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The effects of irrigation on colonization of Pinus sylvestris and Quercus pubescens by members of the
Phialocephala fortinii s.l. e Acephala applanata species complex (PAC) was assessed. Roots were collected
from an irrigation experiment site. PAC species were identified based on 13 microsatellites. Irrigation and
host species had a significant effect on the frequency of roots colonized by PAC. In oak (Q. pubescens) but
not in pine (P. sylvestris), PAC were significantly more common on dry non-irrigated plots than on irri-
gated ones. Frequency of colonization of pine roots was twice as high as that of oak roots, and the mean
number of PAC species per tree was significantly higher for pines. A hitherto unknown PAC species was
found. The community structure was random except for the most frequently isolated Phialocephala
europaea and Phialocephala helvetica, which inhibited one another in pine roots. The possible effects of
PAC colonization on drought resistance of oak are discussed.

© 2019 Elsevier Ltd and British Mycological Society. All rights reserved.
1. Introduction

Root tissue represents a morphologically, physically and chem-
ically complex microcosm that serves as a habitat for a large
number of microorganisms (Sieber and Grünig, 2013). Dark septate
endophytes (DSE) are amongst the most common of these micro-
organisms and form a group of often loosely related species (mostly
ascomycetes) (Stoyke et al., 1992; Grünig et al., 2008b; Sieber and
Grünig, 2013). They have been identified as root inhabitants on a
large number of plants belonging to approximately 100 different
plant families ranging from the tropics to the arctic (Jumpponen
and Trappe, 1998). One common and thoroughly studied DSE
fungal group is known as PAC (Phialocephala fortinii s.l. - Acephala
applanata species complex). It consists of 21 closely-related,
morphologically almost indistinguishable yet genetically unique
species, i.e. cryptic species (CSP) (Grünig et al., 2001, 2002a, 2003,
ieber).

al Society. All rights reserved.
2004; Queloz et al., 2010). PAC are very common root colonizers in
conifers (Ahlich and Sieber, 1996; Ahlich-Schlegel, 1997; Addy et al.,
2000; Grünig et al., 2002b, 2006). They also occur in the roots of
deciduous trees, though less frequently (Halmschlager and
Kowalski, 2004; Kwasna et al., 2008; Reininger et al., 2012;
Santschi, 2015), and are even found in the roots of herbaceous
plants and small shrubs (Stoyke and Currah, 1993; Harney et al.,
1997; Addy et al., 2000). Their distribution comprises the major-
ity of the northern hemisphere (Queloz et al., 2011). In contrast to
mycorrhizal fungi, their occurrence is not limited to absorptive
roots. PAC also colonize roots undergoing secondary growth and
can therefore occur in the root cortex anywhere in a tree's root
system. Consequently, they are among the most widespread of root
inhabitants (Sieber and Grünig, 2013).

Despite their wide distribution and prevalence, their dispersal
and behavioral biology have yet to be adequately explained. So far,
no sexual state (teleomorph) has been uncovered. Non-
germinating asexual spores (anamorph), are formed rarely after
long incubation of cultures in the dark at 4 �C (Ahlich and Sieber,
1996; Grünig et al., 2008a). Locally, PAC spread via root contacts

mailto:thomas.sieber@env.ethz.ch
http://www.forestpathology.ethz.ch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.funeco.2019.100904&domain=pdf
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https://doi.org/10.1016/j.funeco.2019.100904
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M. Landolt et al. / Fungal Ecology 44 (2020) 1009042
(Stroheker, 2017), but the extremely low growth rates of PAC
mycelium observed in the soil also suggest that active proliferation
through the soil is unlikely (Trüssel, 2011). It also remains unknown
whether (and how) PAC spread over long distances. Thus far, PAC
have not been detected in spore traps, practically ruling out
airborne dispersal (Kauserud et al., 2005).

The geographic distribution of PAC species in the northern
hemisphere cannot be explained through environmental factors.
The rules that govern the population and community structure of
PAC are not yet understood (Ahlich et al., 1998; Queloz, 2008;
Queloz et al., 2011). The community dynamics of PAC appear to be
relatively slow. Changes in population structure at a site on the
Swiss Plateau revealed no changes after 3 y (Queloz et al., 2005).
However, a reassessment of the same site revealed changes in the
population structure after 10 y (Stroheker et al., 2016).

The PAC-host plant relationship has been investigated in several
experiments and is a controversial topic. Effects ranging from
“slightly positive” (Tellenbach and Sieber, 2012; Reininger and
Sieber, 2013) to “pathogenic” (Wilcox and Wang, 1987; Tellenbach
et al., 2011) have been noted. It was revealed that the pathoge-
nicity of PAC depends on the inoculated genotypes. Pathogenicity
and virulence are therefore genotype-specific (Tellenbach et al.,
2011). Inoculation of several genotypes and species can have syn-
ergistic effects which are of benefit to the plant. PAC enhances
defense against more pathogenic root inhabitants, in particular
when combined with mycorrhizal fungi (Tellenbach and Sieber,
2012; Reininger and Sieber, 2013).

The fact that PAC can control root pathogens underlines the
importance of understanding the ecology of this widespread spe-
cies complex. The question of how PAC react to changing envi-
ronmental conditions has been investigated in three experiments
thus far. Reininger et al. (2012) demonstrated that the virulence of a
pathogenic PAC strain was reduced at elevated temperatures (23 �C
vs. 18 �C). At lower temperatures (19 �C vs. 25 �C), spruce (Picea
abies) exhibited improved performance when its roots were colo-
nized by both PAC and the mycorrhizal fungus Laccaria bicolor than
if the roots were colonized by L. bicolor alone (Reininger and Sieber,
2012). Tellenbach and Sieber (2012) found that the protective effect
of PAC against pathogenic oomycetes increased at higher temper-
atures (21.6 �C vs.17.9 �C). The effect of temperature adjustment has
therefore already been investigated in several studies under
controlled laboratory conditions. In nature, however, the effects of
global warming are not limited to an increase in temperature, but
also major changes in the water balance are to be expected.

Periods of drought are increasing in both frequency and intensity
in Switzerland (Calanca, 2007; Scherrer et al., 2016). This can lead to
drought stress for forest ecosystems (Dobbertin et al., 2007). For
example, in Valais, a central-alpine valley in Switzerland, Scots pine
(Pinus sylvestris) forests at low altitudes are undergoing change.
Deciduous species, in particular pubescent oak (Quercus pubescens),
are becoming more abundant while pine shows increasing mortal-
ity. It has been hypothesized that prolonged and more severe
drought periods due to climate change and species-specific drought
tolerance are key factors driving these trends (Eilmann et al., 2006;
Rigling et al., 2010). However, the interaction of these tree species
with other plants, arthropods, nematodes and microorganisms also
plays a key role. There is a high incidence of mistletoes (Viscum
album ssp. austriacum) on Scots pine in Valais (Rigling et al., 2010).
Drought stress needs to be more severe to induce stomatal closure
of mistletoe than of P. sylvestris. Thus, during drought periods water
stress is felt more acutely by heavily infested P. sylvestris than by
mistletoe-free trees. Consequently, mistletoes increase the risk of
drought-induced mortality when its hosts grow in a xeric environ-
ment (Noetzli et al., 2003; Rigling et al., 2010). A meta-analysis of
the effects of global change factors on plant growth indicated that
drought and nitrogen deposition have resulted in plant responses
that are strongly influenced by fungi, highlighting that considering
plantefungal symbioses is critical in predicting ecosystem response
to climate change (Kivlin et al., 2013).

Therefore, a near-natural study was initiated to examine the
effects of drought stress on PAC-host symbioses. More specifically,
the effects of drought stress on the colonization of Scots pine (P.
sylvestris) and pubescent oak (Q. pubescens) roots by PAC were
examined, as well as whether individual CSP perform better on dry
sites and/or on one of the two host tree species. The Scots pine
forest “Pfynwald” in Valais, Switzerland, was used, where artifi-
cially irrigated areas alternate with corresponding, non-irrigated
areas as controls (Herzog et al., 2014). Irrigation had no or only a
moderate effect on the diversity and abundance of mycorrhizal
fungi (Hutter, 2014; Hartmann et al., 2017), but nothing is known
regarding the effect of irrigation on PAC in particular. The aims of
this study were to examine the effects of irrigation on the PAC
community in roots of Scots pine and pubescent oak, in particular
on (i) the overall colonization density, (ii) the number of species,
(iii) the frequency of occurrence of individual species, and (iv) the
community structure.

2. Materials and methods

PAC communities were studied in 2016 in an experimental plot
located in the forest “Pfynwald” (canton of Valais, Switzerland,
46�18ʹ N, 7�37ʹ E, 615 m a.s.l.), where the effects of artificial irri-
gation on the forest ecosystem have been studied since 2003
(Dobbertin et al., 2010; Herzog et al., 2014). The vegetation is an
Erico-Pinetum (Keller et al., 1998; Werner, 1985) with Scots pine (P.
sylvestris) being the dominant canopy tree species. The mean stand
age is 95 y. The top tree height is 10.8 m. The stand density is 730
stems per hectare (ha) with a breast height diameter (DBH) of
�12 cm or a basal area of 27.3 m2 ha�1 (Dobbertin et al., 2010).
Quercus pubescens is the most abundant woody plant species in the
understorey and will probably substitute P. sylvestris in the long
run, should the frequency and duration of drought periods further
increase (Calanca, 2007; Scherrer et al., 2016).

The experimental plot has been subdivided into eight subplots
measuring 25 � 40 m each (1000 m2). Four of the subplots were
artificially irrigated on rainless nights during the vegetation period
(May to October) from 2003 to 2012 with water from the nearby
river (channel) (Dobbertin et al., 2010) (Fig. 1). The quantity of
artificial rain amounts to 512mmannually which corresponds to the
local annual precipitation (Herzog et al., 2014), i.e. the irrigated plots
receive twice as much water as they naturally would. The additional
input of nutrients by the irrigation water can be considered negli-
gible. The content of phosphorus in the irrigation water lies below
the detection limit (PO4 < 0.15 kg ha�1 a�1), and the input of ni-
trogen (2.4e3.3 kg ha�1 a�1) is less than that of the same amount of
natural rainfall (N� 3.5 kg ha�1 a�1) (Herzog et al., 2014). The pH of
the top soil (0e5 cm) varies between 4.1 and 6.7, with the pH of the
soil belowmeasuring between 6.8 and 7.7 (Brunner et al., 2009). The
pH of the irrigationwater is high, leading to an increase in the pH of
the top soil but not below (Dobbertin et al., 2010).

2.1. Sampling procedure

Roots were collected in the spring of 2016 from one half of each
subplot; i.e. the halves closer to the river. The eight half-subplots
were further subdivided into 20 squares measuring 5 � 5 m
(Fig. 1). Living fine roots of the P. sylvestris and the Q. pubescens tree
closest to the centre of the squarewere sampled, resulting in a total
of 160 trees per tree species. The roots of the two tree species could
be differentiated by the presence of resin ducts in P. sylvestriswhich



Fig. 1. Experimental setup of the irrigation experiment. Irrigated plots (grey) and non-irrigated control plots (white) with the nearby river which was used for irrigation (Herzog
et al., 2014). In the present study, samples were only taken from the half of the plots closest to the river.
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are absent in Q. pubescens. In contrast, Q. pubescens possesses
comparatively thick medullary rays and vessels whereas the rays
are very thin in P. sylvestris and vessels are absent. Pinus sylvestris
trees tended to be older, whereas most of the Q. pubescens were
young and shrub-like. The roots were carefully excavated and three
root complexes of at least 10 cm in length per treewere collected at
a soil depth of between 5 and 10 cm (in order to avoid top and sub
soil). The root samples were stored in airtight plastic bags at 4 �C
until further processing.

2.2. Isolation and single-hyphal tip culture (SHT)

Five approximately 5-cm-long fine root pieces were excised
from each of the three root complexes per tree and surface-
sterilized according to Ahlich and Sieber (1996). The roots were
washed under running tap water and sterilized according to the
following protocol: immersion in 99% (v:v) ethanol for 1 min, 5 min
in 35% (v:v) hydrogen peroxide and finally 30 s in 99% (v:v) ethanol.
Subsequently, 0.5-cm-long segments were cut from the middle of
the root pieces and incubated at 20 ± 2 �C in the dark on terramycin
malt agar (TMA: 20 g/l malt extract, 16 g/l agar, 50 mg/l terramycin
(active ingredient: oxytetracycline, Pfizer Ltd., Hyderabad, Telan-
gana, India)). Per 5 � 5 m sampling unit and tree species, 15 root
segments (five segments in each of three Petri dishes) were incu-
bated, i.e. a total of 4800 root segments were plated out. The agar
plates were checked periodically during incubation. Which fungi
grew from the root segments was recorded. Rapidly growing spe-
cies (PAC growth is relatively slow) were removed from the TMA
plates to prevent contamination of the remaining colonies. In cases
where it was possible to assign a fungal colony to PAC (see Ahlich
and Sieber (1996) for colony characteristics), a single-hyphal tip
culture (SHT) was prepared. For such purposes, an actively growing
culture was placed under a binocular microscope equipped with
transmitted light and, at maximummagnification, a single hypha is
cut out from the edge of the culture with a flamed scalpel and
transferred to a newmalt agar plate (20 g/l malt extract, 16 g/l agar)
followed by incubation at 20 ± 2 �C in the dark for 2e3 weeks. The
SHT cultures were grouped into morphotypes and two to four SHT
cultures per tree were subjected to microsatellite analysis. The
number of segments from which non-PAC mycelia emerged was
also surveyed, but the mycelia were not identified.

2.3. DNA-extraction, microsatellite analysis and multigene
characterization

Approx. 40 mg of mycelium per culture were transferred in tube
strips (2 ml) and freeze-dried for 24 h. The DNAwas then extracted
according to the NucleoSpin® 96 Plant II Kit protocol (Macherey-
Nagel AG, Oensingen, Switzerland) and amplified at 13 loci using
the multiplex method developed by Queloz et al. (2010). The PCR
products were stored at 4 �C until further processing (maximum
two days). The microsatellite data were analyzed using Gene-
Mapper® v. 4.0 (Applied Biosystems, Foster City, USA) software and
compared to the data reported in Queloz et al. (2010) using the
software GeneClass2 (Piry et al., 2004). Since GeneClass2 only uses
a subset of our microsatellite data, assignments with an accuracy of
over 95% were assumed to be safe. Samples with lower accuracy
levels were compared manually to all entries in our PAC micro-
satellite database (Queloz et al., 2010, 2011) and, where possible,
assigned to CSPs. One group of PAC isolates with identical micro-
satellite alleles could not be assigned unequivocally to an existing
CSP, but it appeared to consist of a hybrid of Phialocephalahelvetica
(CSP 4) and CSP 10 according to the allele combination at the mi-
crosatellite loci. Thus, these isolates were interpreted as belonging
to a hitherto unknown CSP and are referred to as CSP22. CSP22 was
further characterized by means of the five sequence loci proposed
by Grünig et al. (2007) to define CSPs of PAC. Ten strains of each of
the CSPs 4, 10 and 22 were selected and subjected to multigene
analysis as described in Grünig et al. (2007). Unrooted neighbour-
joining trees were constructed for each locus and the concate-
nated sequence of the b-tubulin, the EF1-alpha and the pPF-061
locus using the Tamura-Nei distance as implemented in Gene-
ious® 9.1.8 (Biomatters Ltd., Auckland, New Zealand). Boot-
strapping to generate 1000 pseudosamples was used for accuracy
estimation. Microsatellites are ideally suited to PAC species (CSP)
identification, but they do not possess adequate discriminatory
power for reliably differentiating between genotypes.

2.4. Statistical analysis

The “colonization density” responses (¼ the number of root
segments colonized divided by the number of root segments
examined) of both PAC and non-PAC, “the mean number of PAC
species per tree” and “the proportion of trees colonized by a given
CSP” as influenced by the fixed effects “tree species”, as well as
“irrigation” were all modelled using analysis of variance (ANOVA).
Normal distribution of the residuals was examined using residual
analysis. Chi-square tests served to investigate the independence of
the twomost frequently isolated PAC species and the independence
of colonization of the two hosts in the same 5 � 5 m square by a
given PAC species. A p-value of �0.05 was considered to indicate a
significant outcome (Stahel, 2002). All statistical calculations were
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performed using the software R (R for Windows, Version 3.2.1, R
Foundation for statistical computing, Vienna, Austria).

3. Results

3.1. Density of colonization

From the 4800 incubated root pieces 2205 PAC cultures were
obtained, corresponding to an overall colonization density of 0.46
(or 46%). PACwere isolated from 1472 pine root segments (61%) and
733 oak root segments (31%). All trees were colonized by PAC
except for 13 of the 160 oak trees. Seven of these oaks were from
irrigated plots and six from non-irrigated plots. The factors “tree
species” and “irrigation”, but also the interaction between the two
factors had a statistically significant influence on colonization
density (Table 1). A significant interaction requires that unifactorial
ANOVAs are calculated for each of the factors separately. Again, the
tree species played a crucial role, i.e. the colonization density of PAC
on P. sylvestris was almost twice as high as on Q. pubescens. In
contrast, irrigation had a significant influence on colonization
density of Q. pubescens only, and not that of P. sylvestris (Table 1;
Fig. 2A). Colonization density of PAC in roots of Q. pubescens was
40% higher in non-irrigated than in irrigated plots. Non-PAC were
isolated from 660 pine root segments (28%) and 1252 oak root
segments (52%). The difference in the colonization density between
the two tree species was statistically significant. However, irriga-
tion had no effect on this for either tree species.

3.2. Number of PAC species (CSP) and frequency of colonization

For PAC species identification, 948 SHT cultures were prepared
from the 2205 cultures and subjected tomicrosatellite analysis. 877
of the SHTs could be assigned unambiguously to a CSP. The
remaining 71 SHTs analyzed could not be definitively assigned to a
CSP, as they were either contaminated or not a member of the PAC.
A total of seven different CSPs were found. The number of PAC
species was significantly higher for P. sylvestris than for Q. pubescens
(Table 2; Fig. 2B). However, irrigation had no notable impact. The
interaction between “tree species” and “irrigation” was statistically
insignificant. The number of trees colonized varied widely among
CSPs: from 1 to 246 (Table 3). Due to their rare occurrence, CSP 6
and CSP 13 were excluded from further statistical analyses. Sig-
nificant host preference for P. sylvestris was found for Phialocephala
europaea (CSP 3), P. helvetica (CSP 4) and CSP 22 (Fig. 3). In addition,
P. europaea occurred preferentially in plots with no irrigation
(Table 3; Fig. 3A). Six of the seven plots possessing more than ten
trees colonized by P. europaea were non-irrigated. Phialocephala
helvetica was most frequent and reached a colonization density
above 0.75 (i.e. 75% of all trees colonized). It was significantly more
common on P. sylvestris than on Q. pubescens (Table 3; Fig. 3B). CSP
10 was the only species (except CSP 13) more frequent on
Q. pubescens than on P. sylvestris. However, this was not statistically
significant (Table 3; Fig. 3C). In contrast, CSP 22, closely related to
CSPs 4 and 10, showed a pronounced preference for P. sylvestris as
Table 1
Influence of the factors “tree species” and “irrigation” on the average colonization den
bifactorial and unifactorial ANOVAs. Level of significance: *0.05, **0.01, ***0.001.

Factor Colonization density

Tree species P. sylvestris 0.61 Q. pubescens
Irrigation irrigated 0.43 non-irrigated

Tree species x Irrigation
P. sylvestris irrigated 0.61 P. sylvestris non-irri
Q. pubescens irrigated 0.26 Q. pubescens non-irr
host (Table 3; Fig. 3D).

3.3. Distributional pattern of PAC species

No patternwas discernible in the distribution of the PAC species
in the plots (Fig. 4). However, for pine, a dependency between the
two most common species (P. europaea and P. helvetica) was
observed. The two species were significantly less common in the
same 5 � 5 m square than would have been expected by coinci-
dence, regardless of the irrigation method (non-irrigated, p ¼ 0.03;
irrigated, p ¼ 0.01). In contrast, P. europaea and P. helvetica were
independent regarding colonization of oak roots (non-irrigated,
p ¼ 0.44; irrigated, p ¼ 0.96).

Colonization of one host by either P. europaea or P. helvetica did
not depend on whether the other host in the same 5 � 5 m square
was also colonized regardless of the irrigation method (P. europaea,
non-irrigated, p ¼ 0.32; P. europaea, irrigated, p ¼ 0.07; P. helvetica,
non-irrigated, p ¼ 0.32; P. helvetica, irrigated, p ¼ 0.95). Although
statistically not significant (p ¼ 0.07), there was a tendency for
P. europaea to occur more frequently than randomly expected in
both hosts in the same 5� 5 m square of the treatment with higher
water availability.

3.4. Newly discovered CSP 22

Of the 875 successfully analyzed SHTs, 74 SHTs could not be
unambiguously assigned to one known CSP. These 74 SHTs were
most closely related to CSP 10 and P. helvetica in terms of the
number of identical alleles but represent a new CSP, i.e. CSP 22. PAC
encompassed 21 CSPs until now, of which eight species have been
formally described (Grünig and Sieber, 2005; Grünig et al., 2008a;
Queloz et al., 2011). CSP 22 possesses the same allele as P. helvetica
(CSP 4) and CSP 10 at three of the 13 microsatellite loci (Table 4).
Moreover, CSP 22 has the same allele as P. helvetica at 5 additional
loci and the same allele as CSP 10 at another 4 loci. Consequently,
CSP 22 has a balancedmix of alleles of P. helvetica and CSP 10, which
suggests that CSP 22 might be a hybrid of P. helvetica and CSP 10.
Concerning sequence loci, CSP 22 is more closely related to
P. helvetica than CSP 10 at two of the five tested loci (b-tubulin and
pPF-061) and more closely related to CSP 10 at another two loci
(EF1-alpha and pPF-018) (Fig. 5). Locus pPF-076 was not suitable for
proper separation of P. helvetica and CSP 10 but CSP 22 clearly
differed from these two CSPs. Considering the 1887 bp-long
concatenated sequence of the three loci b-tubulin, EF1-alpha and
pPF-061, the difference among the three CSPs is expressed by single
nucleotide polymorphism (SNP) at 55 (3%) of the nucleotide posi-
tions (Table 5). CSP 22 possesses the same nucleotide as P. helvetica
at 33 of these positions but the same nucleotide as CSP 10 at
maximally 14 of the positions (depending on the CSP 10 strain,
nucleotides vary at 9 of the SNP positions). Thus, it cannot be
excluded that CSP 22 represents the result of a recombination be-
tween P. helvetica and CSP 10. However, compared to the total
genome size of 70 Mb of PAC (Schlegel et al., 2016), the section of
the genome examined here is too small to prove hybridizationwith
sity. Overview of the mean values of colonization density and the P values of the

P-value bifactorial ANOVA P-value unifactorial ANOVA

0.31 <0.0001***
0.49 0.00824**

gated 0.62
0.0497*

0.618
igated 0.36 0.00143**



Fig. 2. The effect of tree species and irrigation on (A) the density of colonization by PAC and (B) the mean number of PAC species per tree.

Table 2
Influence of the factors “tree species” and “irrigation” on the mean number of species. Overview of the mean number of PAC species per tree and the P values of the bifactorial
ANOVA. Level of significance: *0.05, **0.01, ***0.001.

Factor Mean number of PAC species per tree P-value bifactorial ANOVA

Tree species P. sylvestris 1.88 Q. pubescens 1.32 <0.0001***
Irrigation irrigated 1.56 non-irrigated 1.64 0.322

Tree species x Irrigation
P. sylvestris irrigated 1.83 P. sylvestris non-irrigated 1.93 0.819
Q. pubescens irrigated 1.29 Q. pubescens non-irrigated 1.35

Table 3
Influence of the factors “tree species” and “irrigation” on the number of trees colonized by each CSP modelled using bifactorial ANOVA.a

CSPb Number of trees colonized (n ¼ 320) Tree species Irrigation

P. sylvestris (n ¼ 160) Q. pubescens (n ¼ 160) P-value irrgated (n ¼ 160) non-irrigated (n ¼ 160) P-value

2 12 6 6 1.00 9 3 0.079
3 161 95 66 0.001** 69 92 0.009**
4 246 136 110 0.00055** 123 123 1.00
6 3 2 1 na 1 2 na
10 21 8 13 0.26 12 9 0.50
13 1 0 1 na 0 1 na
22 67 53 14 <0.0001*** 35 32 0.67
Total 511 300 211 249 262

a The interaction “tree species” x “irrigation” was not significant for any CSP.
b CSP 2 is Phialocephala letzii, CSP 3 P. europaea, CSP 4 P. helvetica and CSP 6 P. subalpina according to Grünig et al. (2008a); CSPs 10, 13 and 22 have not been formally

described.
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sufficient certainty.

4. Discussion

Colonization by PAC was significantly denser in pubescent oak
(Q. pubescens) roots from drier, non-irrigated plots than irrigated
ones. A similar observation was made by Stroheker et al. (2018) for
naturally regenerating Norway spruce (P. abies) seedlings, the roots
of which were significantly more frequently colonized by an arti-
ficially introduced PAC strain in dry rather than in wet plots.
Occurrence of higher colonization densities under drier conditions
is rather counterintuitive and raises the questions of which
mechanisms caused PAC to be more abundant in roots of non-
irrigated pubescent oaks than in those of irrigated ones. There are



Fig. 3. The effect of tree species and irrigation on the number of trees (n ¼ 20) colonized by (A) Phialocephala europaea (CSP 3), (B) P. helvetica (CSP 4), (C) CSP 10 and (D) CSP 22.
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at least two possible explanations:

(i) PAC are known to form extended layers of microsclerotia in
culture and in the root cortex (pseudosclerotia) (Grünig et al.,
2008b; Sieber and Grünig, 2013). These microsclerotia are
resistant to drought, as well as repeated freezing and thaw-
ing (Ahlich-Schlegel, 1997). The walls of the fungal cells
forming the microsclerotia contain melanin, making them
waterproof. Thus, the microsclerotia are able to protect roots
against desiccation. Whether Q. pubescens forms more
microsclerotia than P. sylvestris remains to be tested. How-
ever, if formation of microsclerotia increases under drought
stress the ratio of isolation of PAC is expected to increase in
roots under non-irrigated conditions.

(ii) Drought stress was more severe in the non-irrigated plots
(Dobbertin et al., 2007, 2010), and could have made roots



Fig. 4. Distribution of the two most frequently isolated PAC species. The plots are
arranged according to the irrigation variants, i.e. there is no correspondence with the
position of the plots in the field. However, the plots are marked with the same letters
as in Fig. 1, allowing their positions to be determined.
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more susceptible to fungal infections, including PAC
(Desprez-Loustau et al., 2006). Since the roots of P. sylvestris
are heavily colonized by PAC even without water stress,
significant additional colonization is hardly possible under
water stress. In contrast, roots of Q. pubescens are far less
densely colonized by PAC, and susceptibility to PAC may in-
crease if its roots are exposed to drought.

Explanations (i) and (ii) are equally probable. Dark septate
endophytic fungi (DSE), which include PAC, were shown to have
positive effects on plant performance under water-limited condi-
tions in several studies. Mandyam and Jumpponen (2005) assume
that the main role of DSE is to improve water balance and drought
tolerance. Furthermore, DSE enhance the drought resistance of
several plant species (Zhang et al., 2010; dos Santos et al., 2017;
Valli and Muthukumar, 2018). In a meta-analysis of the effects of
global change factors on plant responses, DSE consistently exhibi-
ted a positive effect on plant biomass production (Kivlin et al.,
2013). Similarly, plants colonized by non-DSE endophytes are also
better-adapted to drought and show increased biomass compared
to non-symbiotic plants (Bailey et al., 2006; Waqas et al., 2012;
Azad and Kaminskyj, 2016; Lata et al., 2018; Pan et al., 2018).
Table 4
Allele lengths of CSP 22 at the 13 microsatellite loci. X indicates that CSP 4 and/or CSP 1

Locus mPF 011 mPF 022 mPF 043 mPF 0644 mPF 0860A mPF 138B mP

CSP22 228 177 116 219 156 122 1
CSP4 X X X X
CSP10 X X X
Each CSP was found at least once on both examined hosts
(except for CSP 13, which was only detected once on oak). No
pronounced host specificity could be determined for any of the
CSPs but three of the seven CSPs (P. europaea, P. helvetica and CSP
22) showed a preference for P. sylvestris. Antecedent studies on host
preference had differing results, though on other host species. In an
experiment including European ash (Fraxinus excelsior), sycamore
maple (Acer pseudoplatanus) and Norway spruce (P. abies) at two
locations near Zurich, P. helvetica showed pronounced host pref-
erence for P. abies, whereas P. europaea occurred equally frequently
on all three host species (Santschi, 2015). Kennedy et al. (2003)
found 39 of a total of 56 ectomycorrhizal fungi behaving host-
specific on either Pseudotsuga menziesii or Lithocarpus densiflora.
In a study by Ishida et al. (2007), however, only eight of the 205
ectomycorrhizal species were strictly host-specific for one of eight
tree species. Dickie (2007) concluded that ectomycorrhizas are not
definitively host-specific, i.e. there are no physiological or
anatomical obstacles, and consequently, the apparent host prefer-
ence reflects, rather, the influence of environmental factors.

Consequences of irrigation could only be shown for P. europaea,
which was 50% more common in non-irrigated than irrigated plots,
suggesting that it might be a species adapted to drought. Whether
P. europaea also occurs more frequently at other water-limited sites
and becomes more competitive with other CSPs due to drought is a
matter for further research.

The colonization density of PAC was significantly higher on the
conifer (P. sylvestris) than on the deciduous tree (Q. pubescens)
under the same conditions. It is also widely reported that PAC are
more abundant on conifers (Ahlich-Schlegel, 1997; Addy et al.,
2000; Grünig et al., 2006; Queloz et al., 2011) than on deciduous
trees, e.g. on Quercus species (Halmschlager and Kowalski, 2004;
Kwasna et al., 2008). While colonization densities of over 90% were
found on pine roots (Queloz et al., 2011), PAC was found only on a
maximum of 7.5% of the oak roots (Halmschlager and Kowalski,
2004). PAC colonization densities of only 1e14% were found in
roots of the deciduous tree species A. pseudoplatanus and F. excelsior
during another field study (Santschi, 2015). Reininger et al. (2012)
found quadruple the PAC biomass in roots of Norway spruce roots
(P. abies) than those of birch (Betula pendula) in an in vitro exper-
iment using artificial inoculation. A colonization density of more
than 30% on Q. pubescens under field conditions is therefore
considered to be above average. The reason may be the high
infection pressure caused by the abundance of PAC in neighboring
pine roots.

The irrigation experiment in the Pfynwald in Valais was
designed to clarify the role of drought in the increasing mortality of
P. sylvestris. Other studies have revealed various reasons for the
increasing weakness of this species. The most important being
mistletoe, bark beetles and nematodes (Dobbertin and Rigling,
2006; Polomski et al., 2006; Dobbertin et al., 2007; Wermelinger
et al., 2008; Rigling et al., 2013). The microsclerotia formed by
PAC probably have a waterproof outer layer like the pseudo-
sclerotial plates formed by Armillaria species or by members of the
Xylariales in decaying wood (Rayner and Boddy, 1988; Garraway
et al., 1991; Grünig et al., 2008b). These pseudosclerotia were
0 possess the same allele as CSP 22, empty cells indicate different allele.

F 008 mPF 035A mPF 0672 mPF 068 mPF 0860B mPF 088 mPF 142B

34 149 248 117 Null Null 145
X X X X

X X X X



Fig. 5. Unrooted neighbour joining trees depicting the relationship of the newly discovered CSP22 with its closest relatives Phialocephala helvetica (CSP 4) and CSP 10 based on five
DNA-sequence loci: (A) elongation factor EF1-alpha, (B) b-tubulin, (C) pPF-018, (D) pPF-061 and (E) pPF-076. (F) A tree of the concatenated sequences of EF1-alpha, b-tubulin and
pPF-061. Strains with an asterisk in (D) possess a 280-bp-long insertion. The scale bars show the number of changes per nucleotide position, and bootstrap support values of >50%
from 1000 replicates are shown above or below branches. See Table S1 for GenBank accession numbers of each strain.
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Table 5
Single nucleotide polymorphism (SNP) at nucleotide positions of the concatenated sequences of EF1-alpha, beta-tubulin and pPF-061 of the three closely related CSPs 4, 10 and
22.
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shown to protect the decaying wood and the fungus against
desiccation or to prevent a too high moisture content as in the case
of some xylariaceous fungi (Rayner and Boddy, 1988). If it can be
confirmed in future experiments that the higher frequency of PAC
in oak roots in non-irrigated plots is due to the higher formation of
waterproof microsclerotia, then PAC could protect oak roots against
desiccation and improve drought resistance of Q. pubescens.
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