(Bundesamt für Landestopografie swisstopo, 
2013) 

5.6-106.5 

Distance to hedgerows in 
building zones GHib.2 Jurapark Aargau (Marti, 2017) 2.5-787.9 

Distance to hedgerows in 
cultivated land HiK.2 Jurapark Aargau  (Marti, 2017) 0.2-743.6 

Structural diversity of land-
scape (number of valuable 
landscape features within 
35m radius) 

OI.6 see above 

0-4 

Distance to roads > 3m width Str.2 swissTLM3D  STRASSEB_20013(Bundesamt 
für Landestopografie swisstopo, 2013) 

0.9-135.4   

Distance to closest building Geb.2 swissTLM3DBUILDING3D_1_0 (Bundesamt 
für Landestopografie swisstopo, 2013) 

3.7-298.2 

Distance to roost Roost.2  92-1003.3 
Light variables  Mean value of radiance   ISS.50 ISS Images processed (Hale & Arlettaz, 

2017) 
0-0.1502 

Distance to closest streetlight SL.2 Field data 6.6-659.2 
Count of streetlights within 
25m radius SL.3 Field data 0-3 

Measured lux at sampling 
location  Lux Field data 0-3.5 

 

 
STATISTICAL ANALYSIS  
The response variable ‘activity’ is defined as sum of sequences attributed to M. myotis counted within 
time period 21:30 to 22:40 h. We focused on the ‘fly-out’, the time window where most of the indi-
viduals leave the roost for commuting to foraging areas. The ‘fly-out’ time window covered more than 
50% of total activity (Fig 4). The position and duration of the time slot (70 minutes) was selected by 
visual analysis of the activity distribution over time showing clearly recognizable, sudden increase and 
decrease of total activity identifying fly-out occurrence (Fig. 4).  
 
 
 
 
 



[Material and Methods] 

[9] 

Fig. 4: Only activity of M. myotis measured between 21:30 and 
22:40h was included in the statistical analysis. This ‘fly-out’ 
period, when bats leave the roost after sunset, is clearly recog-
nizable by a sudden activity increase and decrease.   

Due to sporadic technical failures not all BATLOGGERs recorded during five nights. Therefore, rela-
tive bat activity was calculated by dividing per site the total of counts by the number of recorded 
nights. In order to obtain a normal distribution in the residuals, as required by the Multiple Linear Re-
gression model, a log transformation was applied to relative activity values. First, variables were test-
ed for interactions. Variables with correlation coefficients greater than 0.7 should be removed. As no 
interactions emerged, all variables were kept for the analysis. Prior to analysis all variables were 
standardized (mean=0, standard deviation=1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Differences in activity regarding expert and model prediction, light availability and diversity of eco-
logical infrastructure was tested, using analysis for variance ANOVA. Subsequently, two different 
analyzing methods were applied; Multiple Linear Regression (MLR) and Random Forest (RF). All 
statistical analyses were conducted using the R Statistical Software 3.4.1 (R Development Core Team, 
2019).  
 
MLR is a classical approach that has been largely applied for the prediction of dependent variables 
from a set of predictor variables (Zhang et al., 2017). It is reasonably robust, if the number of observa-
tions is larger than the number of variables (Grömping, 2007). The contribution of each variable to the 
regression model was assessed using the R package relaimpo (Grömping, 2006). The metric ‘lmg’ 
(Lindeman et al., 1980) was used to represent the contribution of single variables in the respective 
models.  
 
Random forests (RF) are nonparametric and allow nonlinearities and interactions to be learned from 
the data (Grömping, 2007). Random forests consist of a combination of many trees; the overall predic-
tion value is an average of all prediction values of single trees (Grömping, 2007). In this study the 
number of trees was set to ntree=500. The number of variables randomly sampled as candidate at each 
split (mtry) was set to 14, 15 respectively (number of variables in the initial dataset-1). RF allows to 
assess contribution of single variables to model directly and can therefore be compared to regression 
techniques (Grömping, 2007). Comparison was done using the mean decrease in accuracy 
(%IncMSE). Random Forest was implemented using the package randomforest in R.  
 
MLR and RF were applied on six different data sets (Fig.5). One dataset only included variables asso-
ciated to night lighting and to ecological infrastructure. The other five, each additionally contained one 
specific expert or corridor model derived variable.   
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Akaike’s information criterion procedure (Akaike, 1976) was applied to select best models in MLR. 
The AIC is an information-theoretic approach that is widely used in ecological data analysis (Burnham 
& Anderson, 2002). The algorithm constructs different candidate models ranging from a global model 
to a single predictor model (Tesfamichael & Beech, 2016). Single models are then compared to an 
unknown model that is thought to represent full reality (Burnham & Anderson, 2002). The model that 
minimizes information loss from full reality model is chosen as best model. Consequently, models 
with lowest AIC are considered the best model. All models within 2 AIC units are meant to have the 
same explanation power.  
 
In the process of RF modelling, variables were selected by means of their %IncMSE values, that rep-
resent importance of variable in the model. Firstly, variables with negative %IncMSE values were 
removed, as they negatively influence explanation power of the model. Then variables with low 
%IncMSE values were removed stepwise, starting with the variable showing the lowest %IncMSE 
value. The removal of these variables went simultaneous with an increase in the percentage of vari-
ance explained by the model. Thus, the selection of variables was stopped, as soon as the removal of 
variables did not result in an improvement of the model. 
 
 

 

 

 

 

 

 

 

 

Fig. 5: Presentation of the analysis concept of this master thesis. Two different model approaches were applied on six differ-
ent initial datasets, resulting in twelve best models.  
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 RESULTS 
FIELD DATA 

A total of 72’100 bat passes were recorded, whereof 51’736 records contained more than one signal 
and were therefore classified as bats. However, only 5% of these recordings were attributed to M. myo-
tis, resulting in 2’613 single sequences assigned to that species. When restricted to the ‘fly-out’ time 
period (Fig.4), the number of recordings amounted to 1’321 verified M. myotis activity sequences. 
Relative activity per sampling location varied between 0 to 35.4 counts per night recorded (Fig. 7). No 
activity was measured at location 17. At locations 7, 8, 14 and 33 less than one M. myotis crossed per 
night on average. These sampling locations are either not attributed to any predicted corridor [4] or to 
a corridor only predicted by the model [2] (here and following, numbers in square brackets relate to 
‘treatments’ in the sampling design as detailed in Fig.2). Artificial light could be measured at all of 
these locations, light intensity varying between 0.25 and 1 lux.  
 
With more than 30 M. myotis crossing per night, highest activities were recorded at locations 5, 20 and 
27 (Fig.7). With 29.5 and 27.6 counts per night, locations 3 and 32 revealed remarkably high activity 
too – both being situated close to either side of a waterbody. These locations were attributed to corri-
dors equally predicted by model and expert [1] or to corridors only predicted by the expert [3]. Sur-
prisingly, location 32 wasn’t attributed to any corridor [4]. Fig. 7 shows the density of activity per 
night recorded per sampling location, highlighting activity hotspots with more than 25 M. myotis 
crossing per night. At none of these hotspots artificial light was present.  
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Illustration of sampling locations, showing ID, sampling scheme classification 
(square brackets, see Fig.2) and sampled mean commuting activity of M. myotis per 
night, represented by size and color of bubble.    
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Fig. 8ab: Boxplot showing the distribution of experimentally assessed bat passes. Sampling locations were attributed to 
corridors as detailed in Fig. 2.  
  

DIFFERENCES IN THE ACTIVITY OF M. myotis 
Mean activity differed significantly between the four classes representing allocation to predicted corri-
dors (p = 0.037, Fig.8a). With a mean of 1.25 recorded sequences per night, empirically assessed bat 
activity was lowest at locations attributed to corridors only predicted by the corridor model [3]. Slight-
ly more activity (on average 1.29 sequences per night recorded) was measured at locations that 
weren’t attributed to any corridor predictions [4]. At locations attributed to corridors only predicted by 
the expert [2], an average activity of 2.12 counts per night was recorded. Highest activity was counted 
at locations attributed to corridors, that were equally predicted by corridor model and expert [1].  
Experimentally assessed activity at locations attributed to corridor predicted by the corridor model 
[1,3] did not differ significantly from locations not attributed to a model predicted corridor (p-value: 
0.625, Fig. 8b). However, activity was significantly higher at locations attributed to an expert predict-
ed corridor [1,2], compared to locations not attributed to an expert predicted corridor (p-value <0.001). 
Experimental counts at locations attributed to an expert predicted corridor were 2.92-times higher 
compared to locations not attributed to an expert predicted corridor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LIGHT EFFECTS 

In total 244 bat passes were registered at locations influenced by artificial light ( ≥ 0.25 lux measured 
at sampling location ). In contrast 1077 passes were measured at locations not influenced by artificial 
light (0 lux measured). Thus, activity was 4.4-fold higher at locations where no artificial light was 
present (Fig. 9a). Hence there is a statistically significant higher activity of bats at sampling locations 
not influenced by artificial light (p-values < 0.001). Artificial light had a negative influence on the 
activity of M. myotis down to an illumination threshold of 0.25 lux.  
Bat activity tended to be higher at more diversely structured locations (Fig. 9b) Surprisingly, it seems 
less important how diverse the nearby environment (35m radius) is, as long as the environment in-
cludes at least a single ecological valuable landscape element. 

 

 

  

 

  

 

 

b) a) 

a) b) 

 

Fig. 9: Bat activity 
was influenced by a) 
the presence (1) of 
artificial light and b) 
the structural diversi-
ty. Presence of artifi-
cial light represent 
measured lux values 
≥ 0.25 lux. In total 
six elements were 
included in the as-
sessment of the 
structural diversity.  
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M. myotis ACTIVITY MODELLING 
MULTIPLE LINEAR REGRESSION  

For each of the six initial datasets one best model was developed (Fig.5). All six best models included 
less variables than the initial datasets, as variables with low influence on the response variable were 
removed in the selection process. Table 3 gives an overview on the ‘lmg’ metrics (in %) of the varia-
bles, that were included in at least one best model. ‘Lmg’ metrics represents the contribution (in%) of 
each variable to the model. Thus, high ‘lmg’ metrics indicate important variables. Explanatory varia-
bles not represented in Table 3 (EgW.1a, ISS.50, SL.2, Eb.4, Geb.2, Str.2), were not selected for any 
best model. For all three best models developed from an initial dataset, that included a corridor model 
derived variable, number of variables decreased to seven. The respective corridor model derived vari-
able was not among the selected seven variables. The number of variables in the best models devel-
oped from the datasets including an expert derived variable, decreased to nine and still included the 
respective expert derived variable (Tab.3). Distance to expert corridor (EL.2) and mean value of expert 
prediction (PEK10) showed similar importance (represented by the ‘lmg’ metrics) in their respective 
best model (Tab. 3).  
 
For the light variables the number of streetlights within 25 m radius and measured lux were retained in 
all best models, although according to the ‘lmg’ metric the measured lux was more important (Lux) to 
explain the variance in bat activity than the number of streetlights (SL.3). For the variables associated 
to the ecological infrastructure the distance to shallow streams (GewO.2) and to hedgerows in building 
zones (Ghib.2), as well as the variable representing the diversity of ecological valuable elements 
(OI.6) were included in all six best models.  
For the exception of OI.6, all these variables had a negative influence on the activity of M. myotis.  
Surprisingly, the variable representing distance to roost (Roost.2) was only of importance in some of 
the best models (Tab. 3).  
 
Regarding AIC value and adjusted R2 the model that performed best among all, was the one where the 
variable PEK10 was included as expert derived variable (Tab.3). PEK10 was derived from the expert 
prediction, describing mean prediction value based on the kernel density of indicated corridors.  
 

 
Tab. 3: Overview on the ‘lmg metrics (in %) representing importance of each variable in the respective best model. Explana-
tory variables not represented in this table were not included in any of the six best model. The best model derived from the 
dataset including PEK10, showed the lowest AIC value.  

 Explanatory variables included in at least one best model    

Lux SL.3 GewO.2 HiK.2 Ghib.2 Eb.2 Wa.1a OI.6 Roost.2  Respec-
tive 
corridor 
model 
or 
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AIC adjusted 
R2 
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PMK10 22.61 11.97 26.23  6.14 4.46  12.09 16.49  -20.25 0.6749 

PMF10 22.61 11.97 26.23  6.14 4.46  12.09 16.49  -20.25 0.6749 

ML.2 22.61 11.97 26.23  6.14 4.46  12.09 16.49  -20.25 0.6749 

PEK10 22.38 9.64 25.31 2.59 10.18 2.08 1.66 6.27  19.91 -35.01 0.7607 

EL.2 21.48 8.91 20.79 2.46 12.29 2.35 1.52 8.18  21.98 -22.31 0.6949 

NONE 22.61 11.97 26.23  6.14 4.46  12.09 16.49  -20.25 0.5874 
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RANDOM FOREST MODEL  

The %IncMSE metric represents the importance of a variable in the model, as it indicates how the 
predictive ability of the model chances, when the variable is replaced (Vincenzi et al., 2011). Thus, a 
variable with a low %IncMSE value is unimportant in the model and its removal has only marginal 
effects. The removal of variables with negative %IncMSE values are even positive for the prediction 
strength of a model.  
 
Corridor model derived variables (PMK10, PMF10, ML.2) all showed negative %IncMSE values. On 
the contrary, expert derived variables (EL.2, PEK10) both showed high %IncMSE values (Fig. 10a, b). 
According their %IncMSE value, they were graded as second, third most important ,variable respec-
tively, in the respective best model. Among the light variables the measured lux was by far the most 
important variable in all the six best models. Distance to streetlight and number of streetlights within 
25m were included in some of the models but showing very low %IncMSE values. The ISS image 
derived variable showed strongly negative values and was excluded in all six datasets. Distance to 
shallow streams showed high %IncMSE values in all six best models, in most of them even represent-
ing the second most important variable. The variable representing the total area of extensively used 
meadow in the 35m radius (EgW.1a), was kept in all best models too, while structural diversity (OI.6) 
and distance to single trees (Eb.2) was only included in some of the best models. All other variables 
associated to the ecological infrastructure were removed in the variable selection process. The distance 
to the roost was included in all best models, but demonstrating different importance in the respective 
model.  
 
The best model derived from the dataset including PEK10 as expert prediction derived variable could 
explain 41.63% of the variance in the recorded bat activity. In comparison to the other five best mod-
els it showed the highest explanation power. The remaining five best models could explain around 
32% of variance.  

 

 

 

 

 

Fig. 10: Presentation of variable importance measure (%IncMSE) for the six best models: [a-b]: initial dataset included an 
expert derived variable, [c-e]: initial dataset included a corridor model derived variable, [f]: initial dataset did not include a 
corridor model or expert derived variable. 
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 DISCUSSION 
Highest commuting activity of M. myotis was experimentally measured at sampling locations attribut-
ed to corridors coincidently predicted by the corridor model and the expert. When comparing meas-
ured activity at locations attributed to corridors that have been either predicted by expert or model, the 
higher activity was observed at locations attributed to a corridor predicted only by expert.  
This is not coherent with other studies investigating differences in model and expert prediction. Ex-
pert-based prediction was found to be less reliable and precise in previous studies (Stevenson-Holt et 
al., 2014; Clevenger et al., 2002; Seoane et al., 2005). Experts may be biased by subjective perception. 
This becomes obvious when looking at large-scale species movements of hardly detectable and ob-
servable species, which are irregularly distributed across the landscape. Investigation of this study was 
done on a rather small spatial scale (5x5km). Additionally, bat commuting activity is easy to observe, 
as all individuals of a bat colony leave from a known roost within a small, known time frame. Hence 
in this context expert knowledge seems very accurate. Thus, benefits of the model are in particular 
revealed, when expert knowledge is missing due to missing expert or increasing distance to roost.  
 
Artificial night lighting has an overall negative effect on the activity of bats (Hale et al., 2015). Espe-
cially low and fast flying species, among them M. myotis avoid illuminated areas due to an increased 
predation risk (Rydell et al., 1996). Artificial light can even induce barrier effects for commuting ac-
tivity (Azam et al., 2018; Stone, Jones &Harris, 2009). The results of this study confirm the adverse 
impact of artificial light on M. myotis. Night lighting has a measurably adverse effect on the activity of 
M. myotis above an illumination threshold of 0.25 lx. This result is in line with Azam et al. (2018), 
who showed Myotis spp. to avoid lux values below 1 lx. Yet, for effective use of corridors by light-
sensitive bats as M. myotis they recommend an illumination threshold of 0.1 lx (Azam et al., 2018). 
The result of this thesis shows that night lighting also effects bats on a very low light level and must 
not only be considered in urban planning, but also on small-scale planning of rural communities.  
 
The numeric corridor model could not account for light pollution due to data lack. This limitation 
could be overcome by making the spatial distribution of night light available as a GIS layer. Due to 
this limitation, two sources of information were tested to overcome the data gap; location of street-
lights and nocturnal light imaging from ISS. Even if the streetlight density was retained in best models 
in Linear Regression, lmg values representing importance of variable were low. So, neither distance to 
closest streetlight, nor streetlight density, nor ISS images revealed potential for capturing influence of 
artificial night lighting on M. myotis. On the contrary, Pauwels et al. (2019) showed that ISS image-
based variables as well as streetlight density within 200m radius both are appropriate measures to ac-
count for the influence of artificial night lighting on bat commuting activity. They conducted their 
studies in heavily light-polluted cities with nights up to 40 times brighter than natural conditions (Rich 
&Longcore, 2006), distinctively recognizable on the ISS images. This study was conducted in a more 
rural, less light polluted area. Moreover, ISS images did not mirror the hilly landscape of our study 
area. Thus, the results of this study could not confirm the potential of remote sensing data to account 
artificial light impact for rural areas. We therefore suggest the conduction of more research on night 
pictures taken by drones. These pictures could then be processed and calibrated similar to the ISS im-
ages.  
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For the variables associated to the ecological infrastrucuture network shallow streams were found to 
be the most important landscape feature interacting with commuting activity of M. myotis. Several 
studies have identified aquatic habitat as favorable habitat for bats (Rainho & Palmeirim, 2011; Russo 
& Jones, 2003). Due to the extraordinary high temperatures and long-lasting period of drought during 
the sampling period, water bodies might have been even more important as small water bodies dried 
up earlier. Additionally, in Liner Regression modelling distance to hedgerows was found to interact 
with bat commuting activity. The echolocation signal of M. myotis is adapted to detect background 
structures such as hedgerows and trees in long distances up to 25 meters (Bonnmann &Schnitzler, 
2005). Thus, hedgerows serve as landmarks for their navigation. Additionally, extensively used mead-
ows showed high interaction with measured activity of M. myotis independent of initial data set and 
modelling approach.  
 
Freshly mown meadows are known to be suitable foraging habitat for M. myotis (Güttinger, 1997). In 
late summer they feed on scrane flies, over low meadows, where the bats can detect their prey. When 
bat activity was recorded in late summer, many meadows surrounding the roost were freshly cut. Thus, 
extensively used meadow may influence measured bat activity, as they serve as foraging habitat. 
Meadows were not integrated as potential foraging areas in the numeric corridor model as remotely 
sensed data on temporally varied agricultural management throughout the vegetation season is not yet 
available spatially explicit. The results of this thesis reveal which landscape elements might be inte-
grated in the ecological infrastrucuture network to provide valuable corridors and resource areas. It 
furthermore demonstrates the potential of the ecological infrastructure network for bat conservation.  
 
Enhancing the structural diversity in order to establish an ecological infrastrucuture is one of the main 
goals defined in the action plan for the regional nature park ‘Jurapark Aargau’. The results of this 
study show that diversity of ecological valuable landscape element seems to be less important than the 
fact, that the landscape includes at least one of these elements. Furthermore, analysis of recordings 
reveal great differences in activity of M. myotis on small scales. Thus, the existing draft of the ecologi-
cal infrastrucuture planning, which only relies on extensively managed areas, is not detailed enough 
and requires spatial refinement. Successful implementation of an ecological infrastructure network 
will require a combination of local, regional and national scale functional assessments, including the 
consideration of artificial light at night.  
 
In comparison to the RF, which shows a weaker relationship between dependent and independent var-
iable(proportion of variance explained: 41.63%)., the results obtained with MLR have much higher 
predictive values (R2: 0.7607).  Nevertheless, in both approaches the same variables revealed high 
importance. Surprisingly, the total area of extensively used meadow was only retained in best models 
obtained from Random Forest. As Random Forest also accounts for nonlinear association, the total 
area of extensively used meadow seems to influence bat activity in a nonlinear function – and possibly 
only in the late season. Differences between the two approaches have been discussed in different re-
search fields (Oliveira et al., 2012; Smith, Ganesh &Liu, 2013; Zhang et al., 2017). The results of the 
comparisons are not consistent, indicating that suitability of Random Forest and Multiple Linear Re-
gression depends on the dataset applied.  
 
Random Forest variable importance measures might not be reliable in studies where potential inde-
pendent variables vary in their scale of measurement, number of classes or data type (Strobl et al., 
2007). The result obtained from variable selection then might be misleading as suboptimal independ-
ent variables may be artificially preferred (Strobl et al., 2007).  
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In this study variables of different scales of measurements were used, but values were standardized for 
statistical analysis to ensure uniform value ranges. However, variables differed in data type. While 
some variables showed continuous numbers, others were defined in classes. As variables represented 
in classes were associated to different environmental factors, number and size of classes varied be-
tween variables. This demonstrated that the dataset involved in this study might not be perfectly suita-
ble for Random Forest analysis due to biased variable selection process.  
 
Juvenile M. myotis that are born in spring, become independent in august and start commuting just like 
adult bats. It is not yet fully understood, how this fact changes commuting activity of the colony. It is 
hypothesized that juveniles need a training period to learn how to navigate. During this period the use 
of corridors might be less distinct and overall commuting activity pattern may alter as a function of the 
presence of juveniles (Ravessoud et al., 2017). Thus, recordings in early summer would be more pre-
cisely reflecting commuting activity, due to exclusion of juveniles activity.  
 
Ravessoud et al. (2017) developed the corridor model for the two bat species Greater mouse-eared bat 
(M. myotis) and Lesser Horseshoe Bat (R. hipposideros). Selection of environmental parameters for 
the basis of the model was species specific due to species-specific echolocation and flight behavior. In 
the study presented here, only the corridor model for M. myotis was evaluated. Further steps include 
evaluation of the corridor model for R. hipposideros. This study provides a valuable approach to eval-
uate the corridor model outcome for both species at different roosts. The results of this study and re-
sults of further evaluations should demonstrate potential weakness of the model, that must be im-
proved before model commuting corridors for all known roosts in Switzerland and make corridor 
maps available for planners or public. Moreover, the results of this thesis indicate a strongly negative 
impact of artificial light on the commuting activity of M. myotis. Thus, further steps also include in-
vestigation of an approach to make the impact of artificial light on bat commuting activity available as 
a GIS layer.  
 
This study aimed at comparing bat activity assessment by a numeric bat corridor model, expert-
derived corridor assessment and experimentally measured bat activity of M. myotis. Expert derived 
prediction showed higher compliance with empirically assessed bat movement and therefore outcom-
peted the prediction of the corridor model. In contrast to expert knowledge of nocturnal lighting, the 
corridor model does not account for artificial night lighting, due to data lack. The potential of remote 
sensing data and streetlight density to overcome this data gap that has been suggested in an earlier 
study (Pauwels et al., 2019), could not be confirmed in this thesis investigating bat commuting activity 
in a rural, less light-polluted area. We recommend further research on the approach of using a drone to 
capture small-scale night lighting and implementation of night lighting in the corridor model. Ele-
ments mentioned to establish the ecological infrastructure networks positively correlate with bat ac-
tivity, demonstrating the potential of the concept of ecological infrastructure for practical bat conser-
vation. However, great differences in bat activity on a small-scale were measured, the current concept 
of the ecological infrastructure planning must be refined to ensure functionality of established corri-
dors on multiple scale.
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SUPPLEMENT MATERIAL 

S1 – ArcGIS MODEL BUILDER: FROM NUMERIC CORRIDOR MODEL TO  

 LEAST COST PATHS 
 

In order to have the same initial state for analysis we derived least cost paths from the numeric corri-
dor model. Least cost paths describe paths with lowest cumulative travelling cost for a given species in 
a landscape matrix. 
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S2 – VARIABLES IN THE NUMERIC CORRIOD MODEL  
 
The numeric corridor model included environmental variables as explanatory variables. Landscape 
features may be represented in various measurement approaches.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab.1: Description of the environmental variables included in the numeric corridor model.  

landscape feature  measurement  

trees Edge density at 25m scale 

trees Cover at 25 m scale 

trees Cover at 10m scale 

structures Edge density at 10m scale 

structures Edge density at 25m scale 

Terrain ruggedness Curvature at 10m 

Terrain ruggedness Curvature at 5m 

Structure ruggedness Vector Ruggedness Measure at 10m 

Structure ruggedness Terrain Ruggedness Index at 10m 

Structure ruggedness Vector Ruggedness Measure at 25m  
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Sampling 
location ID 

Treatment  
(see Fig.2) 

Recording  
period 

Date and time of lux 
measurement  

Coordinates of 
 BATLOGGER 

Orientation of 
microphone 

Device num-
ber  

Recorded 
activity total  

Recorded activity per 
night recorded 

1 1D 27.07. – 31.07. 30.07.2018, 23:03 654 047 / 254 269 W 1005 22 5.50 
2 1L 27.07. – 31.07. 30.07.2018, 23:05 653 920 / 254 361 N 1008 23 7.67 
3 1D 27.07. – 31.07. 30.07.2018, 22:28 653 142 / 254 169 NO 1014 118 29.50 
4 1L 27.07. – 31.07. 30.07.2018, 22:30 653 251 / 254 198 O 1015 10 2.00 
5 1D 27.07. – 31.07. 30.07.2018, 22:34 653 368 / 254 190 NO 1828 99 33.00 
6 3D 27.07. – 31.07. 30.07.2018, 22:46 654 030 / 253 831 SW 1867 65 13.00 
7 3L 27.07. – 31.07. 30.07.2018, 22:43 653 926 / 253 760 N 1865 2 0.50 
8 3L 27.07. – 31.07. 30.07.2018, 22:18 653 284 / 254 333 O 1007 4 0.80 
9 3D 27.07. – 31.07. 30.07.2018, 22:24 652 997 / 254 339 O 1017 22 7.33 
10 2L 27.07. – 31.07. 30.07.2018, 22:53 654 103 / 254 215 N 1010 3 1.00 
11 2L 27.07. – 31.07. 30.07.2018, 22:54 654 294 / 254 294 W 1004 16 3.20 
12 2D 27.07. – 31.07. 30.07.2018, 22:56 654 351 / 254 204 SW 1006 15 5.00 
13 2D 27.07. – 31.07. 30.07.2018, 23:00 654 429 / 254 139 NW 1011 9 2.25 
14 4L 27.07. – 31.07. 30.07.2018, 22:41 653 720 / 253 729 N 1013 1 0.33 
15 4D 27.07. – 31.07. 30.07.2018, 22:39 653 689 / 253 659 N 1866 13 2.60 
16 4D 27.07. – 31.07. 30.07.2018, 22:15 653 422 / 254 663 S 1018 11 3.67 
17 4L 27.07. – 31.07. 30.07.2018, 22:11 653 353 / 254 916 S 1020 0 0.00 
18 1D 03.08. – 07.08. 06.08.2018, 22:34 653 356 /254 103 NO 1020 57 14.25 
19 1L 03.08. – 07.08. 06.08.2018, 22:31 653 369 / 254 264 NO 1011 26 5.20 
20 1D 03.08. – 07.08. 06.08.2018, 22:47 653 406 / 254 331 NO 1013 176 35.20 
21 1L 03.08. – 07.08. 06.08.2018, 21:44 653 791 / 254 516 W 1005 6 3.00 
22 3L 03.08. – 07.08. 06.08.2018, 21:55 653 593 / 254 434 SW 1018 8 1.60 
23 3D 03.08. – 07.08. 06.08.2018, 21:47 653 726 / 254 459 NW 1007 14 4.67 
24 3L 03.08. – 07.08. 06.08.2018, 22:14 653 188 / 254 460 SO 1004 5 1.00 
25 3D 03.08. – 07.08. 06.08.2018, 22:53 653 949 / 254 238 W 1008 7 1.40 
26 2L 03.08. – 07.08. 06.08.2018, 21:50 653 655 / 254 511 W 1828 33 11.00 
27 2D 03.08. – 07.08. 06.08.2018, 21:59 653 561 / 254 497 SW 1014 177 35.40 
28 2D 03.08. – 07.08. 06.08.2018, 22:07 653 597 / 254 604 SW 1866 81 16.20 
29 2L 03.08. – 07.08. 06.08.2018, 22:11 653 438 / 254 563 S 1865 92 18.40 
30 4L 03.08. – 07.08. 06.08.2018, 22:43 653 554 / 253 922 NW 1015 11 2.20 
31 4D 03.08. – 07.08. 06.08.2018, 22:38 653 459 / 253 823 N 1017 42 8.40 
32 4D 03.08. – 07.08. 06.08.2018, 22:29 653 048 / 254 127 NO 1010 138 27.60 
33 3L 03.08. – 07.08. 06.08.2018, 22:22 653 120 / 254 506 S 1867 4 0.80 
34 4D 03.08. – 07.08. 06.08.2018, 22:25 652 944 / 254 547 SO 1006 11 2.20 



   

 

Sampling location ID PEK10 EL.2 PMF10 PMK10 ML.2 
1 0.018486 9.359642 0.001649 0.016066 14.41403 
2 0.015459 14.90438 0.004327 0.01645 12.5105 
3 0.014613 13.33696 0.001591 0.001728 30.60283 
4 0.018497 9.553232 0.01578 0.017924 13.5005 
5 0.018305 13.30255 0.008856 0.021599 0.196499 
6 0 390.8772 0.001241 0 57.93466 
7 0 488.2151 0.000636 0.000015 52.76894 
8 0 92.69676 0.005656 0 114.3007 
9 0 232.4511 0.003299 0.004019 29.09498 
10 0.019938 0 0.001696 0.000071 50.49951 
11 0.010787 19.05359 0.000496 0 248.2503 
12 0.011752 22.08319 0.000754 0 298.51 
13 0.01013 24.64771 0.002761 0 382.5025 
14 0 516.4501 0.006369 0 260.9843 
15 0 543.9157 0.001576 0 309.6593 
16 0 113.5205 0.000815 0 230.8295 
17 0 374.5312 0 0 461.7467 
18 0.01297 20.57614 0.005541 0.003348 34.59241 
19 0.020956 21.25131 0.010737 0.019293 25.45584 
20 0.012021 28.68715 0.013781 0.00309 32.9017 
21 0.011352 21.92754 0.001286 0 83.43791 
22 0 73.47834 0.004201 0.015949 17.30015 
23 0.000017 55.31744 0.00531 0.021946 2.829117 
24 0 222.3422 0.039603 0.021074 2.63469 
25 0 83.02658 0.001561 0 78.30806 
26 0.019914 17.83642 0.001551 0 63.45454 
27 0.019872 3.10076 0.003272 0 85.95864 
28 0.002573 38.88544 0.000725 0 165.3977 
29 0.011715 18.60467 0.001976 0 139.8654 
30 0 267.0961 0.001171 0 302.3615 
31 0 276.6046 0.001034 0 323.6891 
32 0 96.10411 0.000205 0 132.2145 
33 0 304.3034 0.002723 0 75.82609 
34 0 429.5109 0.001347 0 183.4731 
 

 

 

 



   

 

Sampling location ID Lux ISS.50 SL.2 SL.3 
1 0 0.000681 265.5809 0 
2 0 0.002754 151.7621 0 
3 0 0.010164 45.73745 0 
4 3.5 0.008044 7.789662 1 
5 0 0.014415 7.867736 1 
6 0 0.001558 165.0548 0 
7 0.25 0.004 50.12962 0 
8 0.75 0.012242 8.245337 2 
9 0 0.008117 131.137 0 
10 0.5 0.003086 330.308 0 
11 0 0 511.1973 0 
12 0 0.002433 575.6115 0 
13 0 0.000107 659.2706 0 
14 0.75 0.014569 23.00167 1 
15 0 0.007143 55.80379 0 
16 0 0.007394 160.6755 0 
17 1 0.007929 19.26812 2 
18 0.5 0.006981 21.25852 1 
19 0.75 0.015023 6.627595 1 
20 0 0.015028 31.09856 0 
21 0.5 0.002655 30.28236 0 
22 0.75 0.001039 30.43562 0 
23 0 0.01118 30.11574 0 
24 0.25 0.009227 24.8219 1 
25 0 0.001997 176.0614 0 
26 0.5 0.001271 18.7823 1 
27 0 0.001402 40.22572 0 
28 0 0.005327 117.8315 0 
29 0.5 0.003504 64.10395 0 
30 0.25 0.008978 48.37704 0 
31 0 0.014956 135.1937 0 
32 0 0.004671 147.2513 0 
33 1 0 38.53894 0 
34 0.25 0.00245 142.7574 0 
 

 

 



   

 

Sampling 
ID 

EgW.1a Wa.1a GewO.2 Eb.2 Eb.4 Ghib.2 HiK.2 OI.6 Str.2 Geb.2 Roost.2 

1 0 1127.577 366.04 77.79 0 585.035 57.19221 1 7.650507 84.81457 600.98 
2 2807.797 366.9229 209.63 11.21 4 613.21 24.06262 4 34.44334 35.4423 460.57 
3 0 2405.05 22.07 55.94 0 42.22 119.4159 2 36.35389 32.03084 396.84 
4 0 0 13.09 26.94 1 26.8 94.47409 3 36.35389 11.39647 294.79 
5 0 0 43.7 28.42 1 142.77 81.62247 1 0.934985 11.97449 233.89 
6 0 0 394.73 44.95 4 305.78 18.16298 2 28.96679 42.42745 807.4725 
7 0 90.59934 455.05 22.33 8 197.69 47.70686 2 40.11431 23.23735 794.0577 
8 0 0 116.74 60.9 0 133.18 207.7059 0 2.073024 11.71449 191.3003 
9 0 1332.15 238.4 57.91 0 235.35 159.9393 1 4.341752 67.0609 469.0572 
10 0 776.0971 433.23 62.81 0 575.36 6.844325 2 4.589971 49.824 668.9004 
11 0 0 256.29 106.53 0 765.41 208.2712 0 11.12251 28.95925 839.8134 
12 0 524.1824 202.61 101.53 0 754.18 246.0448 1 8.494717 55.86408 911.8202 
13 0 3848.451 104.32 101.53 0 787.9 330.8789 1 96.10438 143.2365 1003.266 
14 47.22093 0 579.18 16.86 1 2.48 3.296961 4 2.01074 21.32476 723.1906 
15 0 0 521.16 32.48 1 58 20.41451 2 9.378217 41.60603 779.3546 
16 0 0 259.53 33.96 1 490.72 530.5141 1 5.137106 98.83024 261.5924 
17 0 0 194.41 96.88 0 714.11 734.6619 0 12.88995 298.2385 522.9705 
18 0 510.6569 114.26 28.29 1 162.37 32.27423 3 5.997969 3.762256 319.3257 
19 0 0 19.37 12.26 4 151.45 146.7088 2 9.761289 20.9582 168.1211 
20 0 0 92.37 29.82 2 215.06 222.8189 1 29.54796 4.793424 92.00824 
21 0 0 70.96 86.45 0 640.88 141.5761 0 4.894207 33.91271 347.9088 
22 0 0 44.43 46.36 0 428.21 299.0495 0 21.95666 12.17326 134.8139 
23 0 0 7.48 8.32 3 556.97 171.0511 2 28.27932 14.62425 270.1003 
24 0 0 254.51 16.17 2 249.26 326.8202 1 25.62166 9.531407 279.0692 
25 0 0 310.73 26.35 5 509.8 0.231171 2 99.67168 14.71256 515.1413 
26 0 0 54.9 25.85 2 522.8 254.9061 1 24.2125 18.33203 220.9406 
27 2382.914 0 79.02 26.33 12 439.08 340.3344 2 41.67383 22.19371 135.9389 
28 168.7356 0 149.16 62.5 10 538.93 349.3557 3 22.44396 78.93011 241.2589 
29 0 0 218.61 9.03 4 409.13 452.49 1 4.074978 18.14042 160.3247 
30 0 0 368.77 6.47 4 223.85 234.0752 1 26.44282 24.00698 491.1962 
31 1241.358 1262.503 412.57 100.12 0 267.84 277.8856 2 117.7086 100.2336 581.4085 
32 1515.076 390.359 34.59 26.9 3 145.34 18.94308 4 135.413 66.7559 497.9098 
33 0 0 279.34 5.62 2 310.04 341.0225 1 11.10491 18.92999 356.2683 
34 0 0 224.69 31.67 1 424.07 373.9336 1 3.38828 51.28839 636.7628 
 


