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CHAPTER 5 
 

THE CONTRIBUTION OF LATERAL AQUATIC HABITATS 

TO MACROINVERTEBRATE DIVERSITY ALONG RIVER 

CORRIDORS 
 

Ute Karaus, Helene Guillong & Klement Tockner, submitted 

 

The lateral dimension of biodiversity along river corridors has been given scant 

attention in river ecology. Therefore, the objective of the present study was to 

quantify the distribution and diversity of lateral aquatic habitats and their 

associated macroinvertebrate communities along three river corridors 

(Tagliamento, Thur, and Rhône) in the Alps. A nested sampling design was 

applied. Along each corridor, 1-km long segments were surveyed at 10-km 

distances (14 to 17 sections per corridor). Within each segment, the main channel, 

parafluvial ponds, backwaters, and tributaries were sampled for Ephemeroptera, 

Plecoptera and Trichoptera (EPT-taxa). Overall, 159 EPT-taxa were identified in 

119 composite samples, which was between 73% and 77% of the total expected 

richness along each corridor. Lateral habitats contributed >50% to total corridor 

species richness. Diversity was hierarchically partitioned to quantify the relative 

proportion contribution of individual samples, habitats, and corridors to overall 

diversity (three river corridors). Among-sample and among-corridor diversity 

components contributed most to total EPT-taxa richness, while <15% was due to 

within-sample and among-habitat diversity components. The present study clearly 

emphasises the importance of lateral aquatic habitats for maintaining high aquatic 

biodiversity along river corridors. Consequently, these habitats need to be fully 

integrated in future conservation and restoration projects; particularly since these 



5. Lateral aquatic habitats along river corridors 

 
 
 

124

are the first habitats that disappear as a consequence of river regulation and flow 

control. 
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INTRODUCTION 

Biodiversity in river corridors is structured along longitudinal, lateral and vertical 

dimensions (Ward 1989). Various concepts predicting species diversity along river 

corridors have been developed (Vannote et al. 1980; Statzner & Higler 1986; Ward 

& Stanford 1995; Stanford et al. 1996). The river continuum concept (RCC, 

Vannote et al. 1980) proposed maximum biodiversity in middle reaches where 

environmental heterogeneity is expected to be maximized. Statzner and Higler 

(1986) suggested that maximized biodiversity is linked to hydraulic changes 

associated with geomorphological transition zones. In extension of the serial 

discontinuity concept (SDC), Ward & Stanford (1995) included the interactions 

between the river channel and its flood plain (i.e., lateral dimension). They 

proposed greatest diversity in transition zones between constrained and braided 

sections and in the meandering reach. Stanford et al. (1996) suggested a more 

complex and extended model, which predicts maximum diversity in floodplain 

reaches and lowest diversity in geomorphological transition zones. 

Most concepts have been developed for single-thread rivers. Studies on the 

lateral organization of aquatic macroinvertebrates were restricted to individual 

floodplain segments (e.g., Amoros & Roux 1988; Castella et al. 1991; Foeckler et al. 

1991; Obrdlik & Fuchs 1991; Van den Brink et al. 1996; Tockner et al. 1999; 

Arscott et al. 2003). Although backwaters, parafluvial ponds and tributaries are 

recognised as key elements of the river “discontinuum” (e.g., Vannote et al. 1980; 

Minshall et al. 1985; Perry & Schaeffer 1987; O'Leary et al. 1992; Homes et al. 1999; 

Rice et al. 2001; Solari et al. 2002; Benda et al. 2004), their contribution to 

biodiversity at the corridor scale (regional-scale diversity) has not been tested yet. 

In addition, most diversity studies - not only in rivers - focused on alpha-

diversity (i.e., local-scale diversity), neglecting hierarchical organization of 

biodiversity (e.g., Noss 1990; Ward & Tockner 2001). Relationship between scale 

of investigation and processes that influence species diversity is the basis of the 
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distinction between inventory diversity (α-, γ- & ε-diversity) and differentiation 

diversity (β-diversity) (Magurran 2004). Studies on beta-diversity (i.e., species 

turnover along environmental gradients), for example, can be crucial to the 

understanding of environmental factors that are responsible for observed diversity 

patterns in both aquatic and terrestrial ecosystems (Bornette et al. 2001; Ward & 

Tockner 2001; Pineda & Halffter 2004). Moreover, processes that operate over a 

range of scales likely influence the structure of communities along riparian 

corridors. However, mechanisms at one spatial scale might have larger relative 

effects on community structure than mechanisms that operate at another scale 

(Shmida & Wilson 1985; Wagner et al. 2000). Identification of such critical scales is 

of great importance for the successful conservation of riverine biodiversity. 

In this study we focus on diversity of aquatic macroinvertebrates along river 

corridors by including the lateral dimension. Principal objectives are (1) to quantify 

the relative contribution of main channel, backwater, parafluvial pond and tributary 

habitats to river corridor diversity and (2) to study the hierarchical structure of 

biodiversity along river corridors. Based on this study, we discuss potential 

implications for conservation and management of river ecosystems. Emphasis was 

given on the insect orders Ephemeroptera, Plecoptera and Trichoptera (EPT). 

EPT-taxa form an important component of the benthic community of lateral 

aquatic habitats (Arscott et al. in press). Furthermore, they are frequently 

considered in basic research as well as for biomonitoring of aquatic ecosystems 

(e.g., Marchant et al. 1995; Hewlett 2000; Cereghino et al. 2003). 
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STUDY AREAS 

Three Alpine river corridors were investigated for aquatic habitats and benthic 

macroinvertebrates (Figure 1). The Tagliamento drains into the Adriatic Sea, the 

Thur via the Rhine River into the North Sea, and the Rhône into the Western 

Mediterranean Sea. The three river corridors are comparable in their 

geomorphology and catchment size, although they differ in their anthropogenic 

alteration (e.g., water abstraction, channelization). The Tagliamento is the least 

modified, the Rhône the most impacted river. 

Tagliamento 

The Tagliamento is a large gravel-bed river located in north-eastern Italy (Friuli-

Venezia Giulia; 46°N, 12°30´E; Figure 1). It rises at 1195 m a.s.l. in the Carnian 

Alps and flows 170 km to the Adriatic Sea. The catchment covers 2580 km2 with 

more than 70% located in the Alps. The Tagliamento has an average discharge of 

90 m3/s, whereas 2-, 5- and 10-year floods are estimated to be 1100, 1600 and 

2150 m3/s (Petts et al. 2000). High flow is caused by snowmelt (spring) and heavy 

rainfall (autumn) with discharge maxima of ~4000 m3/s (Ward et al. 1999); 

minimum discharge is 20 m3/s. The near-pristine character of the Tagliamento is 

reflected in its complex channel morphology, a dynamic flood regime, and an 

idealized longitudinal sequence of constrained, braided and meandering sections. 

For detailed information on the catchment and the main study area see Ward et al. 

(1999), Gurnell et al. (2000), Arscott et al. (2000), and Tockner et al. (2003). 

Thur 

The Thur is a gravel-bed river located in north-eastern Switzerland (Figure 1). It 

rises in the alpine region at 2502 m a.s.l. and flows 135 km to the Upper Rhine 

(345 m a.s.l.). The catchment area covers 1750 km2. Major parts of the upper 

catchment are in the pre-alpine zone. Average discharge is 47 m3/s, with minimum 

and maximum values of 2.2 m3/s and 1130 m3/s, respectively. The Thur is 
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channelized between the lower end of the pre-alpine zone (river-km 59) and its 

confluence with the River Rhine (river-km 135) (Uehlinger 2000). 

Rhône 

The Swiss part of the Upper Rhône River originates from the Rhône glacier at 

1763 m a.s.l. and flows 166 km to the Lake Geneva (374 m a.s.l., Figure 1). The 

catchment area covers 5220 km2 (Loizeau & Dominik 2000). Average annual 

discharge is 182 m3/s with a minimum and maximum discharge of 34 m3/s and 

1370 m3/s, respectively (Bundesamt für Wasser und Geologie 2003). The Upper 

Rhône River is channelized from river-km 45 to Lake Geneva. Numerous 

hydroelectric dams have been constructed on the main stem and on tributaries, 

which strongly modify the flow characteristics of the river (hydropeaking). Dam 

operations cause rapid variations in discharge and water level fluctuations 

(>100 cm per day) (Loizeau & Dominik 2000). 

 

METHODS 

Sampling design 

A nested design was used in this study (sensu Ward & Tockner 2001). In spring 

2002 (March until May), at approximately mean annual discharge, and before most 

EPT-larvae emerge, lateral habitat-heterogeneity and the diversity of EPT-taxa 

were investigated along the three river corridors. Along each corridor, one-km long 

segments were surveyed at 10-km distances starting at river-km 5. Within each 

segment the main channel and lateral aquatic habitats (i.e., backwaters, parafluvial 

ponds, and tributaries) were mapped (Table 1). 



5. Lateral aquatic habitats along river corridors 

 
 
 

129

 

Figure 1. Catchment of the Tagliamento, the Thur, and the Rhône Rivers and 

location of individual sampling segments along each corridor (numbers; 1-km long 

segments each 10 km). 
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Table 1. Total number of composite samples (mc = main channel, p = pond, bw = 

backwater, t = tributary).

mc p bw t Total

Tagliamento 15 9 10 5 39

Thur 14 5 5 13 37

Rhône 17 3 6 17 43

Total 46 17 21 35 119
 

 

Backwaters were defined as habitats with a permanent downstream connection to a 

lotic channel but with local conditions being lentic-like and often with fine 

sediment deposits. Parafluvial (sensu Fisher et al. 1998) ponds were disconnected 

lentic waterbodies within the active zone of the corridor (sensu Frissell et al. 1986). 

A tributary was defined as the smaller and the main channel as the larger of two 

intersecting channels (sensu Benda et al. 2004). We sampled tributaries upstream 

from their confluence with the main stem. 

Macroinvertebrate sampling and treatment 

Along the three river corridors, the main channel, ponds, backwaters, and 

tributaries were systematically surveyed. Lentic aquatic habitats (ponds and 

backwaters) were sampled subsequent to the mapping. In segments with >5 lentic 

habitats, five habitats per type were randomly selected. If <5 habitats were present, 

all were sampled. Semi-quantitative samples in all aquatic habitats were collected 

using a D-shaped kick-net (mesh size: 250 µm). To ensure that ecological data 

gathered from different aquatic habitat types could be directly compared, samples 

were collected from 50 m2 area of the aquatic habitat type (Williams et al. 2004). 

Per segment, a total area of 50 m2 in main channel, ponds, backwaters, and 

tributaries was sampled for 15 min. Duration of sampling was calculated according 

to the total area of the chosen aquatic habitat type (example: two ponds with an 
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area of 100 m2 (pond 1) and 300 m2 (pond 2) occur in a hypothetical segment. In 

pond 1 an area of 37.5 m2 is sampled in 11 min and in pond 2 an area of 12.5 m2 is 

sampled for 4 min). Microhabitats within individual aquatic habitat types (e.g., large 

wood, shallow shore areas, pool-riffle sequences) were sampled proportional to 

their area. Sub-samples from each aquatic habitat type of each segment were 

combined into a composite sample and preserved in 4% formaldehyde. In the 

laboratory, all EPT individuals were identified to the lowest practical taxonomic 

level, mostly to species level. 

Data Analyses 

Jackknife estimation of species richness 

To standardize samples, jackknifed estimates (Jackknife-1, Heltshe & Forrester 

1983) of taxa richness were generated for each individual habitat type (Programme 

EstimateS Version 6.0b1, Colwell 2001). Data were standardized both by number 

of samples and number of individuals. For each aquatic habitat type, jackknifed 

estimates were permuted at random 1,000 times. Furthermore, Jackknife analyses 

were used to estimate the total expected number of species for each individual 

river corridor (Krebs 1998). 

Nestedness 

Communities are considered to be nested when species-poor sites comprise a 

subset of species assemblages in richer sites (Patterson 1987). Nestedness was 

determined using the Temperature Calculator of Atmar and Patterson (1993; 

1995). The calculated “temperature” (T) reflects the degree of order in presence-

absence matrices. It ranges from T=0° (perfectly nested) to T=100° (random). The 

data were packed in rows (samples) and columns (taxa) to maximize nestedness. 

Monte Carlo randomization (1000 permutations) was used to test whether the 
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calculated T value of the matrix was significantly lower than the T value of a 

randomly calculated matrix. 

Diversity measures 

Based on the nested sampling design, different components of diversity (sensu 

Magurran 2004) were determined (Table 2). Alpha (α) and gamma (γ) diversity are 

direct measures of species richness that differ in their hierarchical nature (spatial 

scale). Two types of beta (β) diversity were used. (1) Harrison’s beta-1 (β1) (1992) 

has been calculated to determine the distinctness of species composition (spatial 

species turnover) at three different scales (Alps, corridor, habitat types; see Table 

2) and among aquatic habitat types within each segment (within segment β1). The 

scale “Alps” combines the three river corridors Tagliamento, Thur and Rhône; 

“corridor” means Tagliamento, Thur, or Rhône; the scale “habitat type” comprises 

main channel, pond, backwater, and tributary; the scale “sample” includes all 

individual samples taken during this study (see Table 1). Beta-1 is based on 

Whittaker’s β-diversity (Whittaker 1977) and has been modified in order to 

compare transects of unequal size:  

β1 = 100
)1(

1
×

−

⎟
⎠
⎞

⎜
⎝
⎛

−

N

S

α  

where N is the number of sites, S the regional species diversity and α the mean 

alpha-diversity. Beta-1 ranges from 0 (complete similarity) to 100 (complete 

dissimilarity). (2) Lande’s beta-diversity (1996) was calculated in order to partition 

total diversity (“Alps”) (Veech et al. 2002). Lande’s β-diversity determines the 

diversity among sites (i.e., the mean number of species not found in each of the 

samples or habitats). Diversity can be partitioned into its components (alpha, beta 

and gamma) to evaluate the influence of each diversity component to total 
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diversity. Lande (1996) found that inventory and differentiation diversity can be 

partitioned by the equation:  

γ = α + β  

where γ is the number of species in the corridor and α is the mean species richness 

of individual samples or habitats. Beta can be estimated as follows: 

β = γ − α. 

This provides a measurement based on the number of species that is comparable 

with α-diversity. Therefore, diversity components at each hierarchical level can be 

calculated as βµ = γ – αµ at the highest level with m = highest level and βi+1 = αi – 

αi+1 for each lower level with i = any level beneath the highest level m. Then, the 

additive partitioning of diversity is:  

∑
=

+=
m

i
i

1
1 βαγ . 

Based on this equation, total diversity along the corridors can be expressed as the 

proportional contribution of diversity at each hierarchical level (Table 2). In the 

present study, βi of three different hierarchical levels was calculated (βC, βH, βS; 

Table 2). 

Similarity 

The mean similarity of EPT-taxa between all pairs of habitat types within each 

segment was calculated using Jaccard’s similarity coefficient (Krebs 1998). An 

analysis of variance (ANOVA) was applied to test for differences among pairs of 

habitat types. 
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Table 2. Hierarchical framework of the sampling strategy of the present study in order to
determine the different levels of biodiversity. Alps: Tagliamento, Thur & Rhône.
 See methods for further explanation.

Level Scale Inventory diversity Differentiation diversity

1 Alps εA β1A, βA

2 Corridor γC β1C, βC

3 Habitat type αH β1H, βH

4 Sample αS βS  

 

RESULTS 

Habitat distribution 

Along the three corridors, a total of 46 1-km long segments were investigated 

(Table 1). The number of backwaters and ponds was highest along the 

Tagliamento and lowest along the Rhône (Figure 2).  
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The total number of tributaries peaked in the Rhône, with the highest number in 

headwater segments (Figure 3). Along the Tagliamento, ponds and backwaters 

occurred mainly in middle, and tributaries in headwater segments (Figure 3). Along 

the Thur, ponds were most abundant in lower segments (Figure 3). 

Figure 2. Total number of 

aquatic habitat types along 

Tagliamento, Thur and Rhône 

Rivers. P=pond, bw=back-

water, t=tributary (see also 

Table 1).
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Figure 3. Lateral aquatic habitat distribution along the Tagliamento, Thur, and 

Rhône. 
 

Species richness patterns 

A total of 41918 individuals from 159 EPT-taxa was collected in 119 samples 

along the three corridors (Appendix, Table 1). Corridor diversity was highest along 

the Thur (112 taxa), followed by the Tagliamento (78) and the Rhône (65). Based 

on Jackknife analyses, between 73% (Tagliamento) and 77% (Rhône) of the total 

expected species richness was sampled. Rare taxa (<1% of total abundance) 
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accounted for 85%, 53%, and 88% of all taxa along the Tagliamento, the Thur, and 

the Rhône, respectively (Appendix, Table 1). 

Estimates of species richness produced using Jackknife procedures, standardized 

for number of samples and individuals, exhibited a different increase of richness 

for individual aquatic habitat types (Figure 4). Based on samples, tributaries 

showed most species (Figure 4A); based on individuals, ponds exhibited a steeper 

increase in species richness (Figure 4B). 
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Figure 4. Predicted 

number of EPT-taxa in 

individual habitat types 

based on Jackknife 

analyses standardized for 

samples (A; surrogate for 

area) and individuals (B). 
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Lateral aquatic habitats (i.e., ponds, backwaters and tributaries) contributed 

>50% to total EPT-taxa richness, although the relative contribution of habitat 

types was different along the three corridors (Figure 5). Along the Tagliamento, 

14% of total number of taxa was restricted in their occurrence to main channel 

habitats, 4% to ponds, 23% to backwaters, and 13% to tributaries; along the Thur, 

17% was restricted to main channel habitats, 7% to ponds, 3% to backwaters, and 

27% to tributaries; and along the Rhône, 12% of taxa was restricted to main 

channel habitats and 54% to tributaries. Ponds and backwaters were almost 

completely absent in the Rhône. 
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Figure 5. The cumulative relative (%) species richness along the Tagliamento, Thur 

and Rhône Rivers. Taxa not found in the main channel were cumulatively added. 
 

Longitudinal diversity patterns differed among corridors (Figure 6). Along the 

Rhône River, diversity peaked in the headwater section. Habitats downstream of 

river-km 25 added only five new taxa to total corridor diversity. No clear 

longitudinal patterns occurred along the Thur and Tagliamento. In both rivers, 

cumulated richness increased continuously along the corridor, with a steeper 

increase along the Thur (Figure 6). 
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Figure 6. Taxa richness (total no of taxa per segment) and cumulative number 

(cum no of taxa; dotted line) along the three river corridors. 
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Nestedness and hierarchical organization 

EPT-assemblages were highly nested within each corridor. The calculated 

temperatures (Tagliamento: 10.1°; Thur: 16.5°; Rhône: 6.6°) were significantly 

(p < 0.001) lower than values randomly produced by Monte Carlo simulations. 

Point diversity (α-diversity) was highest along the Thur and lowest along the 

Rhône (Levels 2-4; Figure 7). Along each corridor, average species richness was 

lowest in pond habitats (Levels 3 & 4; Figure 7). 

Species turnover (β1-diversity) varied across scales (Figure 7). Turnover rate was 

highest at the scale “Alps” (Level 1) and lowest at the corridor scale (Level 2). 

 

 

Level 1
εA/β1A

Level 2
γC/β1C

mc p bw t mc p bw t mc p bw t Level 3
37/30 18/56 49/43 33/50 54/27 32/52 38/37 70/42 25/24 2/100 7/25 57/24 αH/β1H

9±6 4±4 10±8 11±7 12±5 10±5 18±1 12±9 5±4 1±1 3±2 12±12 Level 4 
αS±SD

Rhône
65/19

Tagliamento

Alps
159/43

78/25
Thur

112/23

 

 

Figure 7. Hierarchical organization of species diversity. Level 1: Alps (εA=Alps 

epsilon; β1A=Alps beta-1); Level 2: corridor (γC = corridor gamma ; β1C = corridor 

beta-1); Level 3: habitat type (αH = habitat type alpha; β1H = habitat type beta-1); 

Level 4: individual sample (αS = sample alpha). Mc=main channel, p=pond, bw= 

backwater; t= tributary. 
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Two additional trends could be observed: (1) Turnover rate, or β1H-diversity, 

decreased (except for ponds) from the near-natural Tagliamento to the highly 

impacted Rhône (Figure 7). (2) β1H-diversity decreased laterally (main 

channel<backwaters<ponds and tributaries) along the Thur and Tagliamento. 

Along the regulated Rhône, the number of backwaters and ponds was too low to 

detect any lateral trend in beta-diversity. Species-turnover rates among aquatic 

habitat types within each segment (within segment β1) were high. Mean values 

±SD were 64±16, 63±20, and 59±16 for Tagliamento, Thur and Rhône, 

respectively. 

Total species diversity was partitioned into its hierarchical components. Along 

the three rivers, among-sample and corridor diversity components (βS and βC) 

contributed most to total EPT-taxa richness, while <15% was due to within-

sample and habitat type diversity components (αS and βH; Figure 8). 
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Figure 8. Additive partitioning of observed species richness across three spatial 

scales. Values are expressed as the percent of the total diversity of EPT-taxa 

diversity explained by each hierarchical level (see Table 2). 
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This means that the heterogeneity among individual habitats (i.e., individual 

samples) explained more of the total species richness than the heterogeneity within 

individual habitats and among habitat types (i.e., pond, tributary, backwater, main 

channel). 

The average faunal similarity between pairs of aquatic habitat types was low, and 

differences between pairs were not significant (ANOVA; Table 3). 

 

Table 3. Mean taxa similarity (± SD) between all pairs of aquatic habitat types along the
three river corridors (mc=main channel, p=pond, bw=backwater, t=tributary).

mc-bw mc-p mc-t bw-p bw-t p-t

Tagliamento 0.18 ± 0.09 0.16 ± 0.19 0.15 ± 0.11 0.1 ± 0.11 0.18 ± 0.13 0

Thur 0.22 ± 0.12 0.22 ± 0.14 0.14 ± 0.07 0.17 ± 0.07 0.09 ± 0.09 0.04 ± 0.05

Rhône 0.26 ± 0.1 0.17 ± 0.29 0.18 ± 0.12 - 0.05 ± 0.08 0
 

 

DISCUSSION 

Habitat and species richness patterns 

Species diversity patterns along rivers has been well studied. In particular, it is well 

known that species are replaced along the river channel due to changes in 

temperature, sediment structure, and stream metabolism (see Vinson & Hawkins 

1998). However, most studies focused on single-thread rivers and excluded lateral 

habitats. In the present study, we included lateral aquatic habitats along entire river 

corridors. As a consequence, none of the existing concepts that have been 

developed to predict biodiversity along river corridors (e.g., Vannote et al. 1980; 

Ward & Stanford 1983; Statzner & Higler 1986) can be supported by our data. 

Each river exhibited a distinct longitudinal pattern sequence in species diversity 

(Figure 6), which emphasizes the uniqueness of rivers. Hynes (1975), already 

proposed that ‘every stream is likely to be individual’. Moreover, each habitat type 
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contained a very distinct community, and faunal similarity among individual habitat 

types was very low (Table 3). The “individuality” of rivers as well as of habitat 

types, however, has been challenged by anthropogenic impacts. River regulation 

not only eliminates lateral habitats (see Figures 2 and 3) it also most likely leads to a 

homogenization of aquatic communities. Along the regulated Rhône, for example, 

main stem habitats were species-poor; remaining diversity was primarily allocated 

to tributaries (parafluvial ponds and backwaters were almost completely absent). In 

tributaries, which are less affected by hydropeaking and canalization, 87% of the 

present corridor species pool occurred (Appendix, Table 1). 

Lateral aquatic habitats such as tributaries, backwaters, and parafluvial ponds are 

among the least-investigated habitat types along river corridors. Although these 

habitats cover only a small proportion of the total aquatic area (<8% in braided 

flood plains along the Tagliamento, Van der Nat et al. 2003), they contributed 

>50% to total species richness (Figure 5). In particular backwaters and tributaries 

contained rich communities that were different from main channel habitats. A 

modest contribution by parafluvial ponds can partly be explained by our focus on 

EPT-taxa. By considering other groups such as Mollusca, Crustacea, Odonata or, 

Coleoptera, we may expect a much higher contribution of lentic habitats 

(parafluvial ponds, backwaters) to total species diversity (U. Karaus, unpubl. data). 

Jackknife analyses, standardized by number of individuals, exhibited a steeper 

curve in ponds compared to other habitat types (Figure 4B). Between-pond 

heterogeneity is expected to be large, which was confirmed by higher turnover 

rates among ponds compared to other habitat types (Figure 7). From an ecological 

perspective, ponds can be regarded as “concave islands” with environmental 

properties strongly related to local conditions (Karaus et al. 2005). Generally, pond 

invertebrate diversity has been related to a range successional stages, and therefore, 

to disturbance frequency (Castella 1987; Schneider & Frost 1996; Homes et al. 

1999) and to hydrological connectivity (Tockner et al. 1999). 
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Tributaries, on the other hand, are not only different from the main channel 

regarding environmental properties, but also are assumed to enhance the local 

heterogeneity at the confluence with the main channel (the network dynamics 

hypothesis, Benda et al. 2004). Brown & Coon (1994) reported higher fish density 

and different community composition in tributaries compared to the channel 

(Lower Missouri, US). They found a gradient in the faunal assemblage from small 

tributaries to large river sections, which corresponded to an environmental 

gradient from shallow streams with coarse substrate to deep rivers with finer 

sediments. The potential importance of tributaries for main stem communities is 

virtually unexplored. Tributaries may serve as important refugia for recolonising 

the main channel after disturbances (e.g., floods, droughts, pollution), and they are 

important habitats for early life stages of fish and invertebrates (Bruns et al. 1984; 

Rice et al. 2001). 

In the present study, backwaters also contributed significantly to overall species 

richness along the three river corridors (Figure 7). They were colonized by a 

unique and species rich community. Similar differences in taxa richness between 

backwaters and main-channel habitats were found also in upland streams in 

Victoria (O'Leary et al. 1992). Solari (2002) found high plankton densities in 

backwaters of the Slado River (Argentina), a consequence of lentic conditions. 

Lentic conditions, a permanent hydrological connection to the main channel, and 

increased primary production can enhance species richness within backwaters 

(Cellot & Bournaud 1986; Schiemer et al. 2001). At mean and low discharge, 

backwaters exhibit lentic conditions, and they primarily accumulate organic matter 

(Amoros & Roux 1988) In their “Inshore Retention Concept”, Schiemer et al. 

(2001) emphasized the importance of still-water habitats in the active channel for 

the development of phyto- and zooplankton and fish larvae. Backwaters were 

identified as important retentive habitats, which contributed to overall river 

biodiversity and production. However, further studies on local constraints on 

backwater communities (as well as on tributary communities) - in particular on the 
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potential role of backwaters as refugia during flood events - are required. This is 

especially intriguing for permanently connected habitats (backwaters and 

tributaries) where dispersal barriers are presumably absent. 

Nestedness and hierarchical organization 

River corridors are hierarchically organized and nested ecosystems. In the 

present study, the nested sampling design allowed to detect differences in species 

diversity at various spatial scales. As expected, communities were highly nested in 

all three river corridors. Nestedness is a common attribute of most communities 

(Wright et al. 1998). Aquatic invertebrates, however, have been regarded as an 

exception, because of their high diversity (Boecklen 1997). Malmqvist & Hoffsten 

(2000) detected a nested distribution for Ephemeroptera, Plecoptera, Trichoptera, 

and Simuliidae in Swedish streams and rivers. Nestedness was particularly 

pronounced in the Rhône River, where communities in the canalized middle and 

downstream sections formed distinct subsets of the less-impacted and more 

species-rich headwater reaches. The lower sections along the Rhône - heavily 

impacted by hydropeaking and river regulation - are very likely sinks for 

invertebrate species. Most species of the regional pool are expected to be able to 

disperse over large areas, therefore local conditions primarily determine the 

presence or absence of species within individual habitats (habitat filters, sensu Poff 

1997). A lower degree of nestedness (higher system temperature T) in the less 

impacted Thur and Tagliamento Rivers could result from higher habitat 

heterogeneity. 

In the present study, we applied a quantitative model that allows to partitioning 

at different spatial scales (see Wagner et al. 2000). This approach implies that what 

we measure as within-community diversity at a higher scale (e.g., corridor scale) is 

the combined effect of heterogeneity at various lower scales (habitat, river 

segment). In the present study, high differentiation diversity (beta-diversity) at the 

broadest spatial scale (Level 1 in Figure 7) reflected distinct biogeographic 
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differences among corridors (i.e., regional control of local diversity). All three 

rivers flow in different directions. In addition, human impacts were likely to 

increase differences among catchments. 

The low within-corridor turnover (β1C), in contrast to the high within-(β1H) and 

between-habitat (within-segment β1) type turnover, assumed that both regional and 

local factors control benthic communities. The influence of local factors (habitat 

heterogeneity and biotic interactions) and of regional factors (altitude, river style, 

land-use patters) on the structure of stream invertebrates has been well 

documented (see review by Vinson & Hawkins 1998). However, the relationship 

between regional and local species richness has been rarely investigated for stream 

invertebrates. Studies on fish diversity showed a strong regional control on local 

diversity (Hugueny 1995), or an influence by both regional and local factors 

(Angermeier & Winston 1998). Vaughn (1997) reported a linear relationship 

between regional and local species richness for river-dwelling mussels, while Heino 

et al. (2003) detected regional species richness as the most influential variable 

contributing to local species richness. However, it is far from clear whether 

regional species richness consistently sets the limits to local species richness, or 

vice versa (Vinson & Hawkins 1998). We may consider the relationship between 

regional and local species richness as a feedback system where they influence each 

other. On the one hand, regional species richness sets the upper limit for local 

species richness; on the other hand, regional species richness is adapted to decrease 

or increase of local species richness. This implies that the regional species pool is 

sequentially reduced by environmental filters, which include disturbance regime, 

dispersal barrier, habitat condition, and biotic interaction (Tonn et al. 1990). Each 

filter operates at a distinctive spatiotemporal scale and leads to a characteristic 

species community. 
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Implications for conservation and management 

River corridors are among the most threatened ecosystems world wide 

(Malmqvist & Rundle 2002; Tockner & Stanford 2002). In Europe, for example, 

~90% of all former floodplains disappeared or are functionally extinct (Hughes 

2003). Nowadays, restoration is a major issue in river management. However, a 

high proportion of restoration projects fail, mainly because of a fundamental lack 

of understanding of principal mechanisms that create and maintain biodiversity 

and biocomplexity along river corridors. Lateral habitats are among the first 

habitats that disappear as a consequence of river regulation and flow control. Since 

overall river biodiversity is strongly enhanced by the lateral habitat diversity (see: 

Figure 5), the formation and rejuvenation of ponds and backwaters needs to be 

promoted by restoration projects. Furthermore, we also need to more thoroughly 

understand the importance of tributary confluences as important ecological nodes 

along river corridors (see Benda et al. 2004). Tributaries and their intersections with 

the main channel may be critical for the resilience of entire river corridors. 

At a regional scale, flood disturbance is a key factor promoting biodiversity 

(Pollock 1998). At a local scale, parafluvial ponds are often associated with dead 

wood and vegetated islands (Gurnell & Petts 2002; Karaus et al. 2005). Hence, dead 

wood and islands are expected to enhance aquatic habitat diversity (Arscott et al. 

2000). Furthermore, biodiversity along the three river corridors was strongly nested 

and hierarchical. This is important since restoration has primarily focused on the 

reach scale or on individual species and habitats. Clarke (2003) proposed an eco-

hydromorphic approach for restoration, which is based on the principle that both 

morphological and ecological components are closely interlinked and that channel 

form, system functioning, and species composition result from these interacting 

processes. A better understanding of the ecology and functioning of lateral aquatic 

habitats will therefore, support successful river restoration. 
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