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SUMMARY 

Social insects, and particularly ants, are extraordinarily ecologically successful 

organisms. Social life confers many advantages, such as co-operation for brood-

rearing or foraging. However, social insects may be particularly susceptible to 

disease transmission, because their colonies consist of often closely related 

individuals living in densely populated nests. To combat pathogens, social insects 

have access to individual immune defenses, and have also evolved collective 

defenses known as "social immunity". In the first part of this thesis, I studied how 

ants defend themselves against pathogens during particularly sensitive life stages: 

colony founding and brood rearing. I first tested the ability of queens to detect 

and avoid pathogenic fungi when establishing incipient colonies. Unexpectedly, 

Formica selysi queens were attracted rather than repelled by pathogenic fungi. I 

then tested the hypothesis that under pathogen threat, queens associate during 

colony founding in order to benefit from social immunity. In F. selysi, the 

presence of pathogens in a nesting site did not induce queen associations. 

Moreover, in incipient colonies of Lasius niger, the queens and their workers did 

not benefit from social immunity, and rather invested in individual immunity. 

Finally, in F. selysi, the ability of young workers to resist a fungal infection did 

not depend on their mother queen, nor on the number of workers that reared them. 

In the second part of this thesis, I studied the use of antibiotic resin by the wood 

ant Formica paralugubris. I found that wood ants collect more resin when brood 

is present in their nest, and that they place resin near the brood. I also discovered 

that ants produce a potent antibiotic by depositing self-produced formic acid on 

the resin. This thesis illustrates some unexpected aspects of the host-pathogen 

relationship during colony founding and provides important insights into how 

ants use antibiotic substances such as resin.  
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RÉSUMÉ 

Les insectes sociaux, et particulièrement les fourmis, sont des organismes au 

succès écologique extraordinaire. La vie sociale confère de nombreux avantages, 

comme la coopération pour l'élevage du couvain ou la recherche de nourriture. 

En revanche, les insectes sociaux peuvent être particulièrement susceptibles à la 

transmission de maladies, car leurs colonies se composent d’individus souvent 

très apparentés vivant dans des nids densément peuplés. Pour lutter contre les 

pathogènes, les insectes sociaux possèdent des défenses immunitaires 

individuelles, et ont également évolué des défenses collectives ou « immunité 

sociale ». Dans la première partie de cette thèse, j'ai étudié comment les fourmis 

se défendent contre les pathogènes pendant des stades de vie particulièrement 

sensibles chez les fourmis: lors de la fondation d’une colonie et pendant l'élevage 

de couvain. J'ai d'abord testé la capacité des reines à détecter et éviter des 

champignons pathogènes lors de l’établissement de nouvelles colonies. De façon 

inattendue, les reines de Formica selysi étaient attirées plutôt que repoussées par 

des champignons pathogènes. J’ai ensuite testé l’hypothèse selon laquelle en 

présence de pathogènes, les reines s’associent pour fonder une colonie afin de 

bénéficier d’une immunité sociale. Chez F. selysi, la présence de pathogènes dans 

un site de nidification n’incitait pas les reines à s’associer. De plus, dans les 

nouvelles colonies de Lasius niger, les reines et leurs ouvrières ne bénéficiaient 

pas de l'immunité sociale, et investissaient plutôt dans l'immunité individuelle. 

Finalement, chez F. selysi, la capacité de jeunes ouvrières à résister à un 

champignon pathogène ne dépendait ni de leur mère, ni du nombre d’ouvrières 

les ayant élevées. Dans la deuxième partie de cette thèse, j'ai étudié l'utilisation 

de résine antibiotique par les fourmis des bois Formica paralugubris. J'ai constaté 

que les fourmis des bois recueillaient davantage de résine quand le couvain était 

présent dans leur nid, et qu'elles plaçaient la résine près du couvain. J'ai également 

découvert que les fourmis produisaient un puissant antibiotique en déposant de 
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l'acide formique sur la résine. Cette thèse illustre certains aspects inattendus de la 

relation hôte-pathogène lors de la fondation de colonies, et apporte des 

informations importantes sur la façon dont les fourmis utilisent des substances 

antibiotiques telles que la résine. 
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General introduction 

Social insects 

Social insects, and particularly ants, are extremely ecologically successful 

organisms (Wilson 1987). Ants have been present on earth since the Cretaceous, 

surviving a mass extinction (Schultz 2000). About 13 000 ant species are known 

today, with probably the double of this number still to discover (Ward 2014). 

They represent on average 15-20% of the terrestrial animal biomass and up to 

25% in certain areas (Schultz 2000). Ants are distributed widely on the planet, 

being absent only in Antarctica, Greenland, Iceland, and a few remote islands 

(Wilson 1987).  

Because of their ecological success, ants have an important impact on ecosystems. 

In their natural range, they play key roles as predators, herbivores, or as 

ecosystem engineers when building their nests (Sanders & van Veen 2011). When 

introduced outside their native range, they can have devastating effects. Of the 17 

land invertebrates included in the world’s 100 worst invasive alien species, 7 are 

social insects, with 5 ants, one wasp, and one termite species (Lowe et al. 2000) 

One of the main reasons behind the ecological success of social insects is their 

social system, called eusociality. Eusociality, considered as one of the major 

transitions in evolution (Szathmáry & Smith 1995), implies an overlap of 
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generations, collective care of the young, and reproductive division of labor. 

Reproductive division of labor means that only queens and males reproduce, 

while workers perform other tasks in the colony. Among the workers, there is 

another division of labor often based on age or morphology. For instance, young 

ants typically begin their life as nurses inside the colony and will as they age 

switch to tasks like nest cleaning and will finish their lives as foragers (Mersch, 

Crespi & Keller 2013). 

Defenses against pathogens in ants and other social insects 

Almost all organisms are subject to parasites, and according to some estimations, 

almost half of animals on the planet are themselves parasites (Poulin & Morand 

2000). Hosts and their pathogens engage in a co-evolutionary arms race, with 

hosts continuously evolving new defenses to escape pathogen innovations (Ebert 

& Hamilton 1996).  

Social insects offer an interesting system to study pathogen-host interactions, as 

they can be studied both at the individual level and at the collective level (Cremer, 

Armitage & Schmid-Hempel 2007; Cotter & Kilner 2010). Social insects and 

other group living animals, because they live in dense populations, potentially 

suffer from higher risks of disease transmission (Myers & Rothman 1995). Social 

insects may be even more at risk than gregarious animals: They usually interact 

closely in temporally and spatially stable nests where temperature and humidity 
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is controlled, conditions that are ideal for the proliferation of pathogens (Cremer 

et al. 2007). Additionally, because workers in a colony are often sisters, they are 

closely genetically related, and may thus be vulnerable to the same pathogens 

(Shykoff & Schmid-Hempel 1991).  

To defend themselves against parasites such as fungi, bacteria or viruses, social 

insects generally benefit from the same individual immune defenses as non-social 

insects (Siva-Jothy, Moret & Rolff 2005). In addition, sociality has allowed the 

evolution of collective defenses, known as "social immunity" (Cremer et al. 2007; 

Cotter & Kilner 2010). I will briefly present here some of the antipathogen 

defenses relevant for the understanding of this thesis. 

A first line of defense is the ability to detect and avoid pathogens. This basic 

measure may be cost effective, as it allows to avoid infection damage and the 

mounting of a costly immune response (Schulenburg et al. 2009). Arthropods 

vary in their ability to detect and avoid pathogens (Baverstock, Roy & Pell 2010). 

Ants are generally able to detect pathogens but respond to it by grooming and 

sanitary behavior, rather than by avoidance (Ugelvig & Cremer 2007; Reber et 

al. 2011; Tragust et al. 2013a). Pathogen avoidance may be a particularly efficient 

strategy for founding ant queens searching for nest sites, as pathogens present in 

the soil are responsible for a high proportion of colony failures (Baer, Armitage 

& Boomsma 2006). In chapter one, we tested this ability in young Formica selysi 

queens. 
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If contact with the pathogen is inevitable, the host may remove infective particles 

from its cuticle by self-grooming. While self-grooming can be performed by both 

social and non-social insects, mutual grooming (or allogrooming) is restricted to 

social insects (Reber et al. 2011; Tranter & Hughes 2015) and sub-social insects 

with parental care (Boos et al. 2014). In some cases, grooming may be used 

prophylactically, for example to prevent potential contamination by individuals 

returning from a foraging trip (Morelos-Juárez et al. 2010; Reber et al. 2011). 

Grooming may be used in combination with a variety of self-produced 

antimicrobial substances. When exposed to pathogens, many ant species groom 

their metapleural glands (Fernández-Marín et al. 2006), which are antimicrobial 

producing structures found exclusively in ants (Yek & Mueller 2011). Workers 

may then spread the antimicrobial substance on themselves, nestmates, brood, or 

even their nest (Fernández-Marín et al. 2006; Tranter et al. 2013). Similarly, 

some ants use acid produced by their venom gland to groom brood (Tragust et al. 

2013a) or their nest (Tranter et al. 2013) as a protection against fungal infections. 

Other antimicrobials may be found in the trophallaxis regurgitates. For example, 

immune challenged workers have been shown to increase trophallactic behavior, 

and to produce antimicrobial droplets that increase the survival of immune 

challenged nestmates (de Souza et al. 2008; Hamilton, Lejeune & Rosengaus 

2011).  
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Some ant species also retrieve antimicrobials from their environment. The wood 

ant Formica paralugubris introduces resin with antimicrobial properties into their 

nests (Christe et al. 2003). Resin decreases the microbial load in the nests and 

protects workers or larvae against fungal and bacterial pathogens (Christe et al. 

2003; Chapuisat et al. 2007). Little is known about the mechanisms governing 

resin use. Previous studies demonstrated that resin is used prophylactically, and 

that in the field, preference for resin over other types of nest material is higher in 

spring and summer than in autumn (Castella, Christe & Chapuisat 2008b). In 

chapter 4, we tested if F. paralugubris workers increase resin collection when 

brood is in the nest, and if they place it strategically near the brood. In chapter 5, 

we investigated if workers process the resin they collect to increase its 

antimicrobial effect.  

If the pathogens manage to pass the cuticle barrier, insects can mount individual 

internal immune responses. Insects lack antibodies (Söderhäll & Cerenius 1998) 

supposedly required to mount an adaptive immune response, as found in 

vertebrates. However, studies on various species have shown that a type of 

immune memory, or “priming” (Konrad et al. 2012) may persist during the life 

of an individual (Little & Kraaijeveld 2004) or even be passed to its offspring, 

the latter being often referred to as “trans-generational immune priming” (Roth 

et al. 2010; López et al. 2014). In ants, immune memory has been observed in 

workers, after contact with a contaminated nestmate (Ugelvig & Cremer 2007; 
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Konrad et al. 2012), in larvae (Rosengaus, Malak & MacKintosh 2013) and in 

queens under certain conditions in some species (Gálvez & Chapuisat 2014). 

Trans-generational immune priming has however so far never been observed in 

ants. Although a growing number of studies have documented immune memory 

in invertebrates, insights into the mechanisms responsible remain rare (Konrad et 

al. 2012) . 

Insect innate immune responses, on the other hand, are well documented. 

Hemocytes (insect blood cells), which are part of the cellular immune response, 

are involved in the phagocytosis of small pathogens or encapsulation of larger 

parasites (Gillespie, Kanost & Trenczek 1997). An important part of the humoral 

immune response is the activation from prophenoloxidase into phenoloxidase, an 

enzyme involved in the melanization of damaged tissues or encapsulation of 

particles of microbial origin (Söderhäll & Cerenius 1998). Melanization is 

usually accompanied by the production of toxic compounds which may help the 

antibiotic process (Cerenius & Söderhäll 2004). Other humoral immune defenses 

include antimicrobial peptides and proteins present in the hemolymph (Gillespie 

et al. 1997).  

An increased immune activity may also be prophylactic, to counter an infection 

risk, rather than an actual infection. For example, insects that temporarily live in 

groups, like locusts, upregulate their physiological immune response to counter a 

higher transmission risk (Wilson et al. 2002; Wilson & Cotter 2008). This may 
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be more complex in social insects, as being in group might not constitute a risk, 

but rather a protection, as they can take advantage of social immunity. Indeed, 

workers exposed to a fungal pathogen survived better when they were kept with 

nestmates than when they were isolated (Hughes, Eilenberg & Boomsma 2002). 

In chapter 2, we tested if the immune response of Lasius niger queens depended 

on immune challenges and the number of queens founding the nest. 

At the colony level, genetic diversity in a colony may prevent the propagation of 

pathogens (Shykoff & Schmid-Hempel 1991). Genetic diversity among workers 

may be achieved by polyandry, where the females mate with multiple males, or 

by polygyny, when more than one queen is present in the nest. In the socially 

polymorphic ant Formica selysi, for instance, workers in experimentally diverse 

groups survived exposure to a fungal pathogen better than ants originating from 

a single colony (Reber et al. 2008). However, workers from monogynous colonies 

survived better to a fungal challenge than workers from polygynous colonies, 

suggesting that something else than genetic diversity affected the resistance of 

polygynous colonies. In chapter 3, we tested if the number of workers caring for 

the brood might be one of the contributing factors affecting disease resistance. 

Genetic diversity may allow a better resistance to pathogens through different 

mechanisms. For example, genetic diversity may allow faster antipathogen 

behavioral response (Ugelvig et al. 2010). Alternatively, herd immunity may 

prevent the spread of pathogens in the nest if a sufficiently high number of 
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workers are resistant (Anderson & May 1985). A genetically diverse colony may 

also have access to a more varied arsenal of self-produced antibiotics (Fernández-

Marín et al. 2006; de Souza et al. 2008; Hamilton et al. 2011; Tragust et al. 

2013a; Tranter et al. 2013), which may even be mixed to create more potent 

antimicrobial cocktails (Mason & Singer 2015). 

Finally, a trade-off between individual and social immunity may occur (Cotter & 

Kilner 2010). For instance, in wood ants, the presence of antimicrobial resin in 

the nest allowed the workers to decrease some components of their individual 

immune system (Castella et al. 2008a). 

Fungal parasites 

Social insects can be infected by a variety of pathogens, such as fungi, bacteria 

or viruses. In this thesis, I focused on entomopathogenic fungi. I used 

Metarhizium brunneum, previously known as Metarhizium anisopliae (Bischoff, 

Rehner & Humber 2009) and Beauveria bassiana, two pathogens that are 

frequently used in experimental studies of disease resistance in social insects 

(Tragust et al. 2013a; Yek, Boomsma & Schiøtt 2013; Loreto & Hughes 2016). 

Metarhizium and Beauveria are generalist entomopathogens; widespread on the 

globe, they can infect a variety of insect species and are widely used as biological 

control agents (Meyling & Eilenberg 2007). They are obligate killers: to 

propagate their conidia (asexually produced spores), they have to kill the insect 
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so that the cadaver can sporulate (Ebert & Weisser 1997). Sporulation of the 

cadavers gives a clear diagnosis of the cause of mortality, which is convenient to 

study pathogen impact and host defenses. 

Conidia, upon contact with an insect, attach to its cuticle with the secretion of an 

adhesive mucus. The conidia then germinate and penetrate the cuticle with a germ 

tube and appresorium. This occurs with the combination of mechanical pressure, 

and the help of enzymes. The fungus then grows inside the insect body cavity, or 

haemocoel (Hajek & St Leger 1994; Thomas & Read 2007). 

Aims of the PhD 

This PhD has two main goals. The first one is to better understand antipathogen 

defenses in incipient colonies and the second one is to study the use of 

antimicrobial resin in wood ants. 

In the first part of this thesis, I investigated the defenses against pathogens at 

particularly sensitive life stages: during colony founding and brood rearing. In 

chapter 1, we examined if young ant queens founding a colony were able detect 

and avoid fungal entomopathogens potentially present in nest sites. We used 

queens of Formica selysi (the Alpine silver ant), a pioneer species that nests in 

the soil, usually in sandy banks of rivers. Several species of fungal 

entomopathogens, including M. brunneum and B. bassiana have been found in 

the soil, near the Rhône river, where our study population is located (Reber & 
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Chapuisat 2012a). We then tested the hypothesis that young queens associate to 

benefit from social immunity. As F. selysi is socially polymorphic, with 

monogynous (one queen per nest) and polygynous (several queens per nest) 

colonies in the same area (Purcell et al. 2014), we tested if a contaminated nest 

site was a factor enticing queens to associate when founding a colony. Following 

the same idea,  we tested in chapter 2 if Lasius niger (the black garden ant) 

queens founding nests in temporary associations survived exposure to a fungal 

pathogen better than queens founding alone. We also examined if their 

investment in individual immunity depended on the presence of the pathogen or 

of other queens in their nest. Lasius niger is strictly monogynous, but queens 

sometimes associate temporarily to initiate colonies (Sommer & Hölldobler 

1995). As soon as the workers emerge, queens engage in deadly fights, with only 

one queen remaining (Sommer & Hölldobler 1995). In chapter 3, we tested if 

the survival of young F. selysi workers exposed to the fungal pathogen B. 

bassiana depended on the number of workers that reared them (worker brood 

ratio) and their mother queen.  

In the second part of this thesis, I investigated how the wood ant Formica 

paralugubris uses antimicrobial resin. Formica paralugubris live in coniferous 

forests, where they build large nests with conifer needles and small twigs. This 

species is highly polygynous, with each nest containing up to a thousand queens 

(Chapuisat & Keller 1999). In the Jura mountain, they form a supercolony of 



 21 

about 1200 interconnected nests showing no aggression between them (Chapuisat, 

Goudet & Keller 1997). F. paralugubris workers collect pieces of conifer resin 

which they place into their nests. These pieces of resin have antibiotic properties, 

and protect workers or larvae from bacteria and fungi (Chapuisat et al. 2007). 

Little is known about how the ants use resin, aside from its prophylactic use 

(Castella et al. 2008b). In chapter 4, we asked if wood ants strategically place 

resin in the nest. Specifically, we tested if wood ants increased the amount of 

resin in the nest when brood is present, and if they place pieces of resin near the 

brood. In chapter 5, we tested if wood ants enhance the antibiotic activity of resin 

by using self-produced chemicals like formic acid. 
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ABSTRACT 

Ant queens that attempt to disperse and found new colonies independently face 

high mortality risks. The exposure of queens to soil entomopathogens during 

claustral colony founding may be particularly harmful, as founding queens lack 

the protection conferred by mature colonies. Here, we tested the hypotheses that 

founding queens (i) detect and avoid nest sites that are contaminated by fungal 

pathogens, and (ii) tend to associate with other queens to benefit from social 

immunity when nest sites are contaminated. Surprisingly, in nest choice assays 

young Formica selysi (Bondroit, 1918) queens had an initial preference for nest 

sites contaminated by two common soil entomopathogenic fungi, Beauveria 

bassiana and Metarhizium brunneum. Founding queens showed a similar 

preference for the related but non-entomopathogenic fungus Fusarium 

graminearum. In contrast, founding queens had no significant preference for the 

more distantly related non-entomopathogenic fungus Petromyces alliaceus, nor 

for heat-killed spores of B. bassiana. Finally, founding queens did not increase 

the rate of queen association in presence of B. bassiana. The surprising preference 

of founding queens for nest sites contaminated by live entomopathogenic fungi 

suggests that parasites manipulate their hosts or that the presence of specific fungi 

is a cue associated with suitable nesting sites. 



 24 

INTRODUCTION 

Hosts have several lines of defense to resist parasites and pathogens. First, they 

may avoid contact with the pathogens. If this behavioral defense fails, they may 

prevent pathogens from entering into their body, and finally stop pathogens from 

multiplying in their organs, generally by activating the immune system (Schmid-

Hempel & Ebert 2003; Siva-Jothy et al. 2005). Pathogen avoidance may be 

particularly cost effective, as it minimizes pathogen-induced damage and avoids 

the costs of mounting an immune response (Schulenburg et al. 2009). 

In arthropods, the ability to detect and avoid pathogens varies among species 

(Baverstock et al. 2010). For example, mole crickets tunneling through soil avoid 

generalist fungal entomopathogens (Villani et al. 2002; Thompson & 

Brandenburg 2005) such as Beauveria bassiana and Metarhizium anisopliae. In 

contrast, parasitoid wasps and potato beetles appear unable to detect B. bassiana, 

or do not perceive it as a threat (Lord 2001; Klinger, Groden & Drummond 2006). 

The host reaction may vary with conditions and life stage. For example, common 

flowerbugs avoid B. bassiana on leaves but not in soil (Meyling & Pell 2006), 

and Japanese beetle larvae keep away from soil contaminated by M. anisopliae, 

whereas adults increase oviposition in presence of the parasite (Villani et al. 

1994). In a few cases, arthropods were attracted to the fungal pathogens. 

Specifically, collembolans showed a preference for substrate containing B. 

brongnartii, B. bassiana and M. anisopliae conidia (Dromph & Vestergaard 
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2002), and mosquitoes were attracted to spores of B. bassiana and M. anisopliae, 

as well as to B. bassiana infected caterpillars (George et al. 2013). 

Social insects live in dense groups and often nest in soil, which exposes them to 

fungal entomopathogens. The ability of termites to detect and avoid B. bassiana 

and M. anisopliae has been well documented (Mburu et al. 2009; Rath 2010; 

Yanagawa et al. 2012). Ants are also generally able to detect these fungal 

pathogens. For example, Formica selysi (Bondroit, 1918) workers increased the 

rate of self-grooming (Reber et al. 2011) when exposed to M. brunneum, and 

Lasius neglectus (Van Loon, Boomsma & Andrásfalvy 1990) workers increased 

brood care and sanitary behavior in presence of contaminated workers or brood 

(Ugelvig & Cremer 2007; Tragust et al. 2013a). However, in contrast to termites, 

ants did not seem to avoid the pathogens. Indeed, contaminated individuals were 

not avoided, and were intensely groomed by nestmates (Reber et al. 2011; Konrad 

et al. 2012). Whether ants avoid direct contact with fungal pathogens in other 

contexts deserves to be further investigated. 

Avoiding pathogens may be particularly important for young ant queens 

attempting to found a new colony independently, without the help of workers. 

Indeed, in soil-nesting species, generalist fungal entomopathogens appear to be 

responsible for a considerable rate of failures during colony founding (Baer et al. 

2006). Lone founding queens lack the protection conferred by mature colonies, 

which may be mediated by allo-grooming (Walker & Hughes 2009; Reber et al. 
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2011), group diversity (Hughes & Boomsma 2004; Reber et al. 2008), sharing of 

antibiotic substances (Fernández-Marín et al. 2006; Chapuisat et al. 2007; 

Hamilton et al. 2011; Tragust et al. 2013a) or other forms of social immunity 

(Traniello, Rosengaus & Savoie 2002; Ugelvig & Cremer 2007; Konrad et al. 

2012). Additionally, founding queens may be more susceptible to pathogens if 

they found claustrally (without foraging), as deprivation of food has been shown 

to affect immunity in insects (Siva-Jothy & Thompson 2002). 

Another interesting hypothesis is that ant queens founding new colonies in nest 

sites that are contaminated by fungal parasites might increase their chances of 

success by associating with other queens. In line with this hypothesis, workers 

are more resistant to fungal parasites when they are in groups than when they are 

alone (Hughes et al. 2002; Johnson 2004). The influence of the presence of 

parasites on the propensity of queens to associate with other queens during colony 

founding has not been investigated so far. 

Here, we studied the impact of the presence of fungi on the founding behavior of 

ant queens. The study species, Formica selysi, nests in the soil, where it is 

naturally exposed to fungal entomopathogens (Reber & Chapuisat 2012a) such 

as Metarhizium brunneum (formerly M. anisopliae Bischoff et al. 2009) and 

Beauveria bassiana. The frequency of pleometrosis in the field is unknown, but 

laboratory studies have shown that queens are able to found colonies 
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independently as well as in association with other queens (Reber, Meunier & 

Chapuisat 2010). 

In a series of experiments, we tested whether founding queens detected and 

showed behavioral resistance to fungal entomopathogens during this crucial and 

exposed stage of their life-cycle. We first tested if young F. selysi queens avoided 

nest sites contaminated by M. brunneum and B. bassiana. We further examined 

if queens discriminated nest sites containing non-pathogenic fungi, and whether 

they distinguished between live and heat-killed B. bassiana. Finally, we tested if 

queens tended to associate with other queens when they had to found colonies in 

sites contaminated by B. bassiana. 

MATERIAL AND METHODS 

Ants sampling and experimental mating 

We collected F. selysi ants from a well-studied population along the Rhône river 

between Sierre and Susten in Valais, Switzerland (Chapuisat, Bocherens & 

Rosset 2004). In summer 2009 and 2010, prior to the nuptial flight, we collected 

young males, young virgin queens, sexual pupae and workers. We transferred 

them to the laboratory, where we let the pupae hatch into queens and males. We 

kept queens and males in separate laboratory colonies, to prevent uncontrolled 
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mating. We supplied the ants with ad libitum water and jelly made of eggs, honey 

and agar, and maintained them at 25°C with a 12/12 h dark/night cycle. 

Experimental mating took place outside, in the morning, under direct sunlight. 

We placed two virgin queens from the same colony with 5-10 males from several 

other colonies in a mating box (Reber et al. 2010). After mating, we kept each 

young queen in a glass tube with humid cotton wool until the beginning of the 

experiment. 

Experimental nests 

The young, freshly mated queens had to found colonies in experimental nests 

made of glass test tubes (10 cm long and 1.5 cm in diameter). The bottom of each 

tube was filled with water retained by small cotton wool plugs, and the tubes were 

wrapped in black paper. Such dark humid tubes constitute good nest sites, 

mimicking natural holes that are powerful attractants for founding queens 

(Tschinkel 1998). Each experimental nest contained a piece of filter paper (6 x 2 

cm) on which we deposited either 500 µl of a solution of fungal spores diluted in 

0.05% Tween 20 (fungal treatment), or 500 µl of spore-free 0.05% Tween 20 

(control; e.g. Chapuisat et al. 2007; Reber et al. 2008). We placed the tubes in 

arenas (plastic boxes 13.5 cm long x 15 cm wide x 5 cm high) lined with Fluon 

to prevent queens from escaping. 
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Impact of pathogens on nest choice  

We staged nest choice assays to investigate (i) if queens avoided founding 

colonies in sites contaminated by fungal entomopathogens (ii) if the presence of 

non-entomopathogenic fungi also affected their nest choice. In these tests, the 

queens had to choose between a nest containing fungal spores and an identical 

but spore-free control nest. We tested the choice of queens with respect to the 

presence of B. bassiana and M. brunneum, two fungal entomopathogens that are 

common in the site where we sampled the ants (Reber & Chapuisat 2012a), 

Fusarium graminearum, a pathogen of plants belonging to the same order as B. 

bassiana and M. brunneum (the Hypocreales), and Petromyces alliaceus, a non-

entomopathogenic, phylogenetically more distant fungus belonging to another 

class (the Eurotiomycetes). We did not detect F. graminearum in the site where 

we sampled the ants, whereas P. alliaceus was very common (Reber & Chapuisat 

2012a). These four species of fungi belong to the subdivision Pezizomycotina in 

the Ascomycota. 

We tested 80, 62, 40 and 40 queens for B. bassiana, M. brunneum, F. 

graminearum and P. alliaceus, respectively, depending on the number of queens 

available at the time of the experiment. We used fungal solutions at 8.9 x 107, 3.5 

x 107, 7.8 x 105 and 1.5 x 107 spores/ml, respectively. We selected these 

concentrations to account for the marked size differences between the spores of 

the four fungal species, in particular the larger spores of F. graminearum. These 
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concentrations also tend to compensate for the marginally higher lethality of M. 

brunneum, as compared to B. bassiana (Reber & Chapuisat 2012a). 

We introduced one queen in the middle of each arena. We recorded the position 

of each queen first shortly after introduction and then on a daily basis over a 

period of 13 days (nine days for B. bassiana). We analyzed the initial choice of 

queens, which was given by the first nest in which we found them. We also 

examined in which nests the live queens were on the last day. When a queen died, 

we surface sterilized its corpse with 14% bleach and kept it in an Eppendorf tube 

with wet cotton wool to check if it died from infection and produced fungal spores 

(Reber et al. 2011). 

To get insight into temporal variation in the position of queens, we analyzed (i) 

the number of days spent in the initial nest, (ii) the proportion of queens that 

visited another nest and (iii) the total number of nest switches made by the queens, 

relative to the duration of the experiment. We examined if these measures of 

queen movements depended on the fungus used in the assay, on whether the first 

nest chosen was inoculated by a fungus or not, or on an interaction between these 

two factors. We only report significant results for these analyses. 

In a follow-up experiment, we examined whether founding queens discriminated 

between live and dead spores of B. bassiana. We tested 120 queens, which had 

to choose between three nests sites, one inoculated with live spores (9.2 x 107 

spores/ml), one with heat-killed spores (9.3 x 107 spores/ml) and one with control 
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solution. We monitored the position of the queens over a period of 13 days. For 

the heat-killed treatment, we autoclaved the fungus solution at 121°C for 20 

minutes. With a microscope, we checked that the sterilization process had not 

affected the external structure of the spores. We also confirmed that the heat-

killed spores did not grow on malt extract agar nutritive medium. 

Impact of pathogen on queen association 

To test if the presence of B. bassiana spores influenced the propensity of queens 

to associate with other queens during colony founding, we placed two queens in 

an arena containing a single nest site, which was either contaminated by spores 

of Beauveria bassiana (6.9 x 107 spores/ml) or contained the usual control 

solution. We tested 152 pairs of queens that we associated at random. Half of the 

pairs had access to a contaminated nest site, and the other half to a control nest 

site. 

We monitored the position of the queens over a period of six days, recording if 

they were in or out of the nests. We estimated the initial frequency of queen 

association as the proportion of nests that contained two live queens on the second 

day of the experiment. At this time, 96% of the nests contained at least one queen. 

We analyzed the data with a general linear model including the type of nest 

(contaminated vs. uncontaminated) and whether the queens in a pair originated 

from the same or from different field colonies as explanatory variables. All 
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statistical analyses were performed in R 3.0.2 (R Core Team 2016). In all tests 

where an initial and final measure were analyzed, we adjusted the p-values with 

a Bonferroni correction to account for multiple comparisons. 

RESULTS 

Impact of pathogens on nest choice 

Surprisingly, founding queens showed a strong initial preference for nests 

containing fungal pathogens. When given the choice between a nest contaminated 

with B. bassiana and a spore-free control nest, 75% of the 72 queens that entered 

a nest were first found in the contaminated one (Fig 1a; exact binomial test: p < 

0.0001; all p-values are two-tailed; eight queens died without entering any nest). 

In the tests with M. brunneum, 67.7% of the 62 queens were first found in the 

nest containing the fungal pathogen (Fig 1a; exact binomial test: p = 0.014). 

Founding queens also showed a strong initial preference for nests containing the 

non-entomopathogenic but phylogenetically close fungus F. graminearum: 80% 

of the 40 queens chose the nest containing the fungus (Fig 1; exact binomial test: 

p = 0.0004). The preference was weaker and not statistically significant when we 

tested the non-entomopathogenic but phylogenetically more distant fungus P. 

alliaceus: 65% of the 40 queens chose the nest containing the fungus (Fig 1a; 

exact binomial test: p = 0.16). 
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Figure 1: a) Proportion of queens that were first found in nests containing the 

fungi B. bassiana, M. brunneum, F. graminearum and P. alliaceus (black bars), 

as compared to control nests (white bars). b) Proportion of queens that were first 

found in nests containing live B. bassiana (black bar), heat-killed B. bassiana 

(grey bar) and control (white bar). Horizontal bars indicate “no choice”, at 50% 

for a) and 1/3 and 2/3 for b). Asterisks signal significant deviations from 1/2 for 

a) and 1/3 for b) (* p < 0.05, ** p < 0.01, *** p < 0.001). 

 

The number of days spent by the queens in the initial nest depended on the fungus 

(c2 = 10, df = 3, p = 0.018; it was higher in assays involving F. graminearum). 

On average and across all fungi tested, the queens that had initially chosen a 
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fungus-inoculated nest stayed for longer in it than queens that had initially chosen 

a spore-free nest (fungus vs. spore-free: 3.7 ± 2.6 days vs. 2.4 ± 1.7 days, 

respectively; c2 = 9.3, df = 1, p = 0.002), and made fewer relative nest switches 

thereafter (fungus vs. spore-free: 0.18 ± 0.12 vs. 0.22 ± 0.13; c2 = 5.1, df = 1, p = 

0.024). For the proportion of queens that switched nests, there was a significant 

interaction between the fungus species and the type of nest initially chosen (c2 = 

12.5, df = 3, p = 0.006). This is because, in contrast to the pattern observed with 

the other three fungi, queens that had initially chosen a nest inoculated with P. 

alliaceus were more likely to visit another nest than the queens that had initially 

chosen a spore-free nest. 

Overall, the mortality of queens depended on the fungi they were exposed to 

(binomial test, entomopathogens vs non-entomopathogens: c2 = 12.2, df = 1, p = 

0.0005). A larger proportion of queens died in treatments where one of the two 

nest sites was contaminated by an entomopathogenic fungus than by a non-

entomopathogenic fungus (27.5% and 11.3% for B. bassiana and M. brunneum, 

respectively, versus 2.5% and 0% for F. graminearum and P. alliaceus, 

respectively). Eight out of the 22 queens that died during the test involving B. 

bassiana produced the typical white spores of this pathogen. None of the queens 

that died during the test involving M. brunneum sporulated with this pathogen. 

However, two queens that died after the end of the experiment produced M. 

brunneum spores, which confirms that this fungus was infectious. 
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By the end of the experiment, fewer queens remained in the nests, and the initial 

preference for contaminated nests was much reduced or non-existent. In the test 

with B. bassiana, 63.5% of the 52 live queens that were still in a nest at the end 

of the experiment were in the contaminated one (exact binomial test: p = 0.14), 

while in the test with M. brunneum this was the case of 50.9% of the 55 queens 

(exact binomial test: p = 1). In the test with F. graminearum, 55.3% of the 38 

queens in a nest occupied the one containing spores (exact binomial test: p = 1), 

while in the test with P. alliaceus significantly more queens were found in the 

control nest (71.9% of the 39 queens found in a nest; exact binomial test: p = 

0.019).  

This change in the position of queens over time was not entirely explained by 

queen mortality: at the end of the experiment, we detected no significant 

preference for contaminated nests when we included dead queens in the analysis 

(exact binomial tests: B. bassiana: p = 0.098, M. anisopliae: p = 0.79, F. 

graminearum: p = 0.63, P. alliaceus: p = 0.009). 

When given a choice between nest sites inoculated with live B. bassiana, heat-

killed B. bassiana or a control, the queens significantly preferred the nest with 

the live entomopathogen (66%, 25%, 9% were found in each type of nest, 

respectively: Fig. 1b; c2 = 58.3, df = 2, p < 0.0001; n = 116 queens, as four queens 

died without entering any nest site). By the end of the experiment, a marginally 

higher proportion of the queens remained in the nest with the live fungus (out of 
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the 101 queens that were still in a nest at the end of the experiment, 44%, 27% 

and 29% were in a nest with live B. bassiana, heat-killed B. bassiana and control, 

respectively; c2 = 5.8, df = 2, p = 0.11). 

Impact of pathogen on queen association 

When two queens had access to a single nest during colony founding, the 

presence of the fungal pathogen B. bassiana in the nest had no significant 

influence on the initial propensity of queens to associate. On the second day of 

the experiment, 57.9% of the 76 contaminated nests contained two live queens, 

as opposed to 50% of the 76 control nests (c2 = 0.95, df = 1; p = 0.33). Whether 

the queens originated from the same or from different field colonies had no 

significant influence on their initial propensity to associate (c2 = 0.005, df = 1; p 

= 0.95). On the last day of the experiment, the presence of B. bassiana still had 

no significant impact on the frequency of queen association: 22.4% of the 

contaminated nests contained two live queens, as opposed to 25% of the control 

nests (c2 = 0.15, df = 1, p = 1). 

DISCUSSION 

Ant queens founding new colonies independently are under high risk of dying 

from exhaustion (Camargo et al. 2011), desiccation (Mankowski & Morrell 2011), 

competition (Adams & Tschinkel 1995), predation (Nickerson et al. 1975) or 
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infection by parasites (Baer et al. 2006). As the presence of fungal pathogens in 

the soil jeopardizes the survival of the queen and her first brood, we expected that 

queens would avoid settling in nests contaminated by entomopathogenic fungi. 

In sharp contrast to this expectation, in nest choice assays F. selysi queens showed 

a strong and significant initial preference for nests contaminated by the common 

generalist fungal entomopathogens B. bassiana and M. brunneum, as opposed to 

spore free control nests. This preference of ant queens for entering contaminated 

nest sites is surprising, because B. bassiana caused significant mortality to the 

queens in this experiment, and both B. bassiana and M. brunneum killed workers 

in other experiments (Chapuisat et al. 2007; Reber et al. 2008; Purcell, Brütsch 

& Chapuisat 2012). Moreover, the two pathogens are common in the natural 

habitat of this ant species (Reber & Chapuisat 2012a). 

Founding queens showed a similar preference for Fusarium graminearum, a plant 

pathogen belonging to the order Hypocreales, which also contains B. bassiana 

and M. brunneum. In contrast, founding queens had no significant initial 

preference for the more distantly related non-entomopathogenic fungus 

Petromyces alliaceus. There was a trend, however, and the sample size was lower, 

so that a general initial preference for fungi can’t be excluded. Finally, the queens 

showed a much stronger preference for live than for heat-killed spores of B. 

bassiana. Together, these results indicate that queens are attracted to live fungi 
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belonging to the order Hypocreales, which are parasites of plants, invertebrates, 

or even other fungi (Spatafora et al. 2007). 

The unexpected preference of founding queens for nest sites containing live 

entomopathogenic fungi may be explained in several ways. First, the fungal 

pathogens may manipulate their hosts, luring them with odor cues in order to 

increase infection probability. Beauveria and Metarhizium attract collembolans 

(Dromph & Vestergaard 2002), as well as mosquitoes (George et al. 2013). The 

hypothesis that Beauveria and Metarhizium manipulate uninfected insect hosts 

deserves further investigation (George et al. 2013). Records of pathogens 

attracting their hosts are indeed rare, as hosts are under strong selection to resist 

manipulation and avoid virulent pathogens (Poulin, Brodeur & Moore 1994). 

Second, the presence of fungi may be a cue associated with suitable nesting sites, 

or may provide some direct or indirect benefits to the queens. For example, the 

presence of fungi may indicate favorable ecological conditions, for example 

humid, humus-rich soil. The queens might theoretically feed on fungi, but this 

seems unlikely given the lack of records of such behavior (Sanders 1964; Ayre 

1967; cited by Cannon & Fell 2002). 

Finally, contact of the queen with a pathogen might improve the defense of her 

offspring against the same pathogen. This process, known as “trans-generational 

immune priming”, has been observed in diverse invertebrate taxa, such as 

bumble-bees (Moret & Schmid-Hempel 2001; Sadd et al. 2005), Daphnia (Little 
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et al. 2003), moths (Tidbury, Pedersen & Boots 2011) and beetles (Roth et al. 

2010). The potential occurrence of trans-generational immune priming deserves 

to be investigated. It would however be surprising, given that trans-generational 

immune priming has not been reported in ants so far, and that we found no 

evidence of individual immune priming in workers (Reber & Chapuisat 2012b) 

or queens (Gàlvez & Chapuisat, unpublished results) of F. selysi. 

Some queens died during the course of the experiment, and some moved between 

nests, so that in the assays involving pathogenic fungi the queens tended to be 

equally present in inoculated and spore-free nests by the end of the experiment. 

Queen movement did not appear to be prompted by the perception of queens that 

they were, or could be, infected. We found no significant difference between 

queens that initially entered contaminated nests and queens that initially entered 

spore-free nests for the number of days spent in the initial nest or the probability 

to abandon it. Only queens that initially entered P. alliaceus-inoculated nests 

were more likely to leave, suggesting that they were repelled by this non-

entomopathogenic fungus. Indeed, in the assay involving P. alliaceus, most of 

the queens were in spore-free nests at the end of the experiment. A recording of 

queen movements in real time over a longer period, until the queens begin to lay 

eggs, would be useful to examine how initial nest choice, nest switching and 

mortality jointly determine the final settlement and success of the queens. 
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We also tested if the propensity of queens to associate with other queens during 

colony founding increased when nest sites were contaminated by B. bassiana. 

Indeed, by joining others, queens might benefit from allo-grooming or from other 

forms of social immunity (Cremer et al. 2007; Reber et al. 2011). However, 

founding queens did not increase the rate of queen association in presence of B. 

bassiana, which indicates that pleometrosis is not a conditional response to 

benefit from social immunity when the risk of infection is high. 

Overall, our results indicate unexpected patterns in the colony founding behavior 

of ant queens in presence of fungi, including entomopathogens. Indeed, the 

queens did not avoid the fungal pathogens and one of the non-entomopathogens 

tested – to the contrary, they showed an initial preference for spore-inoculated 

nest sites. This surprising and potentially fatal attraction might result from 

parasite manipulation, or may be associated with correlated factors that are 

normally beneficial to the queens. 
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ABSTRACT 

Colony founding by ant queens is a risky enterprise. In many species, queens 

establish incipient colonies either alone or in transient associations that last until 

the first workers emerge. Queens that associate during colony founding may 

benefit from improved disease resistance due to mutual grooming, sharing of 

antimicrobials, or higher genetic diversity among their workers. To test if queens 

in groups profit from such social immunity, we manipulated the number of 

queens in founding associations of the ant Lasius niger and measured their 

resistance to a common soil entomopathogen, Metarhizium brunneum. We also 

examined variation in queens’ individual immunity. If queens in groups benefit 

from social immunity, we predict that they will invest less in individual immunity. 

On the contrary, in absence of social immunity, queens in groups are likely to 

increase individual immunity in order to respond to the higher risk of disease 

transmission. We found no evidence for social immunity in associations of 

founding queens. First, co-founding queens engaged in self-grooming, but 

performed very little allo-grooming or trophallaxis. Second, queens in 

associations did not show higher resistance to the fungal pathogen than solitary 

queens, and their workers were not more resistant either. Third, queens in groups 

had higher phenoloxidase activity, suggesting that they invest more in individual 

immunity than solitary queens and do not benefit from social immunity. Overall, 

our results provide no evidence that joint colony founding by L. niger queens 

increases their ability to resist fungal pathogens. 
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INTRODUCTION 

In social insects, founding novel colonies is a precarious enterprise. Many ant 

species produce massive numbers of queens that fly away from their natal nest, 

mate, and seek to establish colonies independently (Keller 1991; Sommer & 

Hölldobler 1995). Incipient colonies are vulnerable to predation, competition and 

disease – their mortality has been estimated to be as high as 95% (Baer et al. 

2006). Ant queens that are able to found colonies independently often associate 

with other queens, a mode of foundation called pleometrosis (Sommer & 

Hölldobler 1995; Bernasconi & Strassmann 1999). These associations are 

transient: after the first workers emerge, the queens fight to death, until only one 

remains (Sommer & Hölldobler 1995). Hence, joint colony founding is a gamble 

for queens, with maximal costs to losers and large benefits to the winner 

(Bernasconi & Strassmann 1999). 

A major potential benefit of joint colony founding by ant queens is increased 

disease resistance, which might stem from various mechanisms conferring social 

immunity (Pull, Hughes & Brown 2013; Brütsch et al. 2014). Queens in group 

may benefit from mutual grooming (Reber et al. 2011). They may also share 

antimicrobial substances from the metapleural glands (Fernández-Marín et al. 

2006), the venom gland (Tragust et al. 2013a), or in trophallactic fluids (Hamilton 

et al. 2011). Finally, queens in associations will produce groups of workers that 

are genetically more diverse (Sommer & Hölldobler 1995; Aron, Steinhauer & 
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Fournier 2009), and which might therefore better resist pathogens (Reber et al. 

2008; Ugelvig et al. 2010). 

The benefits from social immunity might be crucial during claustral colony 

founding, when the queens rely on their body reserves and are under strong 

energetic stress (Baer et al. 2006). Indeed, queens in groups may decrease their 

investment in energetically costly individual immunity, if they are protected by 

social immunity (Cotter & Kilner 2010). Such a trade-off has been documented 

in wood ants, who showed lower activation of their immune system when 

antimicrobial resin was present in their nests (Castella et al. 2008a). Conversely, 

in absence of social immunity, queens in groups are likely to increase individual 

immunity in order to respond to the higher risk of disease transmission (Elliot & 

Hart 2010; Godfrey 2013; Meunier 2015). Such density-dependent prophylaxis 

has been documented in desert locusts and thrips (Wilson & Reeson 1998; Wilson 

et al. 2002; Turnbull et al. 2011). 

So far, evidence for social immunity in associations of co-founding ant queens 

have remained elusive. In Lasius niger, queens founding in pairs did not engage 

in allo-grooming and did not show higher survival than solitary queens when 

exposed to the fungal pathogen Metarhizium pingshaense (Pull et al. 2013). In 

Formica selysi, the presence of a fungal pathogen in the nest did not incite queens 

to associate, as would be expected if joint colony founding would increase their 

ability to resist the pathogen (Brütsch et al. 2014). 
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Here, we investigated if ant queens that found colonies in associations benefit 

from social immunity and modulate their individual immunity. We established 

experimental incipient colonies of L. niger with one, two or four queens, 

respectively, and tested their resistance to a common soil entomopathogen, 

Metarhizium brunneum. We also recorded the grooming behavior of queens, 

monitored some components of their individual immune system, and tested the 

fungal resistance of their workers. If ant queens in associations profit from social 

immunity, we predict that co-founding queens will (i) better resist to the fungal 

pathogen than solitary queens, (ii) engage in allo-grooming, (iii) decrease their 

investment in individual immunity, and (iv) produce more resistant workers. 

MATERIAL AND METHODS 

Queen sampling and experimental colony founding 

The black garden ant L. niger is a common European species that nests in the soil. 

The species is strictly monogynous, with only one queen per mature colony 

(Sommer & Hölldobler 1995). After the nuptial flight, queens shed their wings 

and are found by hundreds roaming on the ground, searching for a nest site. The 

queens initiate new colonies without assistance from workers (independent 

colony founding). Pleometrosis is facultative, with 18% of incipient colonies 

having multiple queens in a field population (Sommer & Hölldobler 1995). 

Queens in associations are unrelated. They do not forage and entirely rely on their 



 46 

energetic reserves to rear their first brood (Fjerdingstad & Keller 2004). As soon 

as the first workers emerge, the queens engage in deadly fights, leaving only one 

queen alive (Sommer & Hölldobler 1995; Bernasconi & Strassmann 1999). 

On July 12th, 2013 we collected young mated queens that were walking on the 

campus of the University of Lausanne after the nuptial flight. The next day, we 

placed the queens in experimental nests either alone, in pairs, or in groups of four 

(N = 45 replicates for each queen number category). Experimental nests consisted 

of test tubes (17.5 cm long, 1.5 cm diameter) with water blocked by cotton wool 

at the bottom. 

Queen behavior, immune challenges and survival 

We monitored queen behavior by scanning each nest for five seconds, five times 

per day, over seven days. We recorded instances of self-grooming, allo-grooming 

and trophallaxis (oral exchange of liquid). After 10 days, all queens were 

subjected to a first immune challenge, which consisted in a small puncture of the 

thorax with a glass micro capillary and the extraction of 1 µl of hemolymph (that 

we will use to measure individual immunity, see below). At day 22, queens from 

half of the experimental nests were exposed to the generalist entomopathogen 

Metarhizium brunneum (Reber & Chapuisat 2012a). In exposed nests, 500 µl of 

spore solution (1.75x108 spores/ml in 0.05% Tween 20) were deposited on a filter 

paper (6.5 x 2 cm). In control nests, queens were exposed to 500 µl of 0.05% 
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Tween 20. After this fungal challenge, we monitored again the queen behavior 

over seven days, as described above. Two days after the fungal challenge, which 

is enough time for spores to germinate and elicit an immune response, we 

performed a second puncture to extract hemolymph. We monitored queen 

survival for a total of 87 days, and counted the number of workers produced in 

each nest with queens alive at day 81. 

Worker resistance 

We tested if the resistance of workers to M. brunneum depended of the number 

of queens that founded their nest. We used workers from control nests that had 

no previous exposure to the pathogen. From each control nest that produced at 

least 10 workers, we made as many groups of five workers as possible (2 to 10). 

These five-worker groups were kept in 9 cm diameter petri dishes with a filter 

paper disk at the bottom. Half of the groups from each nest were exposed to 

spores of M. brunneum (500 µl of 0.05% Tween 20 with 1.8 x 108 spores/ml 

deposited on the filter paper), while the other half of the groups were kept as 

control (500 µl of spore-free 0.05% Tween 20 deposited on the filter paper). We 

monitored worker survival over 14 days. 

Immune measures 

The individual immunity of queens was assessed by measuring the phenoloxidase 

and antifungal activities of their hemolymph. Phenoloxidase (PO) is an essential 
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component of the innate immune defense of insects. This enzyme is involved in 

the melanization of damaged tissues and pathogens, and prophenoloxidase is 

converted in active phenoloxidase by the presence of particles of microbial origin 

or by wounding (Söderhäll & Cerenius 1998; Cerenius & Söderhäll 2004). We 

measured both active PO and total PO (active PO + prophenoloxidase), following 

the methods described in Castella et al. (2009). Briefly, the sample of 1 µl of 

hemolymph was diluted in 10 µl of sodium cacodylate, and 3 µl of diluted 

hemolymph was used per measure of PO (Castella et al. 2009). The absorbance 

was measured at 492 nm every 10s for 800 reads at 30°C. We analyzed the active 

PO and total PO curves with the software PO-CALC (Kohlmeier, Dreyer & 

Meunier 2015). 

The antifungal activity of the hemolymph was measured as described in Konrad 

et al. (2012). We used 96-well plates containing 2 µl of fungal spore solution (8 

x 106 spores/ml in 0.05% Tween 20) diluted in 50 µl of Sabouraud Dextrose Broth 

(SDB). We added either 3µl of diluted hemolymph or 3 µl of sodium cacodylate, 

as control. Fungal growth was estimated by subtracting the absorbance in a 

spectrophotometer immediately after the set up from the absorbance after 24 

hours (Konrad et al. 2012). The antifungal activity of hemolymph was 

standardized with respect to controls. Specifically, the fungal growth in wells 

with hemolymph was divided by the average fungal growth in controls. 
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Statistical analyses 

We calculated the frequency of occurrence of self-grooming, allo-grooming and 

trophallaxis (number of observations divided by number of scans). We used a 

binomial generalized linear model to determine if the occurrence of self-

grooming depended on the number of queens in founding associations and on the 

immune challenges. 

Queen survival was analyzed with a Cox proportional hazards model. The 

proportion of queens alive was the response variable, while the explanatory 

variables were the number of queens in founding associations, the exposure to 

fungal spores, and the interaction between the two factors (we expect an 

interaction if queens in groups are more resistant to the pathogen). The 

experimental nest was included as a random factor. Worker survival was analyzed 

in a similar manner, with the group of workers nested in the nest of origin as 

random factors. We used Cox mixed-effects models, as implemented in the 

package "coxme" (Therneau 2015). 

We analyzed if queen number, cuticle puncture and exposure to fungal spores 

influenced the level of active and total PO with mixed effects models. We 

constructed separate models, with the level of active or total PO as the response 

variable. We analyzed 1) the immune activity of queens before immune 

challenges (with queen number as explanatory variable and the nest as random 

factor); 2) the change in immune activity after cuticle puncture (with cuticle 
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puncture as explanatory variable, and the nest and queen identity as random 

factors, to compare immune measures from the same queens before and after 

puncture) and 3) the immune activity of queens after exposure to fungal spores 

(with queen number and exposure to fungal spores as explanatory variables and 

the nest as random factor). Active PO was squared-root transformed to satisfy the 

assumptions of normality of residuals and homogeneity of variances. 

The effect of queen number, cuticle puncture and exposure to fungal spores on 

the antifungal activity of hemolymph was analyzed with mixed effects models. 

We constructed separate models, with relative fungal growth as response variable. 

We analyzed 1) the antifungal activity of hemolymph before immune challenges 

(with queen number as explanatory variable and the nest as random factor); 2) 

the change in antifungal activity of hemolymph after cuticle puncture (with 

cuticle puncture as explanatory variable, and the nest and queen identity as 

random factors) and 3) the antifungal activity of hemolymph after exposure to 

fungal spores (with queen number and exposure to fungal spores as explanatory 

variables and the nest as random factor). Antifungal activity was log transformed 

to satisfy the assumptions of normality of residuals and homogeneity of variances. 
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RESULTS  

Behavior 

Founding queens had very few social interactions and did not increase allo-

grooming after being exposed to spores of a fungal pathogen. We recorded only 

12 occurrences of allo-grooming, out of a total of 17004 five-second scans 

(0.07 %). Nine of these allo-grooming events occurred in the first week of 

observation, before any immune challenge. One occurred in the controls (cuticle 

puncture only), and two after the fungal challenge (cuticle puncture + exposure 

to M. brunneum). A single occurrence of trophallaxis was observed, after 

exposure to the pathogen. 

In contrast to allo-grooming, self-grooming was frequent and increased after 

exposure to the pathogen. Overall, we recorded 998 occurrences of self-grooming, 

out of a total of 19769 scans (5 %). The frequency of self-grooming did not vary 

with the number of queens in the nest (Fig. 1; 𝜒2=0.72,	df	=	2,	P	=	0.7),	but	did	

depend	 on	 immune	 challenges	 (Fig.	 1;	 𝜒2=298.9,	 df	 =	 2,	 P	 <	 0.0001).	

Specifically,	 self-grooming	 increased	 after	 cuticle	 puncture	 (Fig.	 1;	 Tukey	

post-hoc	test,	z	=	11.3,	P	<	0.0001)	and	in	response	to	exposure	to	fungal	

spores	of	M.	brunneum	(Fig.	1;	Tukey	post-hoc	test:	z	=	4.72,	P	<	0.0001). 
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Figure 1. Frequency of self-grooming events, expressed as the number of 

occurrences of self-grooming divided by the total number of scans per queen (= 

N). The frequency of self-grooming did not vary with the number of queens in 

founding associations (1, 2 or 4 queens), but increased after both types of immune 

challenges (punctured and exposed to M. brunneum; see text for details). 
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Queen survival 

The fungal pathogen caused a strong and significant mortality to the queens (Fig. 

2; 𝜒2 = 117.9, df = 1, P < 0.0001). The number of queens in founding associations 

did not influence queen survival (Fig. 2; 𝜒2 = 0.3, df = 2, P = 0.87). Finally, queens 

in group did not show higher resistance to the pathogen (Fig. 2; there was no 

significant interaction between queen number and pathogen exposure, 𝜒2 = 0.8, 

df = 1, P = 0.69). 

 

Figure 2. Survival of queens, in function of both the number of queens in 

founding associations (1, 2 or 4 queens) and the exposure to spores of M. 

brunneum (control versus exposed). 
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Worker survival 

Most (85.5%) of the control nests (no fungal exposure) produced workers, which 

emerged between day 43 and 51 (average 45). In contrast, only one of the nests 

exposed to the fungal pathogen managed to produce a single worker. The average 

number of workers produced per control nest with queens alive at the end of the 

experiment increased with queen number (Mean ± SE: 14.6 ± 2.1, 18.6 ± 2.8 and 

26.3 ± 3.1 workers per nest with 1, 2 and 4 founding queens, respectively; 

Kruskall-Wallis rank sum test: 𝜒2 = 7.2 , df = 2, P = 0.027). In contrast, the 

average number of workers per queen alive at the end of the experiment decreased 

with queen number (14.6 ± 2.1, 9.3 ± 1.4, 6.6 ± 0.79 workers per queen in nests 

with 1, 2 and 4 founding queens, respectively; Kruskall-Wallis rank sum test: 𝜒2 

= 12.02, df = 2, P = 0.002). 

The fungal pathogen caused a significant mortality to the workers originating 

from control nests (Fig. 3; 𝜒2 = 116.5, df = 1, P < 0.0001). The number of queens 

that initiated the colony did not influence workers survival overall (Fig. 3; 𝜒2  = 

1.6, df = 1, P = 0.2), nor the ability of workers to resist to the pathogen (Fig. 3; 

there was no significant interaction between queen number and pathogen 

exposure;	𝜒2 = 2.2, df = 1, P = 0.14). 
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Figure 3. Survival of workers originating from control nests, in function of both 

the number of founding queens (1, 2 or 4 queens) and the exposure to spores of 

M. brunneum (control versus exposed). 
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4; F = 1.15, df = 1, P = 0.29). 

 

Figure 4. Level of active PO in queens, in function of both the number of queens 

in founding associations and the immune challenges. 

Before any immune challenge, the level of total PO did not vary with queen 
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Figure 5. Level of total PO in queens, in function of both the number of queens 

in founding associations and the immune challenges. 
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Figure 6. Relative fungal growth of M. brunneum in presence of the queens’ 

hemolymph, relative to control, and in function of both the number of queens in 

founding associations and the immune challenges. 
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investment in individual immunity, and their workers did not better resist to the 

fungal pathogen. Overall, joint colony founding by ant queens did not appear to 

improve their resistance to fungal pathogens.  

The results of our experiments are fully in line with the findings of a previous 

study that documented an absence of social immunity among co-founding L. 

niger queens (Pull et al., 2013). In both experiments, allo-grooming was almost 

absent, even in presence of fungal spores. In contrast, self-grooming was common 

and occurred at higher frequency after exposure to fungal spores or other types 

of immune challenges. Indeed, in our experiment self-grooming rate increased 

after cuticle puncture, as well as after exposure to spores of M. brunneum. A 

similar pattern has been documented in F. selysi, with higher rates of self-

grooming, but no change in allo-grooming, when workers were exposed to 

Metarhizium spores (Reber et al. 2011). 

A key result of our experiment is that queens in founding associations did not 

benefit from improved disease resistance, which further confirms the findings of 

Pull et al (2013). Indeed, when exposed to spores of M. brunneum, the survival 

of queens in groups was not higher than the one of solitary queens. Compared to 

Pull et al (2013), we used more stringent immune challenges, with a combination 

of cuticle puncture and group exposure by walking on fungal spores. Hence, the 

mortality of queens exposed to the pathogen was higher, and we did not detect 

signs that queens tolerate the infection (Pull et al. 2013). We also used a different 
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pathogen species, and tested associations of four queens. The congruent findings, 

across various conditions, that co-founding queens do not show higher resistance 

to fungal pathogens than lone foundresses suggest that the absence of social 

immunity during joint colony founding by ant queens is a robust and general 

result. 

In addition, we also tested the pathogen resistance of workers produced in 

incipient colonies. We found no evidence that groups of workers originating from 

co-founding queens were better able to resist to the fungal pathogen, compared 

to groups of workers originating from solitary founding queens. Groups of 

workers originating from co-founding queens are expected to be genetically more 

diverse, because all queens in associations contribute to brood production (Aron 

et al. 2009). Yet, the higher genetic diversity among incipient workers did not 

confer higher resistance to M. brunneum in the conditions tested, which contrasts 

with findings in other situations (Reber et al. 2008). 

We measured some components of the queens’ immune defenses, to examine if 

the benefits of social immunity resulted in a decreased investment in individual 

immunity (Cotter & Kilner 2010). We found the reverse pattern for active PO: 

before any immune challenge, queens in groups had higher PO activity than 

solitary queens. In a similar vein, bumble-bees kept in groups also increased 

active PO (Ruiz-González, Moret & Brown 2009). The level of total PO did not 

vary with queen number before the immune challenge, but increased with queen 
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number after cuticle puncture and fungal exposure. Overall, these results are 

consistent with an absence of social immunity, and suggests higher investment in 

individual immunity when in groups, possibly because of higher pathogen 

transmission risk (Wilson et al. 2002; Wilson & Cotter 2008). 

The queens’ hemolymph tended to favor the growth of M. brunneum. This is not 

fully unexpected, as the hyphae of this fungus penetrates the cuticle and grows 

inside the insect body, and may thus use hemolymph as food source (Gillespie et 

al. 2000). Yet, a previous study showed that the workers’ hemolymph inhibited 

fungal growth (Konrad et al. 2012). The causes of these contrasted results remain 

to be investigated. It is conceivable that queens just after mating are under 

energetic stress and tend to be immunocompromised, possibly as a result of sperm 

storage (Baer et al. 2006). In our experiment, the growth of the fungus tended to 

be reduced when queens had been exposed to the fungus, suggesting that these 

queens activated some antifungal defenses. 

Incipient colonies founded by multiple L. niger queens produced more workers 

than colonies with a lone foundress. Specifically, colonies founded by two and 

four queens produced 1.3 and 1.8 times more workers, respectively, than colonies 

founded by a single queen. A higher productivity of co-founding associations is 

expected, as queens rely on their limited energy reserves to produce the first 

generation of workers (Fjerdingstad & Keller 2004; Aron et al. 2009). The 

production of a larger worker force when multiple queens found nests together 
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has been documented in several ant species (Bernasconi & Strassmann 1999). 

This demographic benefit of co-founding is likely to confer a major advantage 

when the first workers open the nest and start to compete with other colonies for 

foraging and brood raiding (Bernasconi & Strassmann 1999). 

In conclusion, our results indicate that joint colony founding provide no social 

immunity benefit to ant queens. Co-founding queens did not engage in allo-

grooming, but performed extensive self-grooming. Queens in group did not better 

resist to the fungal pathogen than solitary queens, and did not produce more 

resistant workers. Finally, queens in groups tended to increase their investment 

in active PO, a component of their individual immune defenses. An absence of 

social immunity and a strong investment in individual immunity might reflect the 

competitive nature of co-founding queen associations. Indeed, queens fight to 

death after the first workers emerge (Bernasconi & Strassmann, 1999), and the 

presence of infectious cadavers can have devastating effects in small incipient 

colonies (Loreto & Hughes 2016). 
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ABSTRACT  

The phenotype of social animals can be influenced by genetic, maternal and 

environmental effects, which include social interactions during development. In 

social insects, the social environment and genetic origin of brood can each 

influence a whole suite of traits, from individual size to caste differentiation. Here, 

we investigate to which degree the social environment during development 

affects the survival and fungal resistance of ant brood of known maternal origin. 

We manipulated one component of the social environment, the worker-to-brood 

ratio, of brood originating from single queens of Formica selysi. We monitored 

the survival of brood and measured the head size and ability to resist the 

entomopathogenic fungus Beauveria bassiana of the resulting callow workers. 

The worker-to-brood ratio and origin of eggs affected the survival and maturation 

time of the brood and the size of the resulting callow workers. The survival of the 

callow workers varied greatly according to their origin, both in controls and when 

challenged with B. bassiana. However, there was no interaction between the 

fungal challenge and either the worker-to-brood ratio or origin of eggs, 

suggesting that these factors did not affect parasite resistance in the conditions 

tested. Overall, the social conditions during brood rearing and the origin of eggs 

had a strong impact on brood traits that are important for fitness. We detected a 

surprisingly large amount of variation among queens in the survival of their brood 

reared in standard queenless conditions, which calls for further studies on genetic, 

maternal and social effects influencing brood development in the social insects. 
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INTRODUCTION 

The relative influence of genotype, maternal effects and rearing environment on 

the phenotypes of offspring has been the topic of heated debate in humans (e.g. 

Meaney 2001), and is the subject of ongoing research in a wide range of species 

(Russell & Lummaa 2009; Schwander et al. 2010). Social insects provide an 

interesting opportunity to investigate these influences. They live in mother-

daughter associations within well-defined colonies, which allows for complex 

social interactions. Egg laying and brood rearing are generally performed by 

different colony members: the queen and nurse workers, respectively. Thus, the 

offspring’s phenotype is shaped by a combination of factors including the 

genotype inherited from the parents, maternal effects, as well as indirect genetic 

effects and environmental effects due to the interactions with its social partners, 

especially the workers that provide daily care (Brian & Carr 1960; Linksvayer 

2006; Kapheim et al. 2011).  

Many studies have investigated the mechanisms of caste determination in insect 

societies. Recent findings suggest that the control of caste differentiation during 

offspring development can range from predominantly genetic to primarily 

environmental, with most of the investigated species falling at intermediate points 

along the continuum (reviewed in Schwander et al. 2010). Within castes, it seems 

that the genotype, maternal effects and care received during development may 

have some influence on the number of individuals produced (e.g. Linksvayer 



 66 

2008), their development time (e.g. Howard & Jeanne 2004) and their size (e.g. 

Schwander, Rosset & Chapuisat 2005; Fournier et al. 2008; Kovacs et al. 2010). 

The relationships between these inputs remain unclear, and experimental studies 

manipulating the social environment are needed to better evaluate the respective 

influence of each factor (Linksvayer & Wade 2005). 

The ratio of workers to brood is one element of the social environment that may 

differ greatly across colonies of different ages and social structures, and that may 

influence the survival and quality of the brood. In general, most studies have 

found that a larger worker-to-brood ratio increases the survival and the size of 

new workers in a diverse range of ant subfamilies (e.g. Brian 1957; Gray 1971; 

Wilson 1983; Porter & Tschinkel 1985; Tschinkel 1988), although this benefit 

may diminish at larger group sizes (Brian 1953). Moreover, workers seem to be 

unable to properly care for the brood when there are fewer workers than brood 

(Evesham 1985; Cassill & Tschinkel 1999; Cassill 2002; Hartmann et al. 2003). 

Little is known about how the worker-to-brood ratio affects other aspects of 

offspring quality, such as maturation time and resistance to infection. Recent 

studies of parasite resistance in social insects indicate that gene by environment 

interactions are probably important in worker susceptibility (e.g. Reber et al. 

2008). Both genetic and environmental factors are known to affect disease 

resistance in other organisms, including birds (Saino, Calza & Moller 1997), 

mammals (e.g. Lubach, Coe & Ershler 1995; Prager et al. 2010), and insects (e.g. 
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Cotter, Kruuk & Wilson 2004; Moreno-García, Lanz Mendoza & Córdoba-

Aguilar 2010).  

In this study, we examined the effect of one component of the social environment, 

the worker-to-brood ratio, on the survival and fungal resistance of ant brood of 

controlled origin. We monitored how brood laid by each queen performed when 

reared by different numbers of nestmate workers in the ant Formica selysi. In this 

species, the number of queens varies among colonies (Chapuisat et al. 2004). 

Each queen usually mates with one male, rarely with two (Chapuisat et al. 2004; 

Schwander et al. 2005). The number of workers per colony is highly variable, 

with approximately 10 times more workers in colonies headed by multiple queens 

than in colonies headed by a single queen (Rosset & Chapuisat 2007). Workers 

from single-queen (= monogyne) colonies are also significantly larger than 

workers from multiple-queen (= polygyne) colonies (Schwander et al. 2005) and 

have a slightly higher activity in one component of the immune system causing 

bacterial growth inhibition, even when controlling for body size (Castella, Christe 

& Chapuisat 2010). 

Surprisingly, F. selysi workers originating from polygyne colonies showed a 

lower survival rate than workers from monogyne colonies when they were 

experimentally challenged with an entomopathogenic fungus, despite the fact that 

experimental groups with higher diversity had higher resistance (Reber et al. 

2008). This result suggests that, while diversity per se improves the resistance of 
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the group, some other aspect of the polygyne lifestyle reduces the ability of 

workers to resist infections. The observed difference in parasite resistance might 

result from variation in immune response (Castella et al. 2010; Vitikainen & 

Sundström 2011) and/or body size (Schwander et al. 2005). In turn, both factors 

may be influenced by genetics, maternal effects, and/or social environment 

experienced during development.  

We hypothesize that the ratio of workers to brood might affect the survival and 

maturation time of brood, as well as the size and parasite resistance of the 

resulting workers. The direction of the effect is somewhat difficult to predict, and 

we do not know how the worker-to-brood ratio varies among field colonies. We 

do, however, expect the number of workers caring for brood to influence the 

nutrition, feeding rate, and hygiene of the larvae. In turn, larval nutrition has been 

shown to strongly influence the immune response of insects (Suwanchaichinda 

& Paskewitz 1998; Valtonen, Roff & Rantala 2011). Therefore, we expect that a 

higher worker-to-brood ratio might result in higher brood survival, with the 

resulting workers being larger and more resistant to parasites. We simultaneously 

assessed if brood originating from different mothers varied in survival, 

maturation time, size and parasite resistance.  
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METHODS 

Brood rearing experiment 

In March-April, 2010, we collected 22 ovipositing queens and many workers 

from a total of 16 polygyne colonies in a large Formica selysi population located 

along the Rhône river between Sierre and Susten in Valais, Switzerland 

(7°36’30”E, 46°18’30”N, altitude 565 m). In most cases, we collected or at least 

observed multiple queens in each of these colonies. In the few ambiguous cases, 

we verified that the colonies were polygynous by genotyping eight workers per 

colony at eight microsatellite loci (Chapuisat et al. 2004). 

In the lab, we placed each queen and about 50 workers from her field colony (but 

no pre-existing brood) in an individual plastic box (15 x 13 x 6 cm) lined with 

Fluon GP1 (Whitford Plastics, Diez, Germany) to prevent ants from escaping. 

We supplied water in a glass tube with moist cotton, and covered this tube with a 

piece of aluminium foil to provide a dark, humid nest. We also provided ad 

libitum access to standard ant food (Meunier & Chapuisat 2009). The ants were 

kept at 24 ± 2 °C with 50% humidity under a 12 : 12 h light : dark cycle. For four 

weeks (late April through early May), we monitored these boxes regularly and 

removed newly laid eggs for use in the experiment. At the end of this egg 

collection period, we measured the heads of the queens using a Leica MZ12.5 

microscope (Leica Application Suite 2.8.1) after they were cooled to 10°C for 
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about 30 minutes to minimize movement. Head size is a good indicator of overall 

body size (Schwander et al. 2005). 

We placed the freshly collected eggs on a small Petri dish, where we observed 

and counted them under a dissecting microscope. We then divided all of the intact 

eggs into groups of 20 and placed them on separate Petri dishes. At the same time, 

we divided the workers from the same field colonies as the eggs into groups of 

10, 20, 100, and 200 workers (rearing groups). We placed these groups in large 

boxes (38 x 22 x 14 cm) with a covered glass water tube, ad libitum access to 

standard ant food, and fluon lining to prevent escape. In cases when queens had 

produced enough eggs for each of the four worker-to-brood ratio treatments (at 

least 80 eggs), we haphazardly assigned the groups of 20 eggs to each treatment. 

A total of nine queens produced at least 80 eggs, and 20 queens produced at least 

20 eggs. When queens failed to produce enough eggs for a full treatment block, 

we allocated the groups of 20 eggs in priority to the rearing groups of 20 and 100 

workers. With these eggs, we created 16 10:20 worker-to-brood ratio rearing 

groups with the eggs of 13 queens, 20 20:20 worker-to-brood ratio rearing groups 

with the eggs of 14 queens, 21 100:20 worker-to-brood ratio rearing groups with 

the eggs of 16 queens, and 16 200:20 worker-to-brood ratio rearing groups with 

the eggs of 13 queens. 
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Brood survival and development 

To start the rearing experiment, we placed the open Petri dishes containing eggs 

near the entrance to the glass tubes in the boxes with the rearing workers 

immediately after the eggs were collected and counted. After 48 hours, all of the 

eggs had been collected and moved to the water tube by workers in 66 out of 73 

rearing groups. In the remaining groups, a median of one and a maximum of three 

eggs were left on the Petri dish, and these groups proceeded with fewer brood. 

We monitored the number of brood visible, the instar of the brood, and the 

mortality of workers at least once per week until pupation. 

After pupation, we monitored the boxes daily to ensure that we could identify 

newly emerged callow workers by their light colour. We immediately removed 

callow workers and placed them in a small plastic box containing ad libitum food 

and water with two nurses from the same colony, each of which was marked with 

a small dot of paint on her abdomen. During this period, the mortality rate of 

callow workers was 6%. For each rearing group, we measured brood survival, 

calculated as the number of live callow workers that emerged out of 20 eggs, as 

well as the minimum maturation time of brood for each group that successfully 

reared new workers, calculated as the number of days between the hatching of 

the first egg and the emergence of the first callow worker. 
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Callow survival and fungal challenge  

When the callow workers were five days old and fully sclerotized, we exposed 

them to either the entomopathogenic fungus Beauveria bassiana (108 conidia/mL 

suspended in 0.05% Tween 20 buffer) or to a control (0.05% Tween 20 buffer) 

by depositing a 2 µL droplet directly on the thorax. Previous experiments on F. 

selysi found that, for the specific strain of B. bassiana that we collected from our 

field site, this concentration resulted in intermediate mortality rates (Reber and 

Chapuisat unpubl. data). A similarly high concentration of conidia has also been 

used in other studies on the response of different insects to B. bassiana (e.g. 

Conteiro Castilho et al. 2010; Mukawa, Tooyama & Ikegami 2011). The first 

callow worker from each rearing group was randomly assigned to either the 

fungal exposure or the control treatment. Thereafter, we alternated subsequent 

callow workers emerging from the same rearing group with the fungal exposure 

and control treatment. In this way, we ensured that callow workers from the same 

rearing group were evenly represented in both the exposure and the control 

treatments. We isolated the individuals in small Petri dishes (3.5 cm diameter) 

containing food and water and monitored their survival daily for 14 days. We 

removed dead individuals from the Petri dishes, measured their heads, surface 

sterilized the corpses, and placed them in tubes with wet cotton wool for 30 days 

to record which corpses produced B. bassiana conidia. At the end of the 

experiment, we measured the heads of the remaining live workers. Two workers 
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escaped late in the observation period, and five others were mixed up during head 

measurement. These individuals were excluded from the head size analysis. 

Statistical analysis 

We constructed generalized linear models (GLMs) to separate the effect of the 

worker-to-brood ratio from the impact of the origin of brood on the survival, 

maturation time and size of the resulting workers, respectively. In each model, 

we used the brood measurement as the response variable and the mother identity, 

worker-to-brood ratio treatment, as well as the interaction between the two as 

fixed effects. For the model of callow head size, we used the size of individuals 

as the response variable, and we nested their rearing group within mother identity 

to account for any variation among rearing groups. For all of the comparisons in 

which maternal identity influenced our response variable, we additionally 

investigated whether specific queen traits influenced brood performance. In these 

GLMs, the response variables were the brood measurements and the fixed effects 

were maternal ( = queen) head size, maternal fecundity, as well as the interaction 

between the two. For the comparisons wherein the response variable was 

influenced by worker-to-brood ratio treatment, we also performed pairwise post-

hoc tests to determine which worker-to-brood ratio treatments differed 

significantly from one another. For these tests, we used the brood measurement 

as the response variable, the worker-to-brood ratio treatment as a fixed effect, and 

the maternal identity as a random factor. We reported the analysis of deviance 
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and the GLM family (linear for normally distributed data, poisson for count data, 

and binomial for survival data) that we used for each comparison. Finally, we 

used Pearson correlation tests to investigate whether our measures were related 

to one another. 

We investigated how the rearing environment and origin of the brood each 

influenced the ability of the resulting workers to resist an immune challenge using 

a parametric survival analysis (the survreg function in R 2.10). In this model, the 

response variable was the number of days that each individual survived after the 

infection or control solution was administered. This variable was censored when 

workers survived beyond our observation period, and for the two individuals that 

escaped during the observation period. The fixed effects included the worker-to-

brood ratio treatment, the maternal identity, the fungal challenge versus control 

and the interaction terms. We used the Weibull distribution, which produced the 

minimum error deviance. All statistical analyses were carried out in R 2.10 (R 

Development Core Team, 2009). 

RESULTS 

Brood survival and development 

The survival of the brood from the egg stage to the emergence of callow workers 

was influenced by both the worker-to-brood ratio during development and the 
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origin of the eggs (Table 1). The relationship between brood survival and worker-

to-brood ratio was non-linear: the groups of 20 workers provided with 20 eggs 

exhibited the highest mean number of brood emerging (Fig. 1a) and reared 

significantly more offspring than the groups of 200 workers (post-hoc 

comparison, p = 0.0052), but the other pairwise comparisons were not significant 

after Bonferroni correction (p = 0.023, 0.38 and 0.20 when comparing the worker-

to-brood ratio 10:20 to 20:20, 100:20 and 200:20, respectively; p = 0.029 and 

0.038 when comparing the worker-to-brood ratio 100:20 to 20:20 and 200:20, 

respectively). The maternal origin of eggs greatly influenced brood survival, 

which ranged from 0 to 29%, with a mean of 6%. This variation in brood survival 

was not, however, related to the maternal head size or fecundity (Table 2). Queen 

fecundity varied from 0 to more than 200 eggs produced over the four weeks 

during which we collected their eggs, but this was not correlated with queen size 

(r = 0.30, p = 0.23). 
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  Model factors   

Response variable Maternal 
identity 

Worker-to-
brood ratio Interaction GLM family 

Brood survival 
c2 = 110.3,  
d.f. = 15,  

p < 0.0001 

c2 = 27.6,  
d.f. = 3,  

p < 0.0001 

c2 = 42.9, 
d.f. =33,  
p = 0.12 

poisson 

Maturation time F13, 16 = 12.6,  
p = 0.013 

F3, 13 = 1.07,  
p = 0.45 

F9, 4 = 6.06,  
p = 0.049 linear 

Reduced 
maturation time 
(without 200:20) 

F13,13 = 11.4,       
p = 0.015 

F2,11 = 1.16,       
p = 0.40 

F7,4 = 7.77,        
p = 0.033 linear 

Callow head size F12, 72 = 1.98,  
p = 0.017 

F3, 69 = 4.84,  
p = 0.005 

F9, 60 = 1.57, 
p = 0.15 linear 

Reduced head size 
(without 200:20) 

F12, 68 = 2.06,       
p = 0.014 

F2, 66 = 6.86,       
p = 0.002 

F7, 59 = 1.66,        
p = 0.14 linear 

 

Table 1 Influence of worker-to-brood ratio and origin of eggs on brood survival, maturation 

time, and head size of the resulting callow workers. For the callow head size comparisons, 

rearing group identity is nested within maternal identity. 
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Fig.1 Effect of the worker-to-brood ratio on (a) brood survival, expressed as the number of 

callow workers emerging out of 20 eggs, (b) maturation time, expressed as the shortest time 

from egg hatching to callow emergence in each nest, and (c) head size of the resulting callow 

workers. The boxplots show the median values and the upper and lower quartiles. The 

whiskers encompass 1.5 times the interquartile range, and the circles represent outliers. The 

samples sizes for each category (the number of rearing groups in a and b, and the number of 

newly emerged workers in c) are shown in each box. 

 

The maturation time of brood was influenced by the origin of eggs, as well as the 

interaction between the origin of eggs and the worker-to-brood ratio (Table 1). 

The shortest time from hatching to callow emergence (maturation time) varied 

greatly among rearing groups, ranging from 20 to 55 days, and eggs from rearing 

groups with greater worker-to-brood ratios generally developed faster (Fig. 1b). 

The variation in maturation time of brood was also linked to an interaction 

between maternal size and fecundity (Table 2). We found a negative correlation 

between the number of brood produced and the maturation time (r = -0.40, p = 

0.031).  

The worker-to-brood ratio and egg origin also had a significant impact on the 

head size of the resulting workers (Table 1). Brood reared by a greater number of 

workers were generally larger (Fig. 1c), with groups of 100 workers producing 

significantly larger workers than groups of 20 workers (post-hoc comparison, p 

= 0.0067) or 10 workers (p = 0.0004) and no differences between rearing groups 
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with 10 and 20 workers (p = 0.51). Head size was also weakly heritable from 

mother to daughter, with maternal head size explaining 5% of the variance in 

callow head size (Table 2). 

 

  Model factors 
  

Response 
variable 

Maternal head 
size 

Maternal 
fecundity Interaction GLM family 

Brood survival 
c2 = 0.55,  
d.f. = 1, 
p = 0.46 

c2 = 0.87,  
d.f. = 1 
p = 0.35 

c2 = 0.60,  
d.f. = 1, 
p = 0.44 

binomial 

Maturation time F1, 26 = 0.91,  
p = 0.35 

F1, 25 = 0.34,  
p = 0.57 

F1, 24 = 7.54,  
p = 0.011 linear 

Callow head size F1, 81 = 4.27,  
p = 0.042 

F1, 80 = 0.77,  
p = 0.38 

F1, 79 = 1.16,  
p = 0.29 linear 

 

Table 2 Influence of maternal characteristics on brood survival and maturation 

time, as well as head size and survival rate of the resulting callow workers. 

Callow survival and fungal challenge 

The survival of callow workers was influenced by exposure to B. bassiana (c2 = 

6.64, d.f. = 1, p = 0.010) and by the origin of the eggs (c2 = 27.26, d.f. = 12, p = 

0.0071), but not by the worker-to-brood ratio (c2 = 3.21, d.f. = 2, p = 0.20) or any 

of the interactions (p > 0.4; full model c2 = 65.64, d.f. = 87, p = 0.11). Sequential 

removal of interaction terms did not influence the qualitative results of this 

analysis; the best fit model contained only the effects of queen and infection status 
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(reduced model c2 = 36.04, d.f. = 13, p = 0.0006). Exposure to the fungal parasite 

had a negative impact on the survival of callow workers (Fig. 2), and survival 

was not correlated with the head size of callow workers in our experiment (r = 

0.22, p = 0.16). In the groups exposed to the parasite, 60% of the ant corpses 

yielded B. bassiana conidia, but no conidia were observed on corpses from the 

control. The worker-to-brood ratio had no significant effect on the survival of 

callow workers in the absence of infection, nor on their ability to survive the 

fungal challenge (Fig. 2). In contrast, the offspring of some mothers had higher 

survival than others, both when exposed to the fungal parasite and in controls. 

Hence, the origin of eggs affected the overall survival of callow workers, but did 

not influence their relative ability to resist the pathogen, as indicated by the lack 

of interaction between the factors fungal challenge and origin. The overall 

survival of brood throughout development and during fungal infection thus 

depended upon worker-to-brood treatment, maternal origin, and infection status 

(Electronic supplementary materials, Appendix 1). 
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Fig. 2 The proportion of newly emerged workers surviving in controls (gray lines) and when 

challenged with the entomopathogenic fungus B. bassiana (black lines). The 200:20 worker-

to-brood ratio treatment was omitted from the analysis due to small sample size. The number 

of individuals from each worker-to-brood ratio treatment is shown for each category. 

DISCUSSION  

In animals with cooperative brood care, a lot of the phenotypic variability may 

result not only from genetic variation, but also from the social conditions during 

development. Here, we examined the impact of one important component of the 
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social environment, the availability of worker nurses, on the development, 

survival and parasite resistance of brood of known maternal origin. We 

distributed eggs laid by single ant queens among experimental rearing groups 

having four worker-to-brood ratios. In line with previous studies of social insects 

(e.g. Schwander et al. 2010), we found that the relationship between 

environmental and parental inputs is complex, with both the social conditions and 

origin of eggs influencing major traits of the brood. The worker-to-brood ratio 

influenced the survival and adult size of the brood. Queens varied greatly in their 

fecundity during our observation period, as well as in the viability of their brood 

reared in standard queenless conditions. The callow workers originating from 

different queens also varied significantly in their post emergence survival. We 

did not find an impact of either the worker-to-brood treatment or the maternal 

origin of eggs on the ability of callow workers to resist the fungal infection. 

At the outset, we expected that having more workers available to care for the 

brood would improve the quality of care. Instead, we found that the worker-to-

brood ratio generally had non-linear effects on the survival and maturation time 

of brood, as well as on the head size of resulting callow workers. This suggests 

that there may be developmental trade-offs associated with variation in the 

worker-to-brood ratio. For example, when one worker was available to care for 

each egg (20:20 treatment), the largest number of brood survived, but this brood 

matured more slowly than the brood reared by a larger number of workers. Some 
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previous studies found a similar trade-off, with larger colony size being 

associated with a decline in the efficiency of brood care and an increase in the 

size of workers (reviewed by Tschinkel 1988). 

In most of the rearing groups, the workers raised only a small proportion of the 

eggs until adulthood (Appendix 1). Other experimental studies also had very low 

brood survival under similar laboratory conditions (e.g. Abril, Oliveras & Gómez 

2010). There are several potential causes for this high rate of attrition. First, the 

presence of queens in colonies has been found to have a major effect on worker 

investment in brood in other ant species (e.g. Brian & Carr 1960; Vienne, Errard 

& Lenoir 1998). Second, it is possible that larger groups performed poorly under 

our laboratory conditions. We housed the colonies in large boxes with ad libitum 

access to food and water, so we don’t believe that crowding per se could have 

caused this pattern. One source of stress on the brood could have been the higher 

traffic of adults in and out of the nest tube, where the brood is attended.  

Eggs laid by different queens varied greatly with respect to many of the metrics 

that we measured on the resulting brood, even though the queens were not present 

in the rearing groups. This variation may have multiple causes. First, the broods 

differ in their maternal and paternal genotype. Second, they might have been 

influenced by maternal effects and by environmental or social factors associated 

with the colony of origin of the queens, including indirect genetic effects through 

the nestmate workers caring for the brood (Wolf et al. 1998; Linksvayer 2007). 
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The high variation among queens in both the viability of their immature brood 

and the resilience of their callow workers is somewhat surprising, as selection 

should favour queens with high productivity, thereby decreasing genetic variance 

in reproductive output. A high variation among queens in brood viability has been 

documented in other polygyne species (e.g. Holzer et al. 2006). Moreover, 

previous studies have found that queens from polygyne colonies varied more in 

their fecundity than queens from monogyne colonies (e.g. Keller 1988). It is thus 

possible that selection is somewhat relaxed in colonies with multiple queens. 

Alternatively, this variation may have no genetic basis. For example, competition 

among queens might have reduced the reproductive output of some queens (e.g. 

Keller & Reeve 1994) or there may be differences based on queen age. Finally, 

queens may also differ in their allocation of reproductive effort toward producing 

sexual versus worker offspring. It is interesting to note that the same queens 

whose brood performed well during this experiment also continued to produce a 

larger number of callow workers in the lab throughout the season (Pearson r = 

0.65, p = 0.015). Thus it appears that some queens and colonies were consistently 

more productive than others, at least under laboratory conditions. To better 

understand the causes of this variation among queens, it would be interesting to 

quantify the degree of selection on queen fecundity, brood viability and 

reproductive success in different social contexts (e.g. number of queens present, 

queen age). 



 85 

The factors influencing parasite resistance also deserve further investigation. 

Although both the worker-to-brood ratio and egg origin influenced some aspects 

of brood development and offspring quality, we have not yet detected specific 

factors that contribute to variation in resistance to the fungal parasite B. bassiana. 

Indeed, we found no interaction between the fungal challenge and either the 

worker-to-brood ratio or origin of eggs, suggesting that these factors did not affect 

parasite resistance in the conditions tested. It is however likely that there is 

genetic and social variation for disease resistance (e.g. Hughes & Boomsma 

2004; Cremer et al. 2007) and given our sample size, small effects of maternal 

origin or worker-to-brood ratio might have remained undetected. There are also 

many more ways by which social interactions, including grooming or sharing of 

antibiotics both before and/or during infection, may influence brood and callow 

immunity (Calleri et al. 2006; Cremer et al. 2007; Chapuisat et al. 2007; 

Hamilton et al. 2011; Reber et al. 2011). An interesting next step would be to 

manipulate other aspects of the social or abiotic environment during brood 

development, and to compare the relative effects of egg origin and social 

environment on resistance to a variety of naturally-occurring pathogens.  

Overall, the number of workers available to care for brood is likely to change 

over the course of the colony life-span, and in response to the number of queens 

in the colony (e.g. Heinze). Our results suggest that the worker-to-brood ratio 

plays an important role in the ontogeny of colony characteristics, such as colony 
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growth rate and worker size, which will in turn influence colony success (e.g. 

Billick 2001; Nielsen, Agrawal & Hajek 2010). Further research is required to 

identify which factors influence the ability of individual workers to resist fungal 

infections, and also to determine whether colonies can adjust the worker-to-brood 

ratio or brood production strategy in response to the short-term worker 

requirements of the group. 
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Appendix 1 

 Here, we further analyse the survival of brood during the entire experimental period 

from the egg stage until adulthood. Interestingly, most of the observed mortality in brood 

occurred early in development, at the egg or early larval stage (Appendix Fig. 1). We find an 

effect of maternal origin, rearing group, and infection treatment, plus an interaction between 

maternal origin and rearing group, on the survival trajectory of brood (Full parametric 

survival model: c2 = 1168, d.f. = 316, p < 0.0001; maternal origin: c2 = 323.2, d.f. = 19, p < 

0.0001; rearing group: c2 = 110.6, d.f. = 3, p < 0.0001; infection treatment: c2 = 538.5, d.f. = 
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3, p < 0.0001; maternal origin * rearing group: c2 = 150.0, d.f. = 57, p < 0.0001). Among the 

rearing group treatments (Appendix Fig. 1a), we find that brood from the 20:20 worker-to-

brood ratio groups perform best until adulthood, when the mortality rate increases during the 

infection experiment (Fig. 2). We also find that the offspring of nearly half of the queens do 

not survive until adulthood (grey lines, Appendix Fig. 1b), and there is still substantial 

variation in survival rates among the queens that do produce surviving offspring (black lines).  

Appendix Methods:  

 We performed routine counts of the number and approximate age of the developing 

brood throughout their maturation period. Prior to the first pupation event, observations were 

done once or twice a week. During this time, we smoothed the mortality curves by averaging 

mortality across the days intervening our observations. After pupation, the rearing groups 

were checked daily. In our analysis, all survival lines begin on the first day that the brood was 

placed with the rearing group (Appendix Fig. 1). We performed a parametric survival 

analysis using the Weibull distribution, which produced the minimum error deviance for this 

model.  
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Appendix Fig. 1 The survival of brood from the time that we placed eggs into rearing groups 

until the end of the fungal challenge experiment, based on their rearing group treatment (a) 

and their maternal origin (b). Grey boxes show the mean (+/- standard deviation) timing of 

major phenological events, including egg hatching, pupation, and eclosion. Maternal origin 

lines are distinguished between those that had surviving offspring after the complete 
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experiment (black lines) versus those that did not (grey lines). Much of the mortality that we 

observed in all conditions occurred very early in development, during the egg and early larval 

stages. Tick marks show individuals that were censored in our survival analysis. 
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Chapter 4: Wood ants protect their brood with tree 

resin 
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ABSTRACT 

Social insects use multiple lines of collective defences to combat pathogens. One 

example of a behavioural group defence is the use of anti-microbial plant 

compounds to disinfect the nest. Indeed, wood ants collect coniferous tree resin, 

and the presence of resin in their nest protects them against fungal and bacterial 

pathogens. Many questions remain on the mechanisms of resin use, including 

which factors elicit resin collection and placement within nests. Here, we 

investigate whether the presence of brood induces Formica paralugubris workers 

to collect more resin, and whether the workers preferentially place resin near the 

brood. We also test if the collection and placement of resin depends on the 

presence of the fungal entomopathogen Beauveria bassiana. We show that 

workers bring more resin to their nest when brood is present, and preferentially 

place the resin near the brood. In contrast, workers do not increase resin collection 

in response to exposure to B. bassiana, nor do they place resin closer to 

contaminated brood or contaminated areas of the nest. This lack of response may 

be explained by a limited effect of resin against the germination and growth of B. 

bassiana in vitro. Overall, our main result is that woods ants actively position 

resin near the brood, which probably confers prophylactic protection against 

other detrimental microorganisms. 
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INTRODUCTION 

The use of plant compounds to combat parasites has been documented in various 

animal taxa, including insects, birds and mammals (Clayton & Wolfe 1993; 

Chapuisat et al. 2007; Simone, Evans & Spivak 2009; Lefèvre et al. 2010). The 

mechanisms are also varied, from direct ingestion and topical application to nest 

fumigation (Huffman 2003; Gwinner & Berger 2006; Villalba, Provenza & Shaw 

2006). Plant use may be prophylactic or curative, and may benefit the individual 

or its offspring (de Roode, Lefèvre & Hunter 2013). For example, monarch 

butterflies preferentially lay eggs on toxic plants when they are infected by 

protozoan parasites, which reduces the growth of the parasite in their offspring 

(Lefèvre et al. 2010; 2012). However, in many cases the mechanisms governing 

the use of medicinal substances by animals are still poorly known, and it is 

notably difficult to demonstrate that the contact with the substance is deliberate 

and primarily aimed at fighting parasites (Clayton & Wolfe 1993; Gwinner & 

Berger 2005; Manson, Otterstatter & Thomson 2010; Suárez-Rodríguez, López-

Rull & Garcia 2013).  

In social insects, many defences are collective and contribute to diminish the 

parasite pressure at the colony level (Cremer et al. 2007; Wilson-Rich et al. 2009; 

de Roode & Lefèvre 2012). The use of medicinal plant substances has been 

primarily documented in wood ants and bees (Christe et al. 2003; Chapuisat et al. 

2007; Simone-Finstrom & Spivak 2010). Indeed, wood ants, honeybees and 
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stingless bees collect and incorporate plant resin into their nests (Christe et al. 

2003; Duangphakdee et al. 2009; Simone et al. 2009). Due to its anti-fungal and 

anti-bacterial properties, this resin may protect the colony against multiple 

pathogens (Banskota, Tezuka & Kadota 2001; Christe et al. 2003; Chapuisat et 

al. 2007; Simone-Finstrom & Spivak 2010). For example, in the wood ant 

Formica paralugubris, the presence of resin increased the survival of adult 

workers and larvae exposed to the bacteria Pseudomonas fluorescens, as well as 

the survival of larvae exposed to the fungal pathogen Metarhizium anisopliae 

(Chapuisat et al. 2007). Moreover, in wood ants and honeybees, the presence of 

resin reduced the microbial load and allowed individuals to downregulate some 

components of their immune system (Christe et al. 2003; Castella et al. 2008a; 

Simone et al. 2009). 

The mechanisms governing the use of resin by wood ants remain little known. 

Field experiments revealed that workers foraging on trails prefer to collect resin 

over other kinds of nest material, such as twigs and small stones (Castella et al. 

2008b). The preference for resin was higher in spring and summer than in autumn, 

raising the hypothesis that resin collection might primarily serve to protect the 

brood, which is produced at this time of the year (Castella et al. 2008b).  

Laboratory experiments also suggested that the use of resin was prophylactic and 

constitutive rather than curative and infection-dependent, as the workers did not 

increase resin collection when their colonies were exposed to M. anisopliae 
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(Castella et al. 2008b). However, the behavioural response may depend on the 

parasite. For example, honeybee colonies tended to increase resin collection after 

being challenged with the fungal pathogen Ascophaera apis (Simone-Finstrom & 

Spivak 2012). Hence, more fungal pathogens should be tested in wood ants. 

Moreover, the hypothesis that workers preferentially place the resin close to 

contaminated brood or contaminated nest areas, as compared to non-

contaminated ones, has not been tested so far. 

Here, we investigate whether the presence of brood and/or of the virulent fungal 

entomopathogen Beauveria bassiana influences the rate of resin collection by 

wood ant workers, as well as the spatial distribution of resin in the nests. If F. 

paralugubris workers use resin to protect brood, we expect that they will collect 

more resin when brood is present in their nest, and that they will place the resin 

close to the brood. If the ants use resin in response to the fungal contamination 

rather than as a constitutive prophylaxis, we expect workers to increase resin 

collection after exposure to B. bassiana, and to preferentially place resin near 

contaminated brood or contaminated nest areas. 

MATERIAL AND METHODS 

In our experiment, workers collected resin from foraging arenas and placed it in 

experimental nests (Figure 1). We sampled F. paralugubris workers, brood and 

nest material from 20 field nests in the "Chalet à Roch" population. The study 
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population is located in sparse spruce forest (Asplenio-Piceetum) at an altitude 

between 1320 and 1420 m in the Swiss Jura mountains (Cherix 1980). It consists 

of hundreds of large and highly polygynous nests interconnected by trails and 

forming a supercolony (Holzer et al. 2006). The sampled brood consisted of 

pupae, which are abundant and easy to sample in the upper parts of mounds. 

Because of their soft cuticles, ant pupae tend to be highly susceptible to fungal 

entomopathogens (Tragust et al. 2013b). 

In the laboratory, we removed the resin already present in the nest material. We 

split the samples from each field nest into four experimental nests, assigned to 

four treatments, in full factorial design: presence or absence of pupae and 

presence or absence of Beauveria bassiana, a virulent generalist fungal 

entomopathogen (Uma Devi et al. 2008). B. bassiana has been reported to 

successfully infect and kill adult ant workers (Purcell et al. 2012; Reber & 

Chapuisat 2012a) and brood (Broome, Sikorowski & Norment 1976; Patterson & 

Briano 1993). 

To monitor the spatial distribution of resin, each experimental nest had two 

internal compartments, one that received nest material with pupae and/or parasite 

contamination, while the other received only nest material (Fig. 1). The nest 

consisted of a dark plastic box (13.8 x 18.3 x 6.2 cm) filled with resin-free nest 

material up to a height of 1.5 to 2 cm. The two equal-sized internal compartments 

were separated by a thin wall of plastic 3.5 cm high that divided nest material but 
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did not reach the top of the box, so that the ants could easily move between 

compartments inside the nest. Each compartment had a small entrance hole giving 

way to a foraging arena consisting of a plastic tray (22 x 35 x 15 cm) lined with 

Fluon to prevent ants from escaping. Each experimental nest received 200 

workers. 

In the foraging arena, the workers had access to 2.5 g of coniferous tree resin, in 

the form of approximately 300 grains of resin of various sizes that were 

previously removed from the nest material. Workers also had ad libitum access 

to water and standard jelly food (Reber & Chapuisat 2012b). 
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Figure 1. Outline of the experimental set up. The dashed line indicates the 

internal separation of the nest material in two compartments. See material and 

methods for details. 
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For each of the 20 field nests, one of the four experimental nests received one of 

the four following experimental treatments: 

1. Presence of non-contaminated brood (Brood +, Pathogen -). We placed 100 

pupae originating from the same field nest as the workers in one randomly chosen 

compartment of the nest. The group of pupae had been sprayed with 

approximately 220 µl of control solution (0.05 % sterile Tween 20). 

2. Presence of non-contaminated control items (Brood -, Pathogen -). One of the 

nest compartments received 100 small plastic pieces similar to pupae in size and 

shape (approximately 4 mm long and 3 mm wide). These pieces had been sprayed 

with control solution. 

3. Presence of brood contaminated by the fungal pathogen (Brood +, Pathogen 

+). One of the nest compartments received 100 pupae that had been sprayed with 

approximately 220 µl of B. bassiana spore solution (4.6 x 107 conidia/ ml). 

4. Presence of control items contaminated by the fungal pathogen (Brood -, 

Pathogen +). One of the nest compartments received 100 small plastic pieces that 

had been sprayed with B. bassiana spore solution. 

We checked the content of the experimental nests on a daily basis, recording the 

position of brood or control plastic pieces. In three cases, the workers transferred 

all the brood to the opposite compartment towards the end of the experiment. We 

conservatively kept these nests and their original brood compartment in the 
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analyses. However, we checked that excluding these three nests or redefining 

their brood compartments did not affect the outcomes of the statistical tests. After 

one week, we weighted the total amount of resin that the ants had placed in each 

compartment of each nest. At the end of the experiment, the workers were 

euthanized in a -20°C freezer. 

In follow-up experiments aiming at further distinguishing between a constitutive 

and therapeutic use of resin, we assessed if the resin inhibited the germination 

and growth of B. bassiana in vitro. We performed two types of growth inhibition 

assays. First, we spread 100 µl of a spore solution (107 spores per ml in 0.05 % 

Tween 20) on 9 cm diameter petri dishes containing malt extract agar (MEA). 

We placed four pieces of resin on each petri dish (e.g. Chapuisat et al. 2007). 

Second, we performed well-diffusion assays, adapted from Mandeel et al. (2005). 

In petri dishes, we mixed spores with MEA, using three final concentrations: 2 x 

106, 6 x 105 and 104 spores per ml, respectively. In each plate, we cut four 4 mm 

diameter holes. Two of these holes were filled with resin dissolved in ethanol 

(100 % mass/volume). One of the remaining two holes was filled with ethanol, 

as a negative control while the other was filled with 14% bleach, a potent, large 

spectrum anti-fungal substance, as a positive control. We incubated the plates at 

25°C for four days. 
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Statistical Analyses 

To test whether the presence of pupae, the exposure to the pathogen or an 

interaction between the two factors influenced the total amount of resin that 

workers brought to the nest, we constructed a mixed-effect model with pupae 

presence and exposure to the pathogen as fixed factors, and the field nest as a 

random factor, using the lmer function (Bates et al. 2014) in R version 3.0.2 (R 

Development Core Team 2013). We obtained P values from likelihood ratio tests 

comparing models with and without the variable of interest. 

To examine if the workers preferentially deposited the resin near the brood and/or 

the fungal pathogen, we compared the amount of resin in the compartment 

containing pupae and/or pathogen to the one in the compartment containing only 

nest material. We used paired sample Welch t-tests, as the compartments are 

paired within each experimental nest. 

RESULTS 

Workers brought significantly more resin to the nest in presence of pupae than in 

control, broodless conditions (Fig. 2a ; 𝜒2
1 = 12.2, P = 0.0005). In contrast, 

workers did not change their rate of resin collection when the pupae or control 

plastic pieces were contaminated with pathogenic B. bassiana spores (𝜒2
1 = 0.36, 

P = 0.55). There was no significant interaction between the presence of pupae and 
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the exposure to the pathogen, which indicates that the impact of brood presence 

on resin collection is independent of fungal contamination (𝜒2
1 = 0.18, P = 0.67). 

Within experimental nests, workers preferentially placed the resin near pupae, 

independently of the fungal contamination. Indeed, the mass of resin was 

significantly higher in the compartments containing non-contaminated pupae 

(paired samples Welch t-test: t19 = 3.3, P = 0.003) or in the compartments 

containing Beauveria contaminated pupae (t19 = 2.6, P = 0.02) than in the 

corresponding broodless compartments of the same experimental nests (Fig. 2b). 

In contrast, workers did not place more resin in compartments with control plastic 

pieces (t19 = 1.1, P = 0.28) or in compartments with Beauveria contaminated 

plastic pieces (t19 = -0.22, P = 0.83) than in the broodless compartments of the 

same experimental nests (Fig. 2b). Usually, the resin tended to be distributed 

evenly in the compartment containing the brood. However, in one 

uncontaminated nest, the resin was clearly placed around the pupae.  
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Figure 2. (a) Average total amount of resin that wood ant workers brought to the 

experimental nests and (b) average amount of resin that wood ant workers 

brought in each nest compartment, in function of brood presence and exposure to 

the fungal pathogen B. bassiana. Each nest had two compartments, of which one 

randomly chosen received the treatment. In (b), black and grey bars show the 

average amount of resin placed in treated compartments and in compartments that 
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contained only nest material, respectively. Brood + / - indicates pupae presence / 

absence, and pathogen + / - pathogen presence / absence, respectively. Sample 

size was 20 experimental nests per treatment. Error bars indicate standard error 

of the mean quantity of resin collected. 

In the follow-up experiments testing the effect of resin against B. bassiana in 

vitro, we did not observe distinctive inhibition halos around the pieces of resin, 

nor around the wells filled with resin dissolved in ethanol. We observed large 

fungus-free halos around the wells containing bleach, but not around the ones 

containing only ethanol. This suggests that the resin has little effect against the 

germination and growth of B. bassiana, at least in the conditions tested. 

DISCUSSION 

Wood ant workers collected significantly more tree resin when brood was present 

in their nests. Specifically, the presence of pupae in experimental nests led 

workers to bring 50% more resin from the foraging arenas to the nests, as 

compared to the broodless situation. Moreover, within the nests, workers 

preferentially placed the resin near pupae. On average, 71% of the resin collected 

by workers was placed in the nest compartment containing brood; the rest was 

deposited in the compartment containing only nest material.  

The experimental findings that workers retrieve more resin when pupae are 

present in their nest and that they preferentially place the resin near pupae 
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strongly support the hypothesis that workers use resin to protect their brood from 

pathogens. This is in line with earlier findings showing that the presence of resin 

decreases the prevalence of bacteria and fungi in nest material (Christe et al. 

2003), and protects the larvae against some specific virulent bacterial and fungal 

pathogens (Chapuisat et al. 2007). A higher rate of resin collection when brood 

is present is also fully consistent with the field observation that workers collect 

proportionally more resin in spring and summer, when brood is produced, than in 

autumn (Castella et al. 2008b). 

In the social insects, brood is of crucial importance for the future of the colony, 

and often receives extra protection (Ayasse & Paxton 2002; Cremer et al. 2007). 

The brood is likely to be particularly sensitive to pathogens, because larvae and 

pupae do not have a fully sclerotized and melanised cuticle, which facilitates the 

penetration of fungal spores (Ortiz-Urquiza & Keyhani 2013). The brood also 

lacks some of the antibiotic-producing glands of adult ants, like metapleural 

glands (Stow & Beattie 2008). 

Many behavioural defences seem to be targeted at brood protection against 

pathogens. Some ants preventively self-groom before entering the brood chamber 

(Morelos-Juárez et al. 2010), while others stay away from brood when they are 

contaminated (Ugelvig & Cremer 2007). Some ants even place venom on fungus-

exposed brood to disinfect them (Tragust et al. 2013a). The maintenance of a 

strict nest hygiene, removal of diseased individuals, and allo-grooming of all 
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individuals returning to the colony are also efficient but less specific ways to 

prevent the spread of diseases (Hart & Ratnieks 2002; Wilson-Rich et al. 2009; 

Reber et al. 2011; Tragust et al. 2013b). Given the strong and broad-spectrum 

antimicrobial activity of resin (Banskota et al. 2001; Christe et al. 2003; 

Chapuisat et al. 2007), depositing resin near brood appears to be another powerful 

measure to reduce the risk of infection in brood.  

In our experiment, workers did not increase resin collection when the brood had 

been exposed to B. bassiana, nor did they place resin closer to contaminated 

brood or contaminated areas of the nest. There are several possible explanations 

for this lack of response. First, resin may have little effect against B. bassiana. In 

line with this hypothesis, in our follow-up assay in vitro the resin did not inhibit 

the germination and growth of the pathogen. Second, B. bassiana may have only 

limited impact on ant pupae in natural conditions, for example due to cocoon 

presence or systematic allo-grooming (Reber et al. 2011; Tragust et al. 2013b). 

Third, workers may not be able to detect the presence of spores or of infected 

pupae. In our experiment, we did not detect any removal of contaminated or dead 

pupae from the nests.  

Overall, our experiment suggests that resin collection is constitutive and 

prophylactic, as it does not depend on the presence of specific pathogens. These 

results are similar to the ones obtained when challenging these ants with another 

generalist fungal entomopathogen, M. anisopliae, which, in contrast to B. 
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bassiana, was inhibited by resin and detrimental to the ants (Chapuisat et al. 2007; 

Castella et al. 2008b). Prophylactic defences are often perceived as fixed, whereas 

therapeutic defences are seen as plastic, varying with the risk and predictability 

of infection (de Roode & Lefèvre 2012). Here, we show that resin collection and 

placement is both prophylactic and plastic, as it depends on the presence of brood 

in the nest. 

Although a prophylactic, multi-target use of resin is probably common, a 

therapeutic response might still occur to fight more specific pathogens, as has 

been documented in the honeybee (Simone-Finstrom & Spivak 2012). 

Conditional, adaptive responses to endoparasite infections have also been 

reported in monarch butterflies, which lay eggs on toxic plants (Lefèvre et al. 

2010; 2012), and fruit fly larvae, which increase ethanol consumption (Milan, 

Kacsoh & Schlenke 2012). 

In conclusion, wood ants brought more resin to their nests when brood 

was present, and they deposited the resin near the brood, independently of the 

presence of a fungal pathogen. When combined with our previous findings on the 

protective effects of resin (Christe et al. 2003; Chapuisat et al. 2007), these new 

results indicate that wood ants actively place resin near the brood in order to 

prophylactically protect these vulnerable and precious colony members from 

detrimental microorganisms. 
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ABSTRACT 

Wood ants fight pathogens by incorporating tree resin with antimicrobial 

properties into their nests. They also produce large quantities of formic acid in 

their venom gland, which they readily spray to defend or disinfect their nest. 

Mixing chemicals to produce powerful antibiotics is common practice in human 

medicine, yet evidence for the use of such “defensive cocktails” by animals 

remains scant. Here, we test the hypothesis that wood ants enhance the antifungal 

activity of tree resin by treating it with formic acid. In a series of experiments, we 

document that (i) tree resin had much higher inhibitory activity against the 

common entomopathogenic fungus Metarhizium brunneum after having been in 

contact with ants, while no such effect was detected for other nest materials; (ii) 

wood ants applied significant amounts of endogenous formic and succinic acid 

on resin and other nest materials; and (iii) the application of synthetic formic acid 

greatly increased the antifungal activity of resin, but had no such effect when 

applied to inert glass material. Together, these results demonstrate that wood ants 

obtain an effective protection against a detrimental micro-organism by mixing 

endogenous and plant-acquired chemical defences. In conclusion, the ability to 

synergistically combine antimicrobial substances of diverse origins is not 

restricted to humans and may play an important role in insect societies. 
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INTRODUCTION 

Animals living in large social groups are exposed to a high risk of epidemics. In 

response to this threat, social animals have evolved sophisticated individual and 

collective means to control disease, which combine immunological, behavioural 

and organizational defences (Naug & Smith 2007; Cremer et al. 2007; Wilson-

Rich et al. 2009). Collective defences include ways to keep the environment 

hygienic, for example by removing or neutralizing infectious particles (Morelos-

Juárez et al. 2010; Tragust et al. 2013a). 

An original way to fight enemies is to exploit the defensive chemicals produced 

by other organisms (de Roode et al. 2013). Humans use a myriad of chemicals 

from multiple sources, alone or in synergistic combinations, to medicate 

themselves, clean their environment, or control pests (Mason & Singer 2015). 

Animals also harness chemicals produced by other species for their own defence 

(de Roode et al. 2013; Mason & Singer 2015). For example, many insect 

herbivores sequester plant secondary metabolites to gain protection against 

predators or parasites (Nishida 2002; Lefèvre et al. 2010). It has been proposed 

that animals may combine multiple acquired chemicals to benefit from 

synergistic effects (Mason & Singer 2015). However, evidence for the use of such 

“defensive cocktails” by animals remains scant (Mason & Singer 2015). 

Wood ants and honeybees incorporate tree resin with antimicrobial properties 

into their nest (Christe et al. 2003; Simone-Finstrom & Spivak 2010). In the wood 
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ant Formica paralugubris, workers actively collect large amounts of resin from 

coniferous trees, which they bring back to their nest and place near their brood 

(Castella et al. 2008b; Brütsch & Chapuisat 2014). Coniferous resin is rich in 

secondary metabolites with antimicrobial properties (Phillips & Croteau 1999). 

The presence of resin decreases the overall microbial load in wood ant nests and 

protects the ants against bacterial and fungal pathogens (Christe et al. 2003; 

Chapuisat et al. 2007). 

Wood ants are also chemical factories. They produce large quantities of formic 

acid in their venom gland, which they spray at prey and enemies (Blum 1992; 

Morgan 2008). In other ant species, formic acid is also present in the trophallactic 

fluid following oral uptake from the venom gland (Tragust et al. 2013a), and other 

acids have been found in the metapleural glands (Vieira et al. 2012). Formic acid 

has well known antimicrobial properties. It is widely used by humans, as cleaning 

agent and as preservative additive in livestock food (Iba & Berchieri 2007). 

Moreover, formic acid is effective against Metarhizium, a common fungal 

pathogen of ants (Graystock & Hughes 2011), and is used by Lasius neglectus 

ants to disinfect their brood (Tragust et al. 2013a). This suggests that wood ants 

may combine endogenous acids with tree resin. 

Here we test the hypothesis that wood ants apply self-produced acids on tree-

collected resin to produce a more potent antimicrobial agent. Specifically, we 

examined if i) ants enhance the antifungal activity of resin, ii) ants add 
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endogenous acids to resin, and iii) these acids increase the antifungal activity of 

resin. 

MATERIALS AND METHODS 

Effect of wood ants on the antifungal activity of resin 

In a first experiment, we tested if spruce tree resin that had been in contact with 

wood ants had increased inhibitory activity against the generalist 

entomopathogenic fungus Metarhizium brunneum, compared to resin that had not 

been contacted by ants. As controls, we used twigs and small stones. Twigs are 

major constituents of wood ant nests and small stones are commonly found in 

some of the nests (Castella et al. 2008b). 

We established experimental groups of workers from field colonies of Formica 

paralugubris (Chapuisat et al. 1997; Christe et al. 2003). We collected pieces of 

fresh resin from spruce tree, as well as twigs and stones of similar size, in areas 

away from ant colonies. The pieces of resin, twigs and stones were disinfected 

under UV light (30 mn under a UV lamp radiating at 254 nm in a Biosafety 

Cabinet BSC - 700II, HMC Europe). 

Each tested material (pieces of resin, twigs and stones) was kept with and without 

ant workers for two weeks. In ant-exposed treatments, four pieces of the tested 

material were kept with 40 workers in a small plastic box (13.5 x 15 x 5 cm; n = 
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25 replicates for each material). In ant-free controls, four pieces of the tested 

material were kept in a box without workers (n = 25 replicates for each material). 

The edges of the boxes were treated with Fluon to prevent ant escape. The 

workers were free to interact with the pieces of resin, twigs and stones. They had 

ad libitum access to water and jelly food consisting of chicken eggs, honey, water 

and agar (Reber & Chapuisat 2012b). 

After this two-week period of exposure to ants or ant-free control conditions, we 

measured the inhibitory activity of resin, twigs and stones against the fungus M. 

brunneum. We used a strain that had been isolated from Valais, Switzerland, and 

showed high virulence against Formica selysi (Reber & Chapuisat 2012a). M. 

brunneum was described in 2009, and was previously known as M. anisopliae 

anisopliae (Bischoff et al. 2009). A strain of the latter species complex caused 

high mortality to F. paralugubris (Chapuisat et al. 2007). M. brunneum is used 

here as a model fungal pathogen, while other pathogens might be important in the 

field. Indeed, the resin affects a broad spectrum of fungi and bacteria that are 

potential pathogens of F. paralugubris (Christe et al. 2003; Chapuisat et al. 2007). 

Inhibitory activity was measured on Malt extract agar nutritive medium in 8.5 cm 

diameter petri dishes, inoculated by plating 100 µl of 0.05% Tween 20 solution 

containing 7 x 105 asexual spores (= conidia) of M. brunneum. The four pieces of 

each material (resin, twigs or stone) coming from the same experimental box were 

placed together in a petri dish. The petri dishes (n = 25 per material and treatment) 
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were incubated at 25°C for six days. We then photographed each petri dish and 

measured the spore-free areas around the tested material with the ImageJ 

software (Schneider, Rasband & Eliceiri 2012). Spore-free areas were either void 

of both spores and mycelium, or consisted of white and mostly sterile mycelium 

known as sectors (Ryan et al. 2002). 

For the statistical analysis, we used one estimate of inhibitory activity per 

experimental box (= replicate). We therefore measured the overall spore-free area 

in each petri dish, and divided it by four. This is a conservative estimate of the 

average inhibition halo around each item, because large halos were overlapping. 

We constructed a model with the spore-free area as response variable, and the 

material (resin, twigs or stone) and previous contact with workers (presence or 

absence of workers in the box) as explanatory variables. The response variable 

was square root transformed to achieve homogeneity of variances and normal 

distribution of residuals, as required for an ANOVA. We carried out post-hoc 

comparisons with Tukey's HSD tests. 

Transfer of endogenous acids to resin and other types of nest material 

In a second experiment, we examined if ants applied endogenous acids to pieces 

of resin, twigs or stones. We placed four pieces of the tested material (resin, twigs 

or stone) in boxes with and without ants as described above, except that there 

were 50 workers per box in the treatment with ants (n = 10 replicates for each 
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material and treatment type, with or without ants). As organic acids are very 

soluble in water, we sampled the acids from each material (resin, twigs or stone) 

by immersing the four items from the same experimental box in 1 ml of MilliQ 

water for 30 seconds. The samples were stored at -20°C until HPLC analysis (see 

below). 

We also tested if the retention and subsequent detection of formic acid varied 

with the type of material (resin, twigs and stone). For this, 1µl of 60 % synthetic 

formic acid (CAS number 64-18-6) was deposited on each type of material (10 

replicates per material and treatment). After 24 hours, each item was immersed 

in 500 µl of MilliQ water for 30 seconds. The samples were stored at -20°C until 

HPLC analysis. 

To identify the origin of the acids detected on nest materials, we extracted the 

content of the venom gland, trophallaxis fluid and metapleural glands from ten 

workers anaesthetised with CO2. For venom and trophallaxis fluid, we gently 

pressed their gaster and collected the liquid with a micro capillary. For the 

metapleural glands, we introduced the tip of a micro capillary in the gland 

opening and extracted the liquid by capillarity. We diluted these extracts in 500 

µl of MilliQ water. The samples were stored at -20°C until HPLC analysis. 

To measure the organic acids in the samples, we analysed them by High 

Performance Liquid Chromatography (HPLC), using an Agilent HP1100 HPLC 

system equipped with a diode array detector (DAD), with UV detection 
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wavelength set at 210 ± 2 nm. To remove small particles, the samples were 

centrifuged (3 min at 1400 rpm) and the supernatant was transferred to 2 ml glass 

vials (Interchim, Swiss Labs, Mulhouse, F). We injected 40 µl of the samples 

onto a 300 mm x 7.8 mm BP-100 H carbohydrate column (Benson Polymeric, 

USA). The temperature of the column was maintained at 40°C and MilliQ water 

was used as a solvent with 20 mM of sulfuric acid (analysis grade 95-97%, 

Honeywell, Germany) at a flow rate of 0.4 ml/min. Succinic (CAS number 150-

90-3, Acros organics, USA) and formic (CAS number 141-53-7, Sigma Aldrich, 

USA) acids were quantified in the samples by external calibration. The linearity 

of the method was established using 6 standard solutions at concentration levels 

from 5 µg/mL to 1.3 mg/mL. 

We constructed a model with acid quantity as response variable and the material 

(resin, twigs or stone) and previous contact with workers (presence or absence of 

workers in the box) as explanatory variables. We analysed the data of each acid 

separately. 

Effects of acids on the antifungal activity of resin 

In a third experiment, we tested if combinations of synthetic acids corresponding 

to the composition of ant endogenous acids enhanced the antifungal activity of 

the resin. We mixed commercially available acids with MilliQ water to obtain a 

formic acid solution (formic acid 58.5 %), a venom-like mix (formic acid 58.5%, 
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succinic acid 1.2%) and a trophallaxis-like mix (succinic acid 3.6%, formic acid 

0.06%) corresponding to the proportions of the main acids found in the venom 

and trophallactic fluid, respectively (see results). MilliQ water was used as 

control. 

Pieces of spruce resin and pieces of safety glass were dipped in water, 58.5% 

formic acid, venom-like or trophallaxis-like mixes of synthetic acids, respectively. 

Safety glass was chosen as control because it is chemically inert. The amount of 

acid retained by pieces of glass and resin (after being dipped in acid) was not 

significantly different (0.011 ± 0.003 vs 0.013 ± 0.006 g, respectively; t = -1.56, 

d.f. = 42.83, p = 0.13; N = 30 pieces of each material). Inhibitory activity against 

M. brunneum was estimated by measuring the spore-free area around each item. 

We used the procedure described above, except that we plated 250 µl of solution 

containing 4.5 x 106 spores of M. brunneum on a nutritive medium of sabouraud 

glucose agar complemented with the antibiotics dodine, cycloheximide and 

chloramphenicol, in 13.5 cm diameter petri dishes, which allowed for better 

fungal growth. For each material, we placed one item subjected to each of the 

three acid treatments (dipped in 58.5% formic acid, venom-like and trophallaxis-

like mixes of synthetic acids) and to control conditions (dipped in water) on the 

same petri dish (n = 25 replicates per material).  

For each material, we calculated the increase in antifungal activity due to 

exposure to acids. Specifically, we subtracted the spore-free area produced by the 
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control from the area produced by the acid-exposed material in the same petri 

dish. We used Wilcoxon rank sum tests to examine if the acid-induced changes 

in antifungal activity differed between resin and inert glass material. All statistical 

analyses were performed in R version 3.3.0 (R Core Team 2016). 

RESULTS 

Effect of ants on the antifungal activity of resin 

Pieces of resin that had been kept with wood ant workers showed a significantly 

higher inhibitory activity against M. brunneum than pieces of resin that had not 

been in contact with ants. In contrast, the presence of workers had no effect on 

the antifungal activity of twigs and stones (Fig. 1; ANOVA, interaction between 

material and contact with workers: d.f. = 2, F = 3.9, p = 0.022; Tukey's HSD post-

hoc tests: resin vs resin that had been in contact with workers: p < 0.0001; twigs 

vs twigs that had been in contact with workers: p = 0.99; stones vs stones that had 

been in contact with workers: p = 0.99). Overall, resin had higher antifungal 

activity than twigs or stones (Fig. 1; ANOVA: d.f. = 2, F = 57.6, p < 0.0001). 
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Figure 1. Antifungal activity of pieces of resin, twigs and stones that had been 

kept without or with ants, respectively. The boxplots show the median values of 

spore-free areas around the tested items, as well as the upper and lower quartiles. 

The whiskers encompass 1.5 times the interquartile range. Outliers are indicated 

by circles. 

Transfer of endogenous acids to resin and other types of nest material 

Both formic and succinic acids were found on resin, twigs and stones that had 

been in contact with workers (Table 1). In contrast, we did not detect these two 

acids on resin that had not been in contact with workers. We detected some 

succinic acid on twigs and formic acid on stones that had not been in contact with 

workers, but in much smaller quantities than on similar materials that had been 

in contact with workers (Table 1). Overall, we detected significantly more acids 

on materials that had been kept with ants (ANOVA, main effect of contact with 
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workers: formic acid, F = 34.8, d.f. = 1, p < 0.0001; succinic acid, F = 28.1, d.f. 

= 1, p < 0.0001).  

 

 Resin Twigs Stones 
 Kept 

without ants  
Kept with 

ants 
Kept 

without ants  
Kept with 

ants 
Kept 

without ants  
Kept with 

ants 
 
Formic acid 
 

 
0 
 

(0) 

 
0.022 µl 
± 0.029 

(10) 

 
0 
 

(0) 

 
0.031 µl 
± 0.015 

(10) 

 
0.058 µl 
± 0.047 

(9) 

 
4.6 µl 
± 2.46 
(10) 

 
Succinic acid 

 
0 
 

(0) 

 
0.13 µl 
± 0.13 
(10) 

 
0.004 µl 
± 0.0094 

(2) 

 
0.049 µl 
± 0.031 

(10) 

 
0 
 

(0) 

 
0.097 µl 
± 0.083 

(10) 

	
Table 1. Mean quantity of acids detected on resin, twigs and stones that had been 

kept without ants or with ants, expressed as volume of acid in µl ± SD. The 

number of samples in which the acid was detected is given in parentheses (out of 

10 samples). 

For formic acid, there was a significant interaction between material and contact 

with ants (Table 1; F = 33.6, d.f. = 2, p < 0.0001). The high amount of formic 

acid detected on stones that had been kept with ants can be explained by large 

differences among the three materials in their ability to sequester and release 

formic acid. Indeed, when we experimentally deposited a controlled amount of 

1µl of 60% formic acid on each type of material, we detected much more acid on 

stones than on resin and twigs, respectively (mean in µl ± SD: stones, 0.41 ± 0.11; 
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resin, 0.00044 ± 0.0014; twigs, 0.013 ± 0.0043; Kruskal-Wallis rank sum test: c2 

= 26.5, d.f. = 2, p < 0.0001). 

Worker ants produced large quantities of formic acid and comparatively small 

amounts of succinic acid. The venom gland extracts contained on average 58.5 % 

of formic acid (detected in all 10 samples) and 1.2 % of succinic acid (5 samples). 

The trophallactic fluid contained 3.6 % of succinic acid (9 samples) and 0.06 % 

of formic acid (1 sample). Fumaric acid was detected in trace quantities in the 

venom and trophallactic fluid. We did not detect any acid in the metapleural gland 

extracts. 

Effects of acids on the antifungal activity of resin 

The treatment with synthetic formic acid at a concentration corresponding to the 

one of venom increased the inhibitory activity of resin against M. brunneum (Fig. 

2). Formic acid had a significantly stronger impact on the antifungal activity of 

resin than of inert glass material, which is indicative of a synergistic interaction 

(Fig. 2; Wilcoxon rank sum test: W = 323, p < 0.0001). The treatment with the 

venom-like mix (formic + succinic acids) also increased the antifungal activity of 

resin, but not more than formic acid alone, at the same concentration (Fig. 2). The 

increase in antifungal activity due to the venom-like mix was also stronger for 

resin than for glass (W = 312, p < 0.0001). The treatment with the trophallaxis-

like mix, which contains more succinic acid and only traces of formic acid, 
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slightly decreased the antifungal activity of resin and had no effect on the 

antifungal activity of glass (Fig. 2; W = 70, p = 0.0009). 

 

Figure 2. Increase in the antifungal activity of resin and glass dipped in 58.5% 

formic acid, venom-like and trophallaxis-like mixes of synthetic acids, 

respectively, relative to controls (same materials dipped in water). 

DISCUSSION 

Wood ants are known to incorporate plant resin with antiseptic properties into 

their nests (Christe et al. 2003; Simone-Finstrom & Spivak 2010). Here, we show 

that wood ants enhance the antifungal activity of tree-collected resin by 

supplementing it with endogenous formic acid. Three lines of experimental 

evidence support this claim. First, tree resin showed significantly higher 

inhibitory activity against the fungal pathogen M. brunneum after having been in 
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contact with wood ants. In sharp contrast, the contact with ants did not affect the 

antifungal activity of control materials commonly found in wood ant nests, 

namely twigs and small stones. 

Second, the ants applied significant amounts of endogenous formic and succinic 

acid on resin and other types of nest material. The proportion of formic acid and 

succinic acid varied with substrate, which likely reflects differences among 

substrates in their ability to take up and release formic acid (Al-Hosney et al. 

2005). Large quantities of formic acid and small amounts of succinic acid were 

found in the venom of wood ants.  

Third, the treatment of resin with synthetic formic acid greatly increased the 

antifungal activity of the resin, but had no such effect on pieces of glass. This 

interaction between formic acid and substrate reveals a synergistic effect. Indeed, 

the combination of formic acid and resin produced a higher antifungal activity 

than the additive effect of each compound. The application of formic acid on resin 

was sufficient to obtain this synergistic effect, and succinic acid did not appear to 

contribute to the antifungal activity of resin. Together, these results provide 

strong evidence that wood ants apply formic acid produced in their venom gland 

on tree resin, which results in a synergistic increase in the antifungal activity of 

resin. 

Documented cases of “defensive mixology”, whereby animals actively combine 

antimicrobial substances of diverse sources to obtain a synergistic protection, are 



 124 

extremely rare (Mason & Singer 2015). Honeybee workers manipulate tree resin 

with their mandibles, but there is no evidence that this process modifies the 

chemical composition of the resin (Simone-Finstrom & Spivak 2010). Stingless 

bees collect resin from several plant genera. Although these resins vary in their 

antibacterial properties, mixing them had no synergistic effect against a fungus 

and various bacteria (Drescher et al. 2014). Synergistic defences may also occur 

in herbivores or nectar-feeding animals (Mason & Singer 2015). For example, a 

dietary treatment with a mix of thymol and nicotine tended to reduce the load of 

a protozoan parasite in bumblebees (Biller et al. 2015).  

Like humans, social insects have extraordinary capacities to exploit and modify 

their environment (Wilson 1971), and they rely on sophisticated means to keep 

pathogens at bay (Cremer et al. 2007). Here, we provide evidence that wood ants 

do not only collect tree resin with antimicrobial properties, they also supplement 

it with formic acid. Thus, wood ants combine their own chemical defences with 

the ones of plants to produce a more potent antimicrobial agent that contributes 

to nest hygiene (Christe et al. 2003; Castella et al. 2008b; Brütsch & Chapuisat 

2014) and protects the ants against detrimental micro-organisms (Chapuisat et al. 

2007). Together, these findings demonstrate that the ability to synergistically 

combine antimicrobial substances of diverse origins is not restricted to humans 

and may play an important role in insect societies. 
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General discussion 

In the first part of this thesis, I investigated the defenses against pathogens during 

colony founding and brood rearing. In chapter 1, we examined if young founding 

queens were able detect and avoid contaminated nest sites. We found that young 

queens were able to detect the entomopathogenic fungi M. brunneum and B. 

bassiana, but were surprisingly attracted to them instead of being repelled by 

them. Since the publication of our results, others have reported similar findings 

in another context (Pontieri et al. 2014). Pharaoh ants, Monomorium pharaonis, 

when relocating to a new nest site, preferred nest sites infected with M. brunneum 

sporulating cadavers of nestmates than nest sites containing uninfected cadavers 

(Pontieri et al. 2014). In previous studies, collembolans were attracted to B. 

bassiana, Beauveria brongniartii and Metarhizium anisopliae (Dromph & 

Vestergaard 2002) and mosquitoes were attracted to B. bassiana and M. 

anisopliae (George et al. 2013). Although the list of studies showing attraction 

by generalist fungal entomopathogens is growing, none of them can so far 

convincingly explain these observations. Several of the proposed hypotheses, 

such as fungal manipulation or insects seeking vaccination and trans-generational 

immune priming by contact with fungi imply that the fungi are pathogens. 

However, we observed a similar attraction with one of the two non-

entomopathogenic fungi tested in our study, Fusarium graminearum (Brütsch et 
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al. 2014). Moreover, deliberately getting into contact with the pathogen implies 

that infection risk is lower than the potential benefits derived from contact. This 

strategy seems risky as these fungi are often lethal to the host species tested, and 

in the case of ants, even a single cadaver has been shown to make small colonies 

crash (Loreto & Hughes 2016). It is also not clear why these particular insect 

species are attracted to the pathogens, while some others, like termites, clearly 

avoid them (Mburu et al. 2009; Rath 2010; Yanagawa et al. 2012). Finally, it is 

interesting to note that non-pathogenic fungi sometimes repelled insects, like one 

of the two non-entomopathogens tested in our study, Petromyces alliaceus 

(Brütsch et al. 2014) or Penicillium spp. in the study with mosquitoes (George et 

al. 2013).  

Although the results from these studies still lack convincing explanations, the 

observed patterns are very strong, and further studies with a variety of 

entomopathogenic and non-entomopathogenic fungi will be needed to understand 

this intriguing behavior. For instance, to test if contact with a pathogen provides 

benefits in term of  vaccination or immune priming, ant queens (or other insects) 

would have to be infected with a non-lethal dose of the pathogen, to see if they 

(or their offspring) resist better to subsequent lethal doses of the pathogen, 

compared to individuals that were not previously exposed.  

In the second part of chapter 1 and in chapter 2, we tested the hypothesis that 

queens associate during colony founding to benefit from social immunity. In 
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chapter 1, we found that the presence of a pathogen in a potential nest site did 

not incite F. selysi queens to associate during colony founding. In line with these 

results, we found in chapter 2 that neither queens of L. niger founding in 

association nor their workers benefitted from social immunity. On the contrary, 

queens tended to invest more in some components of internal individual 

immunity and in self-grooming. These results, with the ones of others (Pull et al. 

2013), provide strong evidence that social immunity is not an advantage of 

pleometrosis, at least in the species and conditions tested. Studying the next stage 

of colony development, we found in chapter 3 that in F. selysi, neither the worker 

brood ratio nor the origin of workers (their mother queen) influenced resistance 

to the fungal pathogen B. bassiana. In contrast, worker brood ratio influenced 

other traits, such as the survival and adult size of the brood.  

The aim of the second part of this thesis was to investigate the use of antimicrobial 

resin by the wood ant Formica paralugubris. In chapter 4, we found that F. 

paralugubris workers retrieve more resin when brood is present in the nest, and 

that they place resin near the brood. This showed that although resin collection is 

prophylactic (Castella et al. 2008b) its use is also plastic, as it depends on the 

presence of brood in the nest. 

 In chapter 5, we tested if wood ants treat the resin to increase its antifungal 

potential. We found that workers create a potent antimicrobial agent by 

depositing self-produced formic acid on pieces of resin. This constitutes a rare 
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demonstration of an antibiotic “defensive mixology” (Mason & Singer 2015). In 

future studies, it would be interesting to test if ants produce antimicrobial 

cocktails in other conditions. Workers may for example mix several self-

produced antibiotics such as the ones found in the metapleural glands (Veal, 

Trimble & Beattie 1992; Fernández-Marín et al. 2006; Yek & Mueller 2011), the 

venom gland (Graystock & Hughes 2011; Tragust et al. 2013a), or the 

trophallaxis regurgitates (de Souza et al. 2008; Hamilton et al. 2011). In 

genetically diverse nests, workers from different genetical origins may also mix 

their self-produced chemicals to create more potent or larger spectrum 

antimicrobials. 

Concerning the resin itself, future studies may investigate the potential costs of 

its use, as novel terminology describing the use of antimicrobial substances (self-

medication, prophylactic medication, compensatory diet choice, prophylactic 

consumption) depends on the potential detrimental effect of the substance on the 

host in absence of infection (Singer, Mace & Bernays 2009; Abbott 2014). In 

previous studies, resin did not have a negative effect on the survival of workers 

or larvae (Chapuisat et al. 2007). However, resin may have sub-lethal detrimental 

effects. For example, propolis (resin used by honeybees in their hive) induced 

narcosis and reduced the metabolic rate of the mite Varroa destructor (Garedew 

et al. 2002), provoking a lower resistance to thermal stress (Garedew, Schmolz 

& Lamprecht 2003). Similarly, propolis reduced the metabolic rate and shorted 
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the pupal duration of the greater wax moth Galleria mellonella larvae (Garedew, 

Schmolz & Lamprecht 2004). Resin may also have detrimental effects on more 

fragile life stages, like the eggs.  

In conclusion, this thesis illustrates the interest of testing multiple lines of 

antipathogen defenses in social insect colonies, as some of the results do not 

match with seemingly obvious predictions. This also calls for future studies 

investigating in further detail the antipathogen defenses of particular life stages, 

like colony founding or during brood rearing. The second part of this thesis 

provides important insights on how social insects use antibiotic substances such 

as resin. 
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