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We are only beginning to appreciate
the complexity of patterns of tree death.

(Franklin et al., 1987)
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Summary

Tree mortality — one of the key processes of population dynamics — is increasingly studied
against the backdrop of future climate change. Nevertheless, mortality studies are complicated
by the high temporal and spatial variability and the complex and interacting factors
contributing to tree death. Empirical models are particularly valuable to investigate tree
mortality since they enable the identification of patterns and drivers of tree death, assist in
management decisions and are key to reliably simulate future forest dynamics. In this thesis, I
systematically assessed the state of the art in empirical tree mortality modeling, analyzed
patterns of tree death and developed and evaluated robust mortality formulations based on

extensive long-term datasets for incorporation in Dynamic Vegetation Models (DVMs).

Chapter 1. The aim of this chapter was to analyze the suitability of empirical mortality
algorithms for extrapolation in space or time. To this end, 46 inventory-based models were
systematically validated using nearly 80 000 independent records covering 11 species from
unmanaged forests in Germany and Switzerland. Mortality models achieved higher accuracy
if covariates for tree growth and/or competition at the individual tree level were included and
if models were applied within the same ecological zone. The size of the calibration dataset did
not influence model performance. Consequently, mortality algorithms for applications over a
restricted spatial extent should be calibrated based on datasets from the same region, even if
they include a few hundred observations only. However, the high variability of mortality
patterns suggests that environmental influences should be considered explicitly in mortality

models to obtain wide applicability.

Chapter 2. In this chapter, I explicitly addressed the differences among mortality models that
had been identified in Chapter 1. The predicted mortality probabilities of a large set of
inventory- and tree-ring-based mortality models were analyzed using hierarchical cluster
analysis. The resulting dendrograms reflected the diversity of approaches in mortality
modeling, i.e., the field design as well as the approach for statistical modeling (in particular
the sampling scheme of tree-ring data). However, these differences did not modify mortality
predictions in a systematic way. Because of the large variety of approaches, it was not

possible to evaluate the need for species-specific models, nor to identify a reasonable
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grouping of species with similar mortality patterns. The results emphasize — once more — that
tree mortality is highly variable in space and time, and that our knowledge on the mechanisms

behind this variability is limited.

Chapter 3. Using Fagus sylvatica L. as an example, I developed a calibration and evaluation
approach for robust mortality models that allows one to consider additional environmental
covariates. Tree death was modelled as a function of size and growth using generalized
logistic regression accounting for unequal re-measurement intervals based on inventory data
from nearly 19 000 trees from unmanaged European forests. Mortality patterns in Swiss and
German strict forest reserves were dominated by competition processes, whereas a Ukrainian
primeval beech forest was also characterized by disturbance-related mortality of large trees.
The models revealed strong spatial and temporal variability in mortality that was independent
of environmental and stand characteristics. Nevertheless, the Swiss and German models

achieved good performance when validated against each other.

Chapter 4. Here, the approach of Chapter 3 that revealed robust mortality models with a high
potential for incorporation in DVMs was applied to calibrate species-specific mortality
models for 18 European tree species. I used more than 90 000 records from inventories in
Swiss and German strict forest reserves along a wide environmental gradient. Mortality of
almost all species was successfully predicted by tree size and growth, reflecting the indirect
influences of resource availability and vitality on mortality. These relationships were further
shaped by species-specific attributes, in particular lifespan, shade and drought tolerance. Only
few species required additional covariates in their final model to capture key differences in
stand structure or climate. Incorporated in the DVM ForClim, the new mortality functions
revealed simulations of stand basal area and species composition that were generally close to
historical observations. However, their performance was lower than simulated with the
original ForClim version, resulting from feedbacks of simulated growth and mortality as well

as from extrapolation to very small and very large trees.

Overall, the findings of this thesis suggest that tree mortality models based on size and growth
alone are suited to reliably predict tree death. Their relationship is dominantly reverse J-
shaped, suggesting competition as the most dominant mortality agent in Central European
forests, whereas processes that amplify the mortality of large trees are only common in true
old-growth forests. The results further emphasize the substantial value of inventory data for

the calibration of mortality models since, in contrast to dendrochronological data, they



provide stand-scale mortality rates. Additional climate and stand characteristics improved the
accuracy of mortality models only weakly and were included for a few species only. I
conclude that their predictions respond to water availability and stand density via the
integrating vitality indicator tree growth. The climatic sensitivity of mortality models should
be further investigated using data with annual resolution along wide and well-replicated
environmental gradients. Empirical mortality models were found to be structurally suitable for
incorporation in DVMs. To improve their performance, growth and mortality processes and
their species-specific differences should be revisited jointly, with a particular focus on small

trees and shade-tolerant species.

I propose the following strategies to further advance empirical mortality models: (1) develop
models for sapling mortality, (2) intensify the efforts to address disturbance-related mortality,
(3) continue the implementation of empirical mortality formulations in DVMs and account for
the involved uncertainties, and (4) more effectively explore available and future datasets for

the calibration of tree mortality models.

This thesis provides a systematical assessment of previous approaches for tree mortality
modeling and suggests a strategy towards robust mortality models for a wide range of tree
species. Their mortality patterns could be related to species-specific life history strategies.
Finally, the analyses indicated the most important mortality factors and their importance in
managed and unmanaged forests in Europe. Due to the unique spatial extent and the extensive
database in combination with cautious, systematic analyses and modelling, the conclusions

can be transferred to a wider European context.
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Zusammenfassung

Baummortalitdt ist einer der Schliisselprozesse der Walddynamik. In Zeiten eines sich
wandelnden Klimas ist Mortalitdit vermehrt in den Fokus der Forschung geriickt. Die
Untersuchung der Baummortalitit wird allerdings durch ihre ausgeprigte Variabilitit sowie
die komplexen Faktoren, die dem Absterben von Bdumen zugrunde liegen, erschwert.
Empirische Mortalititsmodelle sind von besonderer Bedeutung, da sie helfen,
Absterbeprozesse besser zu verstehen, als Hilfestellung fiir die Wald-Bewirtschaftung dienen
und eine wichtige Grundlage fiir die Modellierung der Entwicklung von Wéldern darstellen.
In dieser Dissertation wurden eine systematische Bestandsaufnahme und Evaluation der heute
verfiigbaren Mortalitdtsmodelle durchgefiihrt und robuste Mortalitdtsmodelle mithilfe von
umfangreichen Langzeit-Datensitzen kalibriert und in dynamischen Vegetationsmodellen

(DVMs) getestet.

Kapitel 1. Zunichst wurde die rdumliche und zeitliche Ubertragbarkeit von empirischen
Mortalitdtsmodellen untersucht. Zu diesem Zweck wurden 46 inventurbasierte Modelle mit
fast 80 000 Datensédtzen von 11 Baumarten aus unbewirtschafteten Wéldern in der Schweiz
und in Deutschland validiert. Dabei erzielten jene Modelle die besten Ergebnisse, welche die
Mortalitdtswahrscheinlichkeit anhand des Zuwachses und/oder der Konkurrenzsituation des
Einzelbaums vorhersagten und innerhalb der gleichen 6kologischen Grossregion angewandt
wurden. Umfangreichere Kalibrationsdatensétze fithrten hingegen nicht zu einer hdheren
Genauigkeit. Folglich sollten Mortalititsmodelle fiir den rdumlich begrenzten Einsatz mit
Datensétzen aus der gleichen Region kalibriert werden, auch wenn diese nur wenige hundert
Beobachtungen umfassen. Da die Mortalitdtsmuster zwischen den untersuchten Modellen eine
grosse Variabilitdt zeigten, ist es wichtig, die jeweiligen Standortverhéltnisse explizit in

Mortalitdtsmodellen zu beriicksichtigen, um ihre allgemeine Giiltigkeit zu verbessern.

Kapitel 2. Die grosse Variabilitit der Vorhersagen von Mortalitdtsmodellen, die sich im ersten
Kapitel abzeichnete, wurde im Folgenden nédher analysiert. Dazu wurden inventur- und
jahrringbasierte Modelle anhand ihrer prognostizierten Mortalitdtswahrscheinlichkeit
verglichen und in einer hierarchischen Clusteranalyse untersucht. Die resultierenden

Dendrogramme ergeben sich aus einer Vielzahl von Modellierungsansitzen, z.B. der
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statistischen Vorgehensweise sowie insbesondere dem Schema zur Aggregation von
dendrochronologischen Daten. Die verschiedenen Methoden beeinflussten die Vorhersagen
allerdings nicht auf systematische Weise. Aufgrund der grossen Unterschiede war es nicht
moglich, die Notwendigkeit von artspezifischen Mortalititsmodellen zu bestdtigen oder
Artgruppen mit dhnlichen Mustern zu identifizieren. Einmal mehr unterstreicht dies die grosse

Variabilitit der Baummortalitdt und das begrenzte Verstindnis des Absterbeprozesses.

Kapitel 3. Am Beispiel von Fagus sylvatica L. und einem Datensatz von fast 19 000 Baumen
aus unbewirtschafteten europdischen Wildern wurde eine Methode zur Kalibration und
Evaluation von robusten Mortalititsmodellen entwickelt, welche Klima- und
Bestandsfaktoren beriicksichtigt. Basierend auf einer generalisierten logistischen Regression,
welche die Verwendung von Inventurdaten mit unterschiedlich langen Messintervallen
ermoglicht, wurde die Mortalitdtswahrscheinlichkeit anhand des Stammdurchmessers und des
Grundflachenzuwachses vorhergesagt. Die Mortalititsmuster weisen auf Konkurrenz als
Hauptmortalititsursache in Schweizer und deutschen Waldreservaten hin, wogegen in einem
ukrainischen Urwald storungsbedingte Mortalitdt zu einer erhohten Sterblichkeit von grossen
Béumen fiihrte. Die Modelle zeigten eine grosse rdumliche und zeitliche Variabilitdt der
Mortalitdt, die durch Umweltvariablen nicht verringert werden konnte. Dennoch erzielten das

Schweizer und das deutsche Modell auch im jeweils anderen Land eine hohe Genauigkeit.

Kapitel 4. Da mit dem zuvor entwickelten Vorgehen robuste und fiir die Implementierung in
DVMs geeignete Mortalititsmodelle kalibriert werden konnten, wurden auf gleiche Weise
artspezifische Modelle fiir 18 Arten erstellt. Zu diesem Zweck verwendete ich mehr als
90 000 Inventurdatensitze aus Schweizer und deutschen Naturwaldreservaten entlang von
nennenswerten Umweltgradienten. Durchmesser und Grundflichenzuwachs waren fiir fast alle
Baumarten erfolgreiche Priadiktoren der Mortalitét und spiegelten den indirekten Einfluss von
Ressourcenverfiigbarkeit und Vitalitit auf das Absterben der Bidume wieder. Dieser
Zusammenhang variierte je nach Baumart und korreliert mit dem Langlebigkeit sowie der
Schatten- und Trockentoleranz. Nur wenige Mortalitditsmodelle bendtigten zusdtzliche Klima-
oder Bestandsvariablen. Im DVM ForClim fiihrten die neuen Mortalititsmodelle zu einer
dhnlichen Bestockung und Artenzusammensetzung wie im Beobachtungsdatensatz.
Allerdings reichte ihre Genauigkeit nicht an die der urspriinglichen ForClim-Version heran,
was auf Interaktionen zwischen der Wachstums- und Mortalitdtssimulation in ForClim und

die Extrapolation bei sehr kleinen und sehr grossen Baumen zuriickzufiihren war.



Die Ergebnisse dieser Dissertation bestétigen, dass Modelle, die allein auf Durchmesser und
Grundflichenzuwachs basieren, geeignet sind, um die Sterblichkeit von Béumen
vorherzusagen. Die zumeist abnehmende Mortalitdtswahrscheinlichkeit mit zunehmender
Grosse und schnellerem Wachstum weist auf Konkurrenz als wichtigste Mortalitidtsursache in
mitteleuropédischen Wéldern hin. Faktoren, die zum Tod von insbesondere grossen Bédumen
filhren, finden sich hingegen hauptséchlich in echten Urwildern. Zudem zeigte sich, dass
Inventurdaten unerldsslich fiir die Kalibration von Modellen zur Vorhersage von
Mortalitdtsraten auf Bestandsebene sind. Im Gegensatz dazu haben dendrochronologische
Daten einen deutlichen Bias. Zusitzliche Klima- oder Bestandsvariablen verbesserten
Mortalititsmodelle nur geringfiigig und nur fiir wenige Arten. Folglich wirken sich
Umwelteinfliisse wie Trockenheit und Bestandsdichte in erster Linie indirekt, d.h. iiber die
Wachstumsvariable, auf die Sterblichkeit aus. Es sollte daher im Detail untersucht werden,
wie klimasensitiv die vorgeschlagenen Mortalitdtsmodelle sind, z.B. anhand von jéhrlich-
aufgelosten Daten mit einer guten Abdeckung von Umweltgradienten. Strukturell waren die
empirischen Mortalititsmodelle geeignet, um Mortalitit in DVMs vorherzusagen. Die
Vorhersagen sollten zusétzlich verbessert werden, indem die Abbildung von Wachstum und
Mortalitit gleichzeitig angepasst und dabei insbesondere auf die Vorhersage der Sterblichkeit

von kleinen Bdumen und schattentoleranten Arten geachtet wird.

Ich schlage folgende Strategien zur Verbesserung empirischer Baummortalitdtsmodelle vor:
(1) das Entwickeln von Mortalitditsmodellen fiir sehr junge Bédume, (2) die verstérkte
Berticksichtigung von storungsbedingter Mortalitdt, (3) die vermehrte Nutzung von
empirischen Mortalitdtsfunktionen in DVMs unter Beachtung der Modellunsicherheit, und (4)
die intensivierte Erschliessung und Aggregation bereits vorliegender und zukiinftiger

Datensitze fiir die Kalibration von Mortalitatsmodellen.

Diese Dissertation ermdglicht eine systematische Einschidtzung bisheriger Strategien in der
Baummortalititsmodellierung und stellt eine umfangreiche Palette von robusten Modellen zur
Verfligung. Des Weiteren konnten die Mortalititsmuster mit artspezifischen
Uberlebensstrategien in Verbindung gebracht und die wichtigsten Mortalitéitsursachen und
ihre Bedeutung in verschiedenen bewirtschafteten Wildern Europas aufgezeigt werden.
Aufgrund der umfangreichen Datengrundlage und der systematischen Vorgehensweise lassen

die Ergebnisse dieser Arbeit Riickschliisse auch in einem grosseren europdischen Kontext zu.
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General introduction

Facing a variety of unprecedented environmental changes that are anticipated to unfold by the
end of this century, scientists are confronted with the urgent need to quantify future responses
of ecosystems to new climates and anthropogenic impacts (Evans, 2012). This knowledge is
indispensable for the timely initiation of measures that are necessary to maintain ecosystem
goods and services (De Groot et al., 2002; Temperli et al., 2012). Ecological simulation
models of various kinds therefore have received great attention (e.g., Guisan & Zimmermann,
2000; Sitch et al., 2008), are continuously refined (Busing & Mailly, 2004; Yue ef al., 2011)
and, in spite of the uncertainties involved, serve as tools to support decision-making (Seidl et

al.,2011; Lindner et al., 2014; Bircher, 2015).

Forests are expected to be particularly vulnerable to future environmental change since trees
have a lower potential to quickly adapt to new environmental conditions due to their long life
cycle (Lindner et al., 2010). Consequently, tree mortality rates may increase and catastrophic
mortality events may become more frequent and severe, resulting from higher temperature
and reduced water availability (Allen et al., 2010; Steinkamp et al., 2015). Studies that aim at
elucidating the drivers of tree death and that assist in quantifying mortality are thus highly
needed (Bircher et al., 2015), e.g., by using empirical methods to relate tree and

environmental characteristics to mortality patterns (Weiskittel ef al., 2011).

Empirical tree mortality models are particularly valuable since they address three essential
concerns: they (1) enable the identification of patterns and drivers of tree death, (2) assist in
management decisions, and (3) are key for the reliable simulation of future forest dynamics
(Cailleret et al., 2016). Until now, the process descriptions in many dynamic vegetation
models (DVMs), in particular the representation of tree survival, lack empirical justification
(Loehle & LeBlanc, 1996; Keane et al., 2001). Since tree death can be described quite
precisely as ‘stochastic, rare and irregular’ (Eid & Tuhus, 2001), its investigation is hampered
by limited data and high variability (Bugmann, 1996). Tree mortality thus remains one of the
least understood processes in the simulation of stand dynamics (Hawkes, 2000; Adame et al.,
2010). This is particularly problematic since projections of future forest dynamics are highly

sensitive to mortality formulations (Friend et al., 2014; Bircher et al., 2015). Consequently,
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improved concepts for the modeling of tree mortality are urgently needed (Liang & Picard,

2013).

Tree mortality as a key process of forest dynamics

Population dynamics are shaped by three key processes or vital rates: survival, growth and
recruitment (Ruiz-Benito et al., 2013; Merow et al., 2014). While tree growth affects forests
gradually, the influences of tree mortality are more abrupt. Additionally, the death of trees
alters forests from the stand scale (e.g., forest structure and species composition; cf. Harper,
1977) to the regional scale (e.g., species range shifts; cf. Monleon & Lintz, 2015) and up to
the global scale (e.g., carbon cycle; cf. Pan et al., 2011).

Complex interactions of multiple factors control when, which and how many trees die
(Franklin et al., 1987). The factors that induce lethal stress can be abiotic, e.g., drought, heat,
wind or rock fall, or biotic, e.g., inter- and intra-specific competition, insects, fungi or
browsing. Mortality agents and rates strongly depend on tree age and the successional stage of
forest stands (Holzwarth et al., 2013). Higher mortality rates are typically found in younger
trees, where competition is the main driver of death, but were also suggested for old trees as a
result of a larger number of mortality agents or senescense (Buchman et al., 1983). Because
of these age and size effects, mortality over diameter is often considered to be reverse J- or U-

shaped (Harcombe, 1987; Ruiz-Benito et al., 2013).

Tree mortality is characterized by high temporal and spatial variability (Hawkes, 2000;
Wunder, 2007), which is enhanced by catastrophic mortality events arising from wind, forest
fires, insect attacks, disease or drought (Franklin ef al., 1987). In addition, mortality processes
may vary due to site conditions with respect to soil, climate or pollutants (cf. Lines et al.,
2010; Dietze & Moorcroft, 2011; Uzoh & Mori, 2012). Since tree species have diverse life
history strategies, among others lifespan and competitiveness, they vary in their reaction to
stress (Franklin et al., 1987). Stress-intolerant and short-lived species are assumed to have

higher death rates (Harcombe, 1987).

Mortality formulations in DVMs

In forest simulation models, tree death is typically separated into ‘regular’ and ‘irregular’

mortality (Lee, 1971; Monserud, 1976; Kiernan et al., 2009), although this differentiation is
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blurred (Weiskittel et al.,, 2011). ‘Regular’ or ‘growth-dependent’ mortality is usually
considered to be the result of competition and other non-extreme stress (Csilléry et al., 2013)
and affects individual trees. As it is determined by within-stand processes, regular mortality is
assumed to be predictable using a set of tree and stand covariates that characterize vigor,
competition or the lack of resources (Hawkes, 2000; Keane ef al., 2001). In contrast,
‘irregular’ or ‘disturbance-dependent’ mortality is ‘catastrophic’, resulting from larger-scale
agents such as wind, disease and fire, and typically affects many trees simultaneously
(Weiskittel ef al., 2011). It can be regarded as being unpredictable based on within-stand
properties alone (Alenius ef al., 2003).

Early concepts of mortality in forest simulation models were developed based on theoretical
assumptions, e.g., controlled by a threshold for tree growth (Botkin et al., 1972; Bugmann,
2001), and remained the most common approach due to their simplicity and a lack of more
sophisticated solutions (Monserud, 2003). However, the resulting projections of tree mortality
were unsatisfactory since theoretical formulations are based on conceptual ideas of the
mortality process that may contradict empirical relationships and thus are structurally

questionable (Bigler & Bugmann, 2004; Wunder ef al., 2006).

In contrast, truly mechanistic approaches to capture tree mortality rely on physiological
indicators of stress, e.g., based on water transport in the xylem or the whole-tree carbon
budget, and aim at accounting for the underlying processes that ultimately result in mortality
(Tague et al., 2013; Anderegg et al., 2015). In spite of the appeal of an explicit process
representation, these models typically focus on one or few mortality factors only, i.e., they do
not account for the full suite of stand-scale mortality agents and their potential interactions
(McDowell et al., 2013). In addition, the varying and interacting mortality factors and the
underlying processes are not yet sufficiently understood. Advances in the development of
truly mechanistic models thus may provide important insights on the involved processes, but
to date only little progress has been made in applying fully mechanistic tree mortality models

in DVMs (Weiskittel ez al., 2011; Adams et al., 2013).

Recently, considerable efforts have been made to incorporate empirical mortality models into
DVMs (e.g., Wernsdorfer et al., 2008). Data-based approaches are common in growth and
yield models, which simulate the short-term (i.e., decadal-scale) development of managed

stands (cf. Hasenauer, 2006). Although the accuracy of yield predictions was improved by
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empirical mortality functions (cf. Radtke et al, 2012), growth and yield models are only
weakly sensitive to mortality formulations and thus do not provide a testbed for the thorough
examination of the reliability of empirical mortality models (Bircher et al., 2015). When
implemented in DVMs, data-driven formulations partly improved the projections but also
revealed inconsistencies in the interaction of growth and mortality (Bircher, 2015).
Nevertheless, empirical models constitute a promising replacement of theoretical approaches,
and their further development and incorporation in DVMs are thus highly recommended

(Larocque et al., 2011).

Empirical tree mortality models: Approaches and challenges

Going back to Keister (1972), Monserud (1976) and Hamilton et al. (1976), a considerable
number of empirical mortality models for individual trees have been developed for several
regions and species. These models use different data sources to elucidate the relation of tree
death to various independent variables (Weiskittel ez al., 2011). Predictors of tree death were
classified following different concepts (e.g., Hamilton, 1986; Hawkes, 2000; Fridman &
Stahl, 2001), but in general four main categories can be distinguished. First, tree size is used
as a predictor of mortality based on variables such as diameter or height to reflect the tree’s
access to resources such as light and nutrients (Harcombe, 1987). Second, tree vigor is
considered by using variables of stem growth or crown condition (e.g., Monserud, 1976;
Cailleret et al., 2016). Third, some mortality models account for competition based on stand
structure and density or one-sided competition calculated at the tree level (e.g., Bravo-Oviedo
et al., 2006). Finally, spatial and temporal differences in mortality are addressed in some
approaches using site characteristics such as climate, soil or productivity (e.g., Dietze &
Moorcroft, 2011). With a few exceptions (e.g., Eid & Tuhus, 2001), such mortality models
were calibrated at the species level to account for species-specific differences in the reaction

to stress (Ireland et al., 2014).

Methodologically, the death of individual trees is typically modeled using logistic regression,
since the response variable (live or dead) is binary (Woolley et al., 2012). However, the
studies differ considerably with respect to the covariates considered and the strategy of model
selection. Less common modeling techniques are artificial neural networks (Guan & Gertner,
1991), support vector methods (King et al, 2000), classification and regression trees
(Dobbertin & Biging, 1998), generalized estimating equations (Kiernan et al., 2009), capture-
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recapture approaches (Moustakas & Evans, 2015) and semiparametric regression (Vieilledent
et al., 2009). In addition, increasing attention has been paid to non-parametric Bayesian

inference (Wyckoff & Clark, 2000; Metcalf et al., 2009).

Data for the development of mortality models can be derived from long-term re-
measurements of permanent plots (e.g., Boeck et al., 2014) or from increment cores (e.g.,
Macalady & Bugmann, 2014). Both data sources require intensive field campaigns and
measurement effort (Wyckoff & Clark, 2000) and feature different assets and drawbacks.
Inventory data allow for the derivation of the multi-annual mortality probability of individual
trees as well as of population-based mortality rates and include a wide range of species and
site conditions (Weiskittel et al., 2011). In contrast, dendrochronological data provide a much
higher temporal resolution and thus are likely to have higher potential for contributing to the
understanding of the interactions between environment, growth and tree mortality (e.g., Bigler
et al., 2004; Gillner et al., 2013). Tree-ring-based models rely nearly exclusively on tree
growth as a predictor of tree death but analyze the influence of growth level, trend and
variability on mortality in great detail (e.g., Carus, 2010; but cf. Gea-Izquierdo et al., 2014).
However, tree-ring datasets typically cover only few species and sites (Cailleret ef al., 2016).
Additionally, they suffer from difficulties concerning the derivation of population-based
mortality rates (Weiskittel et al., 2011) and the accuracy of death dates (Jones & Daniels,
2012; Bigler & Rigling, 2013).

Datasets for deriving the relationship between explanatory variables and mortality considering
species and site differences are rare (Keane et al., 2001; Wyckoff & Clark, 2002) since they
need to be large to reliably inform on the mortality process (Metcalf ez al., 2009). The transfer
of empirical models to new environmental conditions must necessarily be based on the
assumption of a stable relationship between predictors and mortality (Keane et al., 2001) and
i1s hence restricted by the calibration domain of the models in terms of space, time and
resolution (Woolley et al., 2012). This may constrain the performance of the models that are
currently available when incorporated in DVMSs, because they have usually been developed
based on small, spatially restricted datasets. Nevertheless, empirical mortality models are
increasingly applied in models of forest dynamics (Wernsdorfer et al., 2008; Larocque ef al.,
2011; Bircher, 2015), although information on their applicability at larger temporal extent and
under different site conditions is mostly missing, since they have only rarely been validated

with independent data (Hawkes, 2000).
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In several studies, climatic, soil or stand covariates have been included in mortality models,
but the regional-scale variability in tree mortality remains poorly understood (Dietze &
Moorcroft, 2011). Conversely, growth has often not been considered as a covariate in models
that explicitly account for environmental influences (e.g., Lines et al., 2010), although growth
itself is responsive to the environment (Dobbertin, 2005). Consequently, the
interdependencies between tree size, growth, environment and mortality remain unclear. This
is particularly unfortunate since additional environmental covariates may explain spatial and
temporal differences in the relationship of tree characteristics and mortality (Hasenauer et al.,
2001; Wunder, 2007) and thus could increase the applicability and generality of mortality

functions.

In conclusion, difficulties in simulating tree mortality are related to the restricted knowledge
on the applicability of available mortality formulations and the lack of robust models for a
broad set of tree species and site conditions. In this thesis, I thus focus on advancing empirical
mortality models with respect to their development, evaluation and incorporation in DVMs by

making consistent use of a large database.

Data sources

This thesis is fundamentally based on data from two large networks of strict forest reserves in
Switzerland and Germany / Lower Saxony (Fig. 1; cf. Meyer et al., 2006; Heiri ef al., 2011).
The first reserves were founded in the 1940s (Switzerland) and 1970s (Germany), and since
then, permanent plots in the reserves have been periodically re-measured up to six times.
Forest management had been given up much earlier in many cases, so that the reserves
provide an exceptional opportunity to study forest dynamics in the absence of direct human
disturbances (Heiri et al., 2009) and thus to investigate natural tree mortality, which is higher
than in managed forests (Bravo-Oviedo et al., 2006). Some of the Swiss reserve data have
already been used for the investigation of mortality patterns and the development of mortality
models (e.g., Wunder et al., 2008; Rohner et al., 2012). The full Swiss dataset can now be
used together with the German data, thus providing an exceptional amount of information on
the life history of single trees. The networks comprise data of ca. 180 000 individual trees of
ca. 60 species on >400 permanent plots in ca. 100 reserves. Although the reserves do not
represent a random sample of the forested area, they cover a large gradient of environmental

conditions and the most important forests types of Central Europe (Brang et al., 2011).
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Fig. 1 Map of the strict forest reserves in Switzerland and Germany and the Ukrainian primeval forest used in
this thesis.

In addition, a set of three inventories from a 10 ha plot in the primeval beech forest Uholka in
Western Ukraine could be used as a reference for mortality patterns of Fagus sylvatica L. in
truly unmanaged forests (Chapter 3; cf. Commarmot et al., 2005; Peck et al., 2015). Finally,
the inventory data could be combined with an extensive dendrochronological dataset based on
1010 cored trees of eight species that were taken primarily from dead trees in the Swiss
reserves (Chapter 2; cf. Vanoni et al., 2016a; Vanoni et al., 2016b; Vanoni et al., in prep.).
These were taken within an associated Ph.D. project. Both theses were carried out within the
framework of the project ‘Predicting growth-dependent tree mortality: A key challenge for
population ecology’ funded by the Swiss National Science Foundation (SNF). Particularly

Chapters 2 and 4 of this thesis are the result of collaborations within this project.

Objectives and structure of the thesis

In order to analyze patterns of tree death and advance empirically-based mortality

formulations, I (1) assessed the state of the art in tree mortality modeling based on long-term
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datasets and (2) developed and evaluated new mortality formulations for incorporation in

DVMs. These two parts are structured as follows:

In Chapters 1 and 2, I assessed the transferability of European mortality models that have
been published in the last decades to new environmental conditions and analyzed their

predictive behavior. To this end,

- 46 inventory-based mortality models were validated with inventory data from
Switzerland and Germany, and
- the predictive behavior of 46 inventory- and 52 tree-ring-based mortality models was

analyzed using hierarchical clustering.

In Chapters 3 and 4, I addressed the need for robust mortality functions to be implemented in
DVMs by making use of extensive inventory datasets and analyzed mortality patterns with

respect to tree size and growth. For this purpose,

- amethodology for the calibration and evaluation of robust and parsimonious mortality
models was developed and tested using the example species Fagus sylvatica,

- species-specific mortality models for 18 tree species were calibrated, and the potential
of explaining the spatial and temporal variability of mortality was explored using
environmental covariates, and

- these new mortality formulations were implemented in the DVM ForClim (Bugmann,
1996) to assess their suitability for the simulation of short- and long-term forest

dynamics.

Chapter 1

In earlier studies, empirical mortality algorithms have been developed following contrasting
strategies concerning the covariates considered, the types of forest stands used for calibration
and the extent of the calibration data. To assess the suitability of these models for
extrapolation in space or time, I rigorously validated 46 inventory-based mortality models
using nearly 80 000 independent records from strict forest reserves in Switzerland and
Germany and systematically analyzed model performance. In particular, I addressed the
following questions: (1) Which predictors warrant high accuracy of simulated tree mortality?
(2) Are 'regional models', i.e. functions that are calibrated and applied in similar

environments, required to account for the wvariation in mortality? (3) Should model
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applications be restricted to the management intensity in the calibration data? (4) Does the
size of the calibration and validation datasets influence the accuracy of mortality predictions?
(5) Are predictions of individual tree mortality models sensitive to the length of census

intervals?

Chapter 2

As found in Chapter 1, the mortality models differ considerably in the prediction of mortality
patterns. To address these differences more explicitly, I analyzed the similarity of mortality
predictions for a large set of inventory- and tree-ring-based models using hierarchical
clustering. I hypothesized that (1) species or at least functional traits (e.g., deciduous vs.
evergreen, shade tolerance), (2) predicted mortality type, i.e., 'regular' vs. 'irregular' mortality,
(3) geographical origin of the calibration data, (4) management intensity and (5) the sampling

scheme in tree-ring data should be influential model characteristics.

Chapter 3

Mortality models for the implementation in DVMs should be robust and thoroughly validated
with good transferability to new environmental conditions. Taking these requirements into
account, I developed parsimonious models for Fagus sylvatica based on inventory data from
unmanaged forests in Switzerland, Germany and Ukraine, compared the mortality patterns
between different European regions and comprehensively evaluated calibration and validation
performance. Specifically, I aimed to answer three questions: (1) Does the growth-mortality
relationship vary with site and stand characteristics, and particularly with water availability
and competition? (2) How strongly does the prediction and classification accuracy of
mortality models vary with tree size and between different sites? (3) How well do mortality
models perform when applied outside their calibration range, i.e., in other forest reserves and

in a primeval beech forest?

Chapter 4

Mortality models that consider species-specific traits are highly needed for the simulation of
future forests under consideration of expected species range shifts and changes in species
composition. To this end, I developed and validated mortality models for an extended set of

18 species using the approach presented in Chapter 3. In addition, the new mortality functions
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were incorporated in the DVM ForClim. I addressed three main questions: (1) Can life history
strategies such as lifespan and stress tolerance be used to group tree species into reasonable
PFTs that account for species differences in mortality? (2) How successful are mortality
models that are based on size and growth alone compared to models that include further
climate or stand characteristics in accurately predicting tree mortality? (3) How do the new

mortality functions perform when embedded in a DVM?

In a related study that was carried out within the same SNF-project on growth-related tree
mortality modeling, we combined annual growth data from increment cores with size-
dependent mortality rates at the population level to develop mortality models for six tree
species (cf. Vanoni et al., in prep.). This has been proposed to provide high temporal
resolution as well as accurate stand-scale mortality rates (Das et al., 2007). The resulting tree-
ring-based models were again incorporated and evaluated in ForClim based on short- and
long-term simulations. In the synthesis, I refer to the findings of this study and discuss them

jointly with the results of the four chapters in this thesis.
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Abstract

The future development of forest ecosystems depends critically on tree mortality. However,
the suitability of empirical mortality algorithms for extrapolation in space or time remains
untested. We systematically analyzed the performance of 46 inventory-based mortality
models available from the literature using nearly 80000 independent records from 54 strict
forest reserves in Germany and Switzerland covering 11 species. Mortality rates were
predicted with higher accuracy if covariates for tree growth and/or competition at the
individual level were included and if models were applied within the same ecological zone. In
contrast, classification of dead vs. living trees was only improved by growth variables.
Management intensity in the calibration stands as well as the census interval and size of the
calibration datasets did not influence model performance. Consequently, future approaches
should make use of tree growth and competition at the level of individual trees. Mortality
algorithms for applications over a restricted spatial extent and under current climate should be
calibrated based on datasets from the same region, even if they are small. To obtain models
with wide applicability and enhanced climatic sensitivity, the spatial variability of mortality
should be addressed explicitly by considering environmental influences using data of high
temporal resolution covering large ecological gradients. Finally, such models need to be

validated and documented thoroughly.

Key-words

Dynamic vegetation models; Empirical mortality models; Forest inventory data; Independent

validation; Systematic review
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Introduction

Tree death within a forest ecosystem initiates a wide range of responses (Franklin ef al., 1987;
Gendreau-Berthiaume et al., 2016) and is a key factor shaping forest structure in terms of
diameter distribution, stand density and species diversity (Friend et al., 2014). Typically, tree
mortality is the result of several interacting factors such as competition, drought, pathogens,
snow, fire or frost, all of which decrease tree vitality (Waring, 1987). Consequently, tree death
can hardly be associated with a single cause, which greatly complicates the mechanistic
understanding of mortality (Wang et al., 2012). Robust tree mortality algorithms (Manusch et
al., 2012) are an important component of Dynamic Vegetation Models (DVMs), which have
proven to be useful for simulating forest succession, species range dynamics and the
provisioning of ecosystem services in response to environmental changes (Bugmann, 2014;

Snell et al., 2014) from the local (Bugmann, 2001) to the global scale (Bonan et al., 2003).

Mechanistic tree mortality models typically emphasize a single mortality factor, e.g. drought
(Anderegg et al., 2015), and thus are not qualified to predict the multiple and interacting
physiological processes of tree mortality beyond the scale of case studies (Adams et al.,
2013). In contrast, empirical mortality formulations are not process-oriented but consider the
underlying mechanisms implicitly (Woolley et al., 2012). They are expected to have a lower
parameter uncertainty and require fewer data because of fewer model parameters. Therefore,
they were suggested as a valid and rapid alternative to process-based models (Adams et al.,

2013).

Empirical mortality models for European tree species have been developed based on
inventory and dendrochronological data. Although inventory data feature a lower temporal
resolution, with plots being typically re-measured every 5-15 years only, inventory-based
models are more frequent and cover more species and larger ecological gradients because
more data are available compared to tree-ring records. Here, we focus on mortality models

based on inventory data.

The available mortality algorithms were developed following contrasting strategies
concerning the covariates considered, the types of forest stands used for calibration and the

extent and temporal resolution of the calibration data, as reviewed below.
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First, mortality predictions are typically based on tree size and a measure of competition or
growth to consider resource availability and tree vitality (Waring, 1987). While nearly all
models include a covariate of tree size — most commonly diameter at breast height (DBH) —
competition and growth are typically used alternatively. It remains open which approach

warrants higher model performance.

Second, climate, site conditions and development stage are influential in shaping forest
dynamics including tree mortality (Aakala et al., 2009). Thus, site-specific tree mortality
models or the incorporation of additional covariates have been proposed (e.g. Monserud &
Sterba, 1999). Yet, the superiority of 'regional models', i.e. mortality functions that are
calibrated and applied under similar ecological conditions, has not been verified. Inventory
data for the calibration of tree mortality models typically stem from three types of permanent
plots: National Forest Inventories (NFI, e.g. Fridman & Stihl, 2001), growth and yield
research plots (e.g. Crecente-Campo et al., 2010) and networks of strict forest reserves (e.g.
Wunder et al., 2008a). In contrast to NFI and growth and yield plots, no management is
carried out in strict forest reserves. Since mortality rates in unmanaged forests are expected to
be higher and thus tree death events more frequent, the use of such data has been favored for
the derivation of mortality algorithms (e.g. Bravo-Oviedo et al., 2006). Yet, it is not known
whether model applications should be restricted to the management intensity in the calibration

data.

Lastly, the number of records used for the calibration of mortality models differs strongly.
Although the authors usually emphasize the need for large datasets for model development
(e.g. Metcalf et al., 2009), the influence of sample size on model robustness has not been
assessed in a systematic way (but cf. Wunder ef al., 2008b). Additionally, inventories are
carried out at different census intervals. However, mortality rates estimated for
inhomogeneous populations decrease with increasing time between censuses since trees at
high risk die on a short term, while trees with a lower mortality probability dominate
estimates on the long term (Lewis et al., 2004). Yet, the impact of different census intervals

has not been examined in the context of mortality modeling of individual trees.

In spite of the many contrasting approaches that have been pursued in model development,
their influence on the predictions and performance of mortality algorithms has not been
investigated. Furthermore, the majority of the mortality models have not been validated with

independent data. However, this is a prerequisite for assessing their transferability to other



Chapter 1 29

conditions as well as for selecting approaches for implementation in DVMs (Hawkes, 2000;
Keane et al., 2001). Yet, due to a lack of alternatives, empirical mortality models are
increasingly applied in models of forest dynamics (e.g. Bircher et al., 2015), although often

no information on their temporal or spatial applicability is available.

We thus review mortality models based on European inventory data to assess their
transferability and suitability for incorporation in DVMs. We rigorously validate the mortality
models with extensive inventory data from unmanaged forests in Germany and Switzerland
and systematically analyze model performance to address the following questions: (1) Which
predictors warrant high accuracy of simulated tree mortality? (2) Are 'regional models', i.e.
functions that are calibrated and applied in similar environments, required to account for the
variation in mortality? (3) Should model applications be restricted to the management
intensity in the calibration data? (4) Does the size of the calibration and validation datasets
influence the accuracy of mortality predictions? (5) Are predictions of individual tree

mortality models sensitive to the length of census intervals?

Material and methods

Study sites and validation data

Inventory data from 54 strict forest reserves in Switzerland and Germany that have been
monitored repeatedly for up to 60 years were used to validate the mortality models (Fig. S1,
see Appendix A for all additional Tables and Figures). Trees with a diameter at breast height
(DBH) of > 4 and > 7 cm for Switzerland and Germany, respectively, have been measured on
permanent plots ranging from 0.01 to 1.8 ha in size with census intervals of 4-27 years. We
excluded permanent plots with considerable disturbances (wind: Josenwald, fire: Pfynwald;
both Switzerland) or that are collapsing because of severe bark beetle infestation (Bruchberg,
Germany). Data of 11 tree species or genera, i.e. Abies alba Mill., Alnus glutinosa Gaertn.,
Betula spp. (B. pendula Roth and B. pubescens Ehrh.), Carpinus betulus L., Fagus sylvatica
L., Fraxinus excelsior L., Larix decidua Mill., Picea abies (L.) Karst, Pinus sylvestris L.,
Quercus spp. (Q. petraea Liebl. and Q. robur L.) and Tilia cordata Mill. were selected
(Table S1). Below, we refer to the species by their Latin genus name. Annual mortality rates

were 1.7 % on average but differed between species (cf. Table 3).
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A set of three consecutive inventories was used to generate records of trees that were alive in
the first and second inventory, and either dead or alive in the third inventory. Since for 44.2 %
of the permanent plots more than three inventories were available, individual trees can appear
more than once in the dataset, as all possible sets of inventory data were used (29.6 % of the
records are such ‘repeated measures’; for verification cf. Hiilsmann et al., 2016). The
derivation of the tree, stand and site characteristics (cf. Table 1) that were used in the
mortality models to explain tree status (dead or alive) in the third inventory is described in
detail in Appendix B. Covariates for tree growth were derived for the interval between the
first and the second inventory. All other tree and stand characteristics were calculated based

on data from the second inventory.

Table 1 Tree, stand and site characteristics that were used as covariates in the mortality models. For each
characteristic, the mean per tree species is given. Covariates that are considered to explain model performance
are highlighted in grey, i.e. growth, competition at the level of single trees and competition at the stand level.
Abbreviations: DBH = diameter at breast height, D/ = annual diameter increment, B4/ = annual basal arca
increment, re/BAI = annual relative basal area increment, /s = tree height, CR = crown ratio, BAL = basal area of
larger trees, relBAL =share of BAL of stand basal area (BA), mDBH = arithmetic mean DBH,
gmDBH = quadratic mean DBH, CVd = coefficient of variance of DBH, hdom = dominant height, B4 = stand
basal area, N=number of trees, PBA =percentage of basal area of the subject species, LAT = latitude,
ALT = altitude, GDD = growing degree-days, SI50 = site index expressed as the dominant height at the age of
50 years. For further information on the derivation of the covariates refer to Appendix B. For minimum and
maximum values of the characteristics refer to Table S2.

Abies Alnus  Betula Carpinus Fagus Fraxinus Larix Picea Pinus  Quercus  Tilia

DBH (cm) 13.9 224 21.4 15.9 255 17.5 27.5 29.9 25.4 28.0 16.9
DI (mm) 1.02 1.90 1.84 0.89 1.87 231 0.96 1.85 1.86 1.75 1.20
BAI (cn®) 3.47 7.34 6.94 293 9.85 7.71 4.95 10.75 7.78 8.67 4.12
g relBAI 0.017 0.018 0.021 0.011 0.015 0.030 0.007 0.015 0.020 0.014 0.016
= h (m) 9.9 19.4 18.1 14.4 20.6 17.9 17.8 17.9 15.0 19.4 14.1
CR 0.35 0.29 0.34 0.41 0.43 0.26 0.39 0.49 0.31 0.35 0.40
BAL (m*ha™) 44.1 233 20.9 34.1 29.8 24.9 27.2 34.1 18.0 24.7 319
relBAL 0.91 0.63 0.71 0.90 0.74 0.75 0.65 0.75 0.56 0.64 0.80
mDBH (cm) 18.7 17.1 17.5 21.5 24.8 15.7 223 26.8 15.6 19.6 17.8
gmDBH (cm) 24.0 19.7 20.5 25.4 28.1 18.6 253 31.6 18.4 23.1 20.7
- cvd 0.82 0.56 0.62 0.64 0.57 0.61 0.55 0.64 0.61 0.63 0.60
E hdom (m) 29.6 243 22.1 24.6 27.7 23.8 19.8 26.3 17.5 23.7 21.2
. BA (m*ha™) 48.5 37.6 29.7 37.7 40.1 333 42.1 45.8 333 38.2 39.9
N (ha) 1147 1449 1064 971 851 1431 963 740 1401 1101 1408
PBA 0.21 0.73 0.65
LAT (°) 47.2 47.1 48.5 49.2 48.5 47.5 46.6 47.1 47.6 47.9 473
o ALT(m) 830 471 439 350 527 531 1962 1336 551 478 601
A GpD 1597 1983 1936 1901 1802 1868 600 1093 1932 1909 1843

SI50 (m) 14.7 17.0
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Mortality models

Literature databases and the reference lists of relevant papers were searched for publications
that fulfill the following criteria: They (1) consider the mortality of individual trees, i.e. not of
seedling populations or stand-level mortality rates, (2) predict mortality of native European
tree species, (3) derive models that were calibrated with inventory data and (4) focus on
‘regular’, i.e. ‘background’ mortality (Keane ef al., 2001). Models restricted to ‘irregular’
mortality, e.g. after wind disturbance (e.g. Schmidt et al., 2010) or at polluted sites (e.g.
Juknys et al., 2006) were discarded. From the resulting set of models we used only those that
employed logistic regression (Table 2), by far the most common approach. We did not
consider models that are based on survival analysis, neural networks or semiparametric
approaches since these techniques either require annual inventory data or are based on entirely
different statistics, thus making predictions less comparable. In addition, we excluded models
requiring covariates that were unavailable from the inventories and could not reasonably be
derived from existing data, e.g. tree and stand age, spatially explicit competition indices or
information on soil fertility. Although mixed-effects approaches are increasingly applied in
tree mortality models to account for the hierarchical structure of the data, only two such
models could have been applied to our dataset; the others require covariates that were

unavailable (e.g. Boeck ef al., 2014, cf. Table 2). Thus, we focused on fixed-effects models.

Overall, 13 publications provided suitable mortality models for varying sets of species and
species groups, resulting in 46 model formulations that could be applied to one or more
species (Table S3). Where a publication proposed more than one model per species, the
models were distinguished using an index (cf. Table 2). From these mortality models, the
coefficients and their units were extracted (Table S4). Subsequently, the parameterized
mortality models were applied to our reserve dataset. To this end, mortality model j calibrated
to data of species k was used to predict the mortality probability p of tree i of the same species

following

exp(XiBj i) _ 1
1+exp(XiBjx) 1+ exp(—XiBjxk)

Py = logit™ (XB;x) = eqn 1

with X; denoting the design matrix of the linear predictor and f; the respective parameter
vector. Eqn 1 was modified if (1) models predicted survival rather than mortality and/or (2)

the logistic model was formulated differently (cf. Appendix B). In addition, the mortality
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probability predicted for Az; was rescaled to the census interval (A7) of the respective

permanent plot (cf. Appendix B).

Table 2 List of the publications that fulfill the selection criteria: They (1) consider the mortality of individual
trees, i.e. not of seedling populations or stand-level mortality rates, (2) predict mortality of native European tree
species, (3) derive models that were calibrated with inventory data and (4) focus on ‘regular’ mortality. For
models that were not applicable to the reserve data the exclusion criteria are given. Where more than one model

was proposed within one publication, the models were distinguished using a numerical index.

Publication

Exclusion criteria

Adame et al. (2010)

Ahner and Schmidt (2011)
Alenius et al. (2003) 1 *
Alenius et al. (2003) 2 *
Boeck et al. (2014)
Bravo-Oviedo et al. (2006)
Castagneri et al. (2010)
Condés and Del Rio (2015)
Crecente-Campo et al. (2010)
Diéguez-Aranda et al. (2005)
Dobbertin and Brang (2001)
Dursky (1997)

Eid and Tuhus (2001)
Fridman and Stéhl (2001)
Hasenauer (1994)
Hasenauer et al. (2001)
Hasenauer and Merkl (1997)
Holzwarth et al. (2013)
Hynynen et al. (2002)
Juknys et al. (2006)

Jutras et al. (2003) 1

Jutras et al. (2003) 2
Laarmann et al. (2009)
Monserud and Sterba (1999)
Neuner et al. (2015)
Nothdurft (2013)

Palahi ef al. (2003) 1
Palahi et al. (2003) 2

Sims et al. (2009)
Trasobares et al. (2004)
Vieilledent et al. (2010)
Waunder et al. (2007) 1 1
Waunder et al. (2007) 2 1
Wunder et al. (2008a) 1 §
Wunder ef al. (2008a) 2 §
Wunder et al. (in prep.)

calibrated for Quercus pyrenaica not present in Central Europe
survival analysis

mixed-effects approach
spatially explicit competition indices unavailable in reserve dataset, mixed-effects approach

spatially explicit competition indices and tree age unavailable in reserve dataset
mixed-effects approach

stand age unavailable in reserve dataset
covariates (e.g., defoliation and crown form) unavailable in reserve dataset

spatially explicit competition indices unavailable in reserve dataset
neural networks
spatially explicit competition indices unavailable in reserve dataset

soil fertility classes unavailable in reserve dataset

stand age unavailable in reserve dataset

soil fertility classes unavailable in reserve dataset

soil fertility classes unavailable in reserve dataset, mixed-effects approach
separates into different causes of death

survival analysis
survival analysis
stand age unavailable in reserve dataset

spatially explicit competition indices unavailable in reserve dataset, mixed-effects approach

semiparametric approach

Model 1 included only fixed-effects, model 2 included also random-effects.

Model 1 is based on average growth, model 2 is based on growth during the past five years.
Model 1 was calibrated with data from the Swiss reserve Tariche Bois Banal, model 2 with data from Tariche Haute Céte.
Model 1 was calibrated with data from Biatlowieza in Poland, model 2 with data from Swiss forest reserves.

L o = %

Independent external validation of the mortality models was ensured by applying every model
only to those reserves that had not been used for its calibration; i.e. models based on data from
Swiss forest reserves were only applied to previously unused reserves (Wunder et al., 2007;

Wunder et al., 2008a). Since we solely used measured crown ratios (CR, cf. Appendix B),
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models including CR were only applied to trees for which this variable had been assessed in

the field. Consequently, some models were applied to partial datasets of a species (Table 3).

Model performance

Predicted mortality probabilities were compared with observed tree status by calculating two
performance criteria. To quantify prediction accuracy (correct mortality rates), we defined
prediction bias (ppi.s) as the absolute difference of the mean predicted mortality probability
(‘simulated mortality’) and the mean mortality rate (‘observed mortality’) both given in %
over At =1 year (cf. Appendix B). The Area Under the receiver operating characteristic Curve
(AUC) quantifies classification accuracy (correct attribution of tree status dead/alive)
(Fawcett, 2006). AUC values > 0.5 indicate an increasing ability to distinguish dead from
living trees that is maximal for AUC = 1 (Hosmer & Lemeshow, 2000).

Prias and AUC were calculated for the entire dataset of each species to assess the overall
performance of each of the 58 possible model-species combinations (note that models
calibrated for species groups were applied to several species). For both performance criteria,
bootstrap confidence intervals (CI) were derived. Additionally, both performance criteria
were derived at the level of each reserve, thus resulting in 857 ‘observations’ of ps;,s and AUC
(note that not all species were present in every reserve). These ‘observations’ were used to
assess the influence of model and dataset characteristics on model performance and to address

the research questions (1-5).

We hypothesized that the performance of a mortality model in external validation depends on
the explanatory variables included in the model (1), i.e. covariates that quantify growth
(DI = annual diameter increment, BAI = annual basal area increment, re/BAI = annual relative
basal area increment) or competition at the individual level (BAL = basal area of larger trees,
relBAL = share of BAL of stand basal area) or at the stand level (B4 =stand basal area,
N =number of trees, cf. Table S3). In addition, we tested if model performance is higher
when a model is applied inside the same ecological zone (2). To this end, we assigned the
models to ecological zones following Kuusela (1994), i.e. Alpine, Central, Eastern,
Mediterranean, Northern and Sub-Atlantic, associating the German and Swiss reserves with
the Central and Alpine zone, respectively. Furthermore, we expected management intensity
(3), i.e. with the categories ‘managed’ and ‘unmanaged’ to affect model performance. Note

that only models calibrated with data from strict forest reserves were considered as
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‘unmanaged’. To account for influences of dataset size (4), the number of records used to fit
the mortality models (NV.,;) and the number of records per species and reserve used for model
validation (N,,) were considered as predictors of model performance. Finally, we
investigated the effect of different census intervals (5) using the interval length in the
calibration and validation data with the latter calculated as the median of all censuses in each

forest reserve.

To test these hypotheses, we used linear mixed-effects models to explain model performance
(Prias and AUC) using the model and data characteristics as fixed effects (cf. Table 4). Since
tree species are expected to differ considerably concerning the predictability of tree death, we
included an additional fixed effect for ‘species’ and examined differences using multiple
pairwise comparisons. To account for the hierarchical nature of the data and unexplained
model differences, we included a random intercept for ‘reserve’ as well as for ‘model’. AUC
values were arcsine-transformed and |pj;,s| values square-root transformed to improve
normality of the performance variables (Mosteller & Tukey, 1977; Breiner et al., 2015). Since
the level of mortality may influence the accuracy of model predictions, we additionally tested
observed mortality rate as an explanatory variable in the models. However, the influences of
the other covariates on pbias or AUC remained the same so that this covariate was dropped,

particularly for not mixing explanatory variables and the performance to be modeled, i.e. ppi4s.

All computations were performed within R (R Core Team 2015, R Foundation for Statistical
Computing, Vienna, Austria). AUC was calculated using the function auc() from the package
SDMTools (R package version 1.1-221, 2014). Since auc() prevents values below 0.5, which
is not appropriate for 4UC calculations for predefined models, the code was modified
respectively. Linear mixed-effects models were calculated and evaluated with the packages
Ime4 (Bates et al., 2015) and pbkrtest (Halekoh & Hojsgaard, 2014). R? of the models was
determined based on the function sem.model fits() from the package piecewiseSEM. Multiple
pairwise comparisons were calculated using the package Ismeans (Lenth, 2016). Bootstrap

confidence intervals were derived using the function boot.ci() from the package boot.
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Results

Model characteristics

The mortality models differed strongly in terms of model formulation, covariates considered
and datasets used. Out of the 46 model formulations, 16 predicted the probability of tree death
while the remaining simulated survival, and predictions of tree status referred to intervals of 1
to 13 years (Table S3). Twenty-four mortality models included a covariate for tree growth.
Competition was considered at the stand and tree level in six and eighteen models,
respectively. Nearly half of the models were derived for the Alpine and ten for the Northern
zone. For the Eastern, Central and Mediterranean zones, only few models were available.
Twenty-six mortality models were calibrated using data from unmanaged forests while 20
were based on managed stands. The smallest calibration dataset included 216 observations,
the largest 34 403 (median = 1922). The calibration datasets included between seven and
2382 dead trees (median = 143). Census intervals in the calibration data ranged between 5 and

13 years.

Mortality patterns

Observed mortality as a function of DBH was reverse J-shaped for nearly all species, i.e.
mortality rates continuously decreased with increasing tree size (Fig. 1). In contrast, mortality
risk of Picea was almost constant over the entire DBH range. Mortality rates of Betula
revealed a maximum at a DBH of ca. 15 cm. For none of the species, the mortality pattern was
clearly U-shaped. Only Quercus exhibited a slight increase of mortality for the largest trees.
In contrast to the dominating J-shaped pattern, the magnitude of mortality differed
considerably. Annual mortality rates for Abies, Larix and Tilia were rather low, while
mortality was more pronounced for Betula and Quercus. Specifically, species differed in the
mortality risk of small and/or large trees and in the DBH above which mortality rates

remained constantly low.
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Fig. 1 Observed and predicted annual mortality rates as a function of DBH per tree species. Each grey line
represents the predictions of one mortality model. For the sake of simplicity and to focus on overall patterns, we
did not differentiate mortality models but show all model predictions in grey. Note that some models had to be
validated with reduced datasets (cf. Table 3) and thus the black and grey lines do not always allow for a direct
comparison of observed and predicted mortality rates. For a more precise evaluation of specific models, cf.
Table 3 and Fig. S12.

Consistent with observed mortality patterns, predictions of almost all mortality models
resulted in reverse J-shaped mortality rates as a function of DBH (Fig. 1). However, the
predictions were characterized by strong variability in the magnitude of mortality. While for
most species the models equally over- and underestimated mortality, simulated mortality rates
of Betula, Pinus and Quercus were predominantly too low. The models that deviated from the
J-shaped pattern either predicted a continuous increase of mortality with increasing DBH
(Picea, Wunder et al., 2008a 1, cf. Fig. S12), hump-shaped mortality (Pinus, Alenius et al.,
2003 1), U-shaped mortality (e.g. Betula, Fridman & Stahl, 2001) or no trend of mortality
with DBH (e.g. Picea, Fridman & Stahl, 2001). In most of these cases, the models did not fit

well the observed mortality pattern.
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Table 3 Performance of each model-species combination in terms of p,,,; and AUC. For each model application,
the respective proportion of the data used and the annual mortality probability are indicated.

.. . Proportion of  Observed annual Doias (Y0) AUC
Publication Species data used mortality rate %) P (%) CI Avc CI
Alenius et al. (2003) 1 Pinus 1.00 1.6 1.8 1.6 ...2.0 0.56  0.53..0.59
Bravo-Oviedo et al. (2006) Pinus 1.00 1.6 -1.0 -1.1...-0.8 059  0.57..0.62
Crecente-Campo et al. (2010)  Pinus 1.00 1.6 -0.8 -09..-07 072  0.70..0.74
Dursky (1997) Fagus 1.00 1.3 2.8 2.7..28 0.78 0.78...0.79
Dursky (1997) Picea 0.99 1.4 0.7 0.7..08 0.57  0.56..0.58
Eid and Tuhus (2001) Betula 1.00 4.1 -3.2 -35..29 058  0.56..0.60
Eid and Tuhus (2001) Picea 0.99 1.4 -0.9 -09..-0.8 0.60 0.59..0.61
Eid and Tuhus (2001) Pinus 1.00 1.6 -1.2 -1.3..-1.0  0.62  0.59..0.65
Eid and Tuhus (2001) Quercus 1.00 2.0 -0.6 -0.7..-05 0.77  0.76..0.79
Fridman and Stahl (2001) Alnus 1.00 1.4 0.4 03..05 0.74  0.72..0.77
Fridman and Stahl (2001) Betula 1.00 4.1 2.4 -2.7..21 050 047..0.52
Fridman and Stahl (2001) Fagus 1.00 1.3 -0.2 -0.3..-02 0.70  0.69..0.71
Fridman and Stahl (2001) Picea 1.00 1.4 0.1 0.0...0.1 0.61  0.60...0.62
Fridman and Stahl (2001) Pinus 1.00 1.6 -1.0 -12..-09 0.72  0.70..0.75
Fridman and Stahl (2001) Quercus 1.00 2.0 -1.3 -14..-12 078  0.77..0.80
Holzwarth et al. (2013) Carpinus 1.00 2.0 0.8 0.7..09 0.78 0.76...0.79
Holzwarth et al. (2013) Fagus 1.00 1.3 0.7 0.6..0.7 0.76  0.75..0.76
Holzwarth et al. (2013) Fraxinus 1.00 2.1 3.4 32..35 0.71  0.70..0.73
Monserud and Sterba (1999) Abies 0.13 1.0 1.4 12..1.6 0.64 0.58...0.69
Monserud and Sterba (1999) Alnus 0.12 1.7 0.1 -0.4..0.5 0.73  0.66...0.81
Monserud and Sterba (1999) Betula 0.20 3.6 -2.1 -2.7..-1.5 076  0.71..0.80
Monserud and Sterba (1999) Carpinus 0.08 2.0 0.6 0.1..09 0.78 0.72..0.83
Monserud and Sterba (1999) Fagus 0.11 1.2 -0.3 -04..-02 076 0.73..0.79
Monserud and Sterba (1999) Fraxinus 0.22 2.6 -0.3 -0.5...-0.1  0.81 0.79..0.83
Monserud and Sterba (1999) Larix 0.11 0.4 0.3 0.0..05 0.89  0.77..0.98
Monserud and Sterba (1999) Picea 0.12 1.1 0.2 0.0..0.3 0.60  0.56...0.64
Monserud and Sterba (1999) Pinus 0.15 1.5 -0.8 -12...-05 0.68  0.61..0.75
Monserud and Sterba (1999) Quercus 1.00 2.0 -1.5 -1.7...-14 075  0.74..0.77
Palahi et al. (2003) 2 Pinus 1.00 1.6 -1.2 -1.3...-1.1 080  0.77..0.82
Trasobares et al. (2004) Pinus 1.00 1.6 -0.7 -0.8...-0.5 0.70  0.68..0.72
Wunder et al. (2007) 1 Abies 0.86 1.4 -0.9 -1.0..-0.8 0.71  0.69..0.72
Waunder et al. (2007) 1 Fagus 0.92 1.3 0.1 0.1..02 0.80  0.79..0.81
Waunder et al. (2007) 2 Abies 0.46 1.2 0.1 0.0..0.2 0.72  0.69..0.74
Wunder et al. (2007) 2 Fagus 0.92 1.4 -0.3 -03..-02 0.80 0.79..0.81
Waunder et al. (2008) 1+2 Betula 0.90 4.1 -0.2 -0.5...0.1 0.74  0.72..0.77
Waunder et al. (2008) 1 Alnus 1.00 1.4 0.9 08..1.0 0.77  0.74..0.79
Wunder et al. (2008) 1 Carpinus 1.00 2.0 -0.8 -09..-0.7 0.70  0.69..0.72
Waunder et al. (2008) 1 Fraxinus 1.00 2.1 -0.5 -0.6..-04 080 0.78..0.81
Waunder et al. (2008) 1 Picea 1.00 1.4 2.6 25..26 0.59  0.57..0.60
Wunder et al. (2008) 1 Quercus 1.00 2.0 2.8 2.7..28 0.83 0.82..0.84
Waunder et al. (2008) 1 Tilia 1.00 1.5 1.5 14 .17 0.78  0.76...0.80
Waunder et al. (2008) 2 Alnus 0.68 1.3 -0.4 -0.5..-02 0.76  0.73..0.79
Wunder et al. (2008) 2 Carpinus 0.89 2.0 0.0 -0.1...0.1 0.71 0.70...0.73
Waunder et al. (2008) 2 Fagus 0.79 1.3 0.5 04..05 0.76  0.76...0.77
Waunder et al. (2008) 2 Fraxinus 0.89 2.0 0.9 08..1.0 082  0.81..0.83
Wunder et al. (2008) 2 Quercus 0.69 22 -1.2 -1.3..-1.1 0.84 0.83..0.86
Waunder et al. (2008) 2 Tilia 0.69 1.8 -0.2 -04..-0.1 079 0.76...0.81
Waunder et al. (in prep.) Abies 1.00 1.3 -0.6 -0.7..-0.5  0.68  0.66...0.69
Wunder et al. (in prep.) Alnus 1.00 1.4 -0.3 -0.5..-02 076  0.73..0.78
Wunder et al. (in prep.) Betula 1.00 4.1 -2.8 -3.1..-25 072 0.70..0.74
Waunder et al. (in prep.) Carpinus 1.00 2.0 -1.2 -1.3...-1.0 078  0.77..0.80
Wunder et al. (in prep.) Fagus 1.00 1.3 -0.8 -0.8...-0.8 0.80 0.79...0.80
Wunder et al. (in prep.) Fraxinus 1.00 2.1 -1.2 -1.3.-11 0.79  0.78...0.80
Waunder et al. (in prep.) Larix 1.00 0.4 0.1 0.0...0.1 082  0.77..0.87
Wunder et al. (in prep.) Picea 1.00 1.4 -0.8 -0.8...-0.7 056  0.55..0.57
Wunder et al. (in prep.) Pinus 1.00 1.6 -0.5 -0.7..-04 078  0.76..0.81
Waunder et al. (in prep.) Quercus 1.00 2.0 -0.8 -09..-08 081 0.80..0.82

Wunder et al. (in prep.) Tilia 1.00 1.5 -0.1 -0.2...0.0 0.78 0.75...0.80
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Prediction accuracy

On average, prediction accuracy was high, as indicated by the mean p;;,; of 0.03 % at the
reserve level. However, py;,s at the level of the full dataset of each species (Table 3; standard
deviation = 1.3 %) and of single reserves (Fig. S2; standard deviation=1.7 %) varied
considerably. While some models overestimated the observed annual mortality rate by >3 %
(e.g. Fraxinus, Holzwarth et al., 2013), others underestimated it by >3 % (e.g. Betula, Eid &
Tuhus, 2001). At the level of single reserves, ps,s varied even more, i.e. between -5.5 and

8.6 %. Nevertheless, ppi,s between -1.6 and 2.1 % was achieved in 80 % of the applications.

Species identity significantly influenced the accuracy of mortality predictions as revealed by
the linear mixed-effect model for the square-root of |pp.s| (Table 4). While |pp;,s| was rather
low for Alnus, Fagus and Larix, models for Betula simulated mortality less accurately (Fig.
S3). Nevertheless, the results of multiple pairwise comparison between the species showed
that |pyis| 1s quite similar for all species except for Betula (Fig. S4). As indicated by mostly
negative pp,s values (Fig. S2), low prediction accuracy of Betula but also of Pinus and

Quercus was caused by a pronounced underestimation of mortality.

|Prias| Was reduced significantly when covariates for growth and/or competition at the tree
level were used to predict tree mortality (Table 4 and Fig. S5). Moreover, mortality rates were
predicted more accurately when the models were applied within the same ecological zone and
using validation data with long census intervals (Fig. S6+7). However, the improvement of
prediction accuracy was largest for covariates of growth (cf. Fig. S3). Stand-level
competition, management intensity, the census interval in the calibration data as well as N 4

and N,,; did not significantly affect |pp;gs|.

Classification accuracy

Following the criteria of Hosmer and Lemeshow (2000), AUC values obtained at the level of
full datasets (Table 3) indicated a range of classification accuracy between no discriminative
power, e.g. for Betula (Fridman & Stahl, 2001), Picea (Wunder et al., in prep.) and Pinus
(Alenius et al., 2003 1), and excellent classification, e.g. for Larix (Monserud & Sterba, 1999)
and Quercus (Wunder et al., 2008a 2). Assuming AUC > 0.7 as acceptable, 43 of the 58
model applications were successful in killing the right trees. At the reserve level, the

classification accuracy was still acceptable for 63.4 % of the reserves (AUC > 0.7).
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Table 4. Estimates of the influence of model and data characteristics on p,,;,; and 4UC with respective standard
errors, P-values and significance levels (*** P < 0.001, ** P < 0.01, * P < 0.05) estimated with linear mixed-
effects models (t-tests use the Satterthwaite approximation). Model performance, evaluated by the square-root of
[P vias| and arcsine-transformed AUC, was considered to be a function of species, use of covariates for growth (DI,
BAI relBAI) and competition at the tree (BAL, relBAL) and stand level (BA, N), application within the same
ecological zone, management intensity, length of the census interval in calibration and validation and size of the
calibration (V) and validation datasets (V). Note that a ‘good’ model features low |p;;.s| and high AUC. Both
performance measures show significant species differences. |p,;,,| was significantly reduced by covariates for
growth and competition at the level of individual trees and when models are applied in the same ecological zone.
Significantly larger AUC was achieved when growth was included. ‘Reserve’ and ‘model’ were used as random
effects. Marginal and conditional R? of the models were 0.14 and 0.44 for Prias and 0.19 and 0.52 for AUC.

D bias Estimate Standard error P-value AUC Estimate Standard error P-value
(Intercept) 0.145 0.055 0.018 * | (Intercept) 0.763 0.108 <0.001 Hokk
Species <0.001 *** | Species <0.001 HHE

Alnus -0.020 0.015 Alnus 0.263 0.038

Betula 0.038 0.013 Betula 0.156 0.032

Carpinus -0.010 0.012 Carpinus 0.182 0.030

Fagus -0.015 0.011 Fagus 0.165 0.027

Fraxinus -0.007 0.012 Fraxinus 0.210 0.029

Larix -0.028 0.027 Larix 0.520 0.069

Picea -0.000 0.012 Picea 0.088 0.030

Pinus 0.001 0.013 Pinus 0.141 0.032

Quercus 0.004 0.011 Quercus 0.241 0.029

Tilia -0.001 0.014 Tilia 0.267 0.034
Growth -0.027 0.012 0.021 * | Growth 0.057 0.018 0.005 **
Competition stand 0.039 0.027 0.181 Competition stand -0.023 0.022 0.343
Competition tree -0.019 0.009 0.037 * | Competition tree 0.002 0.021 0.930
Same ecological zone -0.014 0.004 0.002 ** | Same ecological zone  0.017 0.010 0.085
Managed -0.014 0.020 0.491 Managed 0.017 0.024 0.474
Census interval Census interval
calibration (sqrt) 0.008 0.016 0.647 calibration (sqrt) 0.008 0.014 0.589
Census interval Census interval
validation (sqrt) -0.011 0.005 0.033 * validation (sqrt) -0.004 0.026 0.872
Near (sqrt) -0.000 0.000 0.828 Nea (sqrt) 0.000 0.000 0.631
Nya (sqrt) 0.000 0.000 0.696 Nyar (sqrt) 0.001 0.000 0.031 *

Classification accuracy was not significantly influenced by model and data characteristics
except for ‘species’, ‘growth’ and N,,; when analyzing AUC at the reserve level (Table 4 and
Fig. S8). Living and dead trees were discriminated best for Larix and still well for A/nus and
Tilia, while the models for Abies and Picea performed clearly worse (Fig. S9). AUC diftered
more clearly between species than |pp|, but the multiple pairwise comparison revealed no
clearly distinguishable groups. Models that included covariates of tree growth had
significantly higher classification accuracy (Fig. S10). Additionally, AUC increased with the
size of the validation dataset (V,,;, Fig. S11). In contrast to prediction accuracy, classification
accuracy was not significantly affected by covariates for competition at the tree level, the

application within the same ecological zone, nor by the census interval in the validation data.
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Discussion

Documentation of mortality models

We evaluated 46 individual-tree mortality models that had been developed based on European
inventory data. We found large differences concerning calibration data, methodology and the
covariates considered. Bearing in mind that these characteristics influence the predicted
mortality and thus the suitability of a model for being applied in a new context, a
comprehensive documentation of the data and its processing, the model development and the

covariate selection is pivotal, but was not consistently provided.

For example, this applies to the specification of the DBH range covered in the calibration
data, which may severely limit the suitable application domain. Using a model in
extrapolation mode (Adams et al., 2013) increases the risk of erroneous mortality predictions,
particularly for small trees (Bircher ef al, 2015). Documentation was also poor for
disturbance-related mortality. Some authors explicitly defined the mortality type that they
intended to simulate and the criteria applied for this purpose (e.g. exclusion of certain plots or
trees, cf. Bravo-Oviedo et al., 2006; Wunder et al., 2007). However, often it was not
documented whether a model was aimed at ‘regular’ or both ‘regular’ and ‘irregular’
mortality. More details are also needed concerning the covariates considered and their
selection, which is not only an issue of statistical significance but often includes a pre-

selection based on expert knowledge.

Although we assume that several mortality models were not published with the primary aim
of allowing for their reconstruction, a comprehensive documentation of all steps that are part
of model development would be very important. Much progress is still possible in mortality
modeling and in the future, forest data that become increasingly available could and should be
used for developing more robust models (Wunder et al., 2008a), which would benefit strongly
from good documentation and reporting guidelines, as suggested, e.g. for tree allometric

equations (Cifuentes Jara et al., 2014).

Implications of py;,s and AUC: How good is good enough?

Prior to discussing the performance of the mortality algorithms and the implications of
particular py;,s and AUC values, we wish to emphasize that models that considerably over- or

underestimated mortality or had a low discriminative ability when applied to the reserve data
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should not be considered as generally poor. Rather, our validation approach revealed that
these models were less appropriate to predict mortality in unmanaged forests of Central
Europe, e.g. because of a considerably different environment in the calibration data and
because the authors may not have aimed to build models with high generality. Although the
reserve data that we used for validating the mortality algorithms consist of an extensive
assemblage of trees and site conditions and the size of the data exceeds the extent of the
datasets used for calibrating the models for most tree species (cf. Tables S1+2), the reserve
data, which we consider here as a reference, represent only one realization of possible
mortality patterns. This uncertainty should be taken into account when evaluating model

performance.

When implemented in DVMs, empirically based mortality algorithms that result in a
consistent overestimation of mortality rates will cause an accelerated turnover of tree
populations or a breakdown of the stand if mortality rates exceed the recruitment potential. In
contrast, severely underestimated mortality can cause exceedingly high tree density and basal
area. However, it is rather difficult to specify the level of ps;,s above which seriously flawed
stand dynamics are predicted, and the sensitivity of DVMs to pp,s has not been systematically
assessed to date. Additionally, the consequences of p;,s differ depending on the DBH range
affected. Over short periods, considerable p;;,s for large trees affects both N and BA, while
incorrect mortality rates for trees with DBH < 10 cm may dominantly influence N. For long-
term simulations (> 100 years), the impact of considerable p;;,; becomes more complex due to
feedbacks between the number and size of stems, light availability and the rates of growth and

regeneration.

Bearing these difficulties in mind, the criterion to select models according to pi,s should not
be overly strict. Assuming that mortality models with |pp.s| < 1.5 % are promising enough to
be considered for incorporation in DVMs, the benefit of more than 80 % of the models
investigated here should be further evaluated in DVMs. Thus, only a few models need to be
discarded from the set of possible mortality formulations. For the selection of new algorithms
predicting 'background' mortality in DVMs, the systematic presentation of the expected
mortality patterns for each algorithm (Fig. S12) and of p,s resulting from external validation

provide valuable assistance.

Low AUC should be considered as less critical than considerable pp;,s since model

formulations that are poor in classification, i.e. AUC < 0.7 (Hosmer & Lemeshow, 2000), may
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still result in correct mortality rates when implemented in DVMs, although they assign
mortality to the wrong trees. However, problems may arise when applying a model with poor
classification accuracy if low AUC values indicate that the pattern of mortality as a function
of, e.g. tree size deviates from observations (e.g. Betula: Fridman & Stéhl, 2001; Pinus:
Alenius et al., 2003). Incorporated in DVMs, this would result in incorrect predictions of the
diameter distribution, with cascading effects on recruitment and growth. Additionally, AUC
maybe be consistently low for a specific dataset or species if none of the considered
covariates has enough explanatory power to discriminate between dead and living trees. In
our systematic model assessment, three out of four formulations achieved a classification
accuracy that was at least acceptable. Hence, the majority of the algorithms investigated here
capture the most relevant covariates for distinguishing living from dead trees. In addition,

these covariates revealed sufficient predictive ability for a large fraction of the reserves.

Species-specific differences in mortality

The tree species analyzed here revealed distinct patterns and magnitudes of observed as well
as predicted mortality. This justifies the development of species-specific models, which has
been suggested to account for contrasting life history strategies, lifespan, competitiveness and
varying reactions to abiotic factors (Franklin er al., 1987; Harcombe, 1987). We cannot
advocate the grouping of species into ‘Plant Functional Types’ (PFTs) for mortality modeling,
unless simple distinctions such as shade tolerance classes have been proven to correctly

classify the species-specific mortality behavior.

In addition, model performance was characterized by considerable species-specific
differences in prediction and classification accuracy. Underestimation of mortality rates for
Betula, Pinus and Quercus may be explained by their low shade tolerance (Ellenberg &
Leuschner, 1996), which could have caused a higher mortality probability in unmanaged
stands due to more competition for light. For Pinus, however, the validation dataset was
rather small compared to the calibration datasets (cf. Tables S1+2), which may have induced
low prediction accuracy because the reserve data may not be representative for Pinus
mortality. In contrast, simulated mortality rates were fairly accurate for Alnus and Larix,
presumably because most of the models for these species were derived for the Alpine zone
and could be applied to Swiss reserve data only, as these species are largely missing in the

German data.
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For Abies and Picea, considerably lower classification accuracy was achieved, which may be
due to the weak or missing trend of mortality over DBH for these species, hence reducing the
predictive power of DBH, i.e. the most common predictor of tree death, and thus of the entire
model. In addition, AUC may be low because agents causing ‘irregular’ mortality are relevant,
including wind disturbance, snow damage and, in the case of Picea, also insect attacks. When
being implemented in DVMs, the degree of uncertainty in terms of prediction and

classification accuracy associated with a particular species should be taken into account.

Drivers of model performance

We propose that the following model and data characteristics promote high accuracy of

mortality algorithms and discuss restrictions regarding our validation approach.

First, the advantage of tree-specific covariates, i.e. one-sided competition and tree growth, for
accurately predicting mortality was clearly demonstrated by the linear mixed-effects models.
Tree growth has often been suggested as a good mortality predictor because it dynamically
reflects competition and tree vitality (Dobbertin, 2005). Its importance is supported by the
high performance of tree-ring based mortality models (Cailleret ef al., 2016) and the fact that
growth mostly remained in the models during variable selection. Our results suggest that
although BAL and relBAL allow for a similarly good prediction of mortality rates, tree growth
has significantly more power to differentiate between living and dead trees, i.e. to achieve
high AUC values. This is because growth integrates the internal and external factors that
influence tree vitality much better than, e.g. BAL, which is a measure of a tree’s exposure to
competition by larger trees on the entire plot but does not consider neighborhood effects. In
contrast to covariates at the level of individual trees, covariates that quantify competition at
the stand level, i.e. B4, did not enhance model accuracy. This clearly shows that competition
calculated at the plot level has little explanatory power for the mortality probability of single
trees, especially on large plots, whereas it allows for the prediction of population-level

mortality rates (Rohner et al., 2012).

Although we were able to show the superiority of tree growth and competition at the tree
level, it must be kept in mind that the incorporation of mortality algorithms in DVMs includes
the prediction of tree death based on simulated covariates. For example, simulated tree growth
does not necessarily reflect the same magnitude and interannual variability as measured

growth (cf. Rasche ef al., 2012). In addition, growth modules in DVMs do typically neither
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simulate biotic and mechanical damage nor reduce tree growth in response to such factors,
which are of great importance for forest dynamics — albeit less than competition and
environmental stress (Dobbertin, 2005). Therefore, growth rates simulated by a DVM are
expected to have a lower skill than observed growth to accurately predict mortality using
empirical mortality algorithms. In addition, tree-level competition, e.g. BAL, strongly relies
on an adequate representation of the diameter distribution. Feedbacks between such variables
and tree mortality in DVMs require further investigation (Wernsdorfer et al., 2008; Larocque
et al.,2011; Radtke et al., 2012; Bircher et al., 2015).

Second, our results confirm the regional variation of mortality relationships proposed in other
studies (e.g. Monserud & Sterba, 1999) since the application of models within the same
ecological zone resulted in more accurate mortality rates. Consequently, mortality models
derived from data with restricted ecological and/or environmental coverage should be
considered as case studies with limited transferability. Yet, we were unable to evaluate
whether additional environmental covariates may improve model performance (e.g. Hartmann
et al., 2007), as only few such covariates had been used in the mortality algorithms, e.g.
elevation, growing degree-days, site index or soil moisture (but cf. Hiillsmann ef al., 2016). In
addition, the ecological zones considered here are rather coarse and thus do not allow to

identify an efficient geographical stratification for the calibration of mortality models.

Third, we tested whether the management intensity of the calibration data influenced model
performance, particularly prediction accuracy (Bravo-Oviedo et al., 2006). However, there
was no indication that models from managed stands were less able to predict mortality
probabilities for the reserve data than those from unmanaged forests. This suggests that
mortality patterns in forest reserves are similar to those in managed forests and that the
reserves will require more time without management to develop truly natural dynamics. In
addition, processes that may act to amplify the mortality of large trees such as stem rot or
wind breakage can be found in old-growth forests only (cf. U-shaped mortality; Hiilsmann et
al., 2016). For the application in DVMs however, a U-shaped form of mortality over tree size
may be desirable since it confines tree age more strongly than a reverse J-shaped relationship
and thus avoids the high persistence of large trees (Bircher, 2015). Nevertheless, the effect of
management on mortality may have been attenuated by the large gradient of management

intensities in the calibration data that we considered as ‘managed’.
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Fourth, estimates of mortality rates may decrease with increasing census interval if the
population is heterogeneous (Sheil & May, 1996). However, only the census interval of the
validation data affected the prediction accuracy of the mortality models. This is because the
variation in mortality rates and correspondingly also the deviation between observed and
predicted mortality decreases for longer intervals (Lewis et al., 2004). We conclude that
different census intervals are negligible in the calibration of mortality models for individual
trees since accounting for species, tree size and growth already captures large parts of the

inhomogeneity in mortality risk that can be found at the population level.

Finally, mortality is a ‘noisy’ process, and therefore it is usually thought that signal detection
is facilitated by extensive datasets and thus a robust empirical basis (Metcalf et al., 2009;
Lutz, 2015). To our surprise, the size of the calibration dataset did not significantly influence
model performance, and even models calibrated using datasets with very few total/dead
observations resulted in reliable mortality patterns and acceptable prediction and classification
accuracy. Nevertheless, we found higher classification accuracy when models were applied to
larger datasets, most likely due to an improved link between the predictors and mortality, i.e.,
trees at risk may not die in an interval of five years but quite likely die within 20 years
(Dursky, 1997). We conclude that the success of a mortality model relies more on the degree
of similarity of ecological processes between the forests used for calibration and validation,
rather than on the amount of data used in model development, provided that the few death
events support reliable mortality patterns and rates and no ‘irregular’ mortality occurred.
Nevertheless, the risk that this condition is not fulfilled increases if models are calibrated

using very small datasets.

In order to apply the mortality models to different datasets, we were forced to make several
assumptions. Each mortality model was applied to all trees in the validation dataset,
regardless of the DBH range covered by the calibration data. Thus we partly extrapolated the
relationship of DBH and mortality probability. However, the exact degree of extrapolation
remains unclear since the DBH range was not sufficiently documented for many calibration
datasets. Where model covariates were not available for all records in the reserve data, e.g.
tree height or site index, we used allometric or eco-topographic relationships to derive the
required information. This surely influenced the accuracy and explanatory power of the
covariates. In addition, we had to make somewhat arbitrary assumptions about the value to be

used in the validation exercise for a few variables because they were not available in the
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calibration dataset (e.g. CON defined as distance to the Mediterranean Sea; Trasobares et al.,
2004). We further wish to point out that similar assumptions must be made if mortality

algorithms are implemented in DVMs (e.g. DBH range; cf. Bircher et al., 2015).

We would like to point out that species may differ with respect to model transferability and
the suitability of mortality predictors. However, we were unable to test interaction terms
between species and the characteristics examined since the different modeling approaches
were not tested for every species thus resulting in rank deficiency. The same applies to
species groups because it was not possible to clearly classify the species based on statistical
significance. Non-parametric methods may provide further insights into the drivers of model
performance but were not applied here since appropriate methods to account for the
hierarchical data structure are missing. However, random effects explained a considerable
proportion of the observed variation and should not be ignored (cf. Table 4). This is because
tree mortality and thus model performance are highly variable, and it is not feasible to
explicitly address this variability. Finally, the size of individual plots in the calibration data
can influence the accuracy of mortality estimates but could not be tested since this
information was not available for all mortality models. In spite of these assumptions, we
argue that our validation of the mortality models still allows for highly valuable insights into

model behavior and performance.

Conclusions

In this study, the characteristics, parameterization and expected predictions of relevant
European tree mortality models were presented systematically for the first time. For modelers
of forest dynamics, this offers a unique possibility to begin an evaluation of currently
available mortality algorithms and to better understand their behavior based on simulated

mortality patterns (cf. Fig. S12).

Validating mortality algorithms using independent datasets constitutes a rigorous examination
of model transferability, which is a prerequisite for their implementation in DVMs. Our
results indicate that many mortality models can be applied successfully outside their
calibration domain. However, others failed to emulate the mortality pattern or achieved low
prediction or classification accuracy. Consistently higher prediction accuracy was obtained by
models that (1) included covariates for growth or competition at the level of individual trees

and (2) were applied in a similar ecological context. Furthermore, our results emphasize the
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pivotal importance of tree growth to achieve a good discrimination between dead and living

trees.

In conclusion, we suggest two strategies for further developing mortality models: (1) For
incorporation in DVMs that are applied over a restricted spatial extent and under current
climate, mortality algorithms should be calibrated based on datasets from the same region.
Our results reveal that even if these datasets are small, they can still provide valid mortality
estimates for the calibration domain. (2) In order to obtain mortality models with wider
applicability and improved climatic sensitivity, the high spatial variability of mortality should
be addressed explicitly. The systematic screening of available mortality models for European
tree species uncovered that further efforts are needed in order to improve the climatic
sensitivity of the mortality algorithms, e.g. using environmental variables or tree growth,
which may implicitly integrate climatic influences into mortality models (Hiilsmann et al.,
2016). Since data of high temporal resolution covering large ecological gradients are required
to explore the influence of environmental variables on mortality (Lutz, 2015; Hiilsmann et al.,
2016), forest inventory data and dendrochronological data should be combined, e.g. by
applying the Bayesian framework suggested by Clark et al. (2007). Future efforts should also
address an improved representation of disturbance-related mortality, both non-catastrophic,
small-scale mortality and larger events of forest dieback, which are likely to gain in
importance under future climates (Seidl et al., 2011). Finally, future mortality models should
be thoroughly validated to determine their transferability, and model development should be

carefully documented, ideally based on standardized guidelines.
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Appendix A — Tables S1-4, Fig. S1-12

Table S1 Number of records per tree species and genus. Numbers are given for the total dataset, per country and
for those that resulted in tree death. In addition, the number of permanent plots is given.

Genus Species total Germany Switzerland dead Permanent plots
Abies Abies alba 7193 0 7193 1142 38
Alnus Alnus glutinosa 2817 0 2817 380 11
Betula spp. 2277 590 1687 852 26
B. pendula 1987 300 1687 764 23
B. pubescens 290 290 0 88 4
Carpinus Carpinus betulus 5082 1637 3445 1137 41
Fagus Fagus sylvatica 27022 6869 20153 4128 126
Fraxinus Fraxinus excelsior 7875 159 7716 1757 80
Larix Larix decidua 1169 0 1169 88 11
Picea Picea abies 13278 458 12 820 2242 82
Pinus Pinus sylvestris 3115 317 2798 553 44
Quercus spp. 6712 805 5907 1466 53
Q. petraea 32 32 0 25 1
Q. robur 6680 773 5907 1441 53
Tilia Tilia cordata 2179 0 2179 396 42

All 78 719 10 835 67 884 14 141 197
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Table S2 Minimum and maximum values of the tree, stand and site characteristics that were used as covariates
in the mortality models. For abbreviations and further explanations refer to Table 1.

Abies Alnus  Betula Carpinus Fagus Fraxinus Larix Picea Pinus  Quercus  Tilia

DBH (em) 32- 3.9- 3.9- 3.7- 3.5- 3.6- 3.8- 32- 3.8- 43- 3.7-
em 110.5 53.0 78.5 68.9 1172 1045 78.9 1147 775 129.5 57.5
DI (mm) 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -
10.4 132 13.7 17.1 43.0 28.4 10.5 29.6 14.7 15.6 11.3
BAI (o) 0.0 - 0.0 - 0.0 - 00- 000- 000- 000- 000- 000- 0.00- 0.00-
e 116.1 64.3 1013 1522 24991 33691 70.66 21526 15169 11330  67.54
I~ 0.00- 0.00- 000- 000- 000- 000- 000- 000- 000- 000-  0.00-
g 0.19 0.19 0.17 0.23 0.23 0.28 0.09 0.18 021 0.16 0.17
=  (m) 1.5- 32- 18- 1.5- 0.2- 2.5- 2.0- 13- 2.1- 1.6- 2.9-
39.0 31.0 39.6 30.5 420 41.0 35.4 41.8 34.0 35.0 33.0
R 007- 0.10- 005- 005- 000- 000- 0.13- 008- 002- 007- 0.15-
0.92 0.64 0.91 0.86 0.94 0.94 0.94 0.98 0.93 0.99 0.72
_ 0.0 - 0.0 - 0.0 - 4.6- 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 13-
il () 87.5 1137 619 68.1 68.1 61.8 56.9 86.3 65.3 66.6 50.9
I 0.0 - 0.0 - 0.0 - 0.1- 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DBH (cm) 100- 106- 71-  106- 100- 87-  128- 100-  7.1-  123-  87-
" em 38.9 314 37.3 39.4 53.0 374 315 452 28.8 39.4 34.5
DBH (cm) 146- 11.7-  76-  115- 11.5- 101- 146- 11.5-  76-  140- 111-
qm cm 47.6 38.8 41.8 4.8 54.9 437 35.7 47.6 31.6 428 36.9
cvd 033- 021- 038- 034- 0.16- 033- 038- 027- 031- 039- 038-
1.21 1.14 0.99 0.99 121 1.14 0.73 121 0.87 0.99 0.99
R @) 125-  183-  72-  185- 134- 99-  125- 112- 73-  123- 109-
£ hdom{m 37.0 28.5 31.7 30.8 37.0 33.7 29.9 37.0 31.1 35.0 33.7
BA (ha"y 28.6- 270-  49-  241- 13.8- 13.6- 243- 139-  82-  252- 24.1-
87.5 1190  68.1 68.1 68.1 61.9 57.7 87.5 68.1 68.1 55.0
N (ha) 367-  282-  258-  204- 78 - 253-  482-  201-  312-  244-  367-
2780 4000 2333 2333 2780 3281 1902 2780 2500 2595 3281
0.00 - 0.00-  0.01-
PBA 0.86 1.00 1.00
LATC) 463-  464-  463-  464-  464-  46.1-  463-  463-  46.1-  464-  46.1-
475 475 53.2 53.7 53.7 52.9 46.7 52.9 53.2 53.7 47.8
ALT () 459-  334- 24 - 4. 4. S4- 1441- 54 83 - 4. 367 -
@ m 1560 564 599 632 1227 889 2094 2034 1954 760 839
“ epp 903-  1822- 1654- 1443-  1169- 1552-  422-  465-  590-  1613- 1552-
2099 2297 2243 2162 2162 2302 1019 2162 2243 2162 2162
SI50 (m) 40- 20 -

25.0 29.0
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Chapter 1

Table S4 Table of coefficients for the validated mortality models. For an explanation of the covariates refer to
Table 1 and Appendix B. Coefficients apply not only to individual tree, stand or site characteristics but also to
their transformations or to interactions of two or more covariates (e.g., relBAL*H00*sqrtN/100). Where
necessary, annual growth was scaled to the interval that was used for model development using either linear or

exponential scaling for absolute (DI, BAI) and relative growth increments (re/BAI), respectively.

Publication Calibration species Covariate Coefficient Unit Remarks

Alenius et al. (2003) 1 Pinus sylvestris INTERCEPT -5.719 - X i
Alenius ef al. (2003) 1 Pinus sylvesiris relBAL 2.091 - I-PBA refers to the proportion of birch
Alenius ef al. (2003) 1 Pinus sylvestris 1-PBA 2.133 - ;‘t‘a‘t‘e‘g‘ff t‘f}‘:ﬂ’;{ﬁé‘;‘;i‘;’e} ‘l‘i‘;&i‘;‘;ﬁ
Alenius et al. (2003) 1 Pinus sylvestris qmDBH -0.128 cm appears to bfvali d for ti]C percentage
Alenius et al. (2003) 1 Pinus sylvestris BA 0.111 m”~2/ha between 0 and 1 not in %

Alenius et al. (2003) 1 Pinus sylvestris 1/DBH 30.884 mm

Bravo-Oviedo et al. (2006) Pinus sylvestris INTERCEPT 6.8548 -

Bravo-Oviedo et al. (2006) Pinus sylvestris BAL*CVd -0.121 m"2/ha S refers to the dominant height at the
Bravo-Oviedo et al. (2006) Pinus sylvestris SI -0.037 m age of 100 years

Bravo-Oviedo et al. (2006) Pinus sylvestris 1/DBH -9.792 cm

Crecente-Campo et al. (2010)  Pinus sylvestris INTERCEPT -2.903 -

Crecente-Campo et al. (2010)  Pinus sylvestris relBAL*hdom*sqrtN/100 0.4687 m/ha

Crecente-Campo et al. (2010)  Pinus sylvestris relBAL -3.214 -

Crecente-Campo et al. (2010)  Pinus sylvestris qmDBH 0.3007 cm

Crecente-Campo et al. (2010)  Pinus sylvestris DBH -0.4087 cm

Dursky (1997) Fagus sylvatica INTERCEPT 6.6686 -

Dursky (1997) Fagus sylvatl'ca /DBH -7.6495 m/cm BAI was defined as the basal area
Dursky (1997) Fagus sylvatica DBH -0.261 em o rement over 5 years

Dursky (1997) Fagus sylvatica h 0.2695 m

Dursky (1997) Fagus sylvatica BAI/DBH 3.0796 cm”"2/a/cm

Dursky (1997) Picea abies INTERCEPT 5.3908 - R R

Dursky (1997) Picea abies WDBH -5.3998 miem L ref?sso“’ the dominant height at the
Dursky (1997) Picea abies SI -0.0406 m Zfif[‘zm d?fifz das the basal arca
Dursky (1997) Picea abies DBH -0.0089 cm . rement over 5 years

Dursky (1997) Picea abies BAI/DBH 1.4802 cm”2/a/cm

Eid and Tuhus (2001) Betula spp. INTERCEPT 4.8923 -

Eid and Tuhus (2001) Betula spp. 1/DBH -2.528 cm

Eid and Tuhus (2001) Broadleaf Other INTERCEPT 5.1575 -

Eid and Tuhus (2001) Broadleaf Other BAL -0.0199 m"2/ha

Eid and Tuhus (2001) Broadleaf Other 1/DBH -7.3544 cm

Eid and Tuhus (2001) Picea abies INTERCEPT 8.0599 -

Eid and Tuhus (2001) Picea abies BAL -0.0281 m"2/ha ST refers to the dominant height at the
Eid and Tuhus (2001) Picea abies PBA -0.0132 % age of 40 years £

Eid and Tuhus (2001) Picea abies SI -0.0264 m

Eid and Tuhus (2001) Picea abies 1/DBH -6.702 cm

Eid and Tuhus (2001) Pinus sylvestris INTERCEPT 8.4904 -

Eid and Tuhus (2001) Pinus sylvestris BAL -0.0462 m"2/ha ST refers to the dominant height at the
Eid and Tuhus (2001) Pinus sylvestris ST -0.0761 m age of 40 years

Eid and Tuhus (2001) Pinus sylvestris 1/DBH -14.266 cm

Fridman and Stahl (2001) Betula spp. INTERCEPT -2.83 -

Fridman and Stahl (2001) Betula spp. BAL 0.0362 m”2/ha

Fridman and Stihl (2001) Betula spp. mDBH 15.7 m

Fridman and Stahl (2001) Betula spp. BA -0.0665 m”2/ha

Fridman and Stdhl (2001) Betula spp. ALT 0.0011 m

Fridman and Stahl (2001) Betula spp. DBH -16.5 m

Fridman and Stdhl (2001) Betula spp. DBH"2 27.7 m

Fridman and Stéhl (2001) Broadleaf Other INTERCEPT -5.4 -

Fridman and Stihl (2001) Broadleaf Other BAL 0.0693 m"2/ha X R . N
Fridman and Stahl (2001) Broadleaf Other BA 00688  mr2ha e °a‘°g°r0‘°fa‘l Vaﬁm‘;‘"‘ <20m clearcut
Fridman and Stahl (2001) Broadleaf Other ALT 0.00212 m X;insjrtl;gemeor:tain fh:ingvoegsvsv2°°
Fridman and Stihl (2001) Broadleaf Other LAT 0.0498 degree assumed

Fridman and Stéhl (2001) Broadleaf Other <20m clearcut -0.345 -

Fridman and Stéhl (2001) Broadleaf Other 1/DBH 0.0634 m

Fridman and Stihl (2001) Broadleaf Southern INTERCEPT -3.67 -

Fridman and Stéhl (2001) Broadleaf Southern BAL 0.168 m”~2/ha

Fridman and Stihl (2001) Broadleaf Southern BA -0.14 m"2/ha

Fridman and Stéhl (2001) Broadleaf Southern DBH 3.34 m

Fridman and Stahl (2001) Picea abies INTERCEPT -4.58 - . .

Fridman and Stahl (2001) Picea abies BAL 00282  m~2/ha the categorical variable PIDOM
Fridman and Stahl (2001) Picea abies PIDOM -0.594 - quantifies the domination of Pinus with
Fridman and Stahl (2001)  Picea abies mDBH 112 m tlh“:nga‘lf:;‘()“rgic{: f;“afi;ﬁ’e"f‘i 22021 Zleamm,
Fridman and Stéhl (2001) Picea abies BA -0.0545 m”~2/ha was set 10 0 for all obscr;ations since
Fridman and Stéhl (2001) Picea abies <20m clearcut 0.577 * 1o management in the reserves was
Fridman and Stihl (2001) Picea abies management 0.323 - assumed

Fridman and Stahl (2001) Picea abies 1/DBH 0.042 m
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Publication Calibration species Covariate Coefficient Unit Remarks
Fridman and Stihl (2001) Pinus sylvestris INTERCEPT -1.98 - the categorical variable PIDOM
Fridman and Stahl (2001) Pinus sylvestris BAL 0.028 m"2/ha  quantifies the domination of Pinus with
Fridman and Stdhl (2001) Pinus sylvestris PIDOM -0.456 - 1 indicating PBA of Pinus >0.7.
Fridman and Stahl (2001) Pinus sylvestris mDBH 25.6 m  the mean of the squared DBH
Fridman and Stahl (2001) Pinus sylvestris mDBH"2 -26.6 m (mDBH"2) is approximately equal to
Fridman and Stdhl (2001) Pinus sylvestris log(BA) -0.739 m"2/ha (qmDBH)"2
Fridman and Stahl (2001) Pinus sylvestris moist 0.327 - the categorical variable moist quantifies
Fridman and St&hl (2001) Pinus sylvestris DBH -17.4 m  soil water conditions with 1 indicating
Fridman and Stahl (2001) Pinus sylvestris DBH"2 21.5 m Mmoist or wet
Holzwarth et al. (2013) Carpinus betulus INTERCEPT -2.8 - in communication with the authors, both
Holzwarth ez al. (2013) Carpinus betulus DBH -0.051 cm z?fefgjgirgi:ifccgg(s:f pzr}l)c(l:rthus are
Holzwarth ez al. (2013) Fagus sylvatica INTERCEPT 1.8 -
Holzwarth ez al. (2013) Fagus sylvatica log(DBH) -2.1 cm  two models for ‘early* and ‘late’
Holzwarth et al. (2013) Fagus sylvatica DI -1.4 cm/a  mortality were fitted that add up to the
Holzwarth et al. (2013) Fagus sylvatica INTERCEPT -8.9 - total mortality
Holzwarth ez al. (2013) Fagus sylvatica DBH 0.052 cm for log-transformed DBH, an additive
Holzwarth et al. (2013) Fagus sylvatica log(DBH) 0 cm constant of 8 cm was used
Holzwarth ez al. (2013) Fagus sylvatica DI 0 cm/a
Holzwarth et al. (2013) Fraxinus excelsior INTERCEPT 13 -
Holzwarth ez al. (2013) Fraxinus excelsior log(DBH) -1.6 cm
Monserud and Sterba (1999)  Abies alba INTERCEPT 2.0985 -
Monserud and Sterba (1999)  Abies alba 1/DBH -10.9085 cm
Monserud and Sterba (1999)  Abies alba CR 3.9311 -
Monserud and Sterba (1999)  Broadleaf Other INTERCEPT 2.9223 -
Monserud and Sterba (1999)  Broadleaf Other BAL -0.0228 m”"2/ha
Monserud and Sterba (1999)  Broadleaf Other 1/DBH -8.4877 cm
Monserud and Sterba (1999)  Broadleaf Other CR 2.0609 -
Monserud and Sterba (1999)  Fagus sylvatica INTERCEPT 3.5734 -
Monserud and Sterba (1999)  Fagus sylvatica BAL -0.0161 m"2/ha
Monserud and Sterba (1999)  Fagus sylvatica 1/DBH -13.9542 cm
Monserud and Sterba (1999)  Fagus sylvatica CR 3.1339 -
Monserud and Sterba (1999)  Larix decidua INTERCEPT 4.407 -
Monserud and Sterba (1999)  Larix decidua BAL -0.0326 m”~2/ha
Monserud and Sterba (1999)  Larix decidua 1/DBH -12.9395 cm
Monserud and Sterba (1999)  Larix decidua CR 2.2039 -
Monserud and Sterba (1999)  Picea abies INTERCEPT 2.1283 -
Monserud and Sterba (1999)  Picea abies BAL -0.0186 m”~2/ha
Monserud and Sterba (1999)  Picea abies 1/DBH -10.0745 cm
Monserud and Sterba (1999)  Picea abies DBH 0.0425 cm
Monserud and Sterba (1999)  Picea abies DBH"2 -0.00081 cm
Monserud and Sterba (1999)  Picea abies CR 3.8251 -
Monserud and Sterba (1999)  Pinus sylvestris INTERCEPT 4.1076 -
Monserud and Sterba (1999)  Pinus sylvestris BAL -0.0234 m”"2/ha
Monserud and Sterba (1999)  Pinus sylvestris 1/DBH -18.9714 cm
Monserud and Sterba (1999)  Pinus sylvestris CR 2.3267 -
Monserud and Sterba (1999)  Quercus spp. INTERCEPT 4.4508 -
Monserud and Sterba (1999)  Quercus spp. 1/DBH -12.0041 cm
Palahi et al. (2003) 2 Pinus sylvestris INTERCEPT 2.938 - .
Palahi ef al. (2003) 2 Pinus sylvestris BAL 2002  mha ﬁ i :ijeifiizf gsyicrsdlam““
Palahi et al. (2003) 2 Pinus sylvestris DI 2.719 cm/a
Trasobares et al. (2004) Pinus sylvestris INTERCEPT 2.728 - for log-transformed DBH, an additive
Trasobares et al. (2004) Pinus sylvestris BAL/log(DBH) -0.148 m”"2/ha/cm constant of 1 cm was used, the covariate
Trasobares et al. (2004) Pinus sylvestris ALT 0.067 100m CON that quantifies continentality was
Trasobares et al. (2004) Pinus sylvestris CON -0.006 km set to the maximum value within the
Trasobares ef al. (2004) Pinus sylvestris h 0.107 m_ calibration dataset = 186.6 km
Wunder et al. (2007) 1 Abies alba INTERCEPT 1.161 -
Wunder ef al. (2007) 1 Abies alba relBAI 29.17 1/a for coefficients and details on the
Wunder ef al. (2007) 1 Abies alba relBAIl -518.37 1/a construction of the restricted cubic
Wunder ef al. (2007) 1 Abies alba relBAI2 1038.53 1/a Splines of relBAI refer also to Wunder
Waunder et al. (2007) 1 Abies alba relBAI3 -505.01 1/a 007) ‘

R relBAI1-4 refer to the coefficients,
Wunder et al. (2007) 1 Abies alba relBAI4 -15.15 1/a KrelBALl-4 K the locati £ th

. re mark the locations of the
Wunder et al. (2007) 1 Abz_es alba KrelBAIl 0.02 1/a | hots of the restricted cubic splines
Wunder et al. (2007) 1 Abies alba KrelBAI2 0.104 Va  ,o1BAT was defined as the relative basal
Wunder et al. (2007) 1 Abies alba KrelBAI3 0.181 1/2  4rea increment over 11 years
Waunder et al. (2007) 1 Abies alba KrelBAI4 0.395 1/a
Wunder et al. (2007) 1 Fagus sylvatica INTERCEPT -17.63 -
Wunder et al. (2007) 1 Fagus sylvatica log(DBH) 3.57 mm  for coefficients and details on the
Waunder et al. (2007) 1 Fagus sylvatica relBAI 29.17 1/a  construction of the restricted cubic
Wunder et al. (2007) 1 Fagus sylvatica relBAIl -518.37 1/a  splines of relBAI refer also to Wunder
Wunder et al. (2007) 1 Fagus sylvatica relBAI2 1038.53 1/a (2007)
Wunder et al. (2007) 1 Fagus sylvatica relBAI3 -505.01 1/a  relBAII-4 refer to the coefficients,
Waunder et al. (2007) 1 Fagus sylvatica relBAI4 -15.15 1/a KrelBAII-4 mark the locations of the
Wunder et al. (2007) 1 Fagus sylvatica KrelBAIl 0.02 1/a  knots of the restricted cubic splines
Wunder et al. (2007) 1 Fagus sylvatica KrelBAI2 0.104 1/a relBAI was defined as the relative basal
Wunder ef al. (2007) 1 Fagus sylvatica KrelBAI3 0.181 1/a area increment over 11 years
Wunder et al. (2007) 1 Fagus sylvatica KrelBAI4 0.395 1/a
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Publication Calibration species Covariate Coefficient Unit Remarks
Wunder et al. (2007) 2 Abies alba INTERCEPT -0.4 -
Wunder ef al. (2007) 2 Abies alba relBAI 29.17 1/a for coefficients and details on the
Wunder ef al. (2007) 2 Abies alba relBAIl -518.37 1/a construction of the restricted cubic
Wunder ef al. (2007) 2 Abies alba relBAI2 1038.53 1/a Splines of relBAI refer also to Wunder
Waunder ef al. (2007) 2 Abies alba relBAI3 -505.01 1/a 007) ‘

R relBAI1-4 refer to the coefficients,
Wunder et al. (2007) 2 Abies alba relBAI4 -15.15 1/a KrelBALl-4 K the locati £ th

. re mark the locations of the
Waunder et al. (2007) 2 Abz_es alba KrelBAIl 0.02 Va1 ots of the restricted cubic splines
Wunder et al. (2007) 2 Abies alba KrelBAI2 0.104 Va  ,.1BAI was defined as the relative basal
Wunder et al. (2007) 2 Abies alba KrelBAI3 0.181 1/2 4rea increment over 12.5 years
Wunder et al. (2007) 2 Abies alba KrelBAI4 0.395 1/a
Wunder et al. (2007) 2 Fagus sylvatica INTERCEPT -16.86 -
Wunder et al. (2007) 2 Fagus sylvatica log(DBH) 3.57 mm  for coefficients and details on the
Waunder et al. (2007) 2 Fagus sylvatica relBAI 29.17 1/a  construction of the restricted cubic
Wunder et al. (2007) 2 Fagus sylvatica relBAIL -518.37 1/a  splines of relBAI refer also to Wunder
Waunder et al. (2007) 2 Fagus sylvatica relBAI2 1038.53 1/a (2007)
Wunder et al. (2007) 2 Fagus sylvatica relBAI3 -505.01 1/a  relBAII-4 refer to the coefficients,
Wunder et al. (2007) 2 Fagus sylvatica relBAI4 -15.15 1/a KrelBAII-4 mark the locations of the
Wunder et al. (2007) 2 Fagus sylvatica KrelBAIl 0.02 1/a knots of the restricted cubic splines
Wunder et al. (2007) 2 Fagus sylvatica KrelBAI2 0.104 1/a relBAIwas defined as the relative basal
Wunder et al. (2007) 2 Fagus sylvatica KrelBAI3 0.181 1/a area increment over 12.5 years
Wunder et al. (2007) 2 Fagus sylvatica KrelBAI4 0.395 1/a
Wunder et al. (2008) 1 Alnus glutinosa INTERCEPT 0.958 - for log-transformed relBAI, an additive
Waunder et al. (2008) 1 Alnus glutinosa log(DBH) 1.105 cm  constant of 0.002531 was used
Wunder et al. (2008) 1 Alnus glutinosa log(relBAI) 1.217 l/a  log(relBAI)I-3 refer to the coefficients,
Wunder et al. (2008) 1 Alnus glutinosa log(relBAI)1 -0.092 1/a KrelBAII-3 mark the locations of the
Wunder et al. (2008) 1 Alnus glutinosa log(reIBAI)2 0.22 1/a  knots of the restricted cubic splines
Waunder et al. (2008) 1 Alnus glutinosa log(relBAI)3 -0.128 1/a in communication with the authors, the
Waunder et al. (2008) 1 Alnus glutinosa KrelBAIl -4.8459 1/a locations of the knots were corrected
Wunder ef al. (2008) 1 Alnus glutinosa KrelBAI2 -3.8672 1/a and thus are different from the original
Waunder et al. (2008) 1 Alnus glutinosa KrelBAI3 -3.16568 1/a Paper
Wunder et al. (2008) 1 Carpinus betulus INTERCEPT 5.281 - for log-transformed re/BAI, an additive
Waunder et al. (2008) 1 Carpinus betulus log(relBAI) 0.643 1/a constant of 0.002531 was used
Wunder ef al. (2008) 1 Carpinus betulus log(relBAI)1 -0.056 1/a log(relBAI)1-3 refer to the coefficients,
Wunder ef al. (2008) 1 Carpinus betulus log(reIBAI)2 0.123 1/a KrelBAII-3 mark the locations of the
Wunder et al. (2008) 1 Carpinus betulus log(relBAT)3 -0.067 1/a knots of the restricted cubic splines
Wunder ef al. (2008) 1 Carpinus betulus KrelBAI1 55368 1/a in communication with the authors, the
Waunder ef al. (2008) 1 Carpinus betulus KrelBAI2 437017 1/a locations of the knots were corrected

and thus are different from the original

Wunder et al. (2008) 1 Carpinus betulus KrelBAI3 -3.39317 1/a paper
Wunder et al. (2008) 1 Fraxinus excelsior INTERCEPT -3.3 - for log-transformed relBAI, an additive
Waunder et al. (2008) 1 Fraxinus excelsior log(DBH) 1.171 cm  constant of 0.002531 was used
Wunder et al. (2008) 1 Fraxinus excelsior log(reIBAI) 0.333 1/a  Jog(relBAI)I-3 refer to the coefficients,
Wunder et al. (2008) 1 Fraxinus excelsior log(relBAI)1 0.71 1/a  KrelBAIl-3 mark the locations of the
Wunder et al. (2008) 1 Fraxinus excelsior log(relBAI)2 -1.305 1/a  knots of the restricted cubic splines
Waunder et al. (2008) 1 Fraxinus excelsior log(relBAI)3 1.911 1/a  in communication with the authors, the
Waunder et al. (2008) 1 Fraxinus excelsior KrelBAIl -4.65255 1/a locations of the knots were corrected
Wunder et al. (2008) 1 Fraxinus excelsior KrelBAI2 -3.91917 1/a and thus are different from the original
Waunder et al. (2008) 1 Fraxinus excelsior KrelBAI3 -3.04359 1/a Paper
Wunder et al. (2008) 1 Picea abies INTERCEPT 4.647 - for log-transformed relBAI, an additive
Waunder et al. (2008) 1 Picea abies log(DBH) -0.384 cm constant of 0.002531 was used
Wunder et al. (2008) 1 Picea abies log(rclBAI) 0.44 1/a [og(relBA[)[-j’ refer to the coefficients,
Wunder et al. (2008) 1 Picea abies log(relBAI)1 0.071 1/a  KrelBAII-3 mark the locations of the
Wunder et al. (2008) 1 Picea abies log(reIBAI)2 -0.196 1/a  knots of the restricted cubic splines
Waunder et al. (2008) 1 Picea abies log(relBAI)3 0.125 1/a in communication with the authors, the
Wunder ef al. (2008) 1 Picea abies KrelBAIl -5.08731 1/a locations of the knots were corrected
Wunder ef al. (2008) 1 Picea abies KrelBAI2 -3.93875 1/a and thus are different from the original
Waunder et al. (2008) 1 Picea abies KrelBAI3 -3.29096 1/a Paper
Wunder et al. (2008) 1 Quercus robur INTERCEPT -2.785 - for log-transformed relBAI, an additive
Waunder et al. (2008) 1 Quercus robur log(DBH) 2.075 cm  constant of 0.002531 was used
Wunder et al. (2008) 1 Quercus robur log(relBAI) 1.801 1/a  log(relBAI)1-3 refer to the coefficients,
Wunder et al. (2008) 1 Quercus robur log(relBAI)1 -0.157 1/a  KrelBAIl-3 mark the locations of the
Wunder et al. (2008) 1 Quercus robur log(relBAI)2 0.382 1/a  knots of the restricted cubic splines
Wunder et al. (2008) 1 Quercus robur log(relBAT)3 -0.225 1/a in communication with the authors, the
Waunder et al. (2008) 1 Quercus robur KrelBAIl -5.38701 1/a locations of the knots were corrected
Wunder ef al. (2008) 1 Quercus robur KrelBAI2 -4.41242 1/a and thus are different from the original
Wunder et al. (2008) 1 Quercus robur KrelBAI3 -3.73213 1/a Paper
Wunder et al. (2008) 1 Tilia cordata INTERCEPT -1.787 - for log-transformed relBAI, an additive
Wunder et al. (2008) 1 Tilia cordata log(DBH) 1.591 cm  constant of 0.002531 was used
Wunder et al. (2008) 1 Tilia cordata log(rclBAI) 1.022 1/a [og(relBA[)[-j’ refer to the coefficients,
Wunder et al. (2008) 1 Tilia cordata log(relBAI)1 -0.095 1/a  KrelBAII-3 mark the locations of the
Wunder et al. (2008) 1 Tilia cordata log(relBAI)2 0.289 1/a  knots of the restricted cubic splines
Wunder et al. (2008) 1 Tilia cordata log(relBAI)3 -0.194 1/a in communication with the authors, the
Waunder et al. (2008) 1 Tilia cordata KrelBAIl -5.2202 1/a locations of the knots were corrected
Wunder ef al. (2008) 1 Tilia cordata KrelBAI2 -3.64442 1/a and thus are different from the original
Wunder et al. (2008) 1 Tilia cordata KrelBAI3 -2.87098 1/a Paper
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Publication Calibration species Covariate Coefficient Unit Remarks
Wunder et al. (2008) 1+2 Betula spp. INTERCEPT 1.073 - for log-transformed re/BAI, an additive
Wunder ef al. (2008) 1+2 Betula spp. log(DBH) 0.623 cm  constant of 0.002531 was used
Wunder et al. (2008) 1+2 Betula spp. log(relBAI) 0.813 1/a log(relBAI)I-3 refer to the coefficients,
Waunder et al. (2008) 1+2 Betula spp. log(relBAI)1 -0.031 1/a KrelBAII-3 mark the locations of the
Wunder ef al. (2008) 1+2 Betula spp. log(reIBAI)2 0.073 1/a knots of the restricted cubic splines
Wunder ef al. (2008) 1+2 Betula spp. log(relBAI)3 -0.042 1/a in communication with the authors, the
Wunder e al. (2008) 1+2 Betula spp. KrelBAI1 -5.55349 1/a cocfficients for log(DBH) and site (PL,
Wunder et al. (2008) 142 Betula spp. KrelBAI2 -4.45592 1/a CH) and the locations of the knots were
corrected and thus are different from the
Wunder et al. (2008) 1+2 Betula spp. KrelBAI3 -3.64797 1/a original paper
Wunder et al. (2008) 2 Alnus glutinosa INTERCEPT 1.918 - for log-transformed relBAI, an additive
Wunder et al. (2008) 2 Alnus glutinosa log(DBH) 1.105 cm  constant of 0.002531 was used
Wunder et al. (2008) 2 Alnus glutinosa log(relBAI) 1.217 1/a  Jog(relBAI)I-3 refer to the coefficients,
Wunder et al. (2008) 2 Alnus glutinosa log(relBAI)1 -0.092 1/a  KrelBAII-3 mark the locations of the
Wunder et al. (2008) 2 Alnus glutinosa log(relBAI)2 0.22 1/a  knots of the restricted cubic splines
Waunder et al. (2008) 2 Alnus glutinosa log(relBAI)3 -0.128 1/a in communication with the authors, the
Wunder et al. (2008) 2 Alnus glutinosa KrelBAIl -4.8459 1/a locations of the knots were corrected
Wunder ef al. (2008) 2 Alnus glutinosa KrelBAI2 -3.8672 1/a and thus are different from the original
Waunder et al. (2008) 2 Alnus glutinosa KrelBAI3 -3.16568 1/a Paper
Wunder et al. (2008) 2 Carpinus betulus INTERCEPT 1.827 - for log-transformed re/BAI, an additive
Wunder et al. (2008) 2 Carpinus betulus log(reIBAI) 0.207 1/a constant of 0.002531 was used
Wunder ef al. (2008) 2 Carpinus betulus log(relBAI)1 0.626 1/a log(relBAI)1-3 refer to the coefficients,
Wunder et al. (2008) 2 Carpinus betulus log(relBAI)2 -1.373 1/a KrelBAII-3 mark the locations of the
Wunder et al. (2008) 2 Carpinus betulus log(relBAI)3 0.747 1/a knots of the restricted cubic splines
Wunder et al. (2008) 2 Carpinus betulus KrelBAIL -5.5368 l/a communlcatlon with the authors, the
Waunder ef al. (2008) 2 Carpinus betulus KrelBAI2 437017 1/a locations of the knots were corrected
and thus are different from the original
Wunder et al. (2008) 2 Carpinus betulus KrelBAI3 -3.39317 1/a paper
Wunder et al. (2008) 2 Fagus sylvatica INTERCEPT 10.009 - for log-transformed re/BAI, an additive
Wunder et al. (2008) 2 Fagus sylvatica log(relBAI) 1.743 1/a constant of 0.002531 was used
Wunder et al. (2008) 2 Fagus sylvatica log(relBAT)1 -0.113 1/a log(relBAI)1-3 refer to the coefficients,
Wunder ef al. (2008) 2 Fagus sylvatica log(reIBAI)2 0.328 1/a KrelBAII-3 mark the locations of the
Wunder et al. (2008) 2 Fagus sylvatica log(relBAT)3 0215 1/a knots of the restricted cubic splines
Wunder et al. (2008) 2 Fagus sylvatica KrelBAIlL -5.32948 l/a communlcatlon with the authors, the
Waunder ef al. (2008) 2 Fagus sylvatica KrelBAI2 407211 1/a locations of the knots were corrected
and thus are different from the original
Wunder et al. (2008) 2 Fagus sylvatica KrelBAI3 -3.40999 1/a paper
Wunder et al. (2008) 2 Fraxinus excelsior INTERCEPT 5413 - for log-transformed relBAI, an additive
Waunder et al. (2008) 2 Fraxinus excelsior log(DBH) 1.171 cm  constant of 0.002531 was used
Wunder et al. (2008) 2 Fraxinus excelsior log(relBAI) 2418 1/a  log(relBAI)1-3 refer to the coefficients,
Wunder et al. (2008) 2 Fraxinus excelsior log(relBAI)1 -0.786 1/a  KrelBAII-3 mark the locations of the
Wunder et al. (2008) 2 Fraxinus excelsior log(reIBAI)2 1.444 1/a  knots of the restricted cubic splines
Waunder et al. (2008) 2 Fraxinus excelsior log(relBAI)3 0.658 1/a in communication with the authors, the
Wunder et al. (2008) 2 Fraxinus excelsior KrelBAIl -4.65255 1/a locations of the knots were corrected
Wunder et al. (2008) 2 Fraxinus excelsior KrelBAI2 -3.91917 1/a and thus are different from the original
Waunder et al. (2008) 2 Fraxinus excelsior KrelBAI3 -3.04359 1/a Paper
Wunder et al. (2008) 2 Quercus robur INTERCEPT -0.465 - for log-transformed relBAI, an additive
Waunder et al. (2008) 2 Quercus robur log(DBH) 2.075 cm  constant of 0.002531 was used
Wunder et al. (2008) 2 Quercus robur log(reIBAI) 1.801 1/a  Jog(relBAI)I-3 refer to the coefficients,
Wunder et al. (2008) 2 Quercus robur log(relBAI)1 -0.157 1/a  KrelBAIl-3 mark the locations of the
Wunder et al. (2008) 2 Quercus robur log(relBAI)2 0.382 1/a  knots of the restricted cubic splines
Waunder et al. (2008) 2 Quercus robur log(relBAI)3 -0.225 1/a  in communication with the authors, the
Wunder et al. (2008) 2 Quercus robur KrelBAIl -5.38701 1/a locations of the knots were corrected
Waunder et al. (2008) 2 Quercus robur KrelBAI2 441242 1/a and thus are different from the original
Waunder et al. (2008) 2 Quercus robur KrelBAI3 -3.73213 1/a Paper
Wunder et al. (2008) 2 Tilia cordata INTERCEPT -0.847 - for log-transformed relBAI, an additive
Waunder et al. (2008) 2 Tilia cordata log(DBH) 1.591 cm constant of 0.002531 was used
Wunder et al. (2008) 2 Tilia cordata log(rclBAI) 1.022 1/a [og(relBA[)[-j’ refer to the coefficients,
Wunder et al. (2008) 2 Tilia cordata log(relBAI)1 -0.095 1/a  KrelBAII-3 mark the locations of the
Wunder et al. (2008) 2 Tilia cordata log(reIBAI)2 0.289 1/a  knots of the restricted cubic splines
Waunder et al. (2008) 2 Tilia cordata log(relBAI)3 -0.194 1/a in communication with the authors, the
Waunder et al. (2008) 2 Tilia cordata KrelBAIl -5.2202 1/a locations of the knots were corrected
Wunder ef al. (2008) 2 Tilia cordata KrelBAI2 -3.64442 1/a and thus are different from the original
Waunder et al. (2008) 2 Tilia cordata KrelBAI3 -2.87098 1/a Paper
Waunder et al. (in prep.) low shade tolerance INTERCEPT 7.5825 - . .
Wunder et al. (in prep.) low shade tolerance DBH 0.0672 cm thc influence of relBAI was included
Wunder et al. (in prep.) low shade tolerance DBH"2 -0.0005 cm 2 four growth categories:
. Very low growth: relBAI =0
Waunder et al. (in prep.) low shade tolerance low relBAI 0.581 - .
. Low growth: reIBAI 0...1.5%
Wunder et al. (}n prep.) low shade tolerance fast reIBAI 1.1968 " Fast growth: relBAI 1.5...3%
Waunder et al. (¥n prep.) low shade tolerance very fast reIBAI 2.0417 ~ Very fast growth: relBAI > 3%
Wunder et al. (in prep.) low shade tolerance log(GDD) -1.0107 -
Wunder et al. (in prep.) intermediate shade tolerance  INTERCEPT 7.7706 - . .
Waunder et al. (in prep.) intermediate shade tolerance ~ DBH 0.0672 cm the influence of relBAI was included
Wunder et al. (in prep.) intermediate shade tolerance ~ DBH"2 -0.0005 cm VB four growth categories:
. . . Very low growth: reIBAI =0
Wunder et al. (in prep.) intermediate shade tolerance  low relBAI 0.581 - N o
Wunder et al. (in prep.) intermediate shade tolerance  fast reIBAI 1.1968 . Low growth: relBAIQ. .1.5%
N : . . : Fast growth: reIBAI 1.5...3%
Wunder et al. (}n prep.) %ntermed}ate shade tolerance  very fast reIBAI 2.0417 * Very fast growth: relBAI > 3%
Wunder et al. (in prep.) intermediate shade tolerance  log(GDD) -1.0107 -
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Publication Calibration species Covariate Coefficient Unit Remarks

Wunder et al. (in prep.) high shade tolerance INTERCEPT 8.59 - . .
Waunder et al. (in prep.) high shade tolerance DBH 0.0672 cm the 1fnﬂuence O}f relBAI ,Wals included
Wunder et al. (in prep.) high shade tolerance DBH"2 -0.0005 cm \\//1a olur growt ﬂ?tcﬁggii 0
Waunder et al. (in prep.) high shade tolerance low relBAI 0.581 - yery ow growth: re

Low growth: reIBAI 0...1.5%

Wunder et al. (?n prep.) h?gh shade tolerance fast reIBAI 1.1968 ~ Fast growth: relBAI 1.5...3%
Wunder et al. (fn prep.) hfgh shade tolerance very fast reIBAI 2.0417 * Very fast growth: reBAI > 3%
Wunder et al. (in prep.) high shade tolerance log(GDD) -1.0107 -

A Mortality models

> >

¢ German reserves A

¢  Swiss reserves

>
5

>

Fig. S1 Map of European tree mortality models and strict forest reserves in Germany and Switzerland. The
location of the calibration dataset was estimated based on the information available from the publications.
Number of reserves per respective validation dataset: Germany n = 22 and Switzerland n = 32.
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Fig. S2 Boxplot of p,, at the reserve level for each tree species. Prevailing positive or negative p,;,, values
indicate that for the respective species the models used for prediction tend to over- or underestimate tree
mortality, respectively.
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Fig. S3 Fixed effects of the influence of model and data characteristics on the square-root of |p,;,s|- Note that a
‘good’ model features low |p,;|- Positive and negative influences on performance are shown in blue and red,
respectively. Note that the first level of all factors is the reference level, while the other levels are characterized
by the shift relative to this reference level. The reference species is Abies.
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Fig. S4 Multiple pairwise comparison of least-squares means and confidence intervals for different species from
the linear mixed-effect model of the square-root of |py,,|. Different letters (a-e) indicate significant differences
between species (p<0.05).
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Fig. S5 Boxplot of |p;,| at the reserve level achieved by models with and without a covariate of growth for each
tree species. Note that the design regarding the factors ‘species’ and ‘growth’ is not balanced.
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Fig. S6 Boxplot of |p,;s| at the reserve level achieved by models that were applied inside or outside the
ecological zone in which the models were calibrated for each tree species. Note that the design regarding the
factors ‘species’ and ‘ecological zone’ is not balanced.
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Fig. S7 |psi.s| at the reserve level as a function of the census interval in the validation dataset including a loess
smoothing (blue).
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Fig. S8 Fixed effects of the influence of model and data characteristics on arcsine-transformed 4UC. Note that a
‘good’ model features high AUC. Positive and negative influences on performance are shown in blue and red,
respectively. Note that the first level of all factors is the reference level while the other levels are characterized
by the shift relative to this reference leve8l. The reference species is Abies.
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Fig. S9 Multiple pairwise comparison of least-squares means and confidence intervals for different species from
the linear mixed-effect model of arcsine-transformed 4 UC. Different letters (a-e) indicate significant differences
between species (p<0.05).
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Fig. S10 Boxplot of AUC at the reserve level achieved by models with and without a covariate of growth for
each tree species. Values larger than 0.5 (grey line) indicate an increasing ability to classify dead and living trees
(Hosmer & Lemeshow, 2000). Note that the design regarding the factors ‘species’ and ‘growth’ is not balanced.
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Fig. S11 AUC at the reserve level as a function of the number of records in the validation dataset (V,,;) including
a loess smoothing (blue). Note that the size of the points indicates the count of values at the respective location.
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Appendix B — Extended material and methods

In the following, we describe the tree, stand and site characteristics that were used to explain
the tree status (dead or alive) in the third inventory (cf. Table 2). Herein, tree growth was
derived for the interval between the first and the second inventory. All other tree and stand

characteristics were calculated based on data from the second inventory.

Tree characteristics

Besides DBH as a measure for tree size, the annual increment of the diameter (D) and of the
basal area (BAIl) were calculated to account for tree growth. In addition, a diameter-
independent growth variable of BAI was derived, i.e. annual relative basal area increment
(relBAI, cf. Wunder et al., 2008a). Tree height (%) has been measured only for 17.7 % of the
records. For the remaining, # was derived based on species- and site-specific allometric height
curves (where possible, separately for each inventory year) as a function of DBH following
Michailoff (1943). Crown ratio (CR) defined as the proportion of the crown length to 4 was
not deduced from DBH and/or /4 since it reflects not only the dimensions of a tree but also its
vitality state. Thus, CR was only available for 12.9 % of all records. As a measure of one-
sided competition (Cannell et al., 1984), the basal area of larger trees than the subject tree
(BAL) and its relative counterpart re/BAL being the share of BAL of the stand basal area (BA)
were calculated. Spatially explicit competition indices could not be calculated because tree

coordinates were only available for a subset of the reserves.

Stand characteristics

For DBH, two averages were calculated per permanent plot: the arithmetic (mDBH) and the
quadratic mean (gmDBH, cf. Curtis & Marshall, 2000). As a measure of variance of the
diameter distribution, the coefficient of variance was calculated using CVd = sdDBH /| mDBH
with sdDBH being the standard deviation of DBH (Bravo-Oviedo et al., 2006). Dominant
height (hdom) was determined as the mean height of the hundred largest trees per hectare.
Furthermore, basal area (BA4) and the number of trees per hectare (N) were calculated. Species
composition (PBA) was calculated as the percentage of the basal area of the subject species

(i.e. Betula, Picea and Pinus) of the total stand BA.
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Site characteristics

The geographical location of the permanents plots was described by their latitude (LAT) and
altitude (ALT). The latter was taken from digital elevation models (DEM25m) provided by the
State Agency for Spatial Information and Land Surveying of Lower Saxony (Landesamt fiir
Geoinformation und Landesvermessung Niedersachsen LGLN) and the Swiss Federal Office
of Topography (Swisstopo) for German and Swiss reserves, respectively. Since linear distance
to the Mediterranean Sea as a measure of continentality (CON, cf. Trasobares et al., 2004) is
not meaningful for our data as it would result in severe extrapolation, we used the maximum
value of CON = 186.6 km in the calibration dataset for all reserves. Mean growing degree-
days (GDD) for the period between the first and second inventory were calculated based on
interpolated annual temperature data following Baskerville and Emin (1969) using R code
available online (http://geog.uoregon.edu/envchange/software/ GDD calculator.txt). For the
German reserves, temperature data from climate stations of the German Weather Service were
interpolated following the WaSiM-ETH protocol (http://www.wasim.ch/downloads/
doku/wasim/interpolation_meteodata 2009 en.pdf). For the Swiss reserves, temperature data
were derived following Rasche ef al. (2012) based on the DAYMET model (Thornton ef al.,
1997, available from Landscape Dynamics, WSL). The variable moist¢ indicating moist or wet
conditions (Fridman & Stéhl, 2001), which was only required for Pinus (cf. Table S4), was
set to 0 for all relevant stands since the German reserve ‘Ehrhorner Diinen’ is dominated by
dry conditions and none of the relevant Swiss permanent plots belongs to a moist or wet plant
sociological association (Ellenberg & Klotzli, 1972). The site index (S7) for Picea and Pinus
in Switzerland was derived from the topographical position, the exposition (both based on
DEM25m) and large ecological regions following Keller (1978). Resulting dominant height at
the age of 50 years was scaled to the age of 40 and 100 using yield tables by Badoux (1983)
and the Landesforstanstalt Eberswalde (2000) for Picea and Pinus, respectively. For
Germany, no such eco-topographic information on the growing conditions is available but S/
was derived using estimates of tree age and Lorey’s mean height of the respective species in
the inventory data by applying suitable yield tables (Schober, 1995 for Picea;
Landesforstanstalt Eberswalde, 2000 for Pinus). For all covariates associated with clear cut or

other forest interventions (cf. Table S4), no management in the reserves was assumed.
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Model application

Mortality model j calibrated to data of species & was used to predict the mortality probability

p of tree i of the same species following

exp(X;Bj ) _ 1
1+exp(XiBjx) 1+ exp(—XiBjx)

pijx = logit ™ (XiB;x) =

with X; denoting the design matrix of the linear predictor and f; the respective parameter
vector. Herein, k can also be a group of species when the model was calibrated, e.g. to a set of
broadleaf species (Table S3). Since some models predict survival rather than mortality and in
addition, the formulation of the logistic model was not always the same, and the equation

above was modified respectively:

Model structure prediction of mortality prediction of survival
Tvoe I 1 1
e N
P 1+ exp(XiB;0) 1+ exp(=XiB;)
Type 11 ! !
e - -
P 1+ exp(—X:B;0) 1+ exp(XiBj)

However, the proposed mortality models predict the status of the tree for unequal intervals A¢;
(cf. Table S3). Therefore, the mortality probability valid for A#; was rescaled to the census

interval (A¢) of the respective permanent plot using

At

At

. . = — Y Y J
pl,],k,At 1 (1 pl,j,k,Atj)

Prediction bias

To quantify the degree of prediction accuracy (correct mortality rates), we defined prediction
bias (ppigs) as the absolute difference of the mean predicted mortality probability (‘simulated

mortality’) p,, and the mean mortality rate (‘observed mortality’) y,, over A¢=1 year. To
this end, the ‘simulated mortality’ p,, = Y p;a:/n and the ‘observed mortality’ y,, = Y y;/n

were averaged for observations and predictions with the same cencus interval Az. To render
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the values comparable, mean simulated and observed mortality rates were re-scaled to 1 year.

Taking the example of the ‘simulated mortality’, this can be formulated as

1
Py =1 (1 - 5At)At
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Abstract

Tree mortality models based on long-term datasets are increasingly available for a large set of
species and from various geographical areas. However, they differ considerably regarding the
type of data used for calibration and the approach for statistical modeling. Moreover, a large
variability of mortality patterns predicted by various inventory-based models was identified
(Chapter 1; cf. Hiilsmann et al., 2017). To evaluate the nature of these differences in greater
detail, the predicted mortality probabilities of a large set of inventory- and tree-ring-based
models were analyzed using hierarchical cluster analysis. The results of this analysis reflect
the diversity of approaches in mortality modeling and emphasize that these differences do not
modify mortality predictions in a systematic way. Nevertheless, the approaches underlying
model development, i.e., the field design as well as the approach for statistical modeling, have
a crucial influence on model predictions. In addition, mortality probabilities predicted by tree-
ring-based models depend strongly on the sampling scheme. Due to the large differences in
approaches, it was not possible to evaluate the need for species-specific models, nor to
identify a reasonable grouping of species with similar mortality patterns. Overall, the results
emphasize — once more — that tree mortality is highly variable in space and time, and that our

knowledge on the mechanisms behind this variability is limited.

Key-words

Dendrochronological data; Empirical mortality models; Forest inventory data; Hierarchical

cluster analysis; Mortality probability; Predictive behavior; Systematic review; Tree growth
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Introduction

Tree mortality models that are developed using long-term datasets are increasingly available
for a large set of species and from various geographical areas. However, they differ
considerably regarding the type of data used for calibration (forest inventories or
dendrochronological data), the sample size, the management intensity in the stands used for
calibration and the handling of disturbance-related mortality (e.g., exclusion of certain plots
or trees, cf. Bravo-Oviedo et al., 2006; Wunder et al., 2007). In addition, diverse sampling
schemes have been applied in tree-ring-based models (paired sampling (P) or considering all
available observations (7); cf. Cailleret et al., 2016). Finally, a wide range of predictors
including different competition and growth variables have been used (cf. Hawkes, 2000;
Cailleret et al., 2016). It is very likely that such differences influence the simulated
probability of tree death. However, little is known on the (dis)similarities between the
approaches and the general predictive behavior of the models. Since advice regarding the
suitability of empirically-based mortality models is limited, such mortality algorithms tend to
be selected by availability and chance, thus not necessarily increasing the reliability of

Dynamic Vegetation Models (DVMs; e.g., Bircher, 2015).

Moreover, the majority of the mortality studies that are currently available proposed species-
specific mortality formulations. Only a few authors attempted to group tree species, e.g.,
regarding their distribution (Fridman & Stéhl, 2001) or functional traits such as shade
tolerance (Wunder et al., in prep.). Although species-specific approaches appear reasonable in
view of the differences in life history strategies (Franklin et al., 1987; Harcombe, 1987), their

necessity has not been proven.

As shown in Chapter 1 (cf. Hiillsmann et al., 2017), inventory-based mortality models differ
considerably in their predictions of mortality patterns. To evaluate the nature of these
differences in greater detail, we decided to assess the predicted mortality probabilities of a
large set of mortality models using hierarchical cluster analysis (Masson & Knutti, 2011). For
this purpose, we extended the scope of the analysis and used both inventory- and tree-ring-
based models. The resulting dendrograms of mortality models were inspected to identify
drivers that influence the similarity of mortality predictions. We hypothesized that (1) species
or at least functional traits (e.g., deciduous vs. evergreen, shade tolerance), (2) predicted

mortality type, i.e., 'regular' vs. 'irregular’ mortality, (3) geographical origin of the calibration
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data, (4) management intensity and (5) the sampling scheme in tree-ring data should be

influential model characteristics.

Material and methods

Mortality models

We used the same 46 inventory-based mortality models for European tree species as in the
systematic model assessment in Chapter 1. The models based on tree-ring data were identified
following Cailleret et al. (2016) thus extending the scope to formulations that have been
developed all over the world since much fewer dendrochronological mortality models are
available compared to inventory-based approaches. For the same reason, we used all models
that the authors considered as ‘good’ even if the models were based on the same dataset and
differed with respect to their covariates only. Models from the same publication and for the
same species were identified using a numerical index following the numbering in the
publications. Those models that rely on covariates that were not available in the validation
dataset (e.g., canopy position) were discarded, resulting in 52 models based on
dendrochronological data of 15 tree species (Table 1). Mixed-effects mortality models were
applied by setting all random effects to zero (Rose et al., 2006; Skrondal & Rabe-Hesketh,
2009).
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Table 1 Tree-ring-based mortality models, related calibration species, number of all and dead trees in the
calibration datasets (N.u, Ngeqq) and the sampling scheme applied for model fitting. Sampling 7 considers all
growth information and tree status observations from each tree, while the number of dying and living
observations is almost equivalent in a paired sampling P, and sampling S is based on a more or less paired
sampling that was subsequently scaled to mortality rates at the population level (Das et al., 2007). The
information ‘predicted status’ is required to apply the mortality models (cf. Chapter 1; the ‘type’ of logistic
regression was II for all models). Note that the models Das ef al. (2007) 1 and 2 refer to trees with DBH > 20 cm
and DBH < 20 cm, respectively. Hartmann et al. (2007) used either un-truncated (UT) and truncated (7) ring-
width series of living trees. The model by Macalady and Bugmann (2014) included study site and period as
random effects. The sampling used by Senecal ef al. (2004) remained unclear.

s . . . Predicted Sampling
Publication Calibration species status Neat (NVdead) scheme
Bigler et al. (2004) Abies alba survival 70 (32) T
Bigler et al. (2006) Pinus sylvestris survival 140 (70) T
Bigler and Bugmann (2003) Picea abies survival 119 (59) P
Bigler and Bugmann (2004) 5 Picea abies survival 119 (59) T
Bigler and Bugmann (2004) 8 Picea abies survival 119 (59) T
Bigler and Bugmann (2004) 9 Picea abies survival 119 (59) T
Bigler and Bugmann (2004) 10 Picea abies survival 119 (59) T
Bigler and Bugmann (2004) 11 Picea abies survival 119 (59) T
Bigler and Bugmann (2004) 12 Picea abies survival 119 (59) T
Carus (2010) 3 Abies cilicica survival 44 (22) P
Carus (2010) 7 Abies cilicica survival 44 (22) P
Carus (2010) 10 Abies cilicica survival 44 (22) P
Carus (2010) 12 Abies cilicica survival 44 (22) P
Das et al. (2007) 1 Abies concolor survival 106 (45) N
Das et al. (2007) 2 Abies concolor survival 81 (36) S
Das et al. (2007) Pinus lambertiana survival 155 (78) S
Gillner et al. (2013) 1 Fagus sylvatica survival 38 (18) P
Gillner et al. (2013) 2 Fagus sylvatica survival 38 (18) P
Hanna and Kulakowski (2012) 1 Populus tremuloides survival 37(22) P
Hanna and Kulakowski (2012) 2 Populus tremuloides survival 40 (18) P
Hanna and Kulakowski (2012) 3 Populus tremuloides survival 41 (21) P
Hanna and Kulakowski (2012) 4 Populus tremuloides survival 28 (14) P
Hanna and Kulakowski (2012) 5 Populus tremuloides survival 37 (18) P
Hanna and Kulakowski (2012) 6 Populus tremuloides survival 48 (15) P
Hanna and Kulakowski (2012) 7 Populus tremuloides survival 33 (20) P
Hanna and Kulakowski (2012) 8 Populus tremuloides survival 33 (25) P
Hanna and Kulakowski (2012) 9 Populus tremuloides survival 41 (24) P
Hanna and Kulakowski (2012) 10 Populus tremuloides survival 42 (23) P
Hanna and Kulakowski (2012) Populus tremuloides survival 120 (60) P
Hartmann et al. (2007) UT Abies balsamifera mortality 60 (30) P
Hartmann et al. (2007) T Abies balsamifera mortality 60 (30) P
Hartmann et al. (2007) UT Acer saccharum mortality 60 (30) P
Hartmann et al. (2007) T Acer saccharum mortality 60 (30) P
Hartmann et al. (2007) UT Picea abies mortality 60 (30) P
Hartmann et al. (2007) T Picea abies mortality 60 (30) P
Hartmann et al. (2007) UT Picea glauca mortality 60 (30) P
Hartmann et al. (2007) T Picea glauca mortality 60 (30) P
Hartmann et al. (2007) UT Picea mariana mortality 60 (30) P
Hartmann et al. (2007) T Picea mariana mortality 60 (30) P
Kane and Kolb (2014) 1 Abies concolor survival 56 (28) P
Kane and Kolb (2014) 2 Abies concolor survival 56 (28) P
Kane and Kolb (2014) 3 Abies concolor survival 56 (28) P
Kane and Kolb (2014) 1 Pinus flexilis survival 48 (24) P
Kane and Kolb (2014) 2 Pinus flexilis survival 48 (24) P
Kane and Kolb (2014) 3 Pinus flexilis survival 48 (24) P
Kane and Kolb (2014) 4 Pinus flexilis survival 48 (24) P
Kane and Kolb (2014) 1 Populus tremuloides survival 122 (61) P
Kane and Kolb (2014) 2 Populus tremuloides survival 122 (61) P
Kane and Kolb (2014) 3 Populus tremuloides survival 122 (61) P
Kane and Kolb (2014) 1 Pseudotsuga menziesii survival 142 (71) P
Macalady and Bugmann (2014) Pinus edulis survival 265 (147) T
Senecal et al. (2004) Picea glauca mortality - (480) ?
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Study sites and validation data

Inventory-based mortality models were applied to the inventory data from 54 strict forest
reserves in Switzerland and Germany (for further details on the data and the derivation of
variables used as model covariates cf. Chapter 1). For the application of tree-ring-based
models, data from a recent dendrochronological campaign in 13 Swiss reserves including 671
dead trees of seven species were used (cf. Table 2, Vanoni et al., 2016a; Vanoni et al.,
2016b). To this end, we calculated the required growth variables using measured ring widths
(RW). Field measurements of diameter at breast height (DBH) and at the height of coring were
used to derive variables that were based on basal area increment (BAI, cf. LeBlanc, 1996).
Different growth variables calculated over several time windows were considered in terms of
growth level, trend, variation, sensitivity and abrupt change over several time windows (for
details cf. Appendix, Table S1 and the respective mortality studies). Age was derived based
on an estimate of the number of missing rings to the pith using a geometric model (Duncan,

1989; Pirie et al., 2015).

Table 2 Characteristics of tree-ring data (cf. Vanoni et al., 2016a; Vanoni ef al., 2016b).

Number of growth values per tree

Species Number of trees Maximum age (years)
median range
Abies alba 134 87 37-204 210
Acer pseudoplatanus 39 83 41-139 142
Fagus sylvatica 135 108 43-183 183
Larix decidua 51 121 34 -432 432
Picea abies 124 97.5 40 - 415 435
Pinus cembra 39 111 47 - 388 388
Quercus spp. 149 88 57-192 194

Application of mortality models and assessment of their (dis)similarities

Since we were interested in the predictive behavior of the models but not in their accuracy,
inventory and tree-ring datasets were used as ‘test data’ for model application, i.e., each
model was considered as a valid realization of mortality patterns for the respective calibration
species irrespective of its performance for the calibration or validation datasets. Therefore, the

models were applied to all trees irrespective of their species.

Based on the model coefficients (cf. Chapter 1, Table S4 and this Chapter, Table S1) and the

mathematical formulation of the logistic regression (Chapter 1, Table S3 and this Chapter
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Table 1), the annual mortality probability for each observation, i.e., the set of two inventories

or a tree ring from dendrochronological data, was calculated following eqn 1 in Chapter 1.

Subsequently, the difference between two mortality models was quantified using the
Euclidian distance of predicted mortality probabilities at the level of individual observations.
This requires a mortality prediction by every model for every single observation, which was
not always feasible due to variables such as crown ratio (CR) or site index (S/) in some
inventory-based models, or variables with a long time lag (e.g., RW40) in some tree-ring-
based models. Therefore, a compromise had to be found between the number of observations
and models in the full matrix of mortality probabilities. This resulted in 36 inventory- and 38
tree-ring-based models that were applied to 78 714 and 51 273 observations in the inventory

and tree-ring datasets, respectively.

Based on the resulting distance matrices, the models were hierarchically clustered and their
proximity was shown using dendrograms. To explore the patterns of predicted mortality with
respect to the most common covariates in mortality models, i.e., tree size and growth, the
mortality predictions for each observation were averaged within the clusters. Subsequently,
median and 0.05- and 0.95-quantiles of each cluster were plotted as a function of DBH and
relative basal area increment (rel/BAI), i.e., a measure of tree growth that is only weakly
correlated with tree size. To this end, growth values were log-transformed with all no-growth
observations set to the minimum of re/BAI. We selected the number of clusters to be six to
allow for a reasonable degree of distinction and aggregation at the same time. The
dendrograms were visually interpreted regarding the factors that are expected to influence the
predicted mortality probability, i.e., calibration species, geographical origin of the data, type
of mortality intended by the authors, management intensity in the calibration data, use of

growth covariates and the sampling scheme.

All computations were performed within R (R Core Team 2015, R Foundation for Statistical
Computing. Vienna, Austria). Hierarchical clustering was performed using the function
hclust() with the method ward.D2. Nonparametric quantile regression as implemented in the
function rgss() was used to derive the quantiles of the mortality probabilities as a function of

tree size and growth.
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Results and discussion

Inventory-based mortality models

In the dendrogram of inventory-based mortality models (Fig. 1), three single models clustered
alone and thus strongly differed from the others (i.e., Fridman & Stahl, 2001, Betula; Alenius
et al., 2003, Pinus; Crecente-Campo et al., 2010, Pinus). The models derived by Fridman and
Stahl (2001) and Crecente-Campo et al. (2010) were characterized by exceptionally high
mortality probabilities for large (DBH > 60 cm) and small (DBH < 20 cm) trees, respectively.
Except for these models, mortality rates were relatively low and typically showed a reverse J-
shaped pattern over tree size. The growth influence on mortality appeared weaker than the
effect of DBH, and no clear pattern could be identified except for Cluster 5, which showed
higher mortality risk for slow growing trees. The unexpected double-humped pattern of
mortality over relBAI for Clusters 2 and 6 was most presumably not caused by the growth
covariates themselves, but may be an artifact of the correlation structure of re/BAI and other
mortality predictors in the test data (e.g., small trees with a high mortality risk dominantly had
relBAI within the range of that values).

None of the considered model characteristics, i.e., calibrated species, mortality type,
ecological zone or management intensity, could explain the differences between clusters and
the similarities within clusters, or the overall structure of the dendrogram (cf. Fig. 2). With
some exceptions, mortality models developed by the same author team were usually more

similar, irrespective of the species.
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Tree-ring-based mortality models

Compared to the inventory-based models, the influence of DBH was less obvious but growth
shaped the mortality probability much more strongly, with higher mortality probabilities
towards lower relBAI values (Fig. 3). This is related to the mortality predictors that were
considered, i.e., inventory-based models dominantly relied on tree size (cf. Chapter 1) while
tree-ring-based models mainly used growth information (Table S1). Mortality probabilities in
the tree-ring-based models were often much higher than in the inventory-based models, since
the magnitude of predicted mortality probabilities is defined by the ratio of dead over total
trees in the calibration data (cf. Table 1). For example, mortality probabilities predicted by
models based on a paired sampling (P) vary around 50 %. Predictions of models calibrated
with the sampling scheme 7 revealed mortality probabilities closer to stand-scale mortality
rates, albeit with an increase of mortality over DBH (cf. clusters 1 and 4), which was likely
due to the increase in the proportion of dying observations compared to living ones towards

high DBH (Cailleret et al., 2016).

Based on the dendrograms, we observed a clustering of the models fitted with the same
sampling approach (i.e., 7 and P, Fig. 2, TRsampling). Mortality predictions of models
calibrated on the same species but not the same dataset sometimes differed strongly (e.g.,
Hanna & Kulakowski, 2012). In contrast, all mortality models calibrated on the same datasets
were highly similar irrespective of the explanatory growth variables used (e.g., Bigler &
Bugmann, 2004). Since the sampling scheme turned out to be exceedingly important for the
clustering, it was impossible to identify other influences on the predictive behavior of the

models, and the screening was stopped.
Alternatively, I tried to identify model similarities by:

- analyzing logit-transformed mortality probabilities in the hierarchical clustering,

- using regression trees with model covariates as fixed and single trees as random
effects,

- calibrating new models with the same covariate structure using the predictions of each
model to allow for the comparison of model coefficients (while some models achieved
only a low performance, most of the models performed relatively well; an analysis of
the model coefficients revealed no new insights compared to the original mortality

predictions, however).
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Yet, no clear patterns emerged that would have been helpful to group the mortality models by

species, modeling approaches or other criteria.

Conclusion

The hierarchical regression trees of mortality probabilities predicted by a large set of
inventory- and tree-ring-based mortality models did not reveal any clear pattern regarding the
proposed hypotheses, i.e., calibration species, geographical origin of the data, type of
mortality intended by the authors, management intensity in the calibration data and use of
growth covariates. Since no promising patterns could be identified, no further analyses were
carried out regarding this approach, e.g., by applying both inventory- and tree-ring-based
mortality models to the same dataset, i.e., the intersection of inventory and tree-ring data from
the Swiss forest reserves, and building a unified genealogy of mortality models, in
combination with theoretical growth-based mortality models (e.g., the one used in the forest

gap model ForClim; Bugmann, 1996).

The results of this analysis reflect the diversity of approaches in mortality modeling based on
growth data and emphasize that these differences do not modify mortality predictions in a
systematic way. Nevertheless, the field design as well as the statistical modeling, have a
crucial influence on model predictions, since predictions from the same study were more
similar. In addition, the mortality probabilities predicted by tree-ring-based models depend
strongly on the sampling scheme. Due to the large differences in approaches, it was not
possible to evaluate the need for species-specific models, nor to analyze which species are
characterized by similar mortality patterns. Overall, the results suggest — once more — that tree
mortality is highly variable in space and time, and that our knowledge on the mechanisms

behind this variability is limited.
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Appendix

Table S1 Coefficients and respective units for the tree-ring-based models. Abbreviations: DBH = diameter at
breast height, RW = mean ring width, RW med = median ring width, cvRW = coefficient of variation of ring
width, msRW = mean sensitivity of ring width, sloRW =slope of local regression of ring width series,
DI =mean diameter increment, D/3x = diameter increment at a time lag of three years (Senecal et al., 2004),
BAI = mean basal area increment, sloBAI = slope of local regression of basal area increment series (sloBAIl ),
relBAl = mean relative basal area increment, 7e/BAID = mean basal area increment divided by DBH (Gillner
et al., 2013), NGC = number of years with a negative growth change, PGC = number of years with a positive
growth change. ¢’ indicates the length of the time window (given in years) for which the growth variables were
calculated.

Publication Calibration species Covariate Coefficient Unit
Bigler et al. (2004) Abies alba INTERCEPT 2277 -
Bigler et al. (2004) Abies alba relBAIl 534.84 -
Bigler et al. (2004) Abies alba sloBAIS 0.21 cm”2/a*a
Bigler et al. (2006) Pinus sylvestris INTERCEPT 11.415 -
Bigler et al. (2006) Pinus sylvestris log(relBAIL) 1.456 -
Bigler et al. (2006) Pinus sylvestris sloBAIS 0.816 cm”2/a*a
Bigler and Bugmann (2003) Picea abies INTERCEPT -0.568 -
Bigler and Bugmann (2003) Picea abies log(BAI3) 0.898 cm”2/a
Bigler and Bugmann (2003) Picea abies sloBAI25 4.507 cm”2/a*a
Bigler and Bugmann (2004) 5 Picea abies INTERCEPT 16.104 -
Bigler and Bugmann (2004) 5 Picea abies log(relBAIL) 2.004 -
Bigler and Bugmann (2004) 8 Picea abies INTERCEPT 16.003 -
Bigler and Bugmann (2004) 8 Picea abies sloBAIS 0.431 cm”2/a*a
Bigler and Bugmann (2004) 8 Picea abies log(relBAIL) 1.965 -
Bigler and Bugmann (2004) 9 Picea abies INTERCEPT 15.68 -
Bigler and Bugmann (2004) 9 Picea abies sloBAI25 0.872 cm”2/a*a
Bigler and Bugmann (2004) 9 Picea abies log(relBAIL) 1.915 -
Bigler and Bugmann (2004) 10 Picea abies INTERCEPT 15.646 -
Bigler and Bugmann (2004) 10 Picea abies log(BAI3) 0.104 cm”2/a
Bigler and Bugmann (2004) 10 Picea abies log(relBAIL) 1.938 -
Bigler and Bugmann (2004) 11 Picea abies INTERCEPT 14.688 -
Bigler and Bugmann (2004) 11 Picea abies sloBAIS 0.577 cm”2/a*a
Bigler and Bugmann (2004) 11 Picea abies log(BAI3) 0.319 cm”2/a
Bigler and Bugmann (2004) 11 Picea abies log(relBAIL) 1.769 -
Bigler and Bugmann (2004) 12 Picea abies INTERCEPT 14.528 -
Bigler and Bugmann (2004) 12 Picea abies sloBAI25 1.29 cm”2/a*a
Bigler and Bugmann (2004) 12 Picea abies log(BAI3) 0.244 cm”2/a
Bigler and Bugmann (2004) 12 Picea abies log(relBAIL) 1.736 -
Carus (2010) 3 Abies cilicica INTERCEPT 0.524 -
Carus (2010) 3 Abies cilicica sloBAI25 2.175 cm”2/a*a
Carus (2010) 7 Abies cilicica INTERCEPT 2224 -
Carus (2010) 7 Abies cilicica log(BAI3) -0.714 cm”2/a
Carus (2010) 7 Abies cilicica sloBAI25 1.608 cm”2/a*a
Carus (2010) 10 Abies cilicica INTERCEPT -2.467 -
Carus (2010) 10 Abies cilicica sloBAI25 1.32 cm”2/a*a
Carus (2010) 10 Abies cilicica log(relBAIL) -0.73 -
Carus (2010) 12 Abies cilicica INTERCEPT -0.589 -
Carus (2010) 12 Abies cilicica log(BAI3) -0.536 cm”2/a
Carus (2010) 12 Abies cilicica sloBAI25 1.084 cm”2/a*a

Carus (2010) 12 Abies cilicica log(relBAI1) -0.586 -
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Publication Calibration species Covariate Coefficient Unit
Das et al. (2007) Pinus lambertiana INTERCEPT 243 -
Das et al. (2007) Pinus lambertiana RWI0 0.99 mm/a
Das et al. (2007) Pinus lambertiana sloRW40 35.53 mm/a*a
Das et al. (2007) Pinus lambertiana NGC5 -1.01 -
Das et al. (2007) 1 Abies concolor INTERCEPT 4.47 -
Das et al. (2007) 1 Abies concolor RW20 091 mm/a
Das et al. (2007) 1 Abies concolor NGC5 -1.99 -
Das et al. (2007) 2 Abies concolor INTERCEPT 3.24 -
Das et al. (2007) 2 Abies concolor RW25 4.82 mm/a
Das et al. (2007) 2 Abies concolor NGC25 -0.17 -
Gillner et al. (2013) 1 Fagus sylvatica INTERCEPT -4.519 -
Gillner et al. (2013) 1 Fagus sylvatica relBAID20 4.862 cm”2/cm*a
Gillner et al. (2013) 2 Fagus sylvatica INTERCEPT -0.46584 -
Gillner et al. (2013) 2 Fagus sylvatica relBAID20 3.51875 cm”2/cm*a
Gillner et al. (2013) 2 Fagus sylvatica msRW20 -0.08261 -
Hanna and Kulakowski (2012) 1 Populus tremuloides INTERCEPT 0.5025 -
Hanna and Kulakowski (2012) 1 Populus tremuloides sloBAI1S5 0.0109 mm”2/a*a
Hanna and Kulakowski (2012) 2 Populus tremuloides INTERCEPT -3.1859 -
Hanna and Kulakowski (2012) 2 Populus tremuloides age 0.0158 a
Hanna and Kulakowski (2012) 2 Populus tremuloides DBH 0.0602 cm
Hanna and Kulakowski (2012) 3 Populus tremuloides INTERCEPT -2.4524 -
Hanna and Kulakowski (2012) 3 Populus tremuloides log(BAI3) 0.5082 mm”2/a
Hanna and Kulakowski (2012) 3 Populus tremuloides age 0.0161 a
Hanna and Kulakowski (2012) 4 Populus tremuloides INTERCEPT -4.7528 -
Hanna and Kulakowski (2012) 4 Populus tremuloides sloBAIS 0.0033 mm”2/a*a
Hanna and Kulakowski (2012) 4 Populus tremuloides age 0.0466 a
Hanna and Kulakowski (2012) 5 Populus tremuloides INTERCEPT -0.136 -
Hanna and Kulakowski (2012) 5 Populus tremuloides log(BAI3) 04311 mm”2/a
Hanna and Kulakowski (2012) 5 Populus tremuloides sloBAIS 0.0022 mm”2/a*a
Hanna and Kulakowski (2012) 5 Populus tremuloides age -0.00521 a
Hanna and Kulakowski (2012) 6 Populus tremuloides INTERCEPT -0.7708 -
Hanna and Kulakowski (2012) 6 Populus tremuloides sloBAI10 0.00409 mm”2/a*a
Hanna and Kulakowski (2012) 6 Populus tremuloides DBH 0.036 cm
Hanna and Kulakowski (2012) 7 Populus tremuloides INTERCEPT 0.1995 -
Hanna and Kulakowski (2012) 7 Populus tremuloides sloBAI10 0.00495 mm”2/a*a
Hanna and Kulakowski (2012) 8 Populus tremuloides INTERCEPT -0.7263 -
Hanna and Kulakowski (2012) 8 Populus tremuloides sloBAI10 0.00483 mm”2/a*a
Hanna and Kulakowski (2012) 8 Populus tremuloides DBH 0.0319 cm
Hanna and Kulakowski (2012) 9 Populus tremuloides INTERCEPT 0.447 -
Hanna and Kulakowski (2012) 9 Populus tremuloides sloBAIl5 0.0134 mm”2/a*a
Hanna and Kulakowski (2012) 10 Populus tremuloides INTERCEPT -1.2051 -
Hanna and Kulakowski (2012) 10 Populus tremuloides log(BAIS) 0.5999 mm”2/a
Hanna and Kulakowski (2012) 10 Populus tremuloides sloBAI10 0.00502 mm”2/a*a
Hanna and Kulakowski (2012) Populus tremuloides INTERCEPT 0.414727 -
Hanna and Kulakowski (2012) Populus tremuloides sloBAI10 0.006135 mm”2/a*a
Hartmann et al. (2007) UT Abies balsamifera RW3med -0.01923 0.001mm/a
Hartmann et al. (2007) T Abies balsamifera RW10med -0.01596 0.00lmm/a
Hartmann et al. (2007) T Abies balsamifera sloRW35 0.16283 0.00lmm/a*a
Hartmann et al. (2007) UT Acer saccharum RW3med 0.00422 0.001mm/a
Hartmann et al. (2007) UT Acer saccharum sloRW25 -0.14174 0.00lmm/a*a
Hartmann et al. (2007) T Acer saccharum RW5med 0.0002561 0.001mm/a
Hartmann et al. (2007) T Acer saccharum sloRW35 -0.0723448 0.001lmm/a*a
Hartmann et al. (2007) UT Picea abies RW10med -0.08507 0.00lmm/a
Hartmann et al. (2007) UT Picea abies sloRW25 0.71304 0.00lmm/a*a
Hartmann et al. (2007) T Picea abies RWI10med -0.08957 0.001mm/a
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Publication Calibration species Covariate Coefficient Unit
Hartmann et al. (2007) UT Picea glauca RW10med -0.001917 0.001lmm/a
Hartmann et al. (2007) UT Picea glauca sloRW25 -0.050886 0.001lmm/a*a
Hartmann et al. (2007) T Picea glauca RW3med -0.002641 0.001mm/a
Hartmann et al. (2007) T Picea glauca sloRW3 -0.004504 0.00lmm/a*a
Hartmann et al. (2007) UT Picea mariana RW5med -0.003828 0.001mm/a
Hartmann et al. (2007) UT Picea mariana sloRW35 0.028764 0.001lmm/a*a
Hartmann et al. (2007) T Picea mariana RW3med -0.003527 0.001lmm/a
Hartmann et al. (2007) T Picea mariana sloRW3 -0.012734 0.001lmm/a*a
Kane and Kolb (2014) 1 Abies concolor INTERCEPT -0.4 -
Kane and Kolb (2014) 1 Abies concolor RW5 1.6 mm/a
Kane and Kolb (2014) 1 Abies concolor sloRWS50 44.6 mm/a*a
Kane and Kolb (2014) 2 Abies concolor INTERCEPT -0.4 -
Kane and Kolb (2014) 2 Abies concolor RW10 1.5 mm/a
Kane and Kolb (2014) 2 Abies concolor sloRW50 49 mm/a*a
Kane and Kolb (2014) 3 Abies concolor INTERCEPT 2.5 -
Kane and Kolb (2014) 3 Abies concolor sloRWS50 273 mm/a*
Kane and Kolb (2014) 3 Abies concolor cvRW40 -4.9 -
Kane and Kolb (2014) 1 Pinus flexilis INTERCEPT 0.04 -
Kane and Kolb (2014) 1 Pinus flexilis RW40 -4.3 mm/a
Kane and Kolb (2014) 1 Pinus flexilis cvRW20 2.8 -
Kane and Kolb (2014) 2 Pinus flexilis INTERCEPT -0.03 -
Kane and Kolb (2014) 2 Pinus flexilis RW50 -4.3 mm/a
Kane and Kolb (2014) 2 Pinus flexilis cvRW20 2.8 -
Kane and Kolb (2014) 3 Pinus flexilis INTERCEPT 0.4 -
Kane and Kolb (2014) 3 Pinus flexilis RW50 2.8 mm/a
Kane and Kolb (2014) 3 Pinus flexilis cvRW20 -4 -
Kane and Kolb (2014) 3 Pinus flexilis NGC10 -0.4 -
Kane and Kolb (2014) 4 Pinus flexilis INTERCEPT 0.5 -
Kane and Kolb (2014) 4 Pinus flexilis RW40 2.8 mm/a
Kane and Kolb (2014) 4 Pinus flexilis cvRW20 -4.1 -
Kane and Kolb (2014) 4 Pinus flexilis NGC10 -0.4 -
Kane and Kolb (2014) 1 Populus tremuloides INTERCEPT -1.5 -
Kane and Kolb (2014) 1 Populus tremuloides RWS5 5.4 mm/a
Kane and Kolb (2014) 1 Populus tremuloides cvRW30 -0.4 -
Kane and Kolb (2014) 1 Populus tremuloides sloRWS 8.8 mm/a*a
Kane and Kolb (2014) 2 Populus tremuloides INTERCEPT -2 -
Kane and Kolb (2014) 2 Populus tremuloides RWS5 5.7 mm/a
Kane and Kolb (2014) 2 Populus tremuloides cvRW40 0.4 -
Kane and Kolb (2014) 2 Populus tremuloides sloRWS 9 mm/a*a
Kane and Kolb (2014) 3 Populus tremuloides INTERCEPT -0.7 -
Kane and Kolb (2014) 3 Populus tremuloides RW5 4.8 mm/a
Kane and Kolb (2014) 3 Populus tremuloides NGCs0 -0.2 -
Kane and Kolb (2014) 1 Pseudotsuga menziesii INTERCEPT -0.005 -
Kane and Kolb (2014) 1 Pseudotsuga menziesii RW10 3.8 mm/a
Kane and Kolb (2014) 1 Pseudotsuga menziesii cvRW40 2.2 -
Kane and Kolb (2014) 1 Pseudotsuga menziesii sloRWS50 62.4 mm/a*a
Macalady and Bugmann (2014) Pinus edulis INTERCEPT 4.851 -
Macalady and Bugmann (2014) Pinus edulis log(RW30) 3.089 mm/a
Macalady and Bugmann (2014) Pinus edulis msRW15 -3.46 -
Macalady and Bugmann (2014) Pinus edulis PGC10 0.224 -
Senecal et al. (2004) Picea glauca INTERCEPT 1.6459 -
Senecal et al. (2004) Picea glauca DBH -0.1095 cm
Senecal et al. (2004) Picea glauca DIl -0.7663 mm
Senecal et al. (2004) Picea glauca DI3x 0.9145 mm
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Abstract

Large uncertainties characterize forest development under global climate change. Although
recent studies have found widespread increased tree mortality, the patterns and processes
associated with tree death remain poorly understood, thus restricting accurate mortality
predictions. Yet, projections of future forest dynamics depend critically on robust mortality
models, preferably based on empirical data rather than theoretical, not well-constrained
assumptions. We developed parsimonious mortality models for individual beech (Fagus
sylvatica L.) trees and evaluated their potential for incorporation in Dynamic Vegetation
Models (DVMs). We used inventory data from nearly 19’000 trees from unmanaged forests in
Switzerland, Germany and Ukraine, representing the largest dataset used to date for
calibrating such models. Tree death was modelled as a function of size and growth, i.e., stem
diameter (DBH) and relative basal area increment (relBAI), using generalized logistic
regression accounting for unequal re-measurement intervals. To explain the spatial and
temporal variability in mortality patterns, we considered a large set of environmental and
stand characteristics. Validation with independent datasets was performed to assess model
generality. Our results demonstrate strong variability in beech mortality that was independent
of environmental or stand characteristics. Mortality patterns in Swiss and German strict forest
reserves were dominated by competition processes as indicated by J-shaped mortality over
tree size and growth. The Ukrainian primeval beech forest was additionally characterized by
windthrow and a U-shaped size-mortality function. Unlike the mortality model based on
Ukrainian data, the Swiss and German models achieved good discrimination and acceptable
transferability when validated against each other. We thus recommend these two models to be
incorporated and examined in DVMSs. Their mortality predictions respond to climate change
via tree growth, which is sufficient to capture the adverse effects of water availability and

competition on the mortality probability of beech under current conditions.

Key words

Climate change, Dynamic Vegetation Models, External validation, Fagus sylvatica, Forest

inventory data, Forest reserves, Generalized logistic regression, Individual tree mortality
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Introduction

Increasing tree mortality in response to global climate change is receiving particular attention
(Allen et al., 2010; Steinkamp et al., 2015). However, tree mortality and particularly its
spatial patterns and temporal variability remain poorly understood (Hawkes, 2000), partly due
to its “stochastic, rare and irregular” nature (Eid & Tuhus, 2001). Consequently, the future
development of forests, which depends critically on tree mortality (Friend et al., 2014), is
highly uncertain. Robust, widely applicable models of individual tree mortality are sorely
needed as they allow for insights into mortality patterns and at the same time for projections
of future tree mortality. Although several attempts towards model improvement have been
made, robust, climate-sensitive tree mortality models continue to be lacking (Weiskittel et al.,
2011; Bircher et al, 2015). In particular, Dynamic Vegetation Models (DVMs) at stand,
landscape and global scales, which are a key tool to quantify future changes of forest
ecosystems, typically include theoretical mortality algorithms that lack mechanistic and/or
empirical justification. This strongly hampers the reliability of DVM projections (Keane et
al., 2001; Reyer et al., 2015).

Fully mechanistic tree mortality models still have a long way to go due to insufficient
understanding of the underlying physiological processes (Wang et al., 2012). Therefore, a
promising approach for progress in mortality models appears to be empirical, i.e., using
different kinds of datasets to elucidate the relationship between the likelihood of tree death
and variables that are internal or external to the tree (Weiskittel ez al., 2011). To date, three
distinct strategies have been pursued to this end: (1) using tree size, vitality and competition
within the stand (e.g., Monserud & Sterba, 1999), (2) using tree size and tree growth (e.g.,
Holzwarth et al., 2013) and (3) using tree age in combination with environmental variables

(e.g., Neuner et al., 2015).

In all three approaches, tree age or attributes characterizing tree size such as diameter at breast
height (DBH) account for the increased mortality risk of young or small trees that are often
suppressed. The U-shaped relationship between DBH and mortality probability that has
sometimes been found accounts for higher mortality of large trees as a consequence of
mechanical instability and higher susceptibility to disturbance and, finally, ‘senescence’
(Harcombe, 1987). Growth rates are used as a predictor of mortality probability to capture

that trees exposed to ‘stress’ allocate, in comparison to vigorous individuals, fewer resources
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to radial stem growth, which has low priority compared to photosynthetic tissue and root

growth over short time scales (Waring, 1987).

In the absence of larger disturbances, tree mortality rates are typically low, i.e., 0.5-3 % per
year (Peterken, 1996), and therefore datasets for deriving the relationship between tree size,
growth and ‘regular’, i.e., non-catastrophic mortality considering species and site differences
must be large (Metcalf et al., 2009; Lutz, 2015). Such datasets are available from long-term
re-measurements of permanent plots (e.g., Wunder et al., 2008) or from increment cores (e.g.,
Bigler & Bugmann, 2003). Although inventory data have a lower temporal resolution than
dendrochronological data, they allow for the estimation of both individual mortality
probabilities and population-based mortality rates (Weiskittel et al., 2011). Several models
focusing mainly on ‘regular’ tree mortality were developed for European beech (Fagus
sylvatica L.), one of the most widespread species of Central Europe. Most of them are based
on inventory datasets, e.g., from Switzerland (Dobbertin & Brang, 2001; Wunder et al., 2007;
Wunder et al., 2008), Germany (Dursky, 1997; Ahner & Schmidt, 2011; Holzwarth et al.,
2013; Nothdurft, 2013; Boeck et al., 2014; Neuner et al., 2015) or Austria (Hasenauer, 1994;
Monserud & Sterba, 1999). Mortality models for beech based on dendrochronological data
were developed by Gillner et al. (2013) for eastern Germany. Most of the datasets used in
these efforts were relatively lean due to sparse geographical coverage and a small sample size
in terms of total tree number and particularly the number of dead trees (Wyckoff & Clark,
2002). Large inventory datasets from strict forest reserves are of particular value for the
calibration of mortality models as forest management was given up several to many decades

ago, such that natural mortality is higher than in managed forests (Bravo-Oviedo et al., 2006).

Tree mortality is characterized by high temporal and spatial variability due to complex
interactions of multiple factors (Franklin et al., 1987). This variability remains poorly
understood (Wunder et al., 2008; Dietze & Moorcroft, 2011) and thus complicates the
derivation of generally applicable mortality models (Hawkes, 2000). We identified three areas
where important knowledge gaps should be filled.

First, although mortality models based on tree size and growth alone have achieved good
performance at the site to regional levels and thus appear promising for application, e.g., in
forest gap models (Bircher et al., 2015), the potential of additional environmental or stand
characteristics (e.g., water availability, competition) for explaining the temporal and spatial

variability of mortality over larger areas has not been studied in detail. Specifically, it remains
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unclear whether growth sufficiently integrates the effects of climate, soil and stand structure
on mortality probability, or whether such covariates could increase the performance of
growth-based tree mortality models. In particular, drought has been identified as an important
driver of growth decline and tree mortality of European beech (Jung, 2009; Lakatos &
Molnér, 2009; Scharnweber et al., 2011; Zimmermann et al., 2015), and its impacts are hotly
debated in the context of climate change (GeBler et al., 2007).

Second, the processes relevant for a tree’s death vary during its lifetime (Holzwarth et al.,
2013), and thus the reliability of mortality predictions given a particular model structure may
vary with tree size. Although the relative importance of the formulations contained in DVMs
against the backdrop of uncertainties in the data, model parameters and process
representations (Lek, 2007) is more and more investigated using sensitivity analysis
(Wernsdorfer et al., 2008), the impact of tree size on model accuracy has not been evaluated

to date.

Third, the application of empirical mortality models in DVMs must inevitably be based on the
assumption of a stable relationship between the explanatory variables and mortality (Keane et
al., 2001). However, current empirical mortality models are strongly restricted by their
calibration domain in terms of space, time and resolution, referred to as the ‘scope of
inference’ (Woolley et al., 2012) or ‘temporal and spatial inflexibility’ (Hawkes, 2000).
Therefore, a rigorous external validation of the mortality functions is required to assess their
applicability beyond the conditions for which they have been calibrated. Since to date all
beech mortality models except for the one developed by Dobbertin and Brang (2001) are
lacking an external validation with independent data, it is simply unknown whether such
empirical models are appropriate for the application across larger areas or over longer time

spans.

Therefore, the main objective of this study was to develop parsimonious models for ‘regular’
beech mortality based on extensive inventory data from strict forest reserves, and to
comprehensively evaluate their performance. Specifically, we aimed to answer three
questions: (1) Does the growth-mortality relationship vary with site and stand characteristics,
and particularly with water availability and competition? (2) How strongly does the prediction
and classification accuracy of mortality models vary with tree size and between different
sites? (3) How well do mortality models perform when applied outside their calibration range,

1.e., in other forest reserves and in a primeval beech forest?
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Material and methods

Study areas and sites

Datasets from inventories with similar design in strict forest reserves in Switzerland and
Germany (Lower Saxony) were used (Fig. S1, see Appendix A for all additional Tables and
Figures; cf. Meyer et al., 2006; Brang et al., 2011). Every reserve included up to 10
permanent plots ranging from 0.09 to 1.8 ha in size, with slightly irregular re-measurement
intervals (Table 1). Permanent plots with pure or mixed beech stands were selected from the
reserves of both networks. Reserves with considerable wind disturbance during the monitored
intervals were excluded from the analysis. The Swiss and German reserves had been
established in the period of 1961-1975 and 1971-1974, respectively. Former management
ranged from no or only weak thinning to regular thinning from above and coppice with
standards in Switzerland (Heiri et al., 2009), and thinning from below in Germany. In
addition to data from the Swiss and German reserves, data from a 10 ha plot in the primeval

beech forest Uholka in Western Ukraine were used (Table 1; cf. Commarmot et al., 2005).

Table 1 Extent of the inventory data from Swiss, German and Ukrainian strict forest reserves. The reduced
Swiss dataset with available soil profile data was used to assess the influence of additional environmental and
stand characteristics on beech mortality. Since for a considerable proportion of the Swiss and German permanent
plots (54.3 and 33.3 %, respectively) more than three inventories were available, individual trees can appear
more than once in the dataset (compare number of trees and records). 32.1 % of the Swiss and German records
are such ‘repeated measures’.

Interval Number Number Number Number Number Size of
Reserve N
length of of of of of permanent Application
(network)
(years) reserves plots trees records dead trees plots (ha)
. influence of
(srzilzggnd 5-18 13 43 7640 12822 2414 0.09-132  environmental and stand
characteristics
Switzerland 5-18 15 81 12114 18369 3194  0.09-1.32 calibration /
validation
Germany calibration /
(Lower 4-24 13 21 4377 5938 503 0.48-1.80 .
Saxony) validation
Ukraine calibration /
Uholka 5 1 1 2511 2511 208 10 validation
(

Climatic conditions of the Swiss and German reserves are similar in terms of mean annual air
temperature (Switzerland: 5.4-9.1 °C, Germany: 6.1-9.0 °C for 1961-90; cf. DAYMET model
below and Gauer & Aldinger, 2005), but mean annual precipitation sums of the German

reserves are lower (Switzerland: 922-1842 mm, Germany: 618-1312 mm), whereas the
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Ukrainian forest has intermediate climatic conditions (7.7 °C for 1990-2010, 1134 mm for
1980-2010; Commarmot et al., 2013). Stand characteristics of the reserves indicate moderate
structural differences with higher basal area (BA4) but lower mean DBH in the Swiss reserves
compared to the German and Ukrainian forests (Table S1). Accordingly, also the stand
density index (SDI) calculated following Reineke (1933) was larger in Swiss reserves. The
German forests are mixed with spruce (Picea abies Karst, 8.4 % of BA on average) and oak
(Quercus petraea Liebl. and Q. robur L., 5.1 %) and have a larger proportion of beech
(78.6 %) than the Swiss stands (43 %), which feature considerable shares of oak (16.3 %),
spruce (7.5 %), ash (Fraxinus excelsior L., 7.3 %) and fir (Abies alba Mill., 7.2 %). The
Ukrainian forest is an almost pure beech stand. Ten-year tree mortality rates were highly
variable between reserves, ranging from 2.7 to 21.5 % (calculated for trees with a DBH
> 8 cm). Mortality rates in the German reserves were approximately half the mortality rates in

the Swiss and Ukrainian stands (Table S1).

Mortality information and tree characteristics

A set of three consecutive inventories was used to generate records for the calibration of
mortality models based on trees that were alive in the first and second inventory and either
dead or alive in the third inventory. Since for a considerable proportion of the Swiss and
German permanent plots (54.3 and 33.3 %, respectively) more than three inventories were
available, individual trees can appear more than once in the dataset as all possible sets of
inventory data were used for model development (Table 1; 32.1 % of the records are such
‘repeated measures’). Multiple records per tree were treated as independent (cf. Fig. S2 for
further details). The inventory data provide diameter measurements at breast height (DBH) for
revisited trees with a diameter of more than 4, 7 and 6 cm for Switzerland, Germany and

Ukraine, respectively.

As an explanatory variable, the annual relative basal area increment (relBAI, cf. Bigler &
Bugmann, 2004) was calculated based on the first and the second DBH measurement as the
compound annual growth rate of the trees basal area BA; using
1
relBAI; = <M>E -1 eqn 1
BAi,lst

with Az denoting the number of years of the growth period.
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Tree DBH in the second inventory was used in addition to rel/BAI to model tree status (alive
or dead) of the third inventory. First-aid transformations were applied as suggested for only-
positive data (Mosteller & Tukey, 1977) to improve the relationship of the explanatory
variables and mortality. Thus, DBH was log-transformed. re/BAI was transformed using a
modified log-transformation (logst) to achieve finite values even for those 11 % of the trees
for which no growth (relBAI < 0) was observed (Stahel, 2008). The respective transformation
threshold ¢ was calibrated to the combined re/BAI values of Switzerland, Germany and

Ukraine.

Environmental and stand characteristics

To increase the generality of the mortality models, we selected environmental variables that
are known to have a considerable influence on growth and mortality of beech because they
challenge the plant’s physiological system, e.g., frost (cf. Charrier et al., 2013) and drought
(increased transpiration, reduced photosynthesis along with excessive respiration, cf.
McDowell et al., 2013), or because they influence resource availability, e.g., soil properties
and competition. We emphasized the effects of water availability using a large set of drought
characteristics that were calculated based on the local site water balance. Following Nothdurft
(2013) and Neuner et al. (2015), we also related beech mortality to temperature and
precipitation. The time available for annual tree growth was considered using growing
degree-days. Nutrient supply, which influences tree growth but is less critical for survival,
was considered by using the proxy variable soil pH. The database and derivation of the
environmental variables are described in detail in Appendix B. Climate and drought variables
were calculated for the entire year and/or for the growing season, i.e., from April to
September (G) (Table 2). Temperature was additionally averaged for the months January to
March (W). Since drought and other climatic drivers may have a delayed effect on mortality
(Berdanier & Clark, 2016), all variables were calculated for the ‘growth’ period (i.e., between
the first and the second inventory) and the ‘mortality’ period (i.e., between the second and

third inventory period).
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Table 2 Environmental and stand characteristics considered within the beech mortality model for the reduced Swiss
dataset. Note the varying seasonal level of the covariates considering the entire year, the growing season from April
to September (G) and the winter month January to March (). All climatic covariates were calculated for both the
‘growth’ (2) and the ‘mortality’ period (3). The stand covariates were derived for the second inventory of each
record (2). The transformation (log/logst, square root or none, as applicable) that resulted in the best performance is
indicated. All covariates were included as an additional term and in interaction with logst(re/BAI).

Covariates Abbreviation Type Seasonal ‘Perlod or Tran§f0r- Range Unit
level inventory mation
hMe?;lEtdlameter at breast DBH.mean.2 stand - second sqrt 100-373 mm
firil;er;l%:l;n;iebrrgftehoefigh " DBH.IQOR.2 stand - second sqrt 41-324 mm
hMefgﬁ?n diameter at breast DBH.median.2 stand - second sqrt 67-370 mm
Basal area per hectare BA.2 stand - second log 30-59 m’ ha'!
Eeucrtr:r)gr of trees per N.2 stand - second log 281-2780 ha’!
nutrient
pH-value pH supply - - log 35-7.7 -
Available water capacity water
in the soil Awe availability - - log 39 -238 mm
Mean annual precipitation P2 water growing log 959 - 1931
e annual . mm
sum P3 availability mortality log 978 - 1781
Mean precipitation sum PG.2 water growing growing log 483 -1077 mm
during growing season PG.3 availability season mortality sqrt 515-1020
Mean annual air mT.2 growing sqrt 53-95 R
temperature annual . C
temperature mT.3 mortality - 59-10.2
Mean air temperature mTG.2 temperature growing growing log 10.0-15.1 oc
during growing season mTG.3 P season mortality sqrt 10.8-15.8
Mean air temperature mIW.2 . growing - 09-2.8 o
. . temperature winter . C
during winter months mTW.3 mortality - 0.9-36
i - GDD.2 i i 1 -
Mean growing degree femperature growing grow1r.1g 0g 1169 - 2150 )
days GDD.3 season mortality log 1305 -2279
durine soongsemeon | MDEF@wG.2 water  growing  gowing logs 00-23 :
with vgvagrter d eﬁg wit mDEFdurG.3 availability season mortality logst 0.0-2.5
Mean annual maximum mDEFmax.2 water annual growing logst 0-17 m
water deficit mDEFmax.3 availability mortality logst 0-28
Overall ma)fimum of the maxDEFmax.2 water growing logst 0-74
annual maximum water e annual . mm
deficit maxDEFmax.3 availability mortality sqrt 0-288
Mean of cumulative water DEFcumG.2 . . loast 0-31
deficit during growing " . water growing growing 088 ) mm
season mDEFcumG.3 availability ~ season mortality logst 0-35
2;;:;?1&??3;2? d((;ffllclt maxDEFcumG.2 water growing growin g IOgSt 0-152 mm
during growing season maxDEFcumG.3 availability season mortality sqrt 0-351
Percentage of years with DEF.2 : 1
perc . water growing ogst 0-100
at least one month water S annual . %
deficit percDEF.3 availability mortality logst 0-100
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Since not only climate and soil may affect growth and mortality, we additionally considered
stand characteristics that reflect the development stage, competition and structure of the
forests (Table 2; Gendreau-Berthiaume et al., 2016). As a proxy for stand age and structural
complexity, the mean, median and interquartile range (/QR) of DBH were calculated. To
capture stand density, BA and the number of trees per ha (N) were derived. Stand
characteristics were calculated for the second inventory of each record based on all living
trees. We did not include variables based on maximum size-density concepts (e.g., Yoda et
al., 1963) since their application to complex, uneven-aged, and mostly multi-species stands

such as those in our study is not appropriate.

Overall, thirty-one environmental and stand characteristics were used to examine the
influence of climate, site factors and stand properties on the relationship of DBH and relBAI
to beech mortality probability. Due to data availability, these in-depth analyses could be
performed for a subset of the Swiss sites only (cf. Appendix B and Table 2).

Mortality model

Mortality probability p was modeled using logistic regression (Weiskittel et al., 2011) where

p is related to the inverse logit transformation of the linear predictor

exp(Xif)

_— 2
1+ exp(X;0) ean

Piat=1 = logit ' (X;f) =
with p;a~; denoting the annual mortality probability of tree i, X; the design matrix of the
linear predictor and S the respective parameter vector. Since the length of the mortality period
was not constant for all observations in the inventory datasets, p;a,~; was scaled to the length

of the respective mortality period of Af years following Monserud (1976) using

pine =1—-(1- Pi,At=1)At eqn 3

resulting in a generalized logistic regression approach (Yang & Huang, 2013). The scaled
mortality probability p; A, was used as a predictor for tree status y; (1 = dead, 0 = alive), which
was assumed to be binomially distributed. To estimate the parameters of S, the log-likelihood

LL matching p;a, and y; after A¢ years was maximized:
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LL(B) = ) i #In(piae) + (1= 70+ In(1 = piac)} can 4

Standard errors, confidence intervals and p-values were calculated based on the Fisher

information taken from the Hessian matrix.

Performance criteria

The performance of the models was assessed as good calibration (i.e., correct mortality rates)
and good discrimination (i.e., correct attribution of dead/alive status). During model selection,

the Brier Score (BS) defined as

n
1 2
BS = EZ(pi,At - ¥i) eqn 5
i=1

was applied, indicating good calibration and discrimination when being small (Steyerberg et

al., 2010).

Since calibration and discrimination skills of a model are not necessarily correlated (Bravo-
Oviedo et al., 2006), the prediction bias (psis) and the Area Under the receiver operating
characteristic Curve (4UC) were used to examine model performance in more detail. pp;gs,
which indicates calibration accuracy, is defined as the difference of the mean predicted

mortality probability (‘simulated mortality’) p,,_,, and the mean mortality rate (‘observed
mortality’) ¥,,_,, over a time period of 10 years (cf. Appendix B). AUC is a widely used,

threshold-independent measure of classification accuracy (Hosmer & Lemeshow, 2000). In
our models, it corresponds to the probability that the model predicts a larger mortality
probability for a randomly chosen dead tree than for a randomly chosen living tree (Fawcett,
2006). AUC ranges between 0 and 1 and equals 0.5 for randomly assigned tree status.
Following Hosmer and Lemeshow (2000), the discriminative ability can be rated as

acceptable (0.7 < AUC < 0.8), excellent (0.8 < AUC < 0.9) or outstanding (AUC > 0.9).

Pprias and AUC were calculated for the entire datasets as well as for a range of subsets by
applying the models calibrated with the full data to individual reserves and specific diameter
classes. This in-depth analysis provides further information on the variability of model

performance.
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Calibration and validation scheme

Based on the reduced Swiss dataset, the importance of environmental and stand
characteristics for the prediction of tree mortality was assessed using 10-fold cross-validation
and the ‘one standard error rule’ to avoid over-fitting (cf. Appendix B for further details,
Breiman et al., 1984; Hastie et al., 2001). A basic model comprising log(DBH), logst(relBAI)
and their interaction was compared with more sophisticated models, each additionally

including one environmental or stand characteristic and its interaction with re/BAI.

Since to our surprise no considerable benefit of including environmental and stand
characteristics was found, the dataset for Switzerland was expanded to all beech-dominated
reserves (Table 1). For each of the datasets from Switzerland, Germany and Ukraine, 10-fold
cross-validation with a modified selection criterion resulting in less simplified models (cf.
Appendix B) was applied to select an optimal combination of covariates and their respective
transformations. Terms considered in the model formulae were log(DBH) and logst(re/BAI).
Additionally, the quadratic terms of the transformed variables and the interaction of log(DBH)
and logst(relBAI) were included (Table S2). A comprehensive assessment of model
performance was carried out for the models that achieved high discriminative accuracy.
Additionally, each model was validated with data from the inventory datasets that had not

been used for its calibration (Table 4).

All computations were performed within R (R Core Team 2015, R Foundation for Statistical
Computing. Vienna, Austria). relBAI was transformed using logst() from the package regr(
(Version 1.0-4/r46, 2015). Maximum likelihood estimation was carried out using the function
optim() with the fitting method BFGS. AUC calculations were based on the function auc()
from the package SDMTools (Version 1.1-221, 2014). Since auc() prevents values below 0.5,
which is not appropriate for AUC calculations using partial datasets, the corresponding part of

the code was removed.

Results

Environmental and stand influences on mortality

The results of the 10-fold cross-validation revealed no considerable model improvement by
any of the environmental and stand characteristics (Fig. S3). Twenty-nine out of 31 covariates

resulted in an improved BS, most strongly by mean and median DBH, winter temperature and
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stem density, whereas pH and BA did not cause a decrease in BS. The best model included
median DBH as an additional covariate. In spite of these improvements, mean BS of the basic
model without additional variables was still below the limit of the ‘one standard error rule’,
1.e., the mean BS plus the standard error of BS of the best model (cf. Appendix B).
Consequently, none of the additional covariates can be expected to substantially improve
mortality predictions. To avoid the risk of over-fitting, the model including DBH, relBAI and
their interaction was selected as the best parsimonious model, and subsequent models did not

include additional environmental or stand variables.

Mortality patterns

The model selection procedure for the datasets from Switzerland, Germany and Ukraine
resulted in three different model shapes (Table 3, for the results of model selection cf. Table
S2). Beech mortality in the Swiss reserves was best described by the combination of
log(DBH), logst(relBAI), the quadratic term of logst(re/BAI) and the interaction of DBH and
relBAI. In Germany, the interaction and the quadratic term were not required, thus resulting in
a simpler model based on log(DBH) and logst(relBAI). In Ukraine, tree growth was not
required to predict tree mortality, but models including a quadratic term for log(DBH)
achieved highest accuracy. Thus, the most parsimonious model for the Ukrainian data

included only log(DBH) and its quadratic term.

Table 3 Parameter estimates, standard errors, significance levels (*** p < 0.001, ** p < 0.01, * p < 0.05) and
confidence intervals of the calibrated models for Switzerland, Germany and Ukraine. DBH = diameter at breast
height (mm), relBAI = annual relative basal area increment. The transformation threshold ¢ for the logst-
transformation of relBAI was calibrated to the combined rel/BAI values of Switzerland, Germany and Ukraine
(¢=10.002333).

Coefficient p se t P Significance Confidence intervals
Switzerland

Intercept -0.204 0.816 -0.25 0.802 [-1.80, 1.40]

log(DBH) -2.302 0.141 -16.36 0.000 HHE [-2.58, -2.03]

logst(re/BAI) -1.922 0.482 -3.99 0.000 HHE [-2.87,-0.98]

(logst(relBAI))* -0.698 0.078 -8.95 0.000 HHE [-0.85,-0.55]

log(DBH) x logst(relBAI) -0.616 0.057 -10.74 0.000 HHE [-0.73,-0.50]
Germany

Intercept 0917 0.592 1.55 0.122 [-0.24, 2.08]

log(DBH) -1.281 0.086 -14.97 0.000 HHE [-1.45,-1.11]

logst(relBAI) -0.537 0.084 -6.36 0.000 HrE [-0.7,-0.37]
Ukraine

Intercept 14.201 3.708 3.83 0.000 HHE [6.93,21.47]

log(DBH) -6.859 1.380 -4.97 0.000 HkE [-9.56, -4.15]

og(DB .625 125 5. . .38, 0.87
log ? 0.62 0.12 02 0.000 HoHx 0.38, 0.8
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For a beech tree with median growth, the probability to die within 10 years ranged between 1
and 32 % depending on its DBH, with considerable differences between the three models
(Fig. 1). In the Swiss and German reserves, the mortality probability for beech was highest for
small, slow-growing trees and decreased with increasing DBH and relBAI. However, the
effect of growth on the mortality probability was less pronounced for the German model. Still,
the Swiss and the German model predicted similar mortality probabilities over the entire DBH
range for trees with average growth. In the Ukrainian forest, mortality patterns differed from
those in the Swiss and German reserves. While the mortality probability similarly decreased
with DBH for small trees, the risk of death increased again for trees with a DBH > 25 cm. The

resulting U-shaped relationship between DBH and mortality probability was independent of

tree growth.
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Fig. 1 Simulated 10-year mortality probability as a function of DBH for three growth levels as predicted by the
Swiss, German and Ukrainian models. Median and quantiles at 15 and 85 % of annual re/BAI were selected based
on the combined re/BAI values of all three datasets: median = 0.012, 15 % quantile = 0.002, 85 % quantile = 0.028.
Predictions are restricted to the available DBH range of each dataset to avoid extrapolation.

Internal performance of mortality models

All three models predicted nearly unbiased overall mortality rates, as indicated by ppi,s of
approximately zero, thus confirming successful calibration (Table 4). According to the criteria
by Hosmer and Lemeshow (2000), the Swiss model achieved excellent discrimination with an
AUC of 0.83. The discriminative power of the German model was acceptable (AUC = 0.79),
while the Ukrainian model performed only somewhat better than a random mortality

assignment (AUC = 0.60). Therefore, only the performance of the Swiss and the German
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model, which attained sufficient discrimination of living and dead trees, was analyzed in more

detail for their calibration domain.

Table 4 Calibration and validation performance of the Swiss, German and Ukrainian models. The respective
performance measures 10-year p,;,, and AUC were calculated for the calibration dataset and additionally when each
of the three models was applied to the datasets of the two other countries (external evaluation) to assess the
transferability of the mortality models.

Performance Performance of Performance of external evaluation
Calibration dataset L. . . . .
criterion calibration dataset Switzerland Germany Ukraine
) Doias (%0) -0.23 - 3.45 -8.00
Switzerland
A4UC 0.83 - 0.76 0.54
Pias (0) -0.10 -0.57 - -5.71
Germany
AUC 0.79 0.79 - 0.51
Dbias (%) 0.00 0.20 5.75
Ukraine ! 7
A4UC 0.60 0.68 0.63

The discriminative ability of the models clearly varied with tree size (Fig. 2). The Swiss
model best distinguished between dead and living trees of small to medium size, whereas the
death of trees with a DBH > 35 cm was predicted less successfully. This pattern was only
partially evident for the German model with a lower overall discriminative power. Again,
trees with diameters between 30 and 50 cm featured lower AUC values than smaller trees.
However, unlike the Swiss model, the German model was able to discriminate acceptably
between living and dead trees with a DBH > 50 cm. The discriminative power of the two
models was influenced not only by tree size, but it also differed considerably among the
reserves (Table S3). For the Swiss dataset, AUC values in the range 0.71-0.94 indicated
acceptable to outstanding discrimination. In Germany, the model achieved acceptable to
excellent performance for most of the reserves (AUC = 0.74-0.89), but the discrimination of

living and dead trees was unsatisfactory in three reserves (4AUC < 0.7).
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Fig. 2 AUC values for the Swiss and the German model calculated separately for DBH classes of the respective
calibration dataset to assess the influence of tree size on discriminative power. DBH classes are approximately
equally-sized (Switzerland: 740 = 20, Germany: 7..s = 16). The limits of the DBH classes for both datasets
are indicated as rugs in the respective color. The grey dashed line at AUC = 0.5 indicates a discrimination as
good as random mortality assignment.

To assess the influence of tree size on prediction bias, observed and simulated mortality rates
were analyzed as a function of DBH (Fig. 3), revealing that the Swiss and the German models
predicted consistent mortality rates over the entire DBH range when considering the full
dataset (Fig. 3a,b). However, pp,s for single reserves varied between -8.0 and 3.7 % in
Switzerland, and between -8.6 and 4.3 % in Germany (Table S3). Positive and negative pp;4s
values were caused by deviations of observed and simulated mortality rates in all diameter
classes, without any tree size tending to show a particularly large mismatch (Fig. 3c-h). Only
the ppis pattern of the German reserve Sonnenkopf (Fig. 3f) showed increased mortality of

trees > 50 cm that was not captured by the model.

Fig. 3 Observed and simulated 10-year mortality rates of the Swiss and the German model plotted as a function
of DBH to assess the influence of tree size on the prediction bias. Mortality rates are shown for the full datasets
(a,b) as well as for three typical example reserves with under- and overestimation and with a nearly unbiased
overall mortality prediction (c-h) to reveal which tree sizes resulted in substantial p,,,, values. For each sub-plot,
the number of records (r) included in the respective dataset and the performance measures AUC and p,,,, are
indicated. DBH classes are approximately equally-sized with 7. = 10. The limits of the DBH classes for both
datasets are indicated as rugs in the respective color.
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External evaluation of mortality models

When the Swiss and the German model were validated against each other, AUC values of
both models indicated acceptable discriminative power (Table 4). However, when validated
with the Ukrainian data, both models achieved very poor AUC values. In contrast, the
Ukrainian model was more successful in discriminating living vs. dead trees for the German

and the Swiss dataset than within its calibration domain.

The analysis of p;,s as a function of tree size (Fig. 4; cf. Table 4 for overall py,s values)
revealed that mortality rates in the Swiss reserves were reproduced quite well by the German
model, showing only a weak underestimation for average-sized and large trees, thus resulting
in an overall pp,s value close to zero. In contrast, the Swiss model was less successful in
predicting mortality rates for the German dataset, especially for small and average-sized trees,
resulting in an overestimation of mortality (ppias = 3.45 %). The U-shaped mortality pattern in
the Ukrainian model resulting from the quadratic term of DBH caused a clear overestimation
of mortality for larger trees in the Swiss as well as in the German datasets. Vice versa, when
the Swiss and the German model were used to predict mortality rates for the Ukrainian

dataset, the mortality of large trees was far too low.
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Fig. 4 Ten-year mortality rates as the result of external validation plotted as a function of DBH for the datasets
from Switzerland (a), Germany (b) and Ukraine (c). Observed mortality is shown with solid lines, mortality
simulated by models of the respective other countries is shown in dashed lines. DBH classes are approximately
equally-sized (745505 = 16). The limits of the DBH classes for the datasets are indicated as rugs in the respective
color.
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Discussion

Environmental and stand influences on mortality

The integration of covariates beyond tree growth and size in tree mortality models to improve
their accuracy and applicability to variable site conditions has been suggested in a number of
studies (e.g., Monserud & Sterba, 1999; Dietze & Moorcroft, 2011), but these conjectures
could not be tested due to insufficient sample sizes. For the first time we were able to evaluate
this using a very large dataset for a widespread European tree species. Contrary to
expectations (cf. Nothdurft, 2013; Neuner ef al., 2015), none of the environmental or stand
variables markedly enhanced the accuracy of mortality predictions. Nevertheless, this does
not mean that environmental and stand characteristics do not influence beech mortality, but
rather that our models consider these effects via the integrating variable growth. In addition, it
should be taken into account that our dataset does not feature annual resolution, i.e., the lack
of model improvements when including climate and drought variables may be due to the
inability to detect impacts of climate or competition over shorter time scales (Dobbertin,
2005). Because of their high temporal resolution, dendrochronological data are likely to have
higher potential for contributing to the understanding of the interactions between
environment, growth and tree mortality (e.g., Bigler et al., 2004; Gillner et al., 2013; Cailleret
et al.,2016). Also, the lack of any direct influence of environmental covariates on mortality in
our models may partly have been caused by the low spatial resolution of the climatic and
especially the soil data, such that these covariates did not effectively represent drought

conditions at the tree level.

Growth, which integrates not only the effects of competition, but also those of the
environment (Dobbertin, 2005) was not considered as a covariate in the models by Nothdurft
(2013) and Neuner et al. (2015). Conversely, in none of the growth-based beech mortality
models (e.g., Dursky, 1997; Wunder et al., 2008; Holzwarth et al., 2013) the influence of
climate, soil or competition was taken into account. Our novel approach combines growth and
environmental data in unified models, indicating that tree size (DBH) and stem growth
(relBAI) sufficiently integrate the adverse effects of water availability and competition on the
vitality of beech, and that the influence of growth on mortality is stable even under varying
environmental conditions. We expect our results to be reliable since the Swiss reserves cover

a large portion of the natural gradient of site characteristics for beech forests, encompassing
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dry to moist and warm to cool conditions (Table 2), and yet not even drought, which we
consider as the environmental driver with the largest potential to influence the growth-
mortality relationship (GeBler et al., 2007), explained spatial and temporal differences of
mortality. Thus, we suggest DBH and relBAI as meaningful and unifying predictors of beech

mortality based on inventory data with decadal resolution.

Mortality patterns

The similarities in mortality predictions of the Swiss and the German model indicate that
mortality processes were similar in pattern and magnitude in the reserves of both networks.
Thus, mortality was driven mainly by competition, and the competitive status and vitality of a
tree could be expressed well using tree size and growth. This is in line with mortality
relationships for beech found in Swiss reserves (Wunder et al., 2007; Wunder et al., 2008), in
a nature reserve in Eastern Germany (Gillner et al., 2013) and in the German National Park
Hainich (Holzwarth et al., 2013). In contrast to Holzwarth et al. (2013), however, we did not
find a U-shaped mortality relationship between DBH and mortality, most presumably due to
the low importance of advanced ‘decay’ phenomena in the reserves of our dataset as a result
of previous management and their comparatively low age (Heiri et al., 2011; Meyer &

Schmidt, 2011).

In contrast to the comparable influence of tree size on mortality probability, the growth
variable re/BAI more strongly affected mortality in the Swiss than in the German reserves. As
discussed below, this may be related to (1) different climatic conditions, (2) differences in
species composition and/or (3) differences in stand structure and competition. However, we
decided not to include further site and stand covariates into these models since, when doing so

for the reduced Swiss dataset, no marked model improvement was achieved.

Although the climate of the Swiss and German reserves is similar, mean annual precipitation
sums are higher in Switzerland, potentially contributing to the different relationship between
growth and mortality (Monserud & Sterba, 1999). Under better growing conditions, which
may apply to the Swiss reserves, the same reduction in growth could lead to a larger increase
of mortality risk than under less favorable conditions, where trees are adapted to lower
growth. However, we demonstrated that climate and drought could not explain the variability

in beech mortality for a subset of the Swiss data.
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Species composition was found to be related to beech mortality (Jutras et al., 2003; Boeck et
al., 2014; Neuner et al., 2015). Possibly, the higher proportion of spruce and fir in the Swiss
reserves may explain the pronounced effect of low growth on mortality. However, the
quantification of such effects is everything but straightforward and should be based on

spatially explicit, species-specific competition indices.

Lower BA, N and SDI in the German reserves suggest lower competition compared to the
Swiss reserves. Although a trend of increasing importance of tree growth for mortality in
denser stands (i.e., higher BA) was confirmed within both datasets, no marked improvement
resulted when BA or an interaction of BA and relBAIl were included in a model for the
combined Swiss and German data (results not shown). This suggests that slower growth is
less important in stands with lower density, such as in the German reserves, but the processes
altering the influence of growth on mortality are not sufficiently explained with stand density
alone. Differences in mortality may originate from the type of management regime prior to
reserve designation (i.e., in Germany mainly thinning from below) and the time since the last

management intervention, factors that are not evident directly from stand structural attributes.

Compared to the Swiss and German mortality models, the Ukrainian model reflected entirely
different mortality patterns. The U-shaped size-dependent mortality and the absence of any
influence of growth on mortality were most striking. High mortality rates for small as well as
for large trees have long been proposed as a general pattern (Buchman et al., 1983; Lorimer &
Frelich, 1984) and have recently been disentangled into different mortality ‘modes’, thus
providing improved insights on the mechanisms associated with beech mortality (Holzwarth
et al., 2013). Our findings coincide with this mortality pattern, as processes that may act to
amplify the mortality of large trees, such as stem rot or wind breakage, were reported for the
Uholka forest (Trotsiuk et al., 2012; Hobi et al., 2015). This may have been the cause for the
lack of a growth-related component in the mortality model, i.e., also trees with high growth

rates may have died.

However, it should be taken into account that the Uholka data derive from one single (albeit
large) plot monitored during 10 years, whereas the German and Swiss data cover not only a
much larger set of environmental conditions but also a much longer period. Thus, conclusions
derived from this single plot with only one mortality period should be drawn with care, as
mortality is highly variable in space and time (cf. Wunder ef al., 2008). Still, several lines of

evidence indicate that it may be representative of primeval beech forests in general, including
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the U-shaped mortality pattern in the German National Park Hainich (Holzwarth et al., 2013)
and the high amounts of deadwood in all decay stages in the Uholka-Shyrokyi Luh primeval

beech forest, indicating regularly occurring small-scale disturbances (Hobi et al., 2015).

Internal performance of mortality models

The good to excellent overall discriminative performance achieved by the German and Swiss
models substantiates the suitability of tree size and growth for the prediction of natural
mortality of beech. In comparison, the Ukrainian model performed much worse. Besides the
additional source of variability due to wind disturbances, it is possible that tree mortality in
primeval forests can generally be described less accurately by size and growth due to the
concurrence of all successional stages. The considerable variation in individual tree growth
histories (Nagel ef al., 2014) and increased susceptibility of trees to factors that are hard to
predict, such as stem rot or other diseases, may render the process of tree mortality and the
relationship between vigor, competitiveness and mortality more complex (Franklin et al.,

1987).

Owing to the large number of records included in our datasets, the performance criteria AUC
and ppi.s could be calculated not only for the entire dataset, but also (1) as a function of tree

size and (2) for individual reserves. Both elements provide novel insights, as discussed below.

On the one hand, AUC patterns indicate that the high overall model performance was driven
particularly by the excellent discrimination of small- to mid-diameter trees, while the
predictive power of the covariates available in our study decreased with tree size. This
suggests that competition was the main driver for beech mortality as captured in the Swiss
and German mortality model. Competition decreases in importance for larger trees (Franklin
et al., 1987), but it is reasonable to surmise that mortality of large trees is more complex and
thus harder to predict as the result of, e.g., wind, pathogens and wood-decaying fungi
(Trotsiuk et al., 2012; Holzwarth et al., 2013). Additionally, mortality processes for such trees
may not be covered well in our datasets due to the comparatively small number of trees with

DBH > 50 cm.

On the other hand, the performance criteria calculated separately for each reserve revealed
large differences in predictive as well as in discriminative ability. In combination with the

graphical representation of observed and simulated mortality over DBH, performance
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measures calculated per reserve allowed us to relate the influence of development stage and
disturbance to the observed mortality patterns. For example, the underestimation of the
mortality of trees with DBH > 50 cm in the German reserve Sonnenkopf (Fig. 3f) was
possibly caused by a small-scale wind disturbance (Meyer et al., 2015). However, this was the
only example where an under- or overestimation of mortality could be related to a particular
historical event. Similarly, it was not possible to group the reserves according to ps;,s patterns,
and the variability in mortality patterns at the level of individual permanent plots could not be
linked to climate, soil or stand structure, either. Thus, tree mortality remains a highly variable

and multi-factorial process.

External evaluation of mortality models

Validation with independent data is an important step to rigorously test the transferability of
mortality models, e.g., for application in DVMs (Hawkes, 2000; Woolley et al., 2012), be it at
the species level (stands and landscapes) or for generalization into a broad suite of ‘Plant
Functional Types’ (global level). To assess the general applicability of a model, the
importance of the performance measures AUC and p;,s should be weighted differently than in
an internal assessment. py;,s should be evaluated first since it is more sensitive to under- and
overestimation of mortality rates than the discrimination measure A UC. However, overall pp;q
values are only helpful if the mortality pattern across tree size is reflected adequately (cf.
Table 4 and Fig. 4; Ukrainian model applied to Swiss data). Thus, it is important to

graphically represent the observed and simulated mortality rates as a function of tree size.

The limited informative value of AUC regarding validation performance is clearly evident
from the Ukrainian model, which better discriminated living and dead trees for the Swiss and
German datasets than for its own calibration data. Thus, the discriminative power of a model
strongly depends on the dataset to which it is applied, and hence AUC values reported for
validation are primarily an indicator of the discrimination of dead vs. living trees in the
dataset itself, and only secondarily of the general suitability of model structure and

parameterization.

Prias from the external validation reflected the mortality patterns identified by the three
mortality models, showing similarities for the Swiss and the German networks but a deviating
pattern for the Ukrainian forest. Due to the increased mechanical instability of larger trees in

the Ukrainian forest, the models calibrated with data from Swiss and German reserves were
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not transferable to the Ukrainian data, and vice versa. The overestimation of mortality by the
Swiss model when applied to German data traces back to the larger effect of tree growth on
mortality in the Swiss model, which penalized more strongly for low re/BAI values and thus
reduced the survival of slow-growing trees. Still, the low p;,s values of 3.33 and -0.53 % for
a period of 10 years and acceptable AUCs suggest that the similarities of mortality patterns in
Switzerland and Germany allow for a meaningful application of the models to the other

country, or the derivation of a joint model based on the combined datasets.

Implications for mortality algorithms in DVMs

A major limitation for the analysis of long-term forest processes such as mortality is data
availability (Bugmann, 1996; Hawkes, 2000). Generalized logistic regression is helpful to
make effective use of inventory data from permanent plots of forest reserves for mortality
modeling, even in the case of irregular measurement intervals. Although we found that the
bias in mortality predictions introduced by ignoring the dependency structure is negligible (cf.
Fig. S2), the approach of generalized logistic regression could be further improved by
including random effects to account for the hierarchical data structure (Yang & Huang, 2013).
Empirical mortality models are strongly needed to improve projections of DVMs (Adams et
al., 2013). However, the derivation of such predictive models requires different strategies for
(1) model selection and (2) performance assessment compared to mortality models that are

built for inferring the effects of a set of covariates on mortality.

Models designed for mortality prediction in DVMs should be based on a model selection
procedure that avoids the risk of over-fitting, which can be particularly problematic when a
mortality model is derived from a spatially and/or temporally limited dataset. We used a very
large dataset, and ensured model parsimony by applying a 10-fold cross-validation combined

with the ‘one standard error rule’ (Breiman et al., 1984).

The combined analysis of pp,s and AUC enables a comprehensive screening of the
performance of tree mortality models in terms of calibration and discrimination. In particular,
it provides insights on often neglected aspects of spatial variability and validity and thus
provides essential information regarding the uncertainty of mortality algorithms in DVMs.
We suggest that py;,s and AUC should be preferred over confusion matrices or sensitivity and
specificity; threshold-dependent metrics should be avoided since they strongly depend on the

choice of the threshold (Lawson ef al., 2014). Moreover, thresholds are not required for the
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implementation of mortality algorithms in DVMs when stochastic approaches are employed,
which were found to be more promising for the classification of tree status than deterministic
approaches (Fortin & Langevin, 2011; Bircher ef al., 2015). Thus, we suggest AUC as a key
measure to assess the calibration performance while p;,s and its graphical representation as a
function of tree size should be used to characterize validation performance. For internal
performance assessments based on subsets of the calibration data, a combination of both
performance criteria is recommended to assess the spatial variability of mortality. We also
recommend the analysis of AUC patterns that are calculated by DBH class, thus revealing the

accuracy of predictions for different tree sizes.

The mortality models presented here were derived with a view towards the requirements of
DVMs, i.e., assuring parsimony, and that their internal as well as external performance was
evaluated comprehensively. Acceptable ppi,s and high AUC values show that these models
allowed us to approximate tree mortality reasonably well by simple indicators of tree size and
growth. Rather simple relationships of log-transformed covariates and their quadratic
equivalent successfully described the covariate effect on mortality and make our models
easily applicable. Nevertheless, potential model improvements by means of more flexible
approaches, e.g., restricted cubic splines (Wunder et al., 2008), could be assessed in the
future. External model evaluation suggested rather accurate mortality predictions for the
German and the Swiss mortality models when validated with data from the respective other
country. Moreover, model robustness was fostered by the largest dataset ever used to calibrate
beech mortality models, covering a wide range of environmental conditions and multiple
decades. Therefore, the Swiss and German mortality models are promising candidates for

inclusion in DVMs.

DVMs are widely used to anticipate future ecosystem development based on climate
scenarios (Bonan, 2008). Although the mortality models developed here do not include
climate variables explicitly, mortality depends on the growth variable relBAI, which itself
responds to interannual variability in the environment, including climate. However, growth
rates as simulated in a DVM may not have the same features as those from inventory or tree-
ring data, e.g., regarding the absolute level of simulated growth, the magnitude of interannual
variability or temporal autocorrelation (cf. Rasche et al., 2012; Anderegg et al., 2015). Thus,
the interaction of growth and mortality predictions warrants further scrutiny before simulated

growth can be reliably used as a predictor for tree mortality (Wernsdorfer et al., 2008;
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Larocque et al., 2011; Radtke et al., 2012; Bircher et al., 2015). Nevertheless, the growth-
dependent mortality algorithms derived here are advantageous for implementation in DVMs
as they follow the rule of parsimony and avoid undesirable interactions of climate-dependent

growth and additional climate variables.

In conclusion, we developed models for regular mortality of individual beech trees that we
can recommend for incorporation and examination in DVMs. They are highly promising for
pushing the frontier of DVM development towards more reliable predictions that are
congruent with observational data (Bircher et al, 2015). However, for an adequate
parameterization, mortality models for an extended set of tree species are required, taking into
account their widely different life history strategies (Franklin et al., 1987). We are confident
that such models can be fitted and evaluated using the methodology developed here, provided
that extensive datasets covering large gradients of site conditions are available. The limited
availability of such data continues to constrain the development of robust models of crucial
forest processes such as tree mortality and recruitment (Lutz, 2015). Thus we need to
emphasize the invaluable nature of long-term monitoring data in the context of a growing

need for better empirical foundations in the modeling of future vegetation dynamics.
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Appendix A — Table S1-3, Fig. S1-3
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Table S3 Detailed internal performance of the Swiss and German models. Ten-year p;,, and AUC were
calculated separately per reserve. Additionally, the number of records () is indicated.

Swiss reserves Phias (%) AUC n German reserves PDoias (Y0) AUC n
Adenberg -4.6 0.82 2161 Franzhorn 43 0.85 348
Bannhalde -1.6 0.80 297 Grof3er Freeden -0.8 0.89 513
Bois de Chénes 1.8 0.85 3252 Grof3er Staufenberg -0.5 0.74 417
Fiirstenhalde -7.8 0.77 727 Hiinstollen 1.1 0.78 667
Hiintwangenhalde 3.7 0.94 415 Limker Strang -0.7 0.83 995
Langgraben -8.0 0.86 440 Lohn -2.7 0.76 180
Leihubelwald 3.6 0.87 1229 Meinsberg -2.1 0.81 657
Seldenhalde 33 0.81 644 Nordahner Holz 4.1 0.80 256
Strassberg 1.6 0.84 2034 Oderhang 35 0.62 262
Tariche Bois Banal 1.0 0.86 2105 Rieseberg 2 0.75 126
Tariche Haute Cote 1.8 0.83 2266 Sonnenkopf -8.6 0.50 188
Tutschgenhalden -3.8 0.85 281 Stoberhai -0.3 0.74 1049
Unterwilerberg -5.1 0.83 300 Vogelherd -0.1 0.66 276
Vorm Stein 32 0.83 840

Weidwald -5.8 0.71 1378
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Fig. S1 Map of the strict forest reserves used for calibration and validation. Number of reserves per respective
dataset: Switzerland n = 15, Germany n = 13, Ukraine n = 1.
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Fig. S3 Mean Brier Scores (meanBS) and corresponding standard error bars (seBS) resulting from 10-fold cross-
validation for two univariable models, the basic model and the basic model with additional environmental and
stand characteristics (cf. Table 2 for explanation and applied transformations). Transformed covariates are
included as an additional term plus as an interaction with logst(re/BAI). The grey line indicates meanBS + seBS
(‘one standard error rule’) of the best model, which includes median DBH as an additional covariate. meanBS of
the basic model is within this limit and was therefore chosen as the best parsimonious model.



Chapter 3 131

Appendix B — Extended material and methods

Environmental characteristics

For a subset of the permanent plots from Switzerland (Table 1), a soil survey was conducted
including one soil profile per permanent plot. Field capacity and available water capacity
(AWC) were calculated by the use of pedotransfer functions (Teepe et al., 2003) based on soil
texture, bulk density, organic carbon content and stone content of each soil horizon. Soil
characteristics were accumulated to 1 m depth or down to the bedrock if soil depth was less

than 1 m.

Temperature and precipitation data were derived using the DAYMET model (Thornton et al.,
1997, available from Landscape Dynamics, WSL), interpolating MeteoSwiss station data to a
grid of 1ha cell size. Daily minimum and maximum temperatures as well as daily
precipitation sums were derived for each permanent plot by calculating the average of the
DAYMET cell that included the center of the permanent plot and the eight surrounding cells,
following Rasche et al., (2012). In the mortality models, we considered mean temperature
(mT) and mean precipitation sums (P). Growing degree-days (GDD) were calculated
following Baskerville and Emin (1969) wusing R code available online

(http://geog.uoregon.edu/envchange/software/GDD _calculator.txt).

The site water balance was determined using a climatic water balance model that derived
monthly soil water deficit as the difference of potential and actual evapotranspiration
(modified Thornthwaite method, cf. Willmott er al., 1985; code available online
http://geog.uoregon.edu/envchange/software/AET calculator.txt). To quantify the frequency
and intensity of drought, six distinct drought characteristics were derived from the monthly

soil water deficit (Table 2).

Performance criterion pbias

Prias» Which indicates calibration accuracy, is defined here as the difference of the mean

predicted mortality probability (‘simulated mortality’) p,,_,, and the mean mortality rate
(‘observed mortality’) y,,_,, over a time period of 10 years. To this end, the ‘simulated
mortality’ p,, = X Pjac/n and the ‘observed mortality’ y,, = »y;/n were averaged for

observations and predictions with the same mortality period length Az. To render the values
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comparable, mean simulated and observed mortality rates were re-scaled to 10 years before
calculating the overall mean. Taking the example of the ‘simulated mortality’, this can be

formulated as

_ _ A
Ppr=1o = 1— (1 - pAt)At

Model selection

To assess the potential benefit of including environmental and stand characteristics in a
mortality model while avoiding over-fitting, a 10-fold cross-validation scheme and the ‘one
standard error rule’ (Breiman et al., 1984; Hastie et al., 2001) were applied for model
selection. A stratified sampling scheme was employed in each fold to achieve roughly the
original proportion of dead vs. living trees. Brier score (BS) values per fold were used to
estimate the respective mean (meanBS) and standard error (seBS). To achieve robust
estimates, the 10-fold cross-validation was repeated 20 times and meanBS and seBS were

averaged, as suggested by De'ath and Fabricius (2000).

A basic model comprising log(DBH), logst(relBAI) and their interaction was compared with
more sophisticated models, each additionally including one environmental or stand
characteristic and its interaction with relBAI. For every additional covariate, the
transformation (log/logst, square root or none, as applicable) was chosen that resulted in
lowest meanBS. Environmental and stand characteristics were retained in the model if the
corresponding BS distribution fulfilled the condition (meanBS,4q + seBSuia) < meanBSpgsic
with BS,4s and BSp.s. denoting the BS of the model with and without an additional covariate,

respectively (Breiman et al., 1984).
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Abstract

Dynamic Vegetation Models (DVMs) are suitable for simulating forest succession and
species range dynamics under current and future conditions based on mathematical
representations of the three key processes regeneration, growth and mortality. However,
mortality formulations in DVMs are typically coarse and often lack an empirical basis, which
increases the uncertainty of projections of future forest dynamics and hinders their use for
developing adaptation strategies to climate change. Thus, sound tree mortality models are
highly needed. We developed parsimonious, species-specific mortality models for 18
European tree species using > 90 000 records from inventories in Swiss and German strict
forest reserves along a considerable environmental gradient. We comprehensively evaluated
model performance and incorporated the new mortality functions in the dynamic forest model
ForClim. Tree mortality was successfully predicted by tree size and growth. Only a few
species required additional covariates in their final model to consider aspects of stand
structure or climate. The relationships between mortality and its predictors reflect the indirect
influences of resource availability and tree vitality, which are further shaped by species-
specific attributes such as lifespan, shade and drought tolerance. Considering that the behavior
of the models was biologically meaningful, and that their performance was reasonably high
and not impacted by changes in the sampling design, we suggest that the mortality algorithms
developed here are suitable for implementation and evaluation in DVMs. In the DVM
ForClim, the new mortality functions resulted in simulations of stand basal area and species
composition that were generally close to historical observations. However, ForClim
performance was poorer than when using the original, coarse mortality formulation. The
difficulties of simulating stand structure and species composition, which were most evident
for Fagus sylvatica L. and in long-term simulations, resulted from feedbacks between
simulated growth and mortality as well as from extrapolation to very small and very large
trees. Growth and mortality processes and their species-specific differences should thus be
revisited jointly, with a particular focus on small and very large trees in relation to their shade

tolerance.

Key words

Dynamic Vegetation Models, Empirical mortality models, European tree species, Forest
inventory data, Forest reserves, Generalized logistic regression, Individual tree mortality, Tree

growth
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Introduction

Tree mortality — one of the key demographic processes that shape forest ecosystems — has
significant short- and long-term implications for a wide range of forest ecosystem services
(Van Mantgem et al., 2009; Millar & Stephenson, 2015). Management for ecosystem services
therefore requires a good understanding of tree death and of its determinants, in particular
since drought-induced dieback and other mortality hazards are likely to increase in response
to future climate change (Allen et al., 2010; Steinkamp et al., 2015). Tree mortality is a
highly complex and multifactorial process, and the scientific community still faces difficulties
to understand the underlying mechanisms (Sala et al., 2010) and predict mortality from the
individual to the regional level (Weiskittel ef al., 2011; Adams et al., 2013; McDowell et al.,
2013; Meir et al., 2015).

This difficulty has implications for predictive mortality functions as an essential component
of forest simulation models, which are used for short-term forest planning (growth-and-yield
models; Hasenauer, 2006) and for assessing the long-term consequences of climate change
(Dynamic Vegetation Models DVM; Bugmann, 2001; Smith et al., 2001; Friend ef al., 2014).
While much effort has been devoted to accurately predict tree growth, mortality formulations
in DVMs are typically coarse and usually lack an empirical basis (Loehle & LeBlanc, 1996;
Keane et al.,, 2001) or robust mechanistic foundation (Allen et al., 2015). The poor
representation of tree mortality in DVMs has critical consequences for the accuracy of their
predictions, and thus for the reliability of their projections (Keane et al., 2001; Reyer et al.,
2015), which may impede the timely initiation of measures that maintain ecosystem services

(De Groot ef al., 2002; Temperli et al., 2012).

Besides theoretical (‘data-free’) and physiological process-based approaches (cf. Wunder et
al. (2006), Weiskittel et al. (2011) and Meir et al. (2015) for respective advantages and
drawbacks), empirical mortality models have been suggested as a valid and pragmatic
alternative (Adams et al., 2013). Such empirical mortality models are not only highly valuable
for the reliable simulation of future forest dynamics, but also to improve our understanding of
the mortality process (Cailleret et al., 2016). Among other approaches, tree size and radial
stem growth can be used as predictors of tree death (Cailleret et al., 2017; Hiilsmann et al.,
2017), which is supported by the assumption that the dimensions of a tree — typically

expressed via its stem diameter — are a proxy for the access to resources and constraints on the
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hydraulic system (Grote et al., 2016), and that radial growth provides an indication of
individual-tree vitality (Harcombe, 1987; Dobbertin, 2005).

Growth-based mortality models have been fitted using forest inventory (Ruiz-Benito et al.,
2013) or dendrochronological data (Gillner et al., 2013) and a variety of methodological
approaches (Hawkes, 2000; Weiskittel et al., 2011; Cailleret et al., 2016). However, most of
them (1) do not adequately consider species differences for a wide range of species, (2) are
not sensitive to the variation in climate and site conditions, and (3) have not been
implemented in DVMs and validated in this context (cf. Larocque et al., 2011; Bircher et al.,
2015). The obstacles to achieve this arise from the fact that mortality of individuals having
outgrown the seedling stage is rare and highly variable in space and time (Eid & Tuhus,
2001), and there is a general scarcity of data for describing long-term processes (Bugmann,

1996b; Hawkes, 2000).

In DVMs, tree regeneration, growth and mortality are modeled based on life history
strategies, e.g. shade and drought tolerance and longevity (Bugmann, 1994), of individual tree
species or of Plant Functional Types (PFTs; Bugmann, 1996a; Wullschleger et al., 2014). By
grouping species with similar ecological characteristics to PFTs, mortality models can be
calibrated and validated even for rare species. Yet, modeling approaches are mostly limited to
one or few species (Holzwarth et al. 2013, Neuner et al. 2015; but see Wunder et al. 2008).
Thus, there is no comprehensive evidence that life history strategies determine the mortality

patterns of tree species, and that PFTs are a useful and robust concept.

Moreover, only few studies have accounted for the spatial and temporal variability in size-
and growth-mortality relationships (Wunder et al., 2008; Dietze & Moorcroft, 2011) by
including additional covariates in mortality models (but see Condés & Del Rio, 2015).
Climate or stand characteristics may be required as driving factors of mortality under
conditions of drought or high competition, since they are only partly reflected in size or
growth variables (Rowland et al., 2015). However, datasets with a representative sampling
along major environmental gradients and over long time periods that allow for a systematic
analysis of environmental influences on the relationship between tree size, growth and

mortality are rare.

To verify the suitability of growth-based empirical mortality functions for DVMs, their

predictive performance, i.e. the accuracy of a model when applied to new data, should be
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evaluated using cross-validation approaches or by validation with independent external data
(cf. Hiillsmann et al., 2016). Subsequently, such mortality models should be incorporated in
DVMs, a step that is made only rarely (but see Wyckoff & Clark, 2002; Wernsdorfer et al.,
2008; Larocque et al., 2011; Bircher et al., 2015). Thus, a comprehensive and sound
assessment of empirical mortality models in DVMs is still lacking, and it remains unclear
whether more empiricism in mortality modeling would actually advance the quality of

simulations from DVMs.

Thus, the overall objectives of this study were to develop parsimonious mortality models for a
large set of European tree species, to comprehensively evaluate their performance, and to
incorporate them in a specific DVM (ForClim; cf. Bugmann, 1996b). To this end, we used
extensive inventory data from strict forest reserves in Switzerland and Germany along a large
environmental gradient. We followed the approach of model calibration and evaluation that
was established and tested for Fagus sylvatica L. by Hiilsmann et al. (2016). Specifically, we
addressed three main questions: (1) Can life history strategies such as lifespan and stress
tolerance be used to group tree species into reasonable PFTs that account for species
differences in mortality? (2) How successful are mortality models that are based on size and
growth alone compared to models that include further climate or stand characteristics in
accurately predicting tree mortality? (3) How do the new mortality functions perform when

embedded in a DVM?

Material and methods

Study areas and inventory data

We used inventory data from 54 strict forests reserves in Switzerland and Lower
Saxony / Germany to develop the mortality models (cf. Brang et al., 2011; Meyer et al.,
2015). Measurements had been conducted repeatedly on up to 14 permanent plots per reserve
for up to 60 years with re-measurement intervals of 4 - 27 years. The permanent plots vary in
size between 0.03 and 3.47 ha. The inventories provide diameter measurements at breast
height (DBH) and information on the species and status (alive or dead) of trees with
DBH >4 cm for Switzerland and >7 cm for Germany. As ForClim does not explicitly
simulate natural large-scale disturbances, only plots without substantial wind-throw, fire or

bark beetle events at the stand scale were used to derive the mortality models. Mortality in the
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remaining stands was rather low, with a mean annual mortality rate of 1.5 % and strong

variation between plots from 0 to 6.5 % (assessed for trees of all species with DBH > 7 cm).

We only used data from permanent plots with at least 20 trees per species to obtain reliable
plot-level mortality rates, and selected tree species occurring on at least 10 plots to cover
sufficient ecological gradients. This led to a dataset of 197 permanent plots and 18 tree or
shrub species: Abies alba Mill., Acer campestre L., Acer pseudoplatanus L., Alnus incana
Moench., Betula pendula Roth, Carpinus betulus L., Cornus mas L., Corylus avellana L.,
Fagus sylvatica, Fraxinus excelsior L., Picea abies (L.) Karst, Pinus mugo Turra, Pinus
sylvestris L., Quercus pubescens Willd., Quercus spp. (Q. petraea Liebl. and Q. robur L.; not
properly differentiated in the Swiss inventories), Sorbus aria Crantz, Tilia cordata Mill. and

Ulmus glabra Huds. (Table 1).

Table 1 Number of records per tree species. Numbers are given for the total dataset, per country and for those
that resulted in tree death. Additionally, the number of reserves and permanent plots that are covered in the data
of each species are indicated. Note: Quercus spp. refers to both Q. petraea and Q. robur.

Species total Germany Switzerland dead Reserves Permanent plots
Abies alba 7140 0 7140 1147 7 31
Acer campestre 1183 0 1183 256 5 19
Acer pseudoplatanus 1399 24 1375 255 12 26
Alnus incana 1252 0 1252 734 5 11
Betula pendula 1847 300 1547 723 7 14
Carpinus betulus 5789 1637 4152 1283 19 28
Cornus mas 1123 0 1123 215 1 10
Corylus avellana 1427 0 1427 739 8 14
Fagus sylvatica 26 645 6899 19 746 4018 40 118
Fraxinus excelsior 7645 142 7503 1715 19 52
Picea abies 12 965 458 12 507 2209 20 59
Pinus mugo 7376 0 7376 1250 4 21
Pinus sylvestris 2925 317 2608 519 10 24
Quercus pubescens 2968 0 2968 429 2 15
Quercus spp. 7250 832 6418 1536 22 48
Sorbus aria 1546 0 1546 492 8 23
Tilia cordata 1911 0 1911 344 8 16
Ulmus glabra 631 20 611 137 4 11
All 93 022 10 629 82393 18 001 54 197

Mortality information and tree characteristics

We considered tree size and growth as key indicators for mortality risk (Monserud, 1976).

Radial stem growth between the first and second inventory and DBH at the second inventory
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were used to predict tree status (alive or dead) at the third inventory. To this end, the annual
relative basal area increment (re/BAI;, cf. Bigler & Bugmann, 2004) was calculated as the
compound annual growth rate of the trees basal area (BA;) using

1

BA; 5 \BE
relBAI; = <BAL’2nd> -1 eqn 1
i,1st

with Az denoting the number of years of the growth period. Several sets of three inventories
per tree were used if more than three inventories were available (45.0 %). Thus, 26.5 % of the

trees appeared more than once in the dataset (for verification cf. Hiilsmann et al., 2016).

To improve the relationship between the explanatory variables and mortality, suitable
transformations were applied (cf. Mosteller & Tukey, 1977), i.e., log(DBH) and logst(relBAI).
The latter is a modified transformation based on the common logarithm that is applicable even

to those 8.8 % of the records with relBAI = 0 (Stahel, 2015; cf. Appendix B).

Climate and stand characteristics

We included additional climate and stand characteristics in the mortality models to address
spatial and temporal differences in mortality rates between permanent plots and inventories
that cannot be explained by changes in growth rates alone (cf. Table S1, see Appendix A for
all additional Tables and Figures). To this end, mean annual precipitation sum (P) and mean
annual air temperature (m7) were calculated between the second and the third inventory (for

their derivation cf. Appendix B).

As a proxy for stand age and structural complexity, the mean and the interquartile range of
DBH were calculated at the permanent plot level (mDBH, igqrDBH). To account for stand
density, basal area (BA4) and the number of trees (V) per hectare were considered. These stand
characteristics were calculated for the second inventory based on all living trees > 7 cm. We
did not further expand the set of climate and stand characteristics considered to keep the

models simple and thus also applicable in DVMs.

Mortality models

Generalized logistic regression (Monserud, 1976; Weiskittel et al., 2011; Yang & Huang,

2013) was used to model mortality probability. This was necessary to account for the unequal
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re-measurement intervals in the inventory data. The annual mortality probability of tree i
(Pia=1) was defined as

exp(Xif)

_ AR 2
1+ exp(X,8) eqan

Dine=1 = logit *(X;B) =

with X; denoting the design matrix of the linear predictor and S the respective parameter
vector. The annual probability was scaled to the length of the respective mortality period of

At years using

piar=1—(1- pi,At=1)At eqn 3

and then fitted against the observed status of the tree (y;; 1 = dead, 0 = alive) using maximum-
likelihood estimation for the parameters of f. Standard errors, confidence intervals and p-
values of the parameter estimates were derived using the Fisher information based on the

Hessian matrix (cf. Hiillsmann et al., 2016).

Model selection and performance criteria

In a first step, the most promising climate or stand characteristic and its most suitable
transformation (log, square root or none) were identified for each species. To this end,
covariates were included in highly flexible models to capture linear, non-linear and interacting
influences of log(DBH) and logst(re/BAI) on mortality (cf. Table 2, Formula C12 with
different transformations of the climate and stand characteristics). We selected the covariate
that resulted in the smallest Brier Score (BS). BS corresponds to the mean squared error of the

model defined as

n
1 2
BS = EZ(pi,At ) eqn 4
i=1

and ranges between 0 and 1, with low values indicating good model calibration and
discrimination, i.e., correct mortality rates and attribution of dead/alive status (cf. Harrell,
2015). BS does, however, not allow for the comparison of models based on different datasets
since it depends on the overall mortality rate that varies between species (Steyerberg et al.,

2010).

In a second step, the final model was selected from a large set of model formulae (cf. Table 2)

with varying complexity and flexibility that are based on the terms log(DBH), logst(relBAI),
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their interaction and the respective quadratic terms (Formulae 1-12). These models were
analyzed without an additional covariate (Formulae A1-12), with the most promising climate
or stand characteristic (B1-12), and in interaction with logst(re/BAI) (C3-12). To this end, we
calculated BS in repeated 10-fold cross-validation and applied the ‘one standard error rule’ to
avoid overfitting (cf. Appendix B for details, Breiman et al., 1984; Hastie et al., 2001). For
models that included an additional climate or stand characteristic, an alternative model
without that covariate was derived to compare its performance with the respective full model.

These were selected by applying the ‘one standard error rule’ to Formulae A1-12 only.

Table 2 Model formulae considered during model selection and their degree of complexity. Model numbers 1-12 in
the first column refer to formulae with increasing flexibility of the influence of the tree covariates DBH and relBAI.
The letters A-C refer to the use of additional climate or stand characteristics: A = without an additional
characteristic, B = with an additional characteristic, C = with an additional characteristic and its interaction with
logst(relBAI). The numbers of 1-28 in columns A-C indicate increasing complexity of the formulae and were used
to select the most parsimonious models during 10-fold cross-validation (cf. Appendix B). The complexity of a
model was assigned considering the number of predictors and their flexibility (quadratic terms, interactions). Note
that the additional characteristic was selected separately for each species (cf. Table S4).

Use of additional climate or stand characteristics

Number Formula A B C
1 log(DBH) 1 11
2 log(DBH) + (log(DBH))? 2 12
3 logst(relBAI) 1 11 21
4 logst(relBAI) + (logst(relBAI))* 2 12 22
5 log(DBH) + logst(relBAI) 3 13 23
6 log(DBH) + (log(DBH))* + logst(relBAI) 4 14 24
7 log(DBH) + logst(relBAI) + (logst(relBAI))* 4 14 24
8 log(DBH) + (log(DBH))* + logst(relBAI) + (logst(relBAI))? 5 15 25
9 log(DBH) * logst(relBAI) 6 16 26
10 log(DBH) * logst(relBAI) + (log(DBH))* 7 17 27
11 log(DBH) * logst(relBAI) + (logst(relBAI))* 7 17 27
12 log(DBH) * logst(relBAI) + (log(DBH))* + (logst(relBAI))* 8 18 28

Several performance criteria were reported to take into account that calibration and
discrimination are not necessarily correlated (Bravo-Oviedo et al., 2006). In addition to BS,
the Area Under the receiver operating characteristic Curve (4UC) was calculated, which is a
threshold-independent measure of classification accuracy. Following Hosmer and Lemeshow
(2000), the discriminative ability is rated as acceptable (0.7 <AUC <0.8), excellent
(0.8<AUC<0.9) or outstanding (AUC > 0.9).
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Since all data were used for model development, no external validation of the models using
independent data could be carried out. However, to correct for overfitting and assess the
predictive behavior in external application, i.e., when applied to new data from the same
domain, BS and AUC from cross-validation were reported (cf. Appendix B). Furthermore,
AUC was calculated for diameter classes to assess the calibration success of the models with

respect to tree size.

Commonly, performance criteria used in mortality studies do not convey an intuitive
expectation of the predictive behavior of mortality models at the level of forest stands.
Therefore, we selected an additional performance criterion that facilitates the evaluation of
model performance with respect to the application in DVMs. We defined the prediction bias
Prias as the difference of the mean predicted annual mortality probability (‘simulated
mortality’) p,._, and the mean annual mortality rate (‘observed mortality’) ¥,,_, calculated
at the level of single inventories of permanent plots (cf. Appendix B) and reported the mean
absolute deviation (mad) of ppis. This allowed us to quantify the variation in prediction
accuracy, i.e., how well the models can deal with the high variability of mortality rates and
patterns in space and time (Wunder et al., 2008; Dietze & Moorcroft, 2011). Observed
variability and mad py;,s increase with increasing mortality rates. Therefore, we additionally
calculated the respective relative value (rmad ppis), 1.e., the ratio of mad ppi,s and the

observed annual mortality rate y,, .. Both values were used to evaluate the models with

respect to their ability to predict correct mortality rates in space and time.

Model calibration and evaluation was performed with R (R Core Team 2015, R Foundation
for Statistical Computing. Vienna, Austria). The function /ogst() from the package regr0
(Version 1.0-4/r46, 2015) was used for the re/BAI transformation. The function optim() and
the BFGS method were applied for maximum-likelihood estimation. AUC was calculated
using a modified version of the auc() function from the package SDMTools (Version 1.1-221,

2014) to allow for values below 0.5, which is necessary to calculate AUC in cross-validation.

Implementation of inventory-based mortality models in ForClim

Model description

To examine the performance and behavior of the new mortality functions in DVMs, we used

the climate-sensitive forest gap model ForClim, which simulates the dynamics of forest stands
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on short and long time scales (Bugmann, 1996b). Establishment, growth and mortality for
cohorts of individual trees are simulated on independent patches (~ 800 m?) at an annual
resolution based on species-specific parameters (e.g., shade and drought tolerance),
environmental conditions (light availability, temperature, soil nitrogen and water availability)

and tree characteristics (cf. Bugmann, 1996b; Didion et al., 2011; Rasche et al., 2012).

In the latest model version, ForClim 3.3 (Mina et al., 2015), tree mortality is modeled as a
combination of a constant ‘background’ mortality that depends on the species-specific
maximum age and a stress-induced mortality that is activated if the annual diameter increment
is lower than a threshold (3 mm or 10 % of the species-specific maximum growth rate at a
given tree size) for more than two consecutive years. Mortality is modeled individually for
each tree of a cohort based on a stochastic approach that results in tree death if a uniformly
distributed random number between 0 and 1 is below the annual mortality probability. A more

detailed description of the mortality function is provided in Bircher et al. (2015).

This mortality formulation was replaced by the new inventory-based models (IM) without
environmental covariates, i.e., alternative models, based on tree size and growth only. The
models were implemented following two approaches: (1) with mean parameter estimates
(IM_mean) and (2) by randomly sampling the parameters using their mean and standard error
to account for the uncertainty in model estimates (IM_sd, assuming a normal distribution of

the parameters).

The mortality functions were applied to all trees irrespective of their DBH although this led to
extrapolation at least for the small trees (initial DBH of trees in ForClim is 1.27 cm whereas
the calipering threshold in the inventories is 4 cm or more). Since for some species in the
validation data no mortality function could be developed, we used the models from species of
the same genus: the model of Acer pseudoplatanus for A. platanoides, Alnus incana for A.
glutinosa and A. viridis, Sorbus aria for S. aucuparia and Tilia cordata for T. platyphyllos.
Simulation results for these species were jointly reported (e.g., Tilia spp.). Species for which
no mortality model could be developed and that were present in minor abundance were

excluded from the simulations (e.g., Populus nigra, Taxus baccata).
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Simulation setup and model validation

We ran short- and long-term simulations to assess the performance and behavior of the two
new mortality functions (IM_mean, IM sd) and to compare them with the original model

version (ForClim 3.3), as follows:

Short-term simulations. To validate the new mortality functions in ForClim, we simulated
historical forest dynamics based on past climate data (cf. Appendix B) and compared the
results against inventory measurements. To this end, permanent plots were selected from the
Swiss forest reserves according to the following criteria: (1) inventory data should cover at
least a period of 35 years, (2) plot size had to exceed 0.2 ha to ensure a representative
structure and composition of the forest, and (3) recent dynamics had to be unaffected by
severe natural disturbances, which are not accounted for in the model. We ended up with 28
permanent plots located in 13 forest reserves (Table S2) that were all part of the calibration
dataset. ForClim was initialized with single-tree data (species, DBH) from the first available
inventory of each permanent plot. As spatial information about tree positions on the plots was
not available, trees were allocated randomly and evenly to an initial set of patches, each with
a size of 800 m*> (Wehrli ez al., 2005). Depending on the ratio of permanent plot area and
patch size (Table S2), this resulted in the direct initialization of 2 to 44 patches. To average
over the stochasticity across patches, the initial set of patches was replicated to 200. For
evaluating the goodness-of-fit of the historical runs, we compared simulated and measured
stand- and species-specific B4 at the last inventory and the cumulative number of dead trees
(Ngeaq) per hectare over the whole period. The root mean square error (RMSE) as well as the

relative bias (rbias) were reported for both criteria separately per species and permanent plot.

Long-term simulations. As model validation is constrained by the short length of the empirical
data series, we also simulated Potential Natural Vegetation (PNV), i.e., the species
composition expected in a pseudo-equilibrium state in the absence of anthropogenic
influences (Ellenberg, 2009), along a well-studied environmental gradient in Switzerland (cf.
Bugmann & Solomon, 2000). Starting from bare ground, forest dynamics were simulated for
1500 years, and forest structure and composition at the end of the simulation were examined
qualitatively for their plausibility (Rasche ef al., 2012). Since we were not able to calibrate a

mortality model for Pinus cembra L., the sites Grande Dixence and Bever were excluded.
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Results

Size and growth influences on mortality

Formulae of the final models varied between tree species with respect to the flexibility of the
covariates DBH and relBAI (Table S3). Nevertheless, all models except for those of Cornus
mas, Pinus mugo and Ulmus glabra, which were based on tree growth alone (Formulae 3 and
4), included both explanatory variables. Most common was Formula 7 with medium
complexity and the terms log(DBH) + logst(relBAI) + (logst(relBAI))*, which was selected for
ten species. Mortality of three species was best predicted using Formula 5, including only
DBH and relBAI without any quadratic term or interaction. Only for Tilia cordata (Formula
9) and Fraxinus excelsior (Formula 11), models were more complex and included also the

interaction between log(DBH) and logst(re/BAI).

In spite of the different model formulae, the overall pattern of simulated mortality with
respect to the main predictors was very similar for most species, i.e., mortality risk decreased
with increasing tree size and growth (Fig. 1). However, the models differed concerning (1) the
respective influence of size and growth as characterized by the steepness of the slope of
mortality over DBH and relBAI, and (2) the overall level of mortality probabilities. Four main
patterns became evident: (1) low overall mortality and a slight effect of DBH and relBAI:
Abies alba, Cornus mas, Fagus sylvatica, Picea abies, Pinus mugo, Tilia cordata and Ulmus
glabra; (2) high overall mortality, also in large trees, and a strong growth influence on
mortality: Alnus incana, Betula pendula, Corylus avellana and Sorbus aria; (3) strong
impacts of DBH and relBAI on mortality: Acer pseudoplatanus, Pinus sylvestris, Quercus
pubescens and Quercus spp.; and (4) intermediate impacts of DBH and relBAIl on mortality:

Acer campestre, Carpinus betulus and Fraxinus excelsior.

None of the species-specific models included a quadratic term for DBH, which would suggest
a U-shaped mortality pattern, i.e., higher mortality for both small and larger trees. The
quadratic term of logst(relBAI), which was included in 12 of the 18 final models, dominantly
resulted in a pronounced decrease of mortality probability with increasing growth. For Alnus
incana, Fraxinus excelsior and Sorbus aria, the quadratic growth term decreased the
predicted mortality probability of trees with very slow growth (re/BAI < 0.002), but did not

modify the overall positive effect of growth on survival.
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Fig. 1 Prediction maps of ten-year mortality probability as a function of DBH and relBAI. In accordance with the
variable transformations applied in the models, logarithmic scales are used for plotting, i.e., natural logarithm for
DBH and the common logarithm for re/BAI (cf. logst transformation, Stahel, 2015). The interval Az = 10 years for
the mortality probability was selected to increase the contrast of the typically very low annual mortality
probabilities. Predictions of models that included an additional climate or stand characteristic are shown for the
additional covariate fixed at its medium value as indicated in the plot). Observations of DBH and relBAI are shown
with black triangles. No-growth observations are located at the lower limit of the predictive map defined by back-
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Climate and stand influences on mortality

From the set of the most promising climate or stand characteristics selected for each species
(cf. Table S4), only a few remained in the final models (Table S3). Additional covariates
considerably improved the models of Alnus incana (improved by BA), Corylus avellana (P),
Picea abies (mDBH), Pinus mugo (P), Quercus pubescens (mT) and Quercus spp. (BA). The
two stand variables (B4 and mDBH) were positively correlated with mortality (cf. Fig. S1).
The effect of precipitation (P) was inconsistent. At high P, mortality probability was lower for
Pinus mugo but higher for Corylus avellana. Higher mean temperature (m7) increased
mortality of Quercus pubescens. None of the additional covariates that remained in the
models required an interaction term with tree growth. Thus, the general relationship between

relBAI and mortality was not altered.

Alternative models without the additional covariate were based on the same or a similar
formula as the full model (cf. Table S5). Thus, they indicate a similar complexity and shape
of the relationship between DBH, relBAI and mortality (cf. Fig. S2). For Corylus avellana,
Picea abies and Quercus pubescens a formula with lower flexibility was selected for the

alternative model, which resulted in size-independent mortality for Picea abies.

Calibration performance

Discrimination accuracy (4UC) was high for most species (Table 3). While the ability of the
models to correctly identify tree status was acceptable for seven species (0.7 < AUC <0.8), it
was even excellent for nine species (0.8 <AUC <0.9). Only the models of Picea abies and
Ulmus glabra had no discriminative ability. The over-optimism assessed via cross-validation
was low for all species, i.e., the relative difference between cross-validation BS and apparent
BS was <1 % of apparent BS, and cross-validation AUC was only <0.003 lower than
apparent AUC (Table 3).

AUC plotted as a function of DBH revealed that discrimination was not equally successful
across tree size (Fig. S3). Mostly, AUC decreased with increasing DBH, indicating that the
models had less or even no discriminative power for larger trees (cf. Acer pseudoplatanus,
Fagus sylvatica, Picea abies, Pinus mugo, Quercus pubescens, Quercus spp. and Ulmus
glabra). In contrast, an increasing AUC trend with tree size was identified for Cornus mas and

Corylus avellana. The models of the remaining species either had the best AUC for medium-
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sized trees (cf. Acer campestre and Fraxinus excelsior) or achieved a constant discrimination

over the considered DBH range.

Table 3 Performance criteria of the calibrated models. Brier Score (BS) and Area Under the receiver operating
characteristic Curve (4UC) were calculated for the entire calibration dataset and during repeated 10-fold cross-
validation (CV) to assess the predictive ability of the mortality models. To quantify the variation in prediction
accuracy, the mean absolute deviation (mad) of the prediction bias (p,,,) defined as the difference of the mean
predicted annual mortality probability (p,,_,) and the mean annual mortality rate (y,,_,) was calculated at the
level of single inventories of permanent plots (cf. Appendix B). Observed variability and mad py,,, increase with
increasing mortality rates. Therefore, we additionally calculated the respective relative value (rmad py;), i.€., the
ratio of mad py,qs and the observed annual mortality rate (y,,_, ). Both values were used to evaluate the models with
respect to their ability to predict correct mortality rates in space and time. For species for which the final model
included an additional covariate (highlighted in grey), also the performance of the best model without an additional
covariate (A1-12) is given (alternative models).

Species Formula Covariate BS g "‘S; AUC AC(<7C TE%:) 1 m ”(‘;’/ S bias ';': ::1
Abies alba A7 - 0.1233 0.1235 0.721 0.720 1.3 0.7 0.53
Acer campestre A7 - 0.1310 0.1323 0.815 0.813 22 1.5 0.68
Acer pseudoplatanus A5 - 0.1114 0.1121 0.847 0.846 1.7 0.8 0.48
Alnus incana B7 BA 0.1828 0.1843 0.790 0.788 9.1 2.7 0.30
Alnus incana A7 - 0.1869 0.1881 0.778 0.777 9.1 4.6 0.51
Betula pendula A7 - 0.1878 0.1886 0.766 0.765 4.5 2.3 0.51
Carpinus betulus A7 - 0.1335 0.1337 0.806 0.806 22 1.3 0.59
Cornus mas A4 - 0.1270 0.1280 0.790 0.789 1.8 0.6 0.32
Corylus avellana B7 P 0.2024 0.2037 0.753 0.751 6.7 1.6 0.24
Corylus avellana AS - 0.2144 0.2152 0.725 0.724 6.7 32 0.48
Fagus sylvatica A7 - 0.1032 0.1032 0.814 0.814 14 0.5 0.36
Fraxinus excelsior All - 0.1326 0.1328 0.813 0.813 22 1.1 0.48
Picea abies B5 mDBH 0.1348 0.1349 0.659 0.658 1.5 1.1 0.72
Picea abies A3 - 0.1371 0.1372 0.616 0.616 1.5 1.0 0.68
Pinus mugo B3 P 0.1217 0.1218 0.766 0.766 1.2 0.5 0.44
Pinus mugo A3 - 0.1266 0.1267 0.720 0.720 1.2 1.0 0.84
Pinus sylvestris AS - 0.1128 0.1132 0.815 0.814 1.7 0.6 0.36
Quercus pubescens B7 mT 0.0777 0.0782 0.892 0.891 1.6 0.4 0.22
Quercus pubescens A5 - 0.0840 0.0843 0.884 0.884 1.6 0.7 0.46
Quercus spp. B7 BA 0.1123 0.1125 0.842 0.842 2.0 1.0 0.51
Quercus spp. A7 - 0.1150 0.1152 0.838 0.838 2.0 1.1 0.56
Sorbus aria A7 - 0.1563 0.1573 0.821 0.821 33 1.8 0.55
Tilia cordata A9 - 0.1233 0.1240 0.798 0.796 1.5 1.3 0.89
Ulmus glabra A3 - 0.1658 0.1672 0.616 0.614 1.8 1.0 0.53

The variation of the prediction accuracy between sites and inventory periods, assessed as
rmad ppis, ranged between 0.22 and 0.89 (Table 3). Fairly large values resulted for Acer
campestre, Picea abies, Pinus mugo and Tilia cordata (rmad ppi.s > 0.68), while models of

Alnus incana, Cornus mas, Corylus avellana and Quercus pubescens achieved lowest rmad
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Prias (£0.32) and hence the most accurate prediction of mortality rates at the level of single
inventories. The underlying values of mad py,s indicate that the models estimate annual
mortality rates at the level of single inventories with an average absolute bias of 0.4 to 4.6 %

per year.

The alternative models that did not include additional covariates had reduced discriminative
power, i.e., lower AUC, when compared to the corresponding full model (Table 3).
Nevertheless, the reduction in AUC was small (< 0.03 except for Picea abies and Pinus mugo)
and did not change the discriminative ability, as rated following Hosmer and Lemeshow
(2000). However, the models’ ability to accurately predict mortality rates in space and time
was more severely affected when additional covariates were omitted. Models that included an
additional covariate typically had a substantially lower rmad ps;,s than the alternative models
for the respective species. Only for Picea abies, rmad ppi,s Was not reduced by the additional
covariate, which was in accordance with the poor discriminative ability of both model

formulations of this species.

Implementation of inventory-based mortality models in ForClim
Short-term simulations

Compared with forest inventory data, the new model versions ForClim IM_mean and IM_sd
performed slightly worse than ForClim 3.3 in predicting stand- and species-specific BA4 at the
end of the historical runs (Fig. 2; Table 4; Table S6). Overall, the inventory-based models
overestimated BA. Although BA of several species was too high, overestimation was
particularly driven by Fagus sylvatica (RMSE > 11, rbias > 30 %) and occurred especially at
permanent plots where this species dominates (e.g., Fiirstenhalde and Weidwald; cf. Fig. 2;
Table S6). BA was underestimated by the new mortality functions for Alnus spp., Betula
pendula, Corylus avellana, Fraxinus excelsior and Tilia spp. (cf. Table 4). Accounting for
uncertainty in model parameters resulted in pronounced underestimation of BA, so that the
IM_mean approach achieved better BA performance than ForClim IM_sd. The reduction of
BA caused by the random sampling of the parameters of the mortality formulation was
especially strong for Acer campestre, Carpinus betulus, Sorbus spp. and Tilia spp. but

negligible in the case of Fagus sylvatica (cf. Fig. 2, Table 4).
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Fig. 2 Species-specific B4 observed (leftmost bar; from inventory data) and simulated by the three model versions
of ForClim (from left to right: ForClim 3.3, ForClim IM_mean; ForClim IM_sd) for each permanent plot at the last
inventory. The acronyms of the permanent plots and the years of the last inventories are available in Table S2.

In contrast, IM_sd was superior to ForClim 3.3 in predicting accurate numbers of dead trees
for most of the species (cf. Table 4), but the performance of ForClim 3.3 in predicting N geqq
was better in the majority of the permanent plots (cf. Table S6) since most of them were
dominated by Fagus sylvatica. For this species, mortality rates were strongly underestimated

by both inventory-based mortality functions (cf. Table 4).

Based on the simulation results with the new mortality functions, three main types of
disagreement between observed and simulated B4 and Ny, could be distinguished. For their
interpretation, the number of observed versus simulated N, as a function of DBH (cf. Fig.

S6) must be considered, as follows.

First, simulated BA for Fagus sylvatica, Pinus mugo and Pinus sylvestris was overestimated
since mortality was considerably underestimated, for Fagus sylvatica most markedly for trees
with DBH <20 cm. Second, the opposite was found for Acer campestre, Carpinus betulus,
Fraxinus excelsior and Tilia spp. simulated by IM_sd since too many trees died, in particular
between 16 and 40 cm DBH (e.g., Tariche Haute Cote, Weidwald). Finally, B4 and Ngeuq
were jointly underestimated for several other species including Picea abies, which is the

result of considerably underestimated mortality of small trees (DBH <8 cm) and
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overestimated mortality of large trees (e.g., Scatl¢). However, the prediction accuracy of trees
with large DBH varied among sites. In contrast to mortality patterns in the inventory data,
simulated mortality over DBH of Acer pseudoplatanus, Fagus sylvatica and Picea abies, was

not J-shaped but clearly hump-shaped (cf. Fig. S6).

Long-term simulations

Species composition and BA predicted after 1500 years differed considerably between
ForClim 3.3 and the new mortality functions. In the center of the Swiss environmental
gradient, the dominance of Fagus sylvatica as simulated by ForClim IM_mean and IM_sd
was even more evident than in short-term simulations (Fig. 3). High BA of Fagus sylvatica
was fostered by trees reaching very large DBH (e.g., >280 cm in Bern). At the sites
dominated by Fagus sylvatica, Carpinus betulus established in small numbers, but those trees
reached great size and thus contributed strongly to total BA. In comparison, the BA of other
species was negligible. This is in contrast to ForClim 3.3 and expected PNV under these
conditions (Bugmann & Solomon, 2000). The consideration of uncertainty in model
parameters (IM_sd) reduced BA of Carpinus betulus and increased the presence of Picea

abies but did not change the strong prevalence of Fagus sylvatica.

In contrast to expectations and outputs from ForClim 3.3 (Rasche et al., 2012), PNV in Sion
simulated by ForClim IM_mean and IM_sd was not dominated by Pinus sylvestris but by
Pinus mugo, and BA was comparably low. In addition, simulations of ForClim IM_mean
resulted in an unexpected large presence of Acer campestre. The simulated biomass of Picea
abies in Davos was lower than expected and suggested by ForClim 3.3, in particular for

DBH> 115 cm.
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Expected Potential Natural Vegetation (PNV)
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Fig. 3 Potential Natural Vegetation (PNV, B4 per species) simulated along the Swiss environmental gradient at
the end of a 1500-years run using ForClim 3.3 (left), ForClim IM_mean (middle) and ForClim IM_sd (right).
The color code used to represent the different species is the same than in Fig. 2. Expectations of PNV according
to Rasche et al. (2012). Note that Larix decidua Mill. was not simulated in ForClim since no mortality could be
fitted for this species.

Discussion

The development of new inventory-based mortality models provided novel insights with
respect to (1) species-specific differences of mortality patterns, (2) potential advances of
growth-based mortality models that include climate and stand characteristics, and (3) the

suitability of empirical mortality models for implementation in DVMs.

Species-specific patterns of mortality

Tree mortality over DBH and relBAI was J-shaped for nearly all species in our study. This is
congruent with ecological theory of stress and vigor (Waring, 1987), which suggests that
individuals with restricted access to resources, i.e., those that have a small rooting and crown
system (small trees; Harcombe, 1987), and individuals that show reduced vitality (slow-
growing trees; cf. Manion, 1981; Stephenson et al., 2011), are exposed to higher stress and

thus usually have a higher probability to die.



156 Mortality models for eighteen tree species

This general relationship between DBH, relBAI and mortality is modified by species-specific
traits that are related to life history strategies (Grime, 1977; Brzeziecki & Kienast, 1994).
Specifically, species that can reach high age show lower mortality rates than typical pioneers.
In addition, species with high shade tolerance are expected to have a good ability to survive in
the sub-canopy (Givnish, 1988), i.e., when being small, and to resist low-growth periods (cf.
storage hypothesis, Valladares & Niinemets, 2008). Conversely, less shade-tolerant species
are more likely to show increased mortality at low DBH and relBAI and thus a pronounced
effect of size and growth on mortality (Kobe & Coates, 1997). The four distinct patterns that
we identified for the influences of size and growth on mortality are related to these life history

strategies, as discussed below.

The first group features low overall mortality and weak impacts of DBH and re/BAI 1t is
dominated by relatively long-lived species with high shade tolerance (cf. Bugmann, 1994 for
specifications of maximum age and shade tolerance). While this applies to Abies alba, Fagus
sylvatica, Picea abies and Tilia cordata, the lifespan of Ulmus glabra is shorter, and thus the
overall mortality rate we found appears low. However, the model for Ulmus glabra had only
low discriminative ability, and thus this pattern is not necessarily reliable. In turn, Cornus mas
and Pinus mugo are less shade-tolerant than the other species in this group, and the influences
of DBH and relBAI arising from their models appear rather weak. Bearing in mind the
shrubby shape and small size of Cornus mas, a maximum age of 300 years can be regarded as
long-living (San-Miguel-Ayanz et al., 2016). When taking into account the narrow DBH
range of this species covered in the data, this may have led to weaker effects of DBH and
relBAI than expected from species attributes. In contrast, Pinus mugo may not feature
particularly high mortality rates for small and slow-growing trees due to its occurrence in
relatively open stands under quite stressful conditions with respect to water and nutrient
availability (Ellenberg, 2009; Brang et al., 2014). As more competitive species are missing in
these stands, the mortality patterns of Pinus mugo do not indicate high shade tolerance, but

rather high tolerance of drought and lack of nutrients.

In contrast, high overall mortality was identified for the second group that consists mainly of
short-living pioneers, i.e., Alnus incana, Betula pendula, Corylus avellana and Sorbus aria.
The high mortality of slow-growing trees of these species is due to their low shade tolerance

(for similar patterns cf. Wunder et al., 2008; Moustakas & Evans, 2015). Given their low
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competitiveness, even large trees of these species experience high mortality risk (Brzeziecki

& Kienast, 1994).

Species of the third group show a similarly strong influence of re/BAI on mortality, as Pinus
sylvestris, Quercus pubescens and Quercus spp. feature low shade tolerance as well.
However, due to a higher maximum age, more large trees survive compared to the second
group. In contrast, Acer pseudoplatanus is typically considered a shade-tolerant species, and
its seedlings achieve high survival and low but sustained growth under low light conditions
(Ammer, 1996). Nevertheless, shade tolerance considerably decreases when Acer seedlings
become taller, which may explain why mortality decreased strongly with size and growth for

this species (Hein et al., 2008).

The fourth group of Acer campestre, Carpinus betulus and Fraxinus excelsior is characterized
by medium life expectancy and medium to high shade tolerance. This is reflected in mortality
patterns with average mortality effects of tree size and growth, which bridge between the

second and the third group.

In contrast to the often proposed U-shaped mortality over tree size (Buchman et al., 1983;
Lorimer & Frelich, 1984), we did not find any evidence of a positive quadratic term for DBH
in the models. This agrees with the results of Ruiz-Benito et al. (2013) and a recent
assessment of inventory-based mortality models that revealed U-shaped mortality in four out
of 58 cases only (Hillsmann et al, 2017). Higher background mortality of large trees is
typically associated with a number of additional mortality agents such as insect attacks,
drought, rot or mechanical instability (Franklin et al., 1987; Das et al., 2016; Grote et al.,
2016). In the forest reserves studied here, the lack of U-shaped mortality is most likely related
to the relatively short time without forest management (approximately 60 years, exceptionally
>200 in Derborence and Scatle; cf. Heiri et al, 2011, Meyer & Schmidt, 2011).
Consequently, a large population of big trees that would show the right tail of the U-shaped
mortality is not present yet, in contrast to true old-growth forests (Hiilsmann et al., 2016; cf.

Appendix C for an extended discussion on U-shaped mortality over tree size and growth).

Climate and stand influences on mortality

The infrequency of additional covariates for climate or stand properties in the final models

does not necessarily disprove any direct long- or short-term environmental effects on
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mortality. Rather, this suggests that they are considered, at least to a large degree, via tree size
and growth. Our study provides ample evidence across a large number of tree species that size
(DBH) and growth (relBAI) sufficiently capture the influences of climatic and stand
conditions on mortality probability, and tree size and growth can thus be used as integrative
indicators of vitality (cf. Dobbertin, 2005). In a previous study, we showed that not only
precipitation and temperature but also a large variety of drought indices did not substantially
improve mortality predictions for Fagus sylvatica (Hilsmann et al., 2016), a result supported
by the findings of this study. Nevertheless, we were unable to test the influence of drought on
mortality for all species due to limited data on soil water conditions. In addition, intense
drought or bark beetle attacks may lead to sudden tree death (Peterken & Mountford, 1996;
Meddens et al., 2012) that cannot be elucidated with multi-annual re-measurements and
would require a higher temporal resolution via annual inventories (e.g., Neuner et al., 2015)
or dendrochronological data (e.g., Cailleret et al., 2017). Similarly, information on climate
and stand properties was available at the level of the permanent plots only rather than for the
local tree neighborhood, which may have impeded the identification of such effects on the

mortality probability of individual trees.

Species that had additional covariates in the final model belong to different groups with
respect to mortality patterns as a function of DBH and relBAI, and thus feature different life
history strategies. In addition, these models included different covariates and effect directions
(cf. influence of precipitation). Accordingly, the covariates do not reflect universal but rather
species-specific environmental influences that may additionally depend on the available
dataset, as discussed in more detail in Appendix C. Finally, none of the covariates interacted
with relBAI, suggesting that the growth influence on mortality is constant across different

environments.

Although we restricted our analysis to species with a minimum data coverage of 20 trees per
plot and at least 10 permanent plots, the results indicate that the estimation of environmental
effects on mortality critically depends on sufficiently wide and well supported environmental
gradients. Otherwise, questionable effects (Pinus mugo and Quercus pubescens, cf. Appendix
C) are likely to occur. In turn, this may have prevented additional covariates to be retained in
the models of other species, because many reserves are near the center of a species’ range.

Thus they do not encompass marginal populations with truly extreme conditions, which
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however is key for establishing the relationship between environmental effects and ecological

Processces.

Suitability of empirical mortality models for incorporation in DVMs
Calibration performance

Mortality models for implementation in DVMs need to predict accurate mortality rates
(Bircher et al., 2015; Cailleret et al., 2016). We therefore reported the relative variation in
prediction accuracy between inventories (rmad ppis), revealing considerable differences
between species. On the one hand, the high accuracy in predicting mortality rates was often
related to homogeneity of the underlying data (few permanent plots from one reserve only, cf.
Cornus mas). The mortality model for this species is thus not necessarily better than the
others, but it was fitted to rather homogeneous stand and site conditions. On the other hand,
low rmad ppi,s values were identified for three models that included additional covariates
(Alnus incana, Corylus avellana and Quercus pubescens). Thus, the covariates improved the
representation of variability in mortality between inventories in these datasets. Nevertheless,
prediction accuracy was considerably lower for other species, even if their model included a
climate or stand characteristic (e.g., Picea abies). This means that observed and predicted
mortality rates deviated considerably for several species and that the models under- or
overestimated annual mortality by up to 2.7 % (quantified as the absolute value mad pp;s; cf.

Table 3, Alnus incana) when applied in the calibration domain.

These findings confirm that the mortality process is highly variable in space and time (cf.
Hawkes, 2000; Wunder, 2007), and it remains challenging to explain this variability with
climate and/or stand characteristics using inventory data with a low temporal resolution. After
all, mortality processes are likely to always be subject to pronounced stochasticity due to the
complexity of biological, mechanical and competitive influences on mortality (Allen ef al.,
2015; Anderegg et al., 2015). Thus, it may be exceedingly hard to include these processes in
any mortality functions, even in the most ‘mechanistic’ approaches (Meir et al., 2015). This
suggests that more emphasis should be placed on the adequate representation of the
uncertainty in parameter estimates of empirical-based mortality functions. Parameter
combinations can be sampled within their confidence intervals in a stochastic way as we did

here, but we acknowledge that an even more beneficial approach would be to consider the
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cross-correlations between parameter values, which can be quantified, e.g. using Bayesian

methods (Hartig et al., 2012).

The differences in AUC between species and trees of different size and the related uncertainty
must be considered when empirically-based mortality models are used to simulate forest
dynamics in DVMs. Nevertheless, low AUC is less crucial for the implementation of
mortality functions in DVMs. Poor discriminative ability can be the result of mortality agents
that impair the relationship between mortality and the predictors chosen, or it can be due to
poor data sources. For example, the unsatisfactory discrimination of Ulmus glabra may be
caused by the rapid decline in response to infection with Ophiostoma novo-ulmi (Dutch elm
disease, Brasier, 2000) or by the small sample size used to calibrate its mortality function (cf.
Table 1). In turn, the poor discrimination between living and dead trees of Picea abies was
most likely caused by the impacts of small-scale windthrow, wet snow or insect attacks that

often result in sudden death irrespective of tree growth (Svoboda et al., 2010).

In a previous study, AUC patterns over DBH provided novel insights into the mortality
processes of Fagus sylvatica that are changing during a tree’s lifetime (Hiilsmann et al.,
2016). Our results for a much extended set of species confirm that the models’ discriminative
ability is decreasing with tree size also for several other tree species. This supports the
conclusion that competition, which disproportionally affects smaller trees (Das et al., 2016),
is the dominant mortality process reflected in the models. As competition becomes lower with
increasing size and other mortality agents gain importance (cf. Holzwarth et al., 2013), the
discriminative ability of the models is reduced. This is supported by the finding that Cornus
mas and Corylus avellana, which reach small DBH only, show an increase of AUC with size.
However, models of other species also retained good discriminative ability for larger DBH,
and except for Abies alba, all these species feature low shade tolerance. This suggests that in
shade-intolerant species even large trees may die due to competition, or due to mortality
agents affecting the same trees as competition, which confers mortality models a good

discrimination also in large individuals.

Considering that the behavior of parsimonious empirical models based on tree size and
growth was biologically meaningful for most species, and that their performance was quite
high and not impacted by changes in the sampling design (as supported by cross-validation),
we propose that the mortality algorithms developed here are suitable for implementation and

evaluation in DVMs. Since covariates for climate and stand were only rarely included and
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partly revealed ecologically questionable relationships, we only implemented models without
environmental covariates in ForClim. This appears appropriate since, from the species
concerned, only Picea abies and Quercus spp. are of importance in the simulated permanent

plots.

Implementation of the inventory-based mortality models in ForClim

Although the historical predictions of stand basal area and species composition based on the
new ForClim versions were generally close to observations, their performance was lower than
with ForClim 3.3, especially for two major tree species of Central Europe, Fagus sylvatica
and Picea abies. In addition, PNV could not be simulated adequately and showed a strong
overestimation of Fagus sylvatica (and Carpinus betulus in case of ForClim IM_mean). This
was much to the detriment of other species like Picea abies or Tilia spp., whose growth was
excessively reduced by low light availability. For Picea abies, the new empirical mortality
formulations prevented trees with DBH > 115 cm, although Picea abies in old-growth,
subalpine forests clearly can attain larger size (Hillgarter, 1971). The simulation performance
differed considerably among species, and poor results could be attributed to over- and
underestimation of mortality rates for different tree sizes. Overall, the calibration performance
of the inventory-based models was not necessarily a good predictor for the accuracy of the

simulation of species-specific B4 and Ng..q by ForClim.

Since growth is one of the main predictors of tree death, the parameters determining growth
and survival are highly correlated (Bircher, 2015). Hence differences between simulated and
observed growth rates may partly explain differences between simulated and observed
mortality rates. For instance, underestimated mortality rates of Fagus sylvatica, especially for
trees with DBH <20 cm, can be related to the overestimation of their simulated relative
growth rates (see Fig. S4). This systematic bias, which was also observed for Picea abies and
Pinus sylvestris (albeit to a lower extent), can originate from multiple sources such as an
inaccurate simulation of the effect of light availability or crown size on tree growth (Mina et
al., 2015), difficulties in the growth equation that is used to simulate diameter increment
(Moore, 1989), or an unrealistic stand initialization in ForClim. Because of the random and
even allocation of trees to an initial set of patches, which are then replicated to obtain 200
patches per simulation, the diversity in stand structure among patches at initialization is much
lower than observed in the field. Similarly, as ForClim does not track tree position, the

variability in competition intensity among trees may not be represented accurately enough.



162 Mortality models for eighteen tree species

Mortality predictions appeared particularly problematic for trees with DBH <10 cm and
> 60 cm (cf. Larocque et al., 2011; Bircher ef al., 2015). These difficulties are likely to result
from extrapolation since the inventory dataset is truncated for small DBH (calipering limit of
4 and 7 cm, cf. Material and methods), and contains fewer large trees than would occur in
true old-growth forests. In addition, different agents affect the mortality of large individuals
that may not be reflected well in the empirical mortality models (cf. AUC patterns over DBH).
When implemented in DVMs, U-shaped DBH-mortality functions may be preferable over J-
shaped ones to avoid the persistence of very large trees in long-term simulations, as observed
here with Fagus sylvatica. To implement this U-shape in spite of the poor data availability of
large trees, semi-empirical models that combine empirically-derived formulations with
theoretical adjustments (e.g., assuming a maximum DBH; Manusch et al., 2012) may be
required. In turn, mortality formulations for small trees should be refined using regeneration
surveys, inventories without calipering limit, stem cross-sections or experiments
(Wernsdorfer et al., 2008; Canham & Murphy, 2016; Evans & Moustakas, 2016). At the same
time, the representation of tree regeneration and establishment that similarly suffer from a
poor empirical foundation could be improved by extending mortality models to seedlings

(Wehrli et al., 2007).

Due to the non-linearity between the predictors and the mortality probability (cf. logit link
function), which is then transposed into a binary variable (tree death or survival) based on a
stochastic approach (see Bircher et al., 2015), accounting for uncertainty in model estimates
typically increases mortality rates. Although this approach can reduce systematic
underestimations of tree mortality rates and thus improve simulation accuracy (Vanoni et al.,
in prep.), it did not considerably increase mortality rates of Fagus sylvatica. This may be
related to the large number of records in the calibration dataset of this species, which resulted
in low parameter uncertainty. Nevertheless, accounting for uncertainty appears promising for
species for which inventory sample size is small and diversity in mortality patterns among
sites and individuals is high, and we therefore advocate evaluating this approach further

(Cressie et al., 2009).

Conclusion

We identified dominantly J-shaped mortality over tree size and growth across 18 tree species,

using inventory data from forest reserves. These patterns reflect the indirect influences of
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resource availability and tree vitality on mortality but rebut the assumption of a general
substantial instability of large trees. Furthermore, the patterns confirmed that size- and
growth-dependent mortality relationships are modulated by species-specific attributes such as

lifespan, shade and drought tolerance.

If species-specific models are unfeasible due to data limitations, we propose that lifespan and
stress tolerance should be used for the classification of tree species into PFTs to predict
mortality, but we think that this approach should be tested further (cf. Bircher, 2015).
Grouping species according to shade tolerance only disregards the strong impact of lifespan
on mortality and bears a high risk of erroneous projections. Since in some species (e.g.,
Cornus mas, Pinus mugo, Ulmus glabra) additional attributes modified the mortality patterns,
species-specific mortality models should be favoured over parameterizations for PFTs, so as

to obtain DVMs with an appropriate representation of demographic diversity.

Based on our analysis of the role of environmental co-variates in mortality models, we
conclude that tree size and growth alone are well suited to predict tree death of most species.
These models consider environmental effects indirectly, i.e. via integrative indicators of tree
vitality such as size and growth. Nevertheless, the climatic sensitivity of growth-based
mortality functions should be verified using data with higher temporal resolution, followed by
an in-depth evaluation in DVMs. Additionally, the predictive ability of tree size and growth is
restricted to mortality associated with particular DBH classes or growth levels. Thus,
processes such as short-term intense drought, mechanical damage or insect attacks may not be
fully reflected by these models (Larson & Franklin, 2010; Cailleret et al., 2017). Finally, we
emphasize that caution is required when additional covariates are considered in mortality
models. Their effects may appear erratically if the environmental gradient underlying the
observational data is insufficient. Applying such models means leaving the domain of
calibration, which can result in unwarranted extrapolation and misleading inference (Hawkes,
2000; Woolley et al., 2012; Kuhn & Johnson, 2013). Therefore, the selection of
environmental covariates in mortality models should be based on the principle of parsimony

(Sims et al., 2009; Burkhart & Tomé, 2012).

When incorporated in a DVM, the new inventory-based mortality models successfully
simulated short-term dynamics but showed weaknesses in simulating stand structure and
species composition in the long term. These difficulties were the result of feedbacks between

simulated growth and mortality as well as of extrapolation to small and very large trees. Thus,
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both, growth and mortality processes and their species-specific differences should be revisited
jointly, with a particular focus on small and very large trees, e.g. using a Bayesian calibration
approach (Hartig et al., 2012; Bircher, 2015). Yet, we conclude that inventory-based mortality
formulations can replace theoretical concepts of mortality in DVMs since they provide
species-specific mortality relationships that are not based on single parameters such as

maximum age and growth but on empirical relationships over a tree’s lifetime.

Considering the need to better simulate forest ecosystems and their response to climate
change, implementing accurate mortality functions in DVMs is of utmost importance due to
their cascading effects on recruitment, growth and mortality of the remaining trees, and
consequently on forest structure and species composition. We strongly recommend inventory-
based mortality formulations — in particular those that consider species-specific differences —

as a promising element to enhance the robustness and reliability of DVM projections.
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Appendix A — Table S1-6, Fig. S1-6

Table S1 Tree, stand and site characteristics that were considered as covariates in the mortality models. The
mean and standard deviation (in brackets) of each characteristic are given per tree species. Abbreviations:
DBH = diameter at breast height, re/BAI = annual relative basal area increment, mDBH = arithmetic mean DBH,
igrDBH = interquartile range of DBH, BA = stand basal area, N = number of trees, P = mean annual precipitation
sum, m7T = mean annual air temperature.

Soecies DBH  relBAI mDBH  igrDBH BA N P mT
P (mm) (O] (mm) (mm) (m*ha’") (ha) (mm) O
bies alb 139 0.018 230 195 47.9 827 1360 7.8
1es aiba (132) (0.021) (37) (53) (8.8) (196) (222) (1.1
Aeer campesire 80 0.021 161 113 31.0 1347 1100 9.0
P (37) (0.021) (28) (55) (6.1) (466)  (208) (0.5)

Aeer psendonlatans 215 0.014 236 161 41.7 854 1234 8.2
pseudop : (104) (0.020) (57) (49) (7.1) (353)  (162) (1.6)
s incana 163 0.035 175 105 28.4 1035 1013 9.0
(64) (0.030) (28) (51) (3.3) (341) 67) (0.6)

Betula vendula 218 0.020 200 143 30.7 836 1011 9.2
p (113) (0.020) 1) (61) (9.4) (316)  (192) (0.5)
Carvinus betul 151 0.011 227 163 36.7 824 985 92
arpmnus betutus 93) (0.015) (58) (48) (7.5) (398) (200) 0.4)
Cormus mas 49 0.018 151 100 26.8 1251 1017 8.9
§ ma: ®) (0.016) (16) (38) (5.8) (371) (42) (0.4)
Corvlus avellana 62 0.028 205 187 33.2 791 1082 9.6
i (19) (0.029) 31 (56) 6.1) (64) (130 (0.6)
Faeus svlvatica 255 0.016 269 170 39.6 691 1105 8.7
8US 5Y (159) (0.015) (82) (58) (1.7) (354)  (202) (0.9)
Fraxinus excelsior 171 0.031 187 131 322 1077 1134 8.8
: ! (107) (0.026) (48) (62) (8.6) @s3 177 (0.6)

Picea abies 300 0.015 303 230 45.8 596 1628 5.0
(194) (0.016) (86) (72) (10.0) (314)  (416) @.1)

P 151 0.015 168 104 24.0 925 1451 35
§ mug (75) (0.015) (34) (38) 9.1) (334)  (423) (1.9)

i vesiri 264 0.019 189 145 33.9 992 1000 8.9
HuS Sytvestris (124) (0.024) (36) (66) (13.7) (340) (246) (0.8)
Ouercus pubescens 156 0.019 144 84 28.1 1491 1005 9.0
p (76) (0.019) (18) @1 (5.9) (454) (60) (0.5)
Ouercus s 279 0.014 221 161 373 867 1129 9.2
§ SPp- (141) (0.012) (48) (51) (7.0) (368)  (212) (0.6)
Sorbus aria 86 0.026 172 120 35.6 1239 1256 8.3
37 (0.024) (28) (44) (10.2) (323)  (160) (0.7)

Tilia cordata 169 0.016 202 127 38.7 1110 1323 8.9
(106) (0.018) (45) (37) (5.0) (399) (220 (0.5)

143 0.040 182 123 29.7 964 1070 8.9

Ulmus glabra 92) (0.038) (29) (25) (6.1) (270) (197) (0:4)
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Table S2 Site descriptions of the permanent plots used for validation including information on location, plot size,
elevation and average climate conditions (mean annual air temperature and precipitation sum). The slope/aspect
parameter is an input of ForClim defined as 0 = flat terrain, 1 = steep slope (10 - 30 °), 2 = very steep slope
(> 30 °); the sign denote south-facing (+) respectively north-facing (-) slopes. The simulation period is the time
between the first and the last inventory, with n denoting the number of inventories.

Site Acronyms Loocation Area Elevation mT (°C) / Slope / Sim}llation
(°N/°E) (ha) (m a.s.l.) P (mm) aspect period (n)

Adenberg 01 Ad1 47.6/8.6 0.45 ~520 9.0/1017 +1 1970-2012 (5)
Adenberg_02 Ad2 47.6/8.6 0.45 ~500 9.0/1017 0 1970-2012 (5)
Adenberg_03 Ad3 47.6, 8.6 0.45 ~505 9.0/1020 0 1970-2012 (5)
Adenberg_04 Ad4 47.6/8.6 0.45 ~520 9.1/1006 +1 1970-2012 (5)
Bois de Chénes_01 BCl1 46.4/6.2 0.49 ~550 9.6/1075 0 1970-2007 (4)
Bois de Chénes_02 BC2 46.4,6.2 0.49 ~570 9.5/1094 +1 1970-2007 (4)
Bonfol 03 Bf3 4757172 0.53 ~440 9.5/1003 0 1962-2001 (5)
Fuerstenhalde_01 Ful 47.6, 8.5 0.53 ~460 9.2/ 1065 0 1971-2012 (4)
Fuerstenhalde_02 Fu2 47.6/8.5 0.53 ~470 9.2/1076 0 1971-2012 (4)
Girstel_04 Gi4 473,85 0.22 ~675 7.9/1297 -1 1964-2006 (5)
Girstel_11 Gill 47.3/8.5 0.14 ~720 8.1/1270 +1 1972-2007 (4)
Leihubelwald_02 Le2 46.9, 8.1 0.25 ~1240 6.1/1770 -1 1973-2011 (4)
Leihubelwald_03 Le3 46.9/8.1 0.24 ~1140 6.6 /1690 +1 1973-2011 (4)
Leihubelwald_04 Le4 46.9/8.1 0.25 ~1100 6.7 /1668 0 1973-2011 (4)
Pfynwald_01 Pfl 46.3/17.6 0.19 ~575 10/ 670 +1 1956-2003 (6)
Scatle 01 Scl 46.8/9.0 3.47 ~1650 3.7/1582 +1 1965-2006 (4)
St.Jean 01 SJ1 47.1,7.0 0.28 ~1375 4.7/1520 0 1961-2006 (5)
St.Jean 02 SJ2 47.1/17.0 0.44 ~1370 4.8/1510 0 1961-2006 (5)
Tariche Haute Cote_03 Ta3 4737172 0.91 ~735 8.1/1228 -1 1974-2012 (4)
Tariche Haute Cote_04 Ta4 473,72 0.56 ~740 7.9/1250 +1 1974-2012 (4)
Tariche Haute Cote_06 Ta6 4737172 0.54 ~720 8.1/1228 0 1976-2012 (4)
Tutschgenhalden_13 Tul3 47.5/8.8 0.25 ~600 9.1/1151 0 1971-2013 (4)
Tutschgenhalden 14 Tul4 47.5/8.8 0.58 ~580 9.1/1151 0 1971-2013 (4)
Vorm Stein_01 Vol 47.5/8.5 0.25 ~545 8.9/1144 +2 1972-2012 (4)
Vorm Stein_02 Vo2 47.6,8.5 0.24 ~540 9.2/1067 +2 1972-2012 (4)
Weidwald_02 We2 47.4/8.0 0.76 ~635 8.7/1163 0 1976-2011 (4)
Weidwald_03 We3 47.4/8.0 0.25 ~660 8.6/1180 0 1976-2011 (4)

Weidwald_04 We4 47.4/8.0 0.53 ~640 8.6/1180 +1 1976-2011 (4)
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Table S3 Parameter estimates, standard errors, significance levels (*** p < 0.001, ** p < 0.01, * p < 0.05) and
confidence intervals of the calibrated models. DBH = diameter at breast height (mm), re/BAI = annual relative basal
area increment, mDBH = arithmetic mean DBH (mm), BA=stand basal area (m’ha’), P=mean annual
precipitation sum (mm), m7 =mean annual air temperature (°C). The transformation threshold ¢ for the logst-
transformation of re/BAI was calibrated to the combined re/BAI values of all tree species (¢ = 0.002183).

Species Formula  Coefficient p se P Significance Ccl
Abies alba A7 Intercept -8.102 0.608 0.000 kol [-9.29,-6.91]
Abies alba A7 log(DBH) -0.456 0.052  0.000 kol [-0.56, -0.35]
Abies alba A7 logst(relBAI) -4.250 0.513 0.000 o [-5.26, -3.24]
Abies alba A7 (logst(relBAI))* -0.679 0.109  0.000 HHE [-0.89, -0.47]
Acer campestre A7 Intercept -7.231 1.389 0.000 HoHE [-9.95, -4.51]
Acer campestre A7 log(DBH) -0.913 0.171 0.000 Hokk [-1.25,-0.58]
Acer campestre A7 logst(re/BAI) -5.362 1.062 0.000 Hokk [-7.44, -3.28]
Acer campestre A7 (logst(relBAI)Y* -0.858 0.224 0.000 Hokk [-1.30, -0.42]
Acer pseudoplatanus A5 Intercept -0.125 0.661 0.850 [-1.42,1.17]
Acer pseudoplatanus A5 log(DBH) -1.426 0.115 0.000 Hokk [-1.65,-1.20]
Acer pseudoplatanus A5 logst(re/BAI) -1.390 0.123 0.000 Hokk [-1.63,-1.15]
Alnus incana B7 Intercept -10.228 1.539  0.000 HxE [-13.24,-7.21]
Alnus incana B7 log(DBH) -0.615 0.108 0.000 HHE [-0.83, -0.40]
Alnus incana B7 logst(relBAI) -4.007 0.562  0.000 HxK [-5.11,-2.91]
Alnus incana B7 (logst(relBAI))* -0.743 0.142  0.000 HHE [-1.02, -0.46]
Alnus incana B7 log(BA) 1.913 0.404  0.000 HxE [1.12,2.70]
Betula pendula A7 Intercept -7.997 0.760  0.000 HHE [-9.49,-6.51]
Betula pendula A7 log(DBH) -0.279 0.069  0.000 HHE [-0.41,-0.14]
Betula pendula A7 logst(relBAI) -4.896 0.672  0.000 HHE [-6.21, -3.58]
Betula pendula A7 (logst(relBAI))* -0.803 0.147  0.000 HxE [-1.09, -0.52]
Carpinus betulus A7 Intercept -2.685 0.786 0.001 HHE [-4.22,-1.14]
Carpinus betulus A7 log(DBH) -1.536 0.058 0.000 Hokk [-1.65,-1.42]
Carpinus betulus A7 logst(re/BAI) -4.401 0.612 0.000 Hokk [-5.60, -3.20]
Carpinus betulus A7 (logst(relBAI))* -0.754 0.124 0.000 Hokk [-1.00, -0.51]
Cornus mas A4 Intercept -14.030 1.581 0.000 HxE [-17.13, -10.93]
Cornus mas A4 logst(relBAI) -7.594 1.355 0.000 HxE [-10.25, -4.94]
Cornus mas A4 (logst(relBAI))* -1.286 0279 0.000 HHE [-1.83,-0.74]
Corylus avellana B7 Intercept -22.132 2.823 0.000 HoHE [-27.67, -16.60]
Corylus avellana B7 log(DBH) -1.025 0.186 0.000 Hokk [-1.39, -0.66]
Corylus avellana B7 logst(relBAI) -3.067 0.498 0.000 HHE [-4.04, -2.09]
Corylus avellana B7 (logst(relBAI))* -0.563 0.111 0.000 HHE [-0.78, -0.34]
Corylus avellana B7 log(P) 2.862 0.367  0.000 HxE [2.14,3.58]
Fagus sylvatica A7 Intercept -6.317 0.387 0.000 HHE [-7.08, -5.56]
Fagus sylvatica A7 log(DBH) -0.926 0.024 0.000 HHE [-0.97, -0.88]
Fagus sylvatica A7 logst(relBAI) -4.739 0316 0.000 HHE [-5.36,-4.12]
Fagus sylvatica A7 (logst(relBAI))* -0.741 0.065 0.000 HHE [-0.87,-0.61]
Fraxinus excelsior All Intercept 2.901 0.928 0.002 oK [1.08,4.72]
Fraxinus excelsior All log(DBH) -2.719 0.183 0.000 HHE [-3.08, -2.36]
Fraxinus excelsior All logst(relBAI) -1.053 0.574 0.067 [-2.18,0.07]
Fraxinus excelsior All (logst(relBAI)Y* -0.816 0.084 0.000 HAk [-0.98, -0.65]

Fraxinus excelsior All log(DBH):logst(relBAI) -0.842 0.091 0.000 HHE [-1.02, -0.66]
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Species Formula  Coefficient p se P Significance CcI
Picea abies BS Intercept -11.248 0466  0.000 HxE [-12.16, -10.34]
Picea abies BS log(DBH) -0.375 0.032  0.000 HxE [-0.44,-0.31]
Picea abies BS logst(relBAI) -0.763 0.043 0.000 HHE [-0.85, -0.68]
Picea abies BS log(mDBH) 1.294 0.090  0.000 HoxE [1.12,1.47]
Pinus mugo B3 Intercept -3.449 0.237  0.000 HxE [-3.91, -2.98]
Pinus mugo B3 logst(relBAI) -1.137 0.054  0.000 HHE [-1.24,-1.03]
Pinus mugo B3 sqrt(P) -0.095 0.006  0.000 HHE [-0.11, -0.08]
Pinus sylvestris A5 Intercept -0.237 0.421 0.573 [-1.06, 0.59]
Pinus sylvestris A5 log(DBH) -1.280 0.078 0.000 Hokk [-1.43,-1.13]
Pinus sylvestris A5 logst(re/BAI) -1.411 0.076 0.000 Hokk [-1.56, -1.26]
Quercus pubescens B7 Intercept -19.001 2.558 0.000 HHE [-24.02, -13.99]
Quercus pubescens B7 log(DBH) -2.563 0.127 0.000 Hokk [-2.81,-2.31]
Quercus pubescens B7 logst(re/BAI) -8.032 0.976 0.000 Hokk [-9.94, -6.12]
Quercus pubescens B7 (logst(relBAI))* -1.358 0.209 0.000 Hokk [-1.77,-0.95]
Quercus pubescens B7 log(mT) 7.500 1.028 0.000 Hokk [5.49,9.52]
Quercus spp. B7 Intercept -9.354 0.909  0.000 HxE [-11.14,-7.57]
Quercus spp. B7 log(DBH) -1.828 0.064  0.000 HxE [-1.95,-1.70]
Quercus spp. B7 logst(relBAI) -7.352 0.591 0.000 HHE [-8.51,-6.19]
Quercus spp. B7 (logst(relBAI))* -1.220 0.125 0.000 HHE [-1.46,-0.98]
Quercus spp. B7 log(BA) 1.496 0.150 0.000 HHE [1.20, 1.79]
Sorbus aria A7 Intercept -9.305 0.873 0.000 HxE [-11.02, -7.59]
Sorbus aria A7 log(DBH) -0.712 0.121 0.000 ok [-0.95, -0.48]
Sorbus aria A7 logst(relBAI) -7.328 0.711 0.000 HHE [-8.72,-5.93]
Sorbus aria A7 (logst(relBAI))* -1.330 0.157 0.000 HHE [-1.64,-1.02]
Tilia cordata A9 Intercept 6.545 1.903 0.001 HHE [2.81, 10.28]
Tilia cordata A9 log(DBH) -2.891 0.424  0.000 HxE [-3.72, -2.06]
Tilia cordata A9 logst(relBAI) 2.680 0.774  0.001 HxE [1.16,4.20]
Tilia cordata A9 log(DBH):logst(relBAI) -0.846 0.171 0.000 HHE [-1.18,-0.51]
Ulmus glabra A3 Intercept -4.893 0.263 0.000 HAk [-5.41, -4.38]
Ulmus glabra A3 logst(relBAI) -0.495 0.136 0.000 HHE [-0.76, -0.23]
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Table S4 Most promising additional climate and stand characteristic and its most suitable transformation (log,
square root or none) per tree species. Those additional covariates were selected that resulted in the lowest BS when
included in the most flexible model (cf. Table 3, Formula C12 with different transformations of the additional

characteristics).

Species Additional characteristic
Abies alba log(igrDBH)
Acer campestre log(P)

Acer pseudoplatanus mT

Alnus incana log(BA)
Betula pendula log(P)
Carpinus betulus sqrt(igrDBH)
Cornus mas log(N)
Corylus avellana log(P)

Fagus sylvatica log(N)
Fraxinus excelsior log(P)

Picea abies log(mDBH)
Pinus mugo sqrt(P)

Pinus sylvestris sqrt(mDBH)
Quercus pubescens log(mT)
Quercus spp. log(BA)
Sorbus aria log(P)

Tilia cordata sqrt(B4)

Ulmus glabra

log(P)
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Table S5 Parameter estimates, standard errors, significance levels (*** p < 0.001, ** p < 0.01, * p < 0.05) and
confidence intervals of the alternatively calibrated models without additional climate or stand characteristics.
DBH = diameter at breast height (mm), 7e/BAI = annual relative basal area increment. The transformation threshold
¢ for the logst-transformation of re/lBAI was calibrated to the combined relBAI values of all tree species

(c=0.002183).

Species Formula  Coefficient B se p Significance CI

Alnus incana A7 Intercept -3.889 0.717  0.000 ok [-5.29, -2.48]
Alnus incana A7 log(DBH) -0.603 0.107  0.000 ok [-0.81,-0.39]
Alnus incana A7 logst(relBAI) -4.041 0.556  0.000 ok [-5.13,-2.95]
Alnus incana A7 (logst(relBAI))* -0.769 0.140  0.000 ok [-1.04, -0.50]
Corylus avellana AS Intercept 1.008 0.793  0.204 [-0.55,2.56]
Corylus avellana AS log(DBH) -1.173 0.181  0.000 ok [-1.53,-0.82]
Corylus avellana AS logst(relBAI) -0.544 0.066  0.000 ok [-0.67,-0.42]
Picea abies A3 Intercept -6.011 0.098  0.000 ok [-6.20, -5.82]
Picea abies A3 logst(relBAI) -0.821 0.044  0.000 ok [-0.91, -0.74]
Pinus mugo A3 Intercept -6.819 0.128  0.000 ok [-7.07,-6.57]
Pinus mugo A3 logst(relBAI) -1.133 0.055  0.000 ok [-1.24,-1.03]
Quercus pubescens AS Intercept 3.553 0.587  0.000 ok [2.40, 4.70]
Quercus pubescens AS log(DBH) -2.375 0.121  0.000 ok [-2.61,-2.14]
Quercus pubescens AS logst(relBAI) -1.714 0.094  0.000 ok [-1.90, -1.53]
Quercus spp. A7 Intercept -4.088 0.728  0.000 ok [-5.51,-2.66]
Quercus spp. A7 log(DBH) -1.848 0.063  0.000 ok [-1.97,-1.73]
Quercus spp. A7 logst(relBAI) -7.651 0.588  0.000 ok [-8.80, -6.50]
Quercus spp. A7 (logst(relBAI))* -1.301 0.124  0.000 ok [-1.54,-1.06]




176 Mortality models for eighteen tree species

Table S6 Site-specific RMSE and rbias (%) of BA and N, simulated by the three ForClim version 3.3,
IM_mean and IM_sd at the last inventory of every permanent plot. For each permanent plot and variable of
interest, the lowest RMSE and the rbias closest to zero were highlighted in bold. Trees with DBH < 4 cm were
not considered.

Species basal area (BA) Number of dead stems per ha (V)
Permanent plot 33 IM_mean IM_sd 33 IM_mean IM_sd

RMSE  rbias  RMSE  rbias  RMSE  rbias | RMSE  rbias RMSE  rbias RMSE  rbias
Adenberg_01 1.5 1.4 3.4 16.3 3.1 6.7 2.9 -44.8 4.7 -64.2 4.4 -55.3
Adenberg_02 1.6 -0.5 3.0 11.8 34 4.6 1.5 -40.7 2.5 -63.6 2.4 -50.8
Adenberg_03 1.3 6.0 29 21.9 2.8 13.7 2.9 -50.4 4.2 -72.2 4.0 -63.6
Adenberg_04 1.2 5.3 39 18.7 4.1 10.2 31 -51.8 4.4 -66.9 4.2 -57.0
BoisdeChenes_01 4.4 -21.1 2.9 -12.2 34 -21.3 0.5 14.1 0.2 -28.0 0.3 2.9
BoisdeChenes 02 1.3 -1.2 0.3 -0.5 29 -26.6 1.7 -17.5 1.4 -39.5 1.4 12.0
Bonfol 03 4.0 -6.4 1.8 1.9 29 -26.4 1.1 3.0 0.8 -39.5 0.7 8.5
Fuerstenhalde 01 %) 11.6 6.4 30.9 72 20.9 1.4 -43.5 22 -64.6 23 -46.6
Fuerstenhalde 02 6.2 46.7 10.9 79.0 10.2 73.2 3.8 -58.8 5.1 =174 4.8 -73.4
Girstel 04 24 -12.0 2.8 -6.8 34 -13.8 2.0 -43.6 1.8 -42.5 1.5 -26.9
Girstel 11 3.6 10.0 52 18.8 6.5 8.3 1.8 -29.9 2.3 -34.8 2.6 -13.7
Leihubelwald 02 3.8 -15.1 3.8 -10.0 5.7 -17.0 1.7 -39.1 1.8 -52.8 14 -40.5
Leihubelwald 03 4.8 34 7.1 154 9.6 6.5 0.9 5.7 5.4 -37.0 42 -24.9
Leihubelwald 04 2.7 -1.7 44 -10.1 6.0 -16.8 31 -354 4.7 -58.1 3.5 -45.6
Pfynwald 01 3.6 -70.0 1.7 -41.7 22 -49.6 1.7 -18.2 1.8 -23.2 1.7 -21.0
Scatle 01 6.6 213 1.5 -4.9 1.5 -4.9 4.4 -70.7 3.2 -50.4 32 -50.9
St.Jean_01 7.6 -36.7 4.6 -26.0 5.0 -323 1.0 46.4 1.2 -0.3 1.0 30.6
St.Jean_02 1.5 2.2 43 -21.7 4.1 -22.0 0.3 -17.9 0.6 -0.2 0.5 13.0
TaricheHauteCote_03 1.8 10.5 4.1 274 35 20.1 2.7 -37.3 2.8 -49.8 1.5 -27.6
TaricheHauteCote_04 | 3.0 -8.5 3.7 =29 3.8 -16.5 2.5 -55.5 2.8 -61.4 24 -44.4
TaricheHauteCote 06| 2.9 18.9 7.3 374 6.5 30.5 3.8 -32.5 3.8 -41.6 1.4 -16.7
Tutschgenhalden_13 5.5 4.5 39 18.2 3.2 11.0 1.1 -26.0 1.1 -43.1 0.9 -27.8
Tutschgenhalden_14 1.9 -2.2 1.8 10.8 2.0 4.8 0.6 -40.4 0.9 -61.3 0.8 -48.9
VormStein_01 33 -1.4 4.1 12.7 3.8 4.9 1.3 -16.9 1.6 -33.1 1.1 -17.5
VormStein_02 1.6 -14.0 1.4 -8.2 22 -16.8 0.9 -22.0 0.8 -37.1 0.6 -16.3
Weidwald_02 1.9 18.2 5.0 36.0 4.8 29.4 0.9 -41.4 1.7 -57.6 1.6 -43.5
Weidwald_03 5.4 34.7 9.8 58.1 8.9 50.2 2.0 -51.6 3.0 -68.7 2.7 -59.8
Weidwald_04 3.2 353 4.9 47.5 5.1 23.8 1.0 -35.6 1.5 -40.8 1.9 31
Number of plots
with best 18 15 8 10 2 3 15 15 4 3 9 10
performance
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Fig. S1 Prediction maps of ten-year mortality probability as a function of DBH and re/BAI for minimum,
medium and maximum conditions of the additional covariate included in the model. Only species for which the
final model included an additional climate or stand characteristic are shown. The respective level of the

covariate, i.e., mDBH, BA, P and mT, is indicated in each sub-plot. Axes have the same scales as in Fig. 1.
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Fig. S2 Prediction maps of ten-year mortality probability as a function of DBH and relBAI for the alternative
models without the additional climate or stand characteristic. Axes have the same scales as in Fig. 1.
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Fig. S3 AUC values calculated separately for DBH classes to assess the influence of tree size on the
discriminative power. DBH classes are approximately equally-sized with the number of classes adjusted to the
number of records available per species. The limits of the classes are indicated as rugs. The grey dashed line at
AUC = 0.5 indicates discrimination as good as random mortality assignment.
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Fig. S4 Growth (re/BAI) simulated by ForClim (blue) in comparison with observed growth from the inventory
data (red) as a function of DBH for the species Fagus sylvatica, Picea abies and Pinus sylvestris. Data is shown
for the last inventory used for model calibration at two example permanent plots per species. Dots indicate
observed or simulated values. Lines and polygons show the fit of Generalized Additive Models (GAM) with
95% confidence bands.
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Fig. S5 Observed growth (relBAI) from inventory data as a function of DBH. Dots indicate observed values.

Lines and polygons show the fit of Generalized Additive Models (GAM) with 95% confidence bands.
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Fig. S6d Species-specific N, separately per DBH class (cm) observed (leftmost bar; from inventory data) and
simulated by the three model versions of ForClim (from left to right: ForClim 3.3, IM_mean; IM_sd).
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Appendix B — Extended material and methods

Logst-transformation

The logst-transformation is based on the common

logarithm and modifies small and zero observations such

that the transformation yields finite values (Stahel, 2015; = 087
cf. http://stat.ethz.ch/~stahel/regression/regr0.pdf). Below = 06
threshold ¢, the transformation continues linearly with 0.4

the derivative of the log curve at this point (cf. Figure on I— i T T
the right, ¢ = 5). The transformation threshold c¢ is
calibrated based on the data, following the rationale that
for lognormal data 2 % of the values are identified as small. In this study, ¢ was calibrated for

the combined re/BAI values of all species (¢ =0.002183).

Climate data

Temperature and precipitation data were derived using the DAYMET model (Thornton et al.,
1997; available from Landscape Dynamics, WSL), interpolating MeteoSwiss station data to a
grid of 1 ha cell size. Daily minimum and maximum temperatures as well as daily
precipitation sums were derived for each permanent plot by calculating the average of the
DAYMET cell that included the center of the permanent plot and the eight surrounding cells,
following Rasche et al. (2012). In the mortality models, we considered mean annual air
temperature (m7) and mean annual precipitation sums (P). The same data were used for short-

term ForClim simulations.

Model selection

In a first step, the most promising climate or stand characteristic and its most suitable
transformation (log, square root or none) were identified for each species. To this end,
covariates were included in highly flexible models, i.e., model formulae that can capture even
complex influences of DBH and re/BAI on mortality (cf. Table 2, Formula C12 with different
transformations of the climate and stand characteristics) and the covariate was selected that
resulted in the smallest mean Brier Score (BS). BS corresponds to the mean squared error of

the model defined as
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n
1
BS = EZ('PLM - }’i)z
=1

and ranges between 0 and 1 with low values indicating good calibration (i.e., correct mortality
rates) and good discrimination (i.e., correct attribution of dead/alive status; cf. Harrell, 2015).
BS does, however, not allow for the comparison of models based on different datasets since it
depends on the overall outcome incidence, i.e., the overall mortality rate, which differs

between species (Steyerberg et al., 2010).

In a second step, the final model was selected from a large set of model formulas (cf. Table 2)
with varying complexity and flexibility considering the terms log(DBH), logst(relBAI), their
interaction and the respective quadratic terms (Formulas 1-12). These were analyzed without
an additional covariate (A1-12), with the most promising climate or stand characteristic (B1-
12) and with this characteristic and its interaction with logst(re/BAI) (C3-12). A 10-fold cross-
validation scheme and the ‘one standard error rule’ (Breiman et al., 1984; Hastie ef al., 2001)
were applied to select the most parsimonious mortality model. A stratified sampling scheme
was employed in each fold to achieve roughly the original proportion of dead vs. living trees.
Brier score (BS) values per fold were used to estimate the respective mean (meanBS) and
standard error (seBS). To achieve robust estimates, the 10-fold cross-validation was repeated

20 times and meanBS and seBS were averaged, as suggested by De'ath and Fabricius (2000).

Model performance was considered as equal where the BS distribution fulfilled the condition
meanBSequar < (meanBSpeg + 5€BShes) With BSguqa and BSjes denoting the BS of the optional
and the best model, respecitively (Breiman et al., 1984). From all models with equal

performance, the simplest formula was selected based on Table 2.

For models that included an additional climate or stand characteristic, also an alternative
model without that covariate was derived to compare its performance with the respective full
model. These were selected by applying the ‘one standard error rule’ only to the formulae

Al-12.

AUC from cross-validation

Following Airola et al. (2009), cross-validation 4UC was derived by first calculating A4UC

separately for each cross-validation fold, which were then averaged. Again, cross-valiation
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was repeated 20 times and the mean of all AUC values was reported (De'ath and Fabricius

2000).

Performance criterion pj;,s

Prias» Which indicates calibration accuracy, is defined here as the difference of the mean

predicted annual mortality probability (‘simulated mortality’) p,,_, and the mean annual
mortality rate (‘observed mortality’) y,,_,. To this end, the ‘simulated mortality’
D, = L Diac/n and the ‘observed mortality’ y,, = X y;/n were averaged for observations

and predictions with the same mortality period length Az. To render the values comparable,
mean simulated and observed mortality rates were re-scaled to one year before calculating the

overall mean. Taking the example of the ‘simulated mortality’, this can be formulated as
1
Ppe=1 = 1— (1- pAt)At

References

Airola A, Pahikkala T, Waegeman W, De Baets B, Salakoski T (2009) A comparison of AUC estimators in
small-sample studies. In: 37d International workshop on Machine Learning in Systems Biology (MLSB
09). pp 15-23.

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees, Belmont, Wadsworth.

De'ath G, Fabricius KE (2000) Classification and regression trees: A powerful yet simple technique for
ecological data analysis. Ecology 81(11), 3178-3192.

Harrell FE (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal
regression, and survival analysis, Cham, Springer International Publishing.

Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and
prediction, New York, Springer.

Rasche L, Fahse L, Zingg A, Bugmann H (2012) Enhancing gap model accuracy by modeling dynamic height
growth and dynamic maximum tree height. Ecological Modelling 232, 133-143.

Stahel W (2015) regr0: Building regression models. R package version 1.0-4/r46.

Steyerberg EW, Vickers AJ, Cook NR et al (2010) Assessing the performance of prediction models: a
framework for traditional and novel measures. Epidemiology 21(1), 128-138.

Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large
regions of complex terrain. Journal of Hydrology 190(3-4), 214-251.



Chapter 4 189

Appendix C — Extended discussion

U-shaped mortality

In addition to the discussion in the main document, we like to point out that the identification
of mortality patterns strongly relies on the approach used. Thus, multivariate models, i.e.,
models including several tree characteristics such as size and growth, may elucidate a
different picture than when observed mortality rates are analyzed as a function of DBH only.
This is because a joint analysis of the influence of tree size and growth on mortality may
implicitly result in U-shaped mortality over DBH since most of the relevant mortality agents
do not result in abrupt death but may also decrease the tree’s vitality and thus its growth.
Although we aimed to minimize the correlation of tree size and growth by using a relative
measure of growth, i.e., relBAI, a slight growth trend was identified for several species (cf.
Fig. S5). Reduced growth at large DBH can lead to higher mortality probabilities of large
trees in predictions for the calibration data, even though no quadratic DBH term is included in
the formula. Bearing these interdependencies in mind, the shape of mortality over DBH
identified by a model strongly depends on its explanatory variables and on the degree of their
correlation. In our models, dependencies were most evident for Ulmus glabra, where relBAI
first increased and again decreased with DBH. This resulted in higher mortality probabilities
of large trees when the model was applied to the calibration data, although DBH was not

explicitly included in the model.

All models revealed that only slow-growing trees have a higher mortality risk and fast growth
was not associate with lethal stress. This is contrasting with the growth-differentiation balance
hypothesis, which suggests a U-shaped mortality over re/BAI (Herms & Mattson, 1992; e.g.,
supported by Wunder et al., 2008). Instead, quadratic relBAI terms were always negative and
thus resulted in a hump-shaped mortality pattern, which caused lower risk for very slow-
growing trees and may be the result of re/BAI = 0, and thus the logst-transformation. Finally,
growth patterns before death strongly change according to the source of mortality (Cailleret et

al., 2017).

Climate and stand influences on mortality

When interpreting the effect direction of additional covariates, it must be taken into account

that the distribution of the explanatory variables DBH and relBAI may not be independent of
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the environment, i.e., trees may be small and grow slowly under unfavorable conditions
without being exposed to stress. Consequently, a tree with the same size and growth may have
a higher chance to survive at a dry site since it is more vigorous compared to a tree having the
same attributes at a moist site. Such adaptive strategies (cf. Rose et al., 2009; Aranda et al.,
2015) are indicated by effect directions that are opposite to those expected by stress theory,

i.e., lower instead of higher mortality probability, e.g., under dry conditions.

The mortality probability of Picea abies increased with mDBH, i.e., a tree of the same size
and growth experiences a higher probability to die in older stands with a greater proportion of
large trees. This can be attributed to the high susceptibility of this species to infestation by the
bark beetle Ips typographus L., which preferentially attacks large host trees (Mezei et al.,
2014; Sproull et al., 2015). In addition, stands including many large and thus tall trees may
also experience a higher risk of windthrow (Mayer ef al., 2005).

Similarly, Alnus incana and Quercus spp. exhibited a greater mortality risk in stands with
higher basal area (BA), which corresponds to their low shade tolerance that seems not fully
reflected by small size and slow growth. Thus, trees of these species die more often when

exposed to high competition (cf. Rohner et al., 2012).

Mortality of Pinus mugo was lower at sites with greater precipitation. However, most of the
observations originated from two reserves with strongly differing stand dynamics, history and
site conditions. E.g., mortality of Pinus mugo is enhanced by fungi and bark beetles in the dry
Swiss National Park, while these mortality agents are less relevant at the other site (Dobbertin
et al., 2001; Brang et al., 2014). Therefore, we argue that the environmental gradient of this
species was not sufficient to robustly estimate the effect of additional covariates and identify

the drivers of the observed differences.

In contrast, mortality of Corylus avellana increased with precipitation. This may be the result
of adaptation such that a tree with equal size and growth experiences a higher mortality
probability at a site with higher precipitation because here, trees typically grow faster and
have a larger size. In addition, interspecific competition may be larger under more moist
conditions since competing tree species, e.g., Fagus sylvatica, reach larger dimensions, and

thus the mortality probability of less competitive species increases.

Bearing in mind the thermophilous character of Quercus pubescens, its higher mortality

probability at higher mean temperature suggests a similar adaptive process, especially



Chapter 4 191

considering that the Swiss stands are close to its northern distribution limit (San-Miguel-
Ayanz et al., 2016). However, the number of permanent plots available for this species was

rather low, and thus the results should be interpreted with caution.

References

Aranda I, Cano FJ, Gasco A et al. (2015) Variation in photosynthetic performance and hydraulic architecture
across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water
stress. Tree Physiology 35(1), 34-46.

Brang P, Bugmann H, Haller R, Heiri C, Huber M (2014) Der lange Weg zur Waldwildnis. In: 100 Jahre
Forschung im Schweizerischen Nationalpark. (eds Baur B, Scheurer T) Bern, Haupt. pp 212-233.

Cailleret M, Jansen S, Robert EMR et al. (2017) A synthesis of radial growth patterns preceding tree mortality.
Global Change Biology 23(4), 1675-1690.

Dobbertin M, Baltensweiler A, Rigling D (2001) Tree mortality in an unmanaged mountain pine (Pinus mugo
var. uncinata) stand in the Swiss National Park impacted by root rot fungi. Forest Ecology and
Management 145(1-2), 79-89.

Herms DA, Mattson WJ (1992) The dilemma of plants: To grow or defend. Quarterly Review of Biology 67(3),
283-335.

Mayer P, Brang P, Dobbertin M, Hallenbarter D, Renaud JP, Walthert L, Zimmermann S (2005) Forest storm
damage is more frequent on acidic soils. Annals of Forest Science 62(4), 303-311.

Mezei P, Grodzki W, Blazenec M, Skvarenina J, Brandysova V, Jakus R (2014) Host and site factors affecting
tree mortality caused by the spruce bark beetle (Ips typographus) in mountainous conditions. Forest
Ecology and Management 331, 196-207.

Rohner B, Bigler C, Wunder J, Brang P, Bugmann H (2012) Fifty years of natural succession in Swiss forest
reserves: changes in stand structure and mortality rates of oak and beech. Journal of Vegetation Science
23(5), 892-905.

Rose L, Leuschner C, Kockemann B, Buschmann H (2009) Are marginal beech (Fagus sylvatica L.)
provenances a source for drought tolerant ecotypes? European Journal of Forest Research 128(4), 335-
343.

San-Miguel-Ayanz J, de Rigo D, Caudullo G, Durrant TH, Mauri A (eds) (2016) European Atlas of Forest Tree
Species, Luxembourg, Publication Office of the European Union.

Sproull GJ, Adamus M, Bukowski M, Krzyanowski T, Szewczyk J, Statwick J, Szwagrzyk J (2015) Tree and
stand-level patterns and predictors of Norway spruce mortality caused by bark beetle infestation in the
Tatra Mountains. Forest Ecology and Management 354, 261-271.

Wunder J, Brzeziecki B, Zybura H, Reineking B, Bigler C, Bugmann H (2008) Growth-mortality relationships
as indicators of life-history strategies: A comparison of nine tree species in unmanaged European
forests. Oikos 117(6), 815-828.



192 Mortality models for eighteen tree species




193

Synthesis

In this thesis, I aimed to analyze patterns of tree death and to advance empirically-based
mortality formulations. To this end, I assessed the predictive behavior and the transferability
of available models to new environmental conditions, developed and evaluated new species-
specific mortality formulations and implemented these in the dynamic forest model ForClim.
In the following, I aim to synthesize the results of the four chapters. In particular, I comment
on (1) the state of the art in empirical mortality modeling, (2) the suitability of different
calibration datasets, (3) the patterns of tree death with respect to tree size and growth, (4) the
climatic sensitivity of mortality predictions and (5) the performance of empirical mortality
formulations in Dynamic Vegetation Models (DVMs). I conclude by outlining what I believe
to be fruitful strategies to further improve the understanding and prediction of mortality using

empirical models.

State of the art in empirical tree mortality modeling

In Chapters 1 and 2, I systematically analyzed empirical mortality models that have been
published in the last decades with respect to their general structure, predictive behavior and
suitability for simulating tree mortality, with a particular focus on their structural suitability
for implementation in DVMs. Literature search revealed an increasing number of studies
since the turn of the millennium that used inventory and dendrochronological datasets to
develop mortality models of individual trees. These intensified efforts can be considered as a
response to previous calls asking for more emphasis on tree mortality as a key process of
large-scale vegetation dynamics (Allen & Breshears, 1998) and an improved, empirically-
based quantification of tree death in models of forest dynamics (Hawkes, 2000; Bugmann,
2001; Keane et al., 2001). However, the studies differ considerably in the approaches used for
model development (cf. Cailleret et al., 2016). In addition, mortality models were typically
calibrated using datasets that are restricted with respect to site, species and time, thus

complicating and limiting their application and comparison.

Therefore, it seemed beneficial to synthesize the various models, e.g., by carrying out a

multivariate meta-analysis (Jackson et al., 2011). By doing so, the effect sizes of the
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individual mortality predictors could have been systematically combined to obtain more
general estimates of the effects, e.g., of tree size and growth. However, it was impossible to
separate the effect of single variables due to the nonlinear link between the mortality
probability and its predictors, i.e., the logit link function (Bagos & Adam, 2015), and the
different period lengths of the mortality probability. In addition, covariance matrices that

would have been necessary for multivariate meta-analysis were typically not reported.

Instead, I compared the available mortality models at the level of their predictions by applying
them to inventory and tree-ring datasets. In Chapter 1 (cf. Hiilsmann et al., 2017), 1 used
inventory-based mortality models from all over Europe to predict the probability of tree death
for inventory data in Swiss and German forest reserves and compared the predictions with the
observed tree status. This model validation using independent datasets constitutes a rigorous
examination of model transferability and, for the first time, allowed for the comparison of
mortality patterns at the European scale. The results indicate that many mortality models can
be applied successfully beyond their calibration domain. However, others failed to match
observed mortality patterns or achieved low prediction or classification accuracy. In addition,
it was possible to identify particularly suitable modeling strategies. Specifically, mortality
rates were predicted with higher accuracy by models that included covariates for growth or
competition at the level of individual trees and that were applied in a similar ecological
context. Furthermore, the results emphasize the pivotal importance of tree growth to achieve a

good discrimination between dead and living trees.

The approach that I applied to obtain these findings has two main restrictions: (1) the
mortality models that were calibrated with data from all over Europe could only be validated
with data from Central European forests, and (2) the validation data were collected in
unmanaged stands only, i.e., managed forests were not used as a reference. Since different
mortality rates and patterns are assumed to prevail in managed vs. unmanaged stands (Bravo-
Oviedo et al., 2006), 1 assessed if the predictive accuracy of mortality models from
unmanaged forests was superior to that from managed forests when validated with the reserve
data. Although no clear effect was found, this issue may require additional verification, e.g.,
using validation data from forests with different management intensities, such as data from

National Forest Inventories (NFI).

In Chapter 2, I analyzed the large variability of mortality predictions more closely. To this

end, I also considered tree-ring-based mortality models that were applied to
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dendrochronological data. The predictive behavior of the models was compared using a
hierarchical cluster analysis, which, however, revealed no distinct patterns with respect to
model characteristics or the calibration species. These results reflect the diversity of
approaches in mortality modeling and emphasize that these differences do not modify
mortality predictions in a systematic manner. The predictions from tree-ring-based mortality
models were characterized by even larger diversity than those from inventory-based models,

in particular due to different sampling schemes (cf. Calibration datasets).

The mortality studies analyzed in Chapters 1 and 2 differed considerably concerning
calibration data, methodology and covariates considered. As these characteristics influence
the suitability of a model for being applied in a new context, a comprehensive model
documentation, covering the data and their processing, the model development and the
covariate selection would be essential, but unfortunately was often not provided. This strongly
complicated the analyses that were carried out in Chapters 1 and 2. Among others, it was
necessary to get in contact with several authors in order to adequately reconstruct their
models, e.g., because of unreported units or erroneous model specifications (cf. Chapter 1,
Table S4). Finally, the diameter range that is covered in the calibration data was not reported

in several publications, which may result in accidental extrapolation of the models.

In conclusion, the review of mortality studies revealed that the availability of empirical
mortality models has increased strongly in the last decades. Their incorporation in DVMs,
however, still lags behind (Bircher, 2015). Developers of such models may benefit from the
systematic presentation of model characteristics, parameterization and expected mortality
predictions of inventory and tree-ring-based mortality models (cf. Chapter 1, Fig. S12 and
Chapter 2, Fig. 2). This would stimulate the evaluation of currently available mortality
algorithms and finally may lead to more empirical mortality formulations being incorporated

in DVMs.

Calibration datasets

In this thesis, a wide range of inventory and tree-ring-based mortality models were developed
and/or evaluated in calibration, validation and simulation, revealing different assets and
drawbacks of the two data sources. During the last decades, inventory datasets have been
explored extensively for the development of mortality models; already 46 European models

were independently validated in Chapter 1 alone. The analysis of the drivers of validation
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performance of these models revealed no effect of data amount on prediction or
discrimination accuracy, and even models based on a few hundred observations only resulted
in reliable mortality patterns. This suggests that the models were not restricted by the amount
of calibration data. Other factors, however, are likely to have dominated the transferability of
the mortality formulations to our reserve data, i.e., the predictors considered and the degree of
similarity between calibration and validation sites and stands. I conclude that datasets for the
development of mortality models do not necessarily need to be large to obtain high validity
within their calibration domain. Yet, the risk that the mortality patterns and rates are
unreliable increases if models are calibrated using very small datasets with few death events
only. If models of higher generality are sought, datasets covering a larger number of stands
along sufficiently wide and well-replicated environmental gradients are of great importance
for detecting environmental effects on the mortality probability. This was shown in Chapter 4
(cf. Hiilsmann et al., in prep.), where poorly supported gradients resulted in questionable

environmental effects in the models (cf. Climatic sensitivity of mortality models).

Using inventory data for the development of tree mortality models that include growth
variables requires a set of three inventories per tree and thus results in a strong aggregation of
growth and mortality information over multiple years. This may have complicated the
identification of environmental effects to explain spatial and temporal variability in mortality
in Chapters 3 (cf. Hiilsmann et al., 2016) and 4. The low temporal resolution can be regarded

as the major disadvantage of inventory data for the calibration of mortality models.

As shown in Chapter 2, mortality predictions of tree-ring-based models are highly sensitive to
the sampling scheme (cf. Cailleret et al., 2016). In turn, it is clear that none of the possible
schemes based on dendrochronological data alone can provide reliable mortality rates at the
stand scale. The paired sampling forces mortality probabilities to vary around an average
value of 50 % (cf. Chapter 2, Fig. 2). Yet, the ‘all-years-approach’ considering all available
observations mimics mortality probabilities at a similar level to that of stand-scale mortality
rates, at least for small trees, and has been successfully incorporated in a DVM (Bircher et al.,
2015). Nevertheless, this sampling involves a bias towards dead trees at larger diameter
(Wunder et al., 2008b; Cailleret et al., 2016). Therefore, we fitted mortality models to
observations from tree-ring data that were re-sampled with respect to inventory-based
mortality rates (Vanoni et al., in prep.). This approach allowed for combining the annual

resolution of growth observations in dendrochronological data with stand-scale mortality rates
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(cf. Das et al., 2007). Although the calibration performance of these models was considerably
high, the re-sampling of limited tree-ring data introduced a bias since single trees were highly
influential if only few trees were available in a diameter class. Consequently, we observed a
high uncertainty of model estimates, in particular for small and large trees. Accounting for
these uncertainties when implementing the tree-ring-based mortality formulations in ForClim
improved the simulations because it reasonably increased mortality. We conclude that the
approach appears promising in theory but the re-sampling strategy is crucial, in particular for
small tree-ring datasets. This suggests that, in contrast to findings of Wunder et al. (2008b),
models based on tree-ring datasets suffer more from restricted data amounts than those based

on inventory data.

Assessing data on tree populations in the field nearly always involves a sampling bias
(Morrison & Marcot, 1995). The following issues should be considered if long-term datasets
are used for the calibration of mortality models based on tree size and growth. In forest
inventories, trees are measured only if their diameter at breast height (DBH) exceeds the
calipering limit (i.e., ingrowth). The aggregation of three re-measurements per tree to obtain
one mortality record may result in a systematic bias for ingrowth for two reasons: (1) trees
with a DBH close to 4 or 7 cm in the second inventory must have grown slowly between the
first and second measurement (cf. Fig. 1), and (2) using tree-ring data from dead trees only
and aggregating all available observations (i.e., sampling scheme 7; cf. Cailleret et al., 2016)
may create a bias towards fast growth for small trees since many small and slow-growing
trees died but decayed before they could be sampled. In addition, a bias towards slow growth
for larger trees may occur since these are expected to show reduced vitality prior to death (cf.
Bigler & Bugmann, 2003; Nehrbass-Ahles ef al., 2014; Vanoni et al., 2016). Thus, the size-
specific growth patterns from the two data sources are distinctly different. I suggest that the
bias involved in inventory-based approaches is rather small, whereas it may be inappropriate
to estimate the relationship between tree size, growth and mortality from tree-ring data
including dead trees only. In any case, the sampling of the underlying data must be considered

for interpreting patterns of mortality.
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Fig. 1 Absolute growth (annual diameter increment, D/) from inventory data (red) in comparison with growth
from tree-ring data (gray) as a function of DBH for the species Abies alba, Acer pseudoplatanus, Fagus
sylvatica, Picea abies and Quercus spp.. Note that the data do not allow for assessing the sampling bias and its
consequences for the mortality models due to different patterns of death observations. Dots indicate the observed
growth values. Lines and polygons show the fit of Generalized Additive Models (GAM) with 95% confidence
bands.

This thesis provides multiple evidence that the prediction of mortality is particularly crucial
for very small and very large trees. Inventory-based models revealed highly variable

predictions for the mortality probability of small trees (cf. Chapters 1 and 2), whereas the
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discrimination ability was usually lowest for large trees (cf. AUC patterns over DBH,
Chapters 3 and 4). Similar uncertainties in mortality predictions were found when inventory
and tree-ring-based models were incorporated in ForClim, i.e., the prediction of tree death
was particularly problematic for DBH < 10 cm and > 60 cm (cf. Chapter 4 and Vanoni et al.,
in prep.). First, this can be attributed to the limited amount of data supporting mortality
predictions for small and large trees. Inventory data are typically truncated at a specific DBH,
wich is often higher than in the forest reserves investigated here (e.g., 10 cm; cf. Eid & Tuhus,
2001). In dendrochronological samples, small (dead) trees are underrepresented since they
may decay faster and it is more difficult to crossdate their short ring width series (Nehrbass-
Ahles et al., 2014). Large trees are underrepresented in most European forests in general.
Thus, mortality predictions for small and large trees are prone to extrapolation when such
models are incorporated in DVMs. Often, this can not be avoided since little empirical
evidence is available for mortality patterns of smaller trees. In addition, DVMs are
particularly sensitive to biased mortality predictions for trees with small and large DBH, i.e.,
survival of small trees strongly shapes the species composition and, in the long term, the
simulated stand structure (Wernsdorfer et al., 2008), whereas survival of large trees defines
light availability for all other trees on a patch as well as key stand attributes such as carbon
storage (cf. Chapter 4). Second, the nature of mortality varies during the lifetime of a tree
(Harcombe, 1987). With increasing tree size, competition becomes less relevant, and more
complex mortality agents gain importance (Franklin et al., 1987). Mortality models may thus
be less accurate in predicting the correct tree status at large DBH (cf. AUC patterns over DBH,
Chapters 3 and 4).

Patterns of tree mortality with respect to tree size and growth

In this thesis, mortality models were developed based on two main predictors, which were
identified as highly suitable to accurately predict tree mortality: tree size and radial stem
growth. This is supported by the assumption that the dimensions of a tree represent its access
to resources and constraints on the hydraulic system (Grote et al., 2016) but also its
susceptibility to mechanical damage. In turn, radial growth provides an indication of tree
vitality (Harcombe, 1987; Dobbertin, 2005). With a few exceptions only, mortality over tree
size and growth (assessed as relative basal area increment, re/BAI) was reverse J-shaped in the
inventory-based models (cf. Chapters 3 and 4). The predictions of most previously published

mortality models based on inventory and tree-ring data confirmed this patterns (cf. Chapters 1
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and 2). I conclude that this provides strong evidence for considering the reverse J-shaped form

as a general pattern of mortality in managed and unmanaged forests of Central Europe.

In turn, this suggests that most trees die because of competition. There is only little evidence
for pronounced instability of large trees (Holzwarth et al., 2013), which would have resulted
in U-shaped mortality that has often been proposed as a reasonable relationship of tree size
and mortality (Buchman et al., 1983; Lorimer & Frelich, 1984). In my case, only the data
from a primeval beech forest in Western Ukraine revealed a higher mortality risk for large
trees. This suggests that the processes that may act to amplify the mortality of large trees such
as stem rot or wind breakage develop only in stands that have not been managed for much
longer than the Swiss and German reserves. For the application in DVMSs, a U-shaped form of
mortality over tree size may be desirable from a mathematical perspective since it confines
tree age more strongly than a reverse J-shaped relationship. This may be necessary in ForClim
(and other DVMs) since large trees, mostly of Fagus sylvatica, showed a very high
persistence and strongly controlled the structure of unmanaged stands in long-term
simulations (cf. Chapter 4). Models that feature U-shaped mortality may perform more
similarly to the maximum age approach that is currently incorporated in ForClim (Bircher ef
al.,2015; Mina et al., 2015), and that was superior in simulating stand dynamics, in particular

for Fagus sylvatica.

In contrast, the tree-ring-based models indicated a clear U-shape of mortality over DBH, most
pronounced for slow growing trees (Vanoni et al., in prep.). This is surprising since the
models were developed based on dendrochronological data re-sampled using the same
inventory data as for the inventory-based models. These distinct mortality patterns likely
result from differences in the model selection approach (more robust formulae were favored
in selecting inventory-based models, cf. Chapter 4) and in the sampling characterizing the
underlying data sources (different patterns of tree size and growth, cf. Fig. 1). In addition, the
mortality predictors in the tree-ring-based models were not log-transformed. It is therefore
difficult to compare the patterns obtained from the two model types. I suggest that mortality
relationships found using inventory data are more reliable since they feature a lower sampling

bias. In addition, the re-sampling procedure should be revisited to address the sampling bias.

It must also be taken into account that the type of the growth variable influences not only the
growth-mortality relationship but also the shape of mortality with respect to tree size, if the

covariates for size and growth are correlated. This is more likely true for absolute growth
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variables, e.g., diameter increment (DI) or ring width (RW, used in the tree-ring-based
models). In contrast, relative measures of growth, e.g., relBAI, are less correlated with tree
size (compare Fig. 1 and Chapter 4, Fig. S5 for absolute and relative growth, respectively).
For identifying mortality patterns with respect to tree size and growth, the predictors should
be correlated only weakly (Dormann et al., 2013), and thus relative growth measures are more

suitable.

The relationships between mortality and its main predictors, tree size and growth, that were
considered in this thesis are relatively simple, i.e., only a linear and a quadratic term were
tested. Other authors suggested that more flexibility is required to capture the relationship
between tree size, growth and death, and thus they applied restricted cubic splines or non-
parametric Bayesian methods (e.g., Wunder et al., 2007; Metcalf et al., 2009). In contrast, the
model selection used in Chapters 3 and 4 avoids complex models that are not well supported
by the data but favors parsimonious models that are suitable for the robust prediction of
mortality, in particular outside their calibration domain (Hawkins, 2004). Since the newly
developed models achieved similarly high performance as more flexible approaches (cf.
Wunder et al., 2008a), I recommend these simpler models as promising alternatives that
require fewer parameters and are much easier to be reconstructed (cf. model coefficients of
restricted cubic splines, Chapter 1, Table S4). Correspondingly, the relationships between log-
transformed growth and mortality that were identified using restricted cubic splines may be
approximated well using a linear and a quadratic term (cf. Wunder et al., 2008a, Fig. 5).
However, suitable transformations should be considered for the explanatory variables
(Mosteller & Tukey, 1977). Finally, more flexible relationships may be considered with the
focus on a detailed analysis of mortality patterns. In this case, higher flexibility should not be
restricted to growth but should also be applied to tree size (cf. Chapter 1, Fig. 1 and
Chapter 2, Fig. 1+2).

Based on the mortality patterns that were identified for a wide range of species in Chapter 4, [
identified lifespan and stress tolerance as the most important attributes for characterizing the
species-specific relationship of tree size, growth and mortality (cf. Wunder, 2007). Thus, I
suggest these characteristics to be used jointly for the classification of tree species into ‘Plant
Functional Types’ (PFTs) if species-specific models are not feasible due to data limitations.
However, this approach should be further verified (cf. Bircher, 2015). In European temperate

forests, where disturbance-related mortality and large dieback are rare, species may exhibit
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rather similar mortality rates and patterns (Allen et al., 2010). In ecosystems that are more
strongly shaped by insect- or drought-related, large-scale mortality events, species should
probably be grouped more cautiously due to differences in their susceptibility to biotic attacks
(Clancy et al., 2013). Unfortunately, the large differences in model approaches and the
pronounced variability in predicted mortality probabilities made it impossible to verify the
need for species-specific models or the suitability of the grouping that was proposed in

Chapter 4 based on the genealogy constructed in Chapter 2.

Despite their high performance as predictors of tree mortality, the predictive power of size
and growth is restricted to mortality agents that are associated with particular DBH classes or
growth levels. Since tree death is a complex process, the unexplained variability of the model
remains typically high (AUC are rarely > 0.9; cf. Boeck et al., 2014). This ‘stochastic’ part of
mortality, which in the reserve dataset probably is mostly associated with mechanical damage
or insect attacks (Larson & Franklin, 2010), may constrain the performance of empirical
mortality models at a certain, probably species-specific limit that cannot be exceeded (cf.
Chapter 3 and 4). These small-scale disturbances are reflected in the intercept of the mortality
models and ensure correct mortality rates at least for the calibration data, but do not improve
the discrimination accuracy of a model, i.e., AUC. The low ability of the mortality models that
I developed to simulate the highly variable mortality rates (cf. rmad pp;qs, Chapter 4) suggests
that it is rather difficult to explain the spatial variability of mortality with tree characteristics.
As also environmental covariates only weakly improved the mortality models (cf. Chapter 3
and 4), improved concepts for integrating the stochasticity in mortality simulations should be
considered and evaluated, e.g., by accounting for the uncertainty in parameter estimates (cf.

Chapter 4 and Vanoni et al., in prep.).

Climatic sensitivity of mortality models

Tree mortality studies are often justified by the need for understanding and predicting the
reactions of ecosystems to future environmental change (Adams et al., 2013), in particular to
drought (McDowell ef al., 2013b). Inherently, this implies that mortality formulations need to
be sensitive to climatic conditions. Three main pathways to achieve this may be distinguished:
(1) empirical models that explicitly include environmental covariates (e.g., Dietze &
Moorcroft, 2011; Neuner et al., 2015), (2) empirical models that are based on predictors that

themselves respond to environmental conditions, and (3) truly mechanistic models that



203

explicitly incorporate the physical and biological processes involved (e.g., McDowell et al.,
2013a). The advantages as well as the restrictions of empirical and mechanistic approaches
have been discussed comprehensively in Adams et al. (2013). I believe that mechanistic
models are excellent to test hypotheses, disentangle the underlying processes and, in general,
improve our understanding of the highly complex process of tree death. As long as this
knowledge remains restricted, empirical modeling may serve as a relatively simple and

adequate solution to simulate tree mortality.

Environmental covariates are considered in empirical models with two distinct goals: (1) to
account for the spatial and temporal variability in the relationship of tree characteristics and
mortality, i.e., to improve model applicability and generality, and (2) to allow for mortality
simulations that respond to environmental conditions and respective changes. Thus, today’s
spatial differences are used as a proxy for future climate change, i.e., space is considered as a
surrogate for time (Pickett, 1989; Pearson & Dawson, 2003). This approach was
comprehensively evaluated in Chapter 3 and 4. To this end, I studied the mortality of 18
European tree species along environmental gradients and explicitly considered a wide range
of environmental covariates in models that predict tree mortality based on size and growth. In
contrast to expectations, additional climate and stand characteristics only weakly improved
the prediction and discrimination accuracy and were therefore retained in the model for a few
species only. The following factors may explain this finding: tree size and growth implicitly
reflect environmental influences on mortality (e.g., stand density is well reflected by tree
growth, with the advantage of growth being assessed at the level of single trees and density
only at the plot level); inventory data provide growth and mortality information aggregated
over several years and thus only poorly reflect short-term processes; environmental covariates
were available at the level of permanent plots and thus may have lower explanatory power for
the mortality probability of a single tree; and detailed drought effects could only be analyzed
for Fagus sylvatica (cf. Chapter 3) since data on soil water conditions for other species were

limited.

Moreover, the environmental effects retained in the models were not always ecologically
plausible (cf. Chapter 4), suggesting that the data requirements for deriving climate-sensitive
mortality models are particularly high. Suitable datasets should encompass broad
environmental gradients including marginal populations with a considerable replication of the

site conditions. In my opinion, it is therefore necessary to constrain the variable selection and
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aim for model robustness and parsimony in order to avoid questionable and insecure effects.
Therefore, a future increase of mortality due to climate change may not be directly assessable
from such parsimonious mortality models. This is in contrast to current trends of high impact
journals that strive for raising great attention in and beyond the scientific community. |
believe that such trends may bias the outcome of current mortality studies. Due to a robust
model selection, the models that I developed remained simple and thus agree with the concept
of parsimony that is especially helpful when mortality functions are to be implemented in

DVMs (Hawkins, 2004).

As tree growth is a surrogate indicator for the carbon balance of an entire tree (Kobe &
Coates, 1997), models may implicitly account for the effects of climate and stand
characteristics on mortality. Under stress, radial stem growth has lower priority than
photosynthetic tissue and root growth and well reflects the factors that impair the vitality of a
tree, e.g., drought, frost, competition and pests (Dobbertin, 2005). Hawkes (2000) thus
proposed growth as a biologically reasonable mortality predictor and even as a ‘resolution to
the mechanistic-empirical divide’. Mortality models that respond to the environment via tree
growth are appealing since radial stem growth is already simulated in many DVMs, and thus
the approach retains simplicity and parsimony. Nevertheless, the adequacy of this assumption
cannot be verified with the data at hand, and the combined response of tree growth and
mortality to environmental drivers should be investigated further, e.g., using data with higher
temporal resolution and better coverage of environmental gradients. In addition, the
propagation of climatic signals via growth to mortality should be studied in a simulation
environment, e.g., by applying ForClim and evaluating the effects of drought on simulated
tree growth and subsequently on mortality. Finally, experiments and mechanistic models may
assist in disentangling the relationships between environment, tree characteristics and
mortality (Adams et al., 2013). Although intra-specific genetic variation may additionally
affect the relationship between mortality and its predictors (Anderegg, 2015), I consider
environmental effects as more substantial and suggest that their estimation should have
priority. Finally, the identification of genetic influences on mortality and their interaction with
the environment may require excessively large datasets and thus may not be feasible with

observational data.

Both empirical approaches, however, are restricted to today's climate gradients while future

conditions may be beyond current extremes (Bugmann, 2014). Thus, the relationships
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between mortality and its predictors are extrapolated when applied under future climate
scenarios. To be implemented in DVMs, growth-based mortality formulations additionally
require that tree growth is simulated adequately in response to future climates. However, it is
impossible to test if the relationships between climate, growth and mortality will remain
stable in a changing environment, in particular since plasticity and local adaptation may alter
current mortality patterns (Morin & Thuiller, 2009). This emphasizes that mortality
algorithms will require ongoing refinement and verification based on experiments and

observations of tree reaction, particularly during extreme drought events.

Empirical mortality models in DVMs

The mortality models derived in Chapter 4 were incorporated in the DVM ForClim and
evaluated based on short- and long-term simulations. Similar to an earlier attempt (cf. Bircher,
2015), the simulations obtained with the new mortality models were inferior to the current
version of ForClim, although to a lower extent. This lower performance has been attributed to
the growth model in ForClim, since both processes are strongly intertwined (Bugmann, 2014).
Since the mortality models were developed based on the same data that were used for the
historical (short-term) simulations with ForClim, i.e., within the domain of forest reserves in
Central Europe, the interdependencies of growth and mortality could be analyzed more
closely. To this end, simulated growth and mortality were compared with the respective
observations to detect discrepancies in the process representation in ForClim. While the
overall level of simulated tree growth appeared promising, its variability was underestimated
(cf. Chapter 4, Fig. S4), among others due to the insufficient spatial heterogeneity in the
ForClim simulations. Since the trees were allocated randomly and evenly to the initial set of
patches, both the more open and the denser parts of the stands are not represented. Patches
with high competition may develop during the simulation, but this ‘diversification’ appeared
rather slow. In addition, the simulation of size-specific growth revealed shortcomings, in

particular for small trees and for Fagus sylvatica.

Two consequences arise for the simulation of mortality: (1) the lack of growth extrema, in
particular of low growth values, results in an underestimation of mortality due to the
nonlinear link between growth and mortality, and (2) under- or overestimated growth for
specific size classes produces incorrect patterns of mortality over tree size and distorts the

simulated stand structure. Thus, the influences of tree size and growth on mortality cannot be
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analyzed independently. For enhancing the performance of inventory-based mortality models
in DVMs, I suggest that a more realistic representation of growth variability could improve
the mortality predictions for several species. For Fagus sylvatica, however (and possibly also
for some species of minor importance), the growth calculation for small trees should be
reconsidered. The growth module in DVMs typically simulates no biotic and mechanical
damage nor reduces tree growth in response to such factors, which however are of great
importance for forest dynamics. For that reason, simulated growth has a lower ability than
observed growth to accurately predict mortality, albeit biotic and mechanical damage are
probably less relevant for reduced growth than competition and environmental stress

(Dobbertin, 2005).

Finally, the strong effect of tree growth on mortality may explain why the calibration
performance of inventory-based models and their performance in ForClim were related only
weakly (cf. Chapter 4). More precisely, the variation of the prediction accuracy between sites
and inventory periods for the developed models (rmad ppiss) Was not correlated with the root
mean square error (RMSE) of stand characteristics simulated by ForClim. Also, high
discrimination accuracy (AUC) did not necessarily guarantee a high performance of the
species’ model in the DVM simulation. This does not disprove the advantage and suitability
of the measures that I used to assess calibration performance, but rather emphasizes that the
differences between observed and simulated growth dominated the behavior of the mortality
formulations. Addressing these differences may allow for further conclusions with respect to
the calibration performance and the performance levels that can be considered as being ‘good
enough’. In my thesis, such judgments were made subjectively, e.g., in Chapter 1, since
objective thresholds to identify ‘good performance’ are missing. Nevertheless, I would like to
emphasize the need for reporting the prediction accuracy of mortality models (i.e., ppiss OF
estimates describing its variability) since the correct prediction of mortality rates is a
fundamental requirement for simulations of forest dynamics using DVMs (cf. Bircher et al.,
2015; Cailleret et al., 2016). Until now, this aspect has often been neglected in the

development of tree mortality models, as only AUC was reported.

As indicated above, an improved representation of the variability of growth and mortality may
be essential to achieve more realistic mortality predictions in DVMs. Accounting for
parameter uncertainty strongly improved the ForClim simulations based on the tree-ring-

based mortality models, most likely due to the small sample size and the large uncertainty in
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the estimated parameters. Higher mortality probabilities were also the consequence of using
this approach for the inventory-based models. Species that were underestimated already were
affected positively, but not so the very important species Fagus sylvatica. Since the
interactions of growth and mortality may have dominated the simulation results, I suggest that
accounting for parameter uncertainty should be further evaluated and may result in more
realistic and — as emphasized especially in Chapter 4 — more variable mortality rates. In this
context, Bayesian methods constitute a promising solution to account for uncertainty and

correlation among the parameters (Van Oijen et al., 2005).

Strategies for improved mortality predictions

In this thesis, the potential of empirically-based mortality models was determined and
mortality formulations for a wide range of European tree species were provided. Nevertheless,
also shortcomings of current mortality models were identified, suggesting the following

strategies for further advancements.

Representation of the sapling stage

To improve the mortality prediction for small trees, mortality in the DBH classes < 10 cm
should be analyzed in detail, e.g., using existing or newly installed regeneration surveys,
inventories without calipering limit, stem cross-sections or experiments (Wernsdorfer et al.,
2008; Evans & Moustakas, 2016). Following Kobe and Coates (1997) and Caspersen and
Kobe (2001), species-specific mortality models for individual saplings may be built based on
growth and site conditions, possibly complemented by a measure of size. To ensure their
predictive ability in a simulation environment, the simulation of growth for small trees should
be evaluated thoroughly using observational data. In contrast to mortality probabilities for
individuals, mortality algorithms for DVMs may be based on models that predict mortality
rates of particular DBH-cohorts depending on stand density and site conditions only. I expect
that the development of such models may provide robust estimates while requiring fewer data
(Lichstein et al., 2010). Finally, it must be considered that sapling mortality may be strongly
affected by ungulate browsing, the degree of which has a great potential for explaining the
recruitment potential of different tree species and its regional variability (Didion et al., 2011,

Clasen et al., 2015).
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Environmental influences on mortality

To explicitly address the temporal and spatial variability in mortality patterns and to verify the
climate sensitivity of mortality models via tree growth, the relationship between tree size,
growth, mortality and environmental conditions should be consolidated using data with high
temporal resolution such as annual inventories (e.g., Neuner et al, 2015) or
dendrochronological data (e.g., Gillner et al., 2013) along sufficiently wide and well-
replicated environmental gradients, preferentially at larger, e.g., European, scale. Provided
that such extensive datasets are available, environmental variables should be tested not only
as an additional term but also assuming nonlinear relationships (i.e., quadratic terms) and in
interaction with tree size and growth since the environment, e.g. drought, may act differently

on small vs. large or slow vs. fast growing trees (Grote et al., 2016).

Disturbance-related mortality

Future efforts should also address an improved representation of disturbance-related
mortality, both non-catastrophic, small-scale mortality and larger events of forest dieback,
which are likely to gain in importance under future climates (Seidl ef al., 2011). The results of
Chapter 3 revealed that mortality models from primeval forests, e.g. the Ukrainian beech
forest, may help to improve long-term predictions of Potential Natural Vegetation (PNV)
since they provide improved estimates of the mortality risk of very large trees. Such old-
growth forests have an extraordinary value to investigate and understand natural mortality and
its patterns including instability of large trees and disturbances. Nevertheless, other datasets
and tools than those proposed in this thesis are needed for incorporating disturbance-related
mortality more explicitly in a simulation context. To this end, the separation of mortality
agents is required, which is difficult because of strong interdependencies. Thus, mortality data
are needed that allow for assigning the reason of tree death — or a combination of several
mortality agents — to death events, which requires at least annual mortality assessments
including a detailed visual inspection of the dead trees (Holzwarth et al., 2013; Lutz, 2015). In
this context it would be particularly interesting to differentiate competition-induced mortality
and build a respective mortality model, most likely with a very high accuracy, and to address

other mortality agents, e.g., wind or insects, using process-oriented sub-modules.
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Empirical mortality models in DVMs

When incorporated in DVMs, the spatial and temporal variability in mortality should be
considered better, e.g., by accounting for uncertainty in the model parameters, and by making
sure that the spatial heterogeneity of the forest stand is adequately represented in the
initialization procedure of the model. The approach tested here could be further advanced
using Bayesian approaches that explicitly consider the correlation among parameters (Van
Oijen et al., 2005). Variability was also identified as an important feature of the simulation of
tree growth, emphasizing that the sub-modules of DVMs should have a good representation of

uncertainty (cf. Bircher et al., 2015).

The mortality models developed here were implemented in one particular DVM, taking
ForClim as a case study. To assess their suitability in a more general context, their
performance should be further evaluated in other models, e.g., SORTIE (Pacala et al., 1996),
FORMIND (Huth & Ditzer, 2000) or iLand (Seidl et al., 2012). In addition, I suggest to
evaluate previously published mortality models in DVMs, which is facilitated by the

systematic representation of their model coefficients (cf. Chapters 1 and 2).

Data requirements

Although several data sources have been used for modeling tree mortality, I am convinced
that more robust models and more reliable conclusions are possible if existing data are
explored more effectively and combined to larger datasets, and if new data are gathered with

the clear objective to address particular features of mortality. In summary, datasets should

(1) provide size, growth and mortality of saplings and trees at an annual resolution with a
representative sampling to allow for the derivation of stand-scale mortality rates,

(2) cover full environmental gradients that are quantified by meaningful and reliable
climate and stand characteristics including drought conditions and soil water
availability,

(3) specify the mode of death or reason for mortality, and

(4) be gathered in managed and unmanaged stands as well as in primeval forests to
include large tree sizes and old-growth stages, such that disturbance patterns become

evident.
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In spite of the large number of empirical mortality models and recent efforts towards
improved mortality formulations in DVMs, I believe that the empirically-based modeling of
tree mortality still holds a great potential. The strategies towards an improved understanding
and quantification of mortality that were developed based on the extensive analyses in this

thesis hopefully will facilitate such advancements.

This thesis allows one to systematically assess previous strategies for tree mortality modeling
for the first time and provides robust mortality models for a wide range of tree species. Their
mortality patterns could be related to species-specific life history strategies. Finally, the
analyses indicated the most important mortality factors and their importance in managed and
unmanaged forests in Europe. Due to the unique spatial extent and the extensive database in
combination with cautious, systematic analyses and modelling, the conclusions can be

transferred to a wider European context.

References

Adams HD, Williams AP, Xu C, Rauscher SA, Jiang X, McDowell NG (2013) Empirical and process-based
approaches to climate-induced forest mortality models. Frontiers in Plant Science 4, 438.

Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: Rapid landscape response
to climate variation. Proceedings of the National Academy of Sciences of the United States of America
95(25), 14839-14842.

Allen CD, Macalady AK, Chenchouni H et al. (2010) A global overview of drought and heat-induced tree
mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4),
660-684.

Anderegg WRL (2015) Spatial and temporal variation in plant hydraulic traits and their relevance for climate
change impacts on vegetation. New Phytologist 205(3), 1008-1014.

Bagos PG, Adam M (2015) On the Covariance of Regression Coefficients. Open Journal of Statistics 5(7), 680-
701.

Bigler C, Bugmann H (2003) Growth-dependent tree mortality models based on tree rings. Canadian Journal of
Forest Research 33(2), 210-221.

Bircher N (2015) To die or not to die: Forest dynamics in Switzerland under climate change. ETH Ziirich, PhD
Thesis, No. 22775.

Bircher N, Cailleret M, Bugmann H (2015) The agony of choice: different empirical mortality models lead to
sharply different future forest dynamics. Ecological Applications 25(5), 1303-1318.

Boeck A, Dieler J, Biber P, Pretzsch H, Ankerst DP (2014) Predicting tree mortality for European beech in
southern Germany using spatially explicit competition indices. Forest Science 60(4), 613-622.

Bravo-Oviedo A, Sterba H, Del Rio M, Bravo F (2006) Competition-induced mortality for Mediterranean Pinus
pinaster Ait. and P. sylvestris L. Forest Ecology and Management 222(1-3), 88-98.

Buchman RG, Pederson SP, Walters NR (1983) A tree survival model with application to species of the great-
lakes region. Canadian Journal of Forest Research 13(4), 601-608.

Bugmann H (2001) A review of forest gap models. Climatic Change 51(3-4), 259-305.



211

Bugmann H (2014) Forests in a greenhouse atmosphere: predicting the unpredictable? In: Forests and Global
Change. (eds Coomes DA, Burslem DFRP, Simonson WD) Cambridge, Cambridge University Press.

Cailleret M, Bigler C, Bugmann H et al. (2016) Towards a common methodology for developing logistic tree
mortality models based on ring-width data. Ecological Applications 26(6), 1827-1841.

Caspersen JP, Kobe RK (2001) Interspecific variation in sapling mortality in relation to growth and soil
moisture. Oikos 92(1), 160-168.

Clancy KM, Wagner MR, Reich PB (2013) Ecophysiology and Insect Herbivory. In: Ecophysiology of
Coniferous Forests. pp 125-180.

Clasen C, Heurich M, Glaesener L, Kennel E, Knoke T (2015) What factors affect the survival of tree saplings
under browsing, and how can a loss of admixed tree species be forecast? Ecological Modelling 305, 1-
9.

Das AJ, Battles 1J, Stephenson NL, Van Mantgem PJ (2007) The relationship between tree growth patterns and
likelihood of mortality: A study of two tree species in the Sierra Nevada. Canadian Journal of Forest
Research 37(3), 580-597.

Didion M, Kupferschmid AD, Wolf A, Bugmann H (2011) Ungulate herbivory modifies the effects of climate
change on mountain forests. Climatic Change 109(3-4), 647-669.

Dietze MC, Moorcroft PR (2011) Tree mortality in the eastern and central United States: Patterns and drivers.
Global Change Biology 17(11), 3312-3326.

Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a
review. European Journal of Forest Research 124(4), 319-333.

Dormann CF, Elith J, Bacher S ez al. (2013) Collinearity: a review of methods to deal with it and a simulation
study evaluating their performance. Ecography 36(1), 27-46.

Eid T, Tuhus E (2001) Models for individual tree mortality in Norway. Forest Ecology and Management 154(1-
2), 69-84.

Evans MR, Moustakas A (2016) A comparison between data requirements and availability for calibrating
predictive ecological models for lowland UK woodlands: learning new tricks from old trees. Ecology
and Evolution 6(14), 4812-4822.

Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process: the causes, consequences and
variability of tree mortality. BioScience 37(8), 550-556.

Gillner S, Riiger N, Roloff A, Berger U (2013) Low relative growth rates predict future mortality of common
beech (Fagus sylvatica L.). Forest Ecology and Management 302, 372-378.

Grote R, Gessler A, Hommel R, Poschenrieder W, Priesack E (2016) Importance of tree height and social
position for drought-related stress on tree growth and mortality. Trees 30(5), 1467-1482.

Harcombe PA (1987) Tree Life Tables. BioScience 37(8), 557-568.

Hawkes C (2000) Woody plant mortality algorithms: description, problems and progress. Ecological Modelling
126(2-3), 225-248.

Hawkins DM (2004) The Problem of Overfitting. Journal of Chemical Information and Computer Sciences
44(1), 1-12.

Holzwarth F, Kahl A, Bauhus J, Wirth C (2013) Many ways to die — partitioning tree mortality dynamics in a
near-natural mixed deciduous forest. Journal of Ecology 101(1), 220-230.

Hillsmann L, Bugmann H, Commarmot B, Meyer P, Zimmermann S, Brang P (2016) Does one model fit all?
Patterns of beech mortality in natural forests of three European regions. Ecological Applications 26(8),
2463-2477.

Hillsmann L, Bugmann H, Brang P (2017) How to predict tree death from inventory data — Lessons from a
systematic assessment of European tree mortality models. Canadian Journal of Forest Research.

Hillsmann L, Bugmann H, Cailleret M, Brang P (in prep.) How to kill a tree — Empirical mortality models for
eighteen species and their performance in a dynamic forest model.



212 Synthesis

Huth A, Ditzer T (2000) Simulation of the growth of a lowland Dipterocarp rain forest with FORMIX3.
Ecological Modelling 134(1), 1-25.

Jackson D, Riley R, White IR (2011) Multivariate meta-analysis: potential and promise. Statistics in Medicine
30(20), 2481-2498.

Keane RE, Austin M, Field C ef al. (2001) Tree mortality in gap models: Application to climate change.
Climatic Change 51(3-4), 509-540.

Kobe RK, Coates KD (1997) Models of sapling mortality as a function of growth to characterize interspecific
variation in shade tolerance of eight tree species of northwestern British Columbia. Canadian Journal of
Forest Research-Revue Canadienne De Recherche Forestiere 27(2), 227-236.

Larson AJ, Franklin JF (2010) The tree mortality regime in temperate old-growth coniferous forests: The role of
physical damage. Canadian Journal of Forest Research 40(11), 2091-2103.

Lichstein JW, Dushoff J, Ogle K, Chen A, Purves DW, Caspersen JP, Pacala SW (2010) Unlocking the forest
inventory data: Relating individual tree performance to unmeasured environmental factors. Ecological
Applications 20(3), 684-699.

Lorimer CG, Frelich LE (1984) A simulation of equilibrium diameter distributions of sugar maple (Acer
saccharum). Bulletin of the Torrey Botanical Club 111(2), 193-199.

Lutz JA (2015) The evolution of long-term data for forestry: Large temperate research plots in an era of global
change. Northwest Science 89(3), 255-269.

McDowell NG, Fisher RA, Xu C et al. (2013a) Evaluating theories of drought-induced vegetation mortality
using a multimodel-experiment framework. New Phytologist 200(2), 304-321.

McDowell NG, Ryan MG, Zeppel MJB, Tissue DT (2013b) Improving our knowledge of drought-induced forest
mortality through experiments, observations, and modeling. New Phytologist 200(2), 289-293.

Metcalf CJE, McMahon SM, Clark JS (2009) Overcoming data sparseness and parametric constraints in
modeling of tree mortality: A new nonparametric Bayesian model. Canadian Journal of Forest Research
39(9), 1677-1687.

Mina M, Bugmann H, Klopcic M, Cailleret M (2015) Accurate modeling of harvesting is key for projecting
future forest dynamics: a case study in the Slovenian mountains. Regional Environmental Change
17(1), 49-64.

Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in
species range shifts under climate change. Ecology 90(5), 1301-1313.

Morrison ML, Marcot BG (1995) An evaluation of resource inventory and monitoring program used in national
forest planning. Environmental Management 19(1), 147-156.

Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics, Reading, Addison-
Wesley Publishing Company.

Nehrbass-Ahles C, Babst F, Klesse S et al. (2014) The influence of sampling design on tree-ring-based
quantification of forest growth. Global Change Biology 20(9), 2867-2885.

Neuner S, Albrecht A, Cullmann D et al. (2015) Survival of Norway spruce remains higher in mixed stands
under a dryer and warmer climate. Global Change Biology 21(2), 935-946.

Pacala SW, Canham CD, Saponara J, Silander Jr JA, Kobe RK, Ribbens E (1996) Forest models defined by field
measurements: estimation, error analysis and dynamics. Ecological Monographs 66(1), 1-43.

Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are
bioclimate envelope models useful? Global Ecology and Biogeography 12(5), 361-371.

Pickett STA (1989) Space-for-Time Substitution as an Alternative to Long-Term Studies. In: Long-Term Studies
in Ecology: Approaches and Alternatives. (ed Likens GE) New York, Springer New York. pp 110-135.

Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in
Europe. Global Change Biology 17(9), 2842-2852.

Seidl R, Rammer W, Scheller RM, Spies TA (2012) An individual-based process model to simulate landscape-
scale forest ecosystem dynamics. Ecological Modelling 231, 87-100.



213

Van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: Bridging the gap
between models and data. Tree Physiology 25(7), 915-927.

Vanoni M, Bugmann H, Noétzli M, Bigler C (2016) Quantifying the effects of drought on abrupt growth
decreases of major tree species in Switzerland. Ecology and Evolution 6(11), 3555-3570.

Vanoni M, Cailleret M, Hiilsmann L, Bugmann H, Bigler C (in prep.) Tree mortality models from combined
tree-ring and inventory data: How do they affect projections of forest succession models?

Wernsdorfer H, Rossi V, Cornu G, Oddou-Muratorio S, Gourlet-Fleury S (2008) Impact of uncertainty in tree
mortality on the predictions of a tropical forest dynamics model. Ecological Modelling 218(3—4), 290-
306.

Wunder J (2007) Conceptual advancement and ecological applications of tree mortality models based on tree-
ring and forest inventory data. ETH Zurich, PhD Thesis, No. 17197.

Wunder J, Reineking B, Matter JF, Bigler C, Bugmann H (2007) Predicting tree death for Fagus sylvatica and
Abies alba using permanent plot data. Journal of Vegetation Science 18(4), 525-534.

Wunder J, Brzeziecki B, Zybura H, Reineking B, Bigler C, Bugmann H (2008a) Growth-mortality relationships
as indicators of life-history strategies: A comparison of nine tree species in unmanaged European
forests. Oikos 117(6), 815-828.

Wunder J, Reineking B, Bigler C, Bugmann H (2008b) Predicting tree mortality from growth data: How virtual
ecologists can help real ecologists. Journal of Ecology 96(1), 174-187.



214 Synthesis




215

Acknowledgments

This dissertation would not have been possible without the support and encouragement of a
large number of people. Special thanks go to my supervisors Peter Brang and Harald
Bugmann for their great support and advice, helpful discussions and the freedom I had for

choosing the focus of my PhD. In addition, I sincerely thank

. all the people that contributed to the project “Naturwaldreservate” at WSL and made
this immense data source possible,

. Peter Meyer for providing the German reserve data that allowed me to make more
robust statements on mortality, and for assisting with the interpretation of mortality
patterns in Lower Saxony,

. Brigitte Commarmot for the Ukrainian data and the insights into primeval beech
forests,

. Roger Kochli, Pascale Weber and Stephan Zimmermann for their assistance in
fieldwork and provision of soil data,

. Nicolas Bircher and Johannes Sutmdller for preprocessing the climate data,
. Marco Vanoni for his dendrochronological data and for the pleasant collaboration,

. Maxime Cailleret for stimulating discussions on the future of mortality modeling and
his guidance concerning the interpretation of ForClim simulations,

. Jan Wunder for inspiring discussions on tree mortality,

. Christoph Bachofen, Alexander Bast, Frank Breiner, Florian Hartig, Andreas
Ruckstuhl and Jiirgen Zell for statistical discussions and great advice,

. all my colleagues, especially the members of the research unit ‘Forest Resources and
Management’ at WSL and of the group ‘Forest Ecology’ at ETH, for providing a
pleasant and motivating atmosphere, both at work and during social hours,

. Jan Evers for introducing me to the world of scientific thinking and his support in
realizing my research ideas,

. Aline Frank for being such a great office mate and team partner in the PhD committee,
and for the fun and great cakes we had,

. Lena Hellmann for sharing this PhD experience with all its pleasures, doubts and
discoveries, and for providing the essential counterbalance to the office time, and

. last but not least, my friends and my family who made me forget tree mortality and R
coding. Without you, I would not have been able to complete this thesis. And it would
not have been worth it ... !



216




217

Lisa Hiillsmann
May 31, 1985
Bielefeld, Germany

Education
10/2012 - 09/2016

01/2013 - 05/2015

10/2008 - 03/2012

10/2005 - 09/2008

Curriculum vitae

Doctoral studies at WSL and ETH Zurich

Title: ‘Tree mortality in Central Europe: Empirically-based modeling
using long-term datasets’

Diploma of advanced studies ‘Applied Statistics’ at ETH Zurich

Master ‘Hydrogeology’ at University of Gottingen

Title: ‘Process-based hydrological modeling using SWAT:
Estimation of groundwater recharge in the large-scale river
catchment Kharaa / Mongolia’

Bachelor ‘Forest Science and Ecology’ at University of Gottingen

Title: ‘Infestation of mistletoe on Scotch pine in the region Hessian
Ried in correlation with groundwater lowering’

Work experience

03/2014 - 04/2016

12/2007 - 09/2012

10/2010 - 02/2011
06/2011 - 03/2012

02/2009 - 06/2009
10/2010 - 03/2011

Assistance in R courses at WSL

Introduction to R, advanced data management and manipulation
using R

Scientific assistant at NW-FVA

plausibility checks and processing of soil and forest monitoring data

Student assistant at University of Gottingen

supervision of international students, coordination

Student assistant at University of Gottingen

analysis of hydrological data, assistance in hydrogeological courses


https://www.researchgate.net/publication/316188611

	0_Titlepage
	1_TOC
	Content

	2a_Summary
	Summary

	2b_Zusammenfassung
	Zusammenfassung

	3_General_Introduction
	General introduction
	Tree mortality as a key process of forest dynamics
	Mortality formulations in DVMs
	Empirical tree mortality models: Approaches and challenges
	Data sources
	Objectives and structure of the thesis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4

	References


	4_Chapter_1
	How to predict tree death from inventory data – Lessons from a systematic assessment of European tree mortality models
	Abstract
	Key-words
	Introduction
	Material and methods
	Study sites and validation data
	Mortality models
	Model performance

	Results
	Model characteristics
	Mortality patterns
	Prediction accuracy
	Classification accuracy

	Discussion
	Documentation of mortality models
	Implications of pbias and AUC: How good is good enough?
	Species-specific differences in mortality
	Drivers of model performance
	Conclusions

	Acknowledgments
	References
	Appendix A – Tables S1-4, Fig. S1-12
	Appendix B – Extended material and methods
	Tree characteristics
	Stand characteristics
	Site characteristics
	Model application
	Prediction bias
	References



	5_Chapter_2
	A genealogy of mortality models based on inventory and tree-ring data
	Abstract
	Key-words
	Introduction
	Material and methods
	Mortality models
	Study sites and validation data
	Application of mortality models and assessment of their (dis)similarities

	Results and discussion
	Inventory-based mortality models
	Tree-ring-based mortality models

	Conclusion
	Acknowledgements
	References
	Appendix


	6_Chapter_3
	Does one model fit all? Patterns of beech mortality in natural forests of three European regions
	Abstract
	Key words
	Introduction
	Material and methods
	Study areas and sites
	Mortality information and tree characteristics
	Environmental and stand characteristics
	Mortality model
	Performance criteria
	Calibration and validation scheme

	Results
	Environmental and stand influences on mortality
	Mortality patterns
	Internal performance of mortality models
	External evaluation of mortality models

	Discussion
	Environmental and stand influences on mortality
	Mortality patterns
	Internal performance of mortality models
	External evaluation of mortality models
	Implications for mortality algorithms in DVMs

	Acknowledgements
	References
	Appendix A – Table S1-3, Fig. S1-3
	Appendix B – Extended material and methods
	Environmental characteristics
	Performance criterion pbias
	Model selection
	References



	7_Chapter_4
	How to kill a tree – Empirical mortality models for eighteen species and their performance in a dynamic forest model
	Abstract
	Key words
	Introduction
	Material and methods
	Study areas and inventory data
	Mortality information and tree characteristics
	Climate and stand characteristics
	Mortality models
	Model selection and performance criteria
	Implementation of inventory-based mortality models in ForClim
	Model description
	Simulation setup and model validation


	Results
	Size and growth influences on mortality
	Climate and stand influences on mortality
	Calibration performance
	Implementation of inventory-based mortality models in ForClim
	Short-term simulations
	Long-term simulations


	Discussion
	Species-specific patterns of mortality
	Climate and stand influences on mortality
	Suitability of empirical mortality models for incorporation in DVMs
	Calibration performance
	Implementation of the inventory-based mortality models in ForClim


	Conclusion
	Acknowledgements
	References
	Appendix A – Table S1-6, Fig. S1-6
	Appendix B – Extended material and methods
	Logst-transformation
	Climate data
	Model selection
	AUC from cross-validation
	Performance criterion pbias
	References

	Appendix C – Extended discussion
	U-shaped mortality
	Climate and stand influences on mortality
	References



	9_Sythesis
	Synthesis
	State of the art in empirical tree mortality modeling
	Calibration datasets
	Patterns of tree mortality with respect to tree size and growth
	Climatic sensitivity of mortality models
	Empirical mortality models in DVMs
	Strategies for improved mortality predictions
	Representation of the sapling stage
	Environmental influences on mortality
	Disturbance-related mortality
	Empirical mortality models in DVMs
	Data requirements

	References


	Acknowledgements
	Acknowledgments

	CV
	Curriculum vitae


