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CHAPTER 5

THE CONTRIBUTION OF LATERAL AQUATIC HABITATS
TO MACROINVERTEBRATE DIVERSITY ALONG RIVER
CORRIDORS

Ute Karaus, Helene Guillong & Klement Tockner, submitted

The lateral dimension of biodiversity along river corridors has been given scant
attention in river ecology. Therefore, the objective of the present study was to
quantify the distribution and diversity of lateral aquatic habitats and their
associated macroinvertebrate communities along three river corridors
(Tagliamento, Thur, and Rhoéne) in the Alps. A nested sampling design was
applied. Along each corridor, 1-km long segments were surveyed at 10-km
distances (14 to 17 sections per corridor). Within each segment, the main channel,
parafluvial ponds, backwaters, and tributaries were sampled for Ephemeroptera,
Plecoptera and Trichoptera (EPT-taxa). Overall, 159 EPT-taxa were identified in
119 composite samples, which was between 73% and 77% of the total expected
richness along each corridor. Lateral habitats contributed >50% to total corridor
species richness. Diversity was hierarchically partitioned to quantify the relative
proportion contribution of individual samples, habitats, and corridors to overall
diversity (three river corridors). Among-sample and among-corridor diversity
components contributed most to total EPT-taxa richness, while <15% was due to
within-sample and among-habitat diversity components. The present study clearly
emphasises the importance of lateral aquatic habitats for maintaining high aquatic
biodiversity along river corridors. Consequently, these habitats need to be fully

integrated in future conservation and restoration projects; particularly since these
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are the first habitats that disappear as a consequence of river regulation and flow

control.
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INTRODUCTION

Biodiversity in river corridors is structured along longitudinal, lateral and vertical
dimensions (Ward 1989). Various concepts predicting species diversity along river
corridors have been developed (Vannote e a/. 1980; Statzner & Higler 1986; Ward
& Stanford 1995; Stanford er al 1996). The river continuum concept (RCC,
Vannote et al 1980) proposed maximum biodiversity in middle reaches where
environmental heterogeneity is expected to be maximized. Statzner and Higler
(1986) suggested that maximized biodiversity is linked to hydraulic changes
associated with geomorphological transition zones. In extension of the serial
discontinuity concept (SDC), Ward & Stanford (1995) included the interactions
between the river channel and its flood plain (i.e., lateral dimension). They
proposed greatest diversity in transition zones between constrained and braided
sections and in the meandering reach. Stanford ef a4l (1996) suggested a more
complex and extended model, which predicts maximum diversity in floodplain
reaches and lowest diversity in geomorphological transition zones.

Most concepts have been developed for single-thread rivers. Studies on the
lateral organization of aquatic macroinvertebrates were restricted to individual
tfloodplain segments (e.g., Amoros & Roux 1988; Castella ¢f a/. 1991; Foeckler ez al.
1991; Obrdlik & Fuchs 1991; Van den Brink e 4/ 1996; Tockner et al. 1999;
Arscott ez al. 2003). Although backwaters, parafluvial ponds and tributaries are
recognised as key elements of the river “discontinuum” (e.g., Vannote ef a/ 1980;
Minshall ez al. 1985; Perry & Schaeffer 1987; O'Leaty ef al. 1992; Homes ef al. 1999;
Rice et al. 2001; Solari er al. 2002; Benda e al 2004), their contribution to
biodiversity at the corridor scale (regional-scale diversity) has not been tested yet.

In addition, most diversity studies - not only in rivers - focused on alpha-
diversity (i.e., local-scale diversity), neglecting hierarchical organization of
biodiversity (e.g., Noss 1990; Ward & Tockner 2001). Relationship between scale

of investigation and processes that influence species diversity is the basis of the
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distinction between inventory diversity (o, Y- & e-diversity) and differentiation

diversity (B-diversity) (Magurran 2004). Studies on beta-diversity (i.e., species
turnover along environmental gradients), for example, can be crucial to the
understanding of environmental factors that are responsible for observed diversity
patterns in both aquatic and terrestrial ecosystems (Bornette e a/. 2001; Ward &
Tockner 2001; Pineda & Halffter 2004). Moreover, processes that operate over a
range of scales likely influence the structure of communities along riparian
corridors. However, mechanisms at one spatial scale might have larger relative
effects on community structure than mechanisms that operate at another scale
(Shmida & Wilson 1985; Wagner ez /. 2000). Identification of such critical scales is
of great importance for the successful conservation of riverine biodiversity.

In this study we focus on diversity of aquatic macroinvertebrates along river
corridors by including the lateral dimension. Principal objectives are (1) to quantify
the relative contribution of main channel, backwater, parafluvial pond and tributary
habitats to river corridor diversity and (2) to study the hierarchical structure of
biodiversity along river corridors. Based on this study, we discuss potential
implications for conservation and management of river ecosystems. Emphasis was
given on the insect orders Ephemeroptera, Plecoptera and Trichoptera (EPT).
EPT-taxa form an important component of the benthic community of lateral
aquatic habitats (Arscott e¢f al in press). Furthermore, they are frequently

considered in basic research as well as for biomonitoring of aquatic ecosystems

(e.g., Marchant ez al. 1995; Hewlett 2000; Cereghino ez al. 2003).
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STUDY AREAS

Three Alpine river corridors were investigated for aquatic habitats and benthic
macroinvertebrates (Figure 1). The Tagliamento drains into the Adriatic Sea, the
Thur via the Rhine River into the North Sea, and the Rhone into the Western
Mediterranean Sea. The three river corridors are comparable in their
geomorphology and catchment size, although they differ in their anthropogenic
alteration (e.g., water abstraction, channelization). The Tagliamento is the least

modified, the Rhone the most impacted river.

Tagliamento

The Tagliamento is a large gravel-bed river located in north-eastern Italy (Friuli-
Venezia Giulia; 46°N, 12°30°E; Figure 1). It rises at 1195 m a.s.l. in the Carnian
Alps and flows 170 km to the Adriatic Sea. The catchment covers 2580 km* with
more than 70% located in the Alps. The Tagliamento has an average discharge of
90 m’/s, whereas 2-, 5- and 10-year floods are estimated to be 1100, 1600 and
2150 m’/s (Petts ez a/. 2000). High flow is caused by snowmelt (spring) and heavy
rainfall (autumn) with discharge maxima of ~4000m’/s (Ward e al 1999);
minimum discharge is 20 m’/s. The near-pristine character of the Tagliamento is
reflected in its complex channel morphology, a dynamic flood regime, and an
idealized longitudinal sequence of constrained, braided and meandering sections.
For detailed information on the catchment and the main study area see Ward ez a/.

(1999), Gurnell ez al. (2000), Arscott ef al. (2000), and Tockner ez al. (2003).

Thur

The Thur is a gravel-bed river located in north-eastern Switzerland (Figure 1). It
rises in the alpine region at 2502 m a.s.l. and flows 135 km to the Upper Rhine
(345 m a.s.l). The catchment area covers 1750 km” Major parts of the upper
catchment are in the pre-alpine zone. Average discharge is 47 m’/s, with minimum

and maximum values of 2.2m’/s and 1130 m’/s, respectively. The Thur is
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channelized between the lower end of the pre-alpine zone (river-km 59) and its

confluence with the River Rhine (river-km 135) (Uehlinger 2000).

Rhiéne

The Swiss part of the Upper Rhone River originates from the Rhone glacier at
1763 m a.s.l. and flows 166 km to the Lake Geneva (374 m a.s.l., Figure 1). The
catchment area covers 5220 km® (Loizeau & Dominik 2000). Average annual
discharge is 182 m’/s with a minimum and maximum discharge of 34 m’/s and
1370 m’/s, respectively (Bundesamt fiir Wasser und Geologie 2003). The Upper
Rhone River is channelized from river-km 45 to Lake Geneva. Numerous
hydroelectric dams have been constructed on the main stem and on tributaries,
which strongly modify the flow characteristics of the river (hydropeaking). Dam
operations cause rapid variations in discharge and water level fluctuations

(>100 cm per day) (Loizeau & Dominik 2000).

METHODS

Sampling design

A nested design was used in this study (sens# Ward & Tockner 2001). In spring
2002 (March until May), at approximately mean annual discharge, and before most
EPT-larvae emerge, lateral habitat-heterogeneity and the diversity of EPT-taxa
were investigated along the three river corridors. Along each corridor, one-km long
segments were surveyed at 10-km distances starting at river-km 5. Within each
segment the main channel and lateral aquatic habitats (i.e., backwaters, parafluvial

ponds, and tributaries) were mapped (Table 1).
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Figure 1. Catchment of the Tagliamento, the Thur, and the Rhone Rivers and
location of individual sampling segments along each corridor (numbers; 1-km long

segments each 10 km).
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Table 1. Total number of composite samples (mc = main channel, p = pond, bw =

backwater, t = tributary).

mc p bw t Total
Tagliamento 15 9 10 5 39
Thur 14 5 5 13 37
Rhéne 17 3 6 17 43
Total 46 17 21 35 119

Backwaters were defined as habitats with a permanent downstream connection to a
lotic channel but with local conditions being lentic-like and often with fine
sediment deposits. Parafluvial (sezsu Fisher et al. 1998) ponds were disconnected
lentic waterbodies within the active zone of the corridor (sensu Frissell ez al. 19806).
A tributary was defined as the smaller and the main channel as the larger of two
intersecting channels (sens# Benda ez al. 2004). We sampled tributaries upstream

from their confluence with the main stem.

Macroinvertebrate sampling and treatment

Along the three river corridors, the main channel, ponds, backwaters, and
tributaries were systematically surveyed. Lentic aquatic habitats (ponds and
backwaters) were sampled subsequent to the mapping. In segments with >5 lentic
habitats, five habitats per type were randomly selected. If <5 habitats were present,
all were sampled. Semi-quantitative samples in all aquatic habitats were collected
using a D-shaped kick-net (mesh size: 250 um). To ensure that ecological data
gathered from different aquatic habitat types could be directly compared, samples
were collected from 50 m* area of the aquatic habitat type (Williams ez a/ 2004).
Per segment, a total area of 50 m* in main channel, ponds, backwaters, and
tributaries was sampled for 15 min. Duration of sampling was calculated according

to the total area of the chosen aquatic habitat type (example: two ponds with an
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area of 100 m* (pond 1) and 300 m* (pond 2) occur in a hypothetical segment. In
pond 1 an area of 37.5 m” is sampled in 11 min and in pond 2 an area of 12.5 m” is
sampled for 4 min). Microhabitats within individual aquatic habitat types (e.g., large
wood, shallow shore areas, pool-riffle sequences) were sampled proportional to
their area. Sub-samples from each aquatic habitat type of each segment were
combined into a composite sample and preserved in 4% formaldehyde. In the
laboratory, all EPT individuals were identified to the lowest practical taxonomic

level, mostly to species level.

Data Analyses

Jackknife estimation of species richness

To standardize samples, jackknifed estimates (Jackknife-1, Heltshe & Forrester
1983) of taxa richness were generated for each individual habitat type (Programme
EstimateS Version 6.0b1, Colwell 2001). Data were standardized both by number
of samples and number of individuals. For each aquatic habitat type, jackknifed
estimates were permuted at random 1,000 times. Furthermore, Jackknife analyses
were used to estimate the total expected number of species for each individual

river corridor (Krebs 1998).

Nestedness

Communities are considered to be nested when species-poor sites comprise a
subset of species assemblages in richer sites (Patterson 1987). Nestedness was
determined using the Temperature Calculator of Atmar and Patterson (1993;
1995). The calculated “temperature” (T) reflects the degree of order in presence-
absence matrices. It ranges from T=0° (perfectly nested) to T=100° (random). The
data were packed in rows (samples) and columns (taxa) to maximize nestedness.

Monte Carlo randomization (1000 permutations) was used to test whether the
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calculated T value of the matrix was significantly lower than the T value of a

randomly calculated matrix.

Diversity measures

Based on the nested sampling design, different components of diversity (sensu
Magurran 2004) were determined (Table 2). Alpha () and gamma (y) diversity are
direct measures of species richness that differ in their hierarchical nature (spatial
scale). Two types of beta () diversity were used. (1) Harrison’s beta-1 (f;) (1992)
has been calculated to determine the distinctness of species composition (spatial
species turnover) at three different scales (Alps, corridor, habitat types; see Table
2) and among aquatic habitat types within each segment (within segment f3,). The
scale “Alps” combines the three river corridors Tagliamento, Thur and Rhone;
“corridor” means Tagliamento, Thur, or Rhone; the scale “habitat type” comprises
main channel, pond, backwater, and tributary; the scale “sample” includes all
individual samples taken during this study (see Table 1). Beta-1 is based on

Whittaket’s P-diversity (Whittaker 1977) and has been modified in order to

)

X
(N -1)

compare transects of unequal size:

B, = 100

where N is the number of sites, S the regional species diversity and o the mean
alpha-diversity. Beta-1 ranges from O (complete similarity) to 100 (complete
dissimilarity). (2) Lande’s beta-diversity (1996) was calculated in order to partition
total diversity (“Alps”) (Veech et al 2002). Lande’s B-diversity determines the
diversity among sites (i.e., the mean number of species not found in each of the
samples or habitats). Diversity can be partitioned into its components (alpha, beta

and gamma) to evaluate the influence of each diversity component to total
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diversity. Lande (1996) found that inventory and differentiation diversity can be

partitioned by the equation:

y=o+p

where Y is the number of species in the corridor and o is the mean species richness

of individual samples or habitats. Beta can be estimated as follows:

p=v-o.

This provides a measurement based on the number of species that is comparable
with o-diversity. Therefore, diversity components at each hierarchical level can be
calculated as By, =y — o, at the highest level with m = highest level and ;,, = o, —

0, for each lower level with i = any level beneath the highest level m. Then, the

additive partitioning of diversity is:
y=ai+ 3 B
i=1

Based on this equation, total diversity along the corridors can be expressed as the
proportional contribution of diversity at each hierarchical level (Table 2). In the

present study, f3; of three different hierarchical levels was calculated (B¢, By, Bs;

Table 2).

Similarity
The mean similarity of EPT-taxa between all pairs of habitat types within each
segment was calculated using Jaccard’s similarity coefficient (Krebs 1998). An

analysis of variance (ANOVA) was applied to test for differences among pairs of

habitat types.
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Table 2. Hierarchical framework of the sampling strategy of the present study in order to
determine the different levels of biodiversity. Alps: Tagliamento, Thur & Rhone.

See methods for further explanation.

Level Scale Inventory diversity Differentiation diversity
1 Alps €A Bras Ba
2 Cotridor YC Blc, BC
3 Habitat type Oy Bin, Pu
4 Sample Olg Bs
RESULTS
Habitat distribution

Along the three corridors, a total of 46 1-km long segments were investigated
(Table 1). The number of backwaters and ponds was highest along the

Tagliamento and lowest along the Rhone (Figure 2).

£ %0 ] Figure 2. Total number of
5 40 : ,
2 aquatic habitat types along
I
gso ’ Tagliamento, Thur and Rhone
]
5 20 Rivers. P=pond, bw=back-
()
£ 107 water, t=tributary (see also
>
Z D D D

0 - Table 1).

Tagliamento Thur Rhone

The total number of tributaries peaked in the Rhone, with the highest number in
headwater segments (Figure 3). Along the Tagliamento, ponds and backwaters
occurred mainly in middle, and tributaries in headwater segments (Figure 3). Along

the Thur, ponds were most abundant in lower segments (Figure 3).
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Figure 3. Lateral aquatic habitat distribution along the Tagliamento, Thur, and
Rhone.

Species richness patterns

A total of 41918 individuals from 159 EPT-taxa was collected in 119 samples
along the three corridors (Appendix, Table 1). Corridor diversity was highest along
the Thur (112 taxa), followed by the Tagliamento (78) and the Rhone (65). Based
on Jackknife analyses, between 73% (Tagliamento) and 77% (Rhone) of the total

expected species richness was sampled. Rare taxa (<1% of total abundance)
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accounted for 85%, 53%, and 88% of all taxa along the Tagliamento, the Thur, and

the Rhone, respectively (Appendix, Table 1).

Estimates of species richness produced using Jackknife procedures, standardized

for number of samples and individuals, exhibited a different increase of richness

tfor individual aquatic habitat types (Figure 4). Based on samples, tributaries

showed most species (Figure 4A); based on individuals, ponds exhibited a steeper

increase in species richness (Figure 4B).
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Figure 4. Predicted
number of EPT-taxa in
individual habitat types
based on  Jackknife
analyses standardized for

samples (A; surrogate for

area) and individuals (B).
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Lateral aquatic habitats (i.e., ponds, backwaters and tributaries) contributed
>50% to total EPT-taxa richness, although the relative contribution of habitat
types was different along the three corridors (Figure 5). Along the Tagliamento,
14% of total number of taxa was restricted in their occurrence to main channel
habitats, 4% to ponds, 23% to backwaters, and 13% to tributaries; along the Thur,
17% was restricted to main channel habitats, 7% to ponds, 3% to backwaters, and
27% to tributaries; and along the Rhone, 12% of taxa was restricted to main
channel habitats and 54% to tributaries. Ponds and backwaters were almost

completely absent in the Rhone.
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Figure 5. The cumulative relative (%) species richness along the Tagliamento, Thur

and Rhone Rivers. Taxa not found in the main channel were cumulatively added.

Longitudinal diversity patterns differed among corridors (Figure 6). Along the
Rhone River, diversity peaked in the headwater section. Habitats downstream of
river-km 25 added only five new taxa to total corridor diversity. No clear
longitudinal patterns occurred along the Thur and Tagliamento. In both rivers,
cumulated richness increased continuously along the corridor, with a steeper

increase along the Thur (Figure 6).
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Figure 6. Taxa richness (total no of taxa per segment) and cumulative number

(cum no of taxa; dotted line) along the three river corridors.
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Nestedness and hierarchical organization

EPT-assemblages were highly nested within each corridor. The calculated

temperatures (Tagliamento: 10.1°%; Thur: 16.5° Rhoéne: 6.6°) were significantly

(p < 0.001) lower than values randomly produced by Monte Carlo simulations.

Point diversity (a-diversity) was highest along the Thur and lowest along the

Rhone (Levels 2-4; Figure 7). Along each corridor, average species richness was

lowest in pond habitats (Levels 3 & 4; Figure 7).

Species turnover (B;-diversity) vatried across scales (Figure 7). Turnover rate was

highest at the scale “Alps” (Level 1) and lowest at the corridor scale (Level 2).

Alps
159/43
| |
Tagliamento Thur Rhone
78/25 112/23 65/19
| | |
I o ] | ]
mc p bw t mc p bw mc p bw

37/30 18/56 49/43 33/50 54/27 32/52 38/37 70/42

9+6 4+4 10«8 117

12+5 10+£5 18+1 129

5+4

1+1

25/242/100 7/25 57/24

3+2 12+12

Level 1
ealB1a

Level 2
Yo/Bic

Level 3
a/Biy

Level 4
asiSD

Figure 7. Hierarchical organization of species diversity. Level 1: Alps (,=Alps

epsilon; B,,=Alps beta-1); Level 2: corridor (Y. = corridor gamma ; 3, = corridor

beta-1); Level 3: habitat type (o;; = habitat type alpha; f,;; = habitat type beta-1);

Level 4: individual sample (xg = sample alpha). Mc=main channel, p=pond, bw=

backwater; t= tributary.
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Two additional trends could be observed: (1) Turnover rate, or B,-diversity,
decreased (except for ponds) from the near-natural Tagliamento to the highly
impacted Rhoéne (Figure 7). (2) Py -diversity decreased laterally (main
channel<backwaters<ponds and tributaries) along the Thur and Tagliamento.
Along the regulated Rhone, the number of backwaters and ponds was too low to
detect any lateral trend in beta-diversity. Species-turnover rates among aquatic
habitat types within each segment (within segment [3,) were high. Mean values
+SD were 64116, 63120, and 59%16 for Tagliamento, Thur and Rhone,
respectively.

Total species diversity was partitioned into its hierarchical components. Along
the three rivers, among-sample and corridor diversity components (35 and B)
contributed most to total EPT-taxa richness, while <15% was due to within-

sample and habitat type diversity components (xg and 3;; Figure 8).
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Figure 8. Additive partitioning of observed species richness across three spatial
scales. Values are expressed as the percent of the total diversity of EPT-taxa

diversity explained by each hierarchical level (see Table 2).
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This means that the heterogeneity among individual habitats (i.e., individual
samples) explained more of the total species richness than the heterogeneity within
individual habitats and among habitat types (i.e., pond, tributary, backwater, main
channel).

The average faunal similarity between pairs of aquatic habitat types was low, and

differences between pairs were not significant (ANOVA; Table 3).

Table 3. Mean taxa similarity (= SD) between all pairs of aquatic habitat types along the

three river corridors (mc=main channel, p=pond, bw=backwater, t=tributary).

mc-bw mc-p mc-t bw-p bw-t p-t
Tagliamento 0.18 £ 0.09 0.16 £ 0.19 0.15*£0.11 0.1 £0.11 0.18 £ 0.13 0
Thur 0.22 £ 0.12 0.22 £ 0.14 0.14 £0.07 0.17 £ 0.07 0.09 £ 0.09 0.04 £ 0.05
Rhoéne 026 £0.1 0.17 £0.29 0.18 £ 0.12 - 0.05 = 0.08 0

DISCUSSION

Habitat and species richness patterns

Species diversity patterns along rivers has been well studied. In particular, it is well
known that species are replaced along the river channel due to changes in
temperature, sediment structure, and stream metabolism (see Vinson & Hawkins
1998). However, most studies focused on single-thread rivers and excluded lateral
habitats. In the present study, we included lateral aquatic habitats along entire river
corridors. As a consequence, none of the existing concepts that have been
developed to predict biodiversity along river corridors (e.g., Vannote e al. 1980,
Ward & Stanford 1983; Statzner & Higler 1986) can be supported by our data.
Each river exhibited a distinct longitudinal pattern sequence in species diversity
(Figure 6), which emphasizes the uniqueness of rivers. Hynes (1975), already

proposed that ‘every stream is likely to be individual’. Moreover, each habitat type
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contained a very distinct community, and faunal similarity among individual habitat
types was very low (Table 3). The “individuality” of rivers as well as of habitat
types, however, has been challenged by anthropogenic impacts. River regulation
not only eliminates lateral habitats (see Figures 2 and 3) it also most likely leads to a
homogenization of aquatic communities. Along the regulated Rhone, for example,
main stem habitats were species-poor; remaining diversity was primarily allocated
to tributaries (parafluvial ponds and backwaters were almost completely absent). In
tributaries, which are less affected by hydropeaking and canalization, 87% of the
present corridor species pool occurred (Appendix, Table 1).

Lateral aquatic habitats such as tributaries, backwaters, and parafluvial ponds are
among the least-investigated habitat types along river corridors. Although these
habitats cover only a small proportion of the total aquatic area (<8% in braided
flood plains along the Tagliamento, Van der Nat e a/. 2003), they contributed
>50% to total species richness (Figure 5). In particular backwaters and tributaries
contained rich communities that were different from main channel habitats. A
modest contribution by parafluvial ponds can partly be explained by our focus on
EPT-taxa. By considering other groups such as Mollusca, Crustacea, Odonata or,
Coleoptera, we may expect a much higher contribution of lentic habitats
(parafluvial ponds, backwaters) to total species diversity (U. Karaus, unpubl. data).
Jackknife analyses, standardized by number of individuals, exhibited a steeper
curve in ponds compared to other habitat types (Figure 4B). Between-pond
heterogeneity is expected to be large, which was confirmed by higher turnover
rates among ponds compared to other habitat types (Figure 7). From an ecological
perspective, ponds can be regarded as “concave islands” with environmental
properties strongly related to local conditions (Karaus ez a/. 2005). Generally, pond
invertebrate diversity has been related to a range successional stages, and therefore,
to disturbance frequency (Castella 1987; Schneider & Frost 1996; Homes ez al.
1999) and to hydrological connectivity (Tockner ez a/. 1999).
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Tributaries, on the other hand, are not only different from the main channel
regarding environmental properties, but also are assumed to enhance the local
heterogeneity at the confluence with the main channel (the network dynamics
hypothesis, Benda e a/. 2004). Brown & Coon (1994) reported higher fish density
and different community composition in tributaries compared to the channel
(Lower Missouri, US). They found a gradient in the faunal assemblage from small
tributaries to large river sections, which corresponded to an environmental
gradient from shallow streams with coarse substrate to deep rivers with finer
sediments. The potential importance of tributaries for main stem communities is
virtually unexplored. Tributaries may serve as important refugia for recolonising
the main channel after disturbances (e.g., floods, droughts, pollution), and they are
important habitats for early life stages of fish and invertebrates (Bruns ez 2/ 1984,
Rice et al. 2001).

In the present study, backwaters also contributed significantly to overall species
richness along the three river corridors (Figure 7). They were colonized by a
unique and species rich community. Similar differences in taxa richness between
backwaters and main-channel habitats were found also in upland streams in
Victoria (O'Leary et al 1992). Solari (2002) found high plankton densities in
backwaters of the Slado River (Argentina), a consequence of lentic conditions.
Lentic conditions, a permanent hydrological connection to the main channel, and
increased primary production can enhance species richness within backwaters
(Cellot & Bournaud 1986; Schiemer ef a/. 2001). At mean and low discharge,
backwaters exhibit lentic conditions, and they primarily accumulate organic matter
(Amoros & Roux 1988) In their “Inshore Retention Concept”, Schiemer ez al.
(2001) emphasized the importance of still-water habitats in the active channel for
the development of phyto- and zooplankton and fish larvae. Backwaters were
identified as important retentive habitats, which contributed to overall river
biodiversity and production. However, further studies on local constraints on

backwater communities (as well as on tributary communities) - in particular on the
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potential role of backwaters as refugia during flood events - are required. This is
especially intriguing for permanently connected habitats (backwaters and

tributaries) where dispersal barriers are presumably absent.

Nestedness and hierarchical organization

River corridors are hierarchically organized and nested ecosystems. In the
present study, the nested sampling design allowed to detect differences in species
diversity at various spatial scales. As expected, communities were highly nested in
all three river corridors. Nestedness is a common attribute of most communities
(Wright ez al 1998). Aquatic invertebrates, however, have been regarded as an
exception, because of their high diversity (Boecklen 1997). Malmqvist & Hoffsten
(2000) detected a nested distribution for Ephemeroptera, Plecoptera, Trichoptera,
and Simuliidae in Swedish streams and rivers. Nestedness was particularly
pronounced in the Rhone River, where communities in the canalized middle and
downstream sections formed distinct subsets of the less-impacted and more
species-rich headwater reaches. The lower sections along the Rhoéne - heavily
impacted by hydropeaking and river regulation - are very likely sinks for
invertebrate species. Most species of the regional pool are expected to be able to
disperse over large areas, therefore local conditions primarily determine the
presence or absence of species within individual habitats (habitat filters, sezsu Potf
1997). A lower degree of nestedness (higher system temperature T) in the less
impacted Thur and Tagliamento Rivers could result from higher habitat
heterogeneity.

In the present study, we applied a quantitative model that allows to partitioning
at different spatial scales (see Wagner ez a/. 2000). This approach implies that what
we measure as within-community diversity at a higher scale (e.g., corridor scale) is
the combined effect of heterogeneity at various lower scales (habitat, river
segment). In the present study, high differentiation diversity (beta-diversity) at the

broadest spatial scale (Level 1 in Figure 7) reflected distinct biogeographic
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differences among corridors (i.e., regional control of local diversity). All three
rivers flow in different directions. In addition, human impacts were likely to

increase differences among catchments.
The low within-corridor turnover (B,¢), in contrast to the high within-(3,;,) and

between-habitat (within-segment ;) type turnover, assumed that both regional and
local factors control benthic communities. The influence of local factors (habitat
heterogeneity and biotic interactions) and of regional factors (altitude, river style,
land-use patters) on the structure of stream invertebrates has been well
documented (see review by Vinson & Hawkins 1998). However, the relationship
between regional and local species richness has been rarely investigated for stream
invertebrates. Studies on fish diversity showed a strong regional control on local
diversity (Hugueny 1995), or an influence by both regional and local factors
(Angermeier & Winston 1998). Vaughn (1997) reported a linear relationship
between regional and local species richness for river-dwelling mussels, while Heino
et al. (2003) detected regional species richness as the most influential variable
contributing to local species richness. However, it is far from clear whether
regional species richness consistently sets the limits to local species richness, or
vice versa (Vinson & Hawkins 1998). We may consider the relationship between
regional and local species richness as a feedback system where they influence each
other. On the one hand, regional species richness sets the upper limit for local
species richness; on the other hand, regional species richness is adapted to decrease
or increase of local species richness. This implies that the regional species pool is
sequentially reduced by environmental filters, which include disturbance regime,
dispersal barrier, habitat condition, and biotic interaction (Tonn ez a/. 1990). Each
filter operates at a distinctive spatiotemporal scale and leads to a characteristic

species community.
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Implications for conservation and management

River corridors are among the most threatened ecosystems world wide
(Malmqvist & Rundle 2002; Tockner & Stanford 2002). In Europe, for example,
~90% of all former floodplains disappeared or are functionally extinct (Hughes
2003). Nowadays, restoration is a major issue in river management. However, a
high proportion of restoration projects fail, mainly because of a fundamental lack
of understanding of principal mechanisms that create and maintain biodiversity
and biocomplexity along river corridors. Lateral habitats are among the first
habitats that disappear as a consequence of river regulation and flow control. Since
overall river biodiversity is strongly enhanced by the lateral habitat diversity (see:
Figure 5), the formation and rejuvenation of ponds and backwaters needs to be
promoted by restoration projects. Furthermore, we also need to more thoroughly
understand the importance of tributary confluences as important ecological nodes
along river corridors (see Benda ez a/. 2004). Tributaries and their intersections with
the main channel may be critical for the resilience of entire river corridors.

At a regional scale, flood disturbance is a key factor promoting biodiversity
(Pollock 1998). At a local scale, parafluvial ponds are often associated with dead
wood and vegetated islands (Gurnell & Petts 2002; Karaus ef a/. 2005). Hence, dead
wood and islands are expected to enhance aquatic habitat diversity (Arscott ez al.
2000). Furthermore, biodiversity along the three river corridors was strongly nested
and hierarchical. This is important since restoration has primarily focused on the
reach scale or on individual species and habitats. Clarke (2003) proposed an eco-
hydromorphic approach for restoration, which is based on the principle that both
morphological and ecological components are closely interlinked and that channel
form, system functioning, and species composition result from these interacting
processes. A better understanding of the ecology and functioning of lateral aquatic

habitats will therefore, support successful river restoration.
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