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1 Problem statement and main objectives  

Sediment flux plays a central role within the evolution of land surfaces and the Earth’s 

biogeochemical system. A sediment budget tries to quantify sediment fluxes on various 

scales. Sources, sinks and storages of sediment are the major components of a sediment 

budget. The quantification of the magnitude and time-scale of sediment storage flux is still the 

weakest part of sediment budget studies. However, it is considered to be the most important 

link between sediment movement and landform evolution (Slaymaker and Spencer 1998). In 

mountain environments sediment fluxes are heavily influenced by topography and glaciation. 

The accumulation, storage and release of sediment in mountain areas affected by glaciation 

operate on different time- and space-scales (Church and Ryder 1972; Ballantyne 2002a). 

Process rates and operation times changed in the past, thus generating a sequence of 

landforms that compose today’s land surface. Sediment storage landforms are often 

assembled in a nested manner, creating neighbouring, overlapping, or underlying landform 

patterns.  

The role of sediment storage within a sediment budget approach is often based on estimations 

only. However, geophysical methods, high resolution digital terrain data and GIS techniques 

open up new possibilities for the quantification of sediment storage volumes.  

 

This study analyses the spatial distribution of sediment storage landforms and quantifies 

sediment volumes in the high Alpine Turtmann Valley in the Swiss Alps. The sediment flux 

system generally includes the transport and storage of fine and coarse solid materials and 

dissolved matter. As this study is based on the actual distribution of sediments on the land 

surface, it concentrates on solid sediments only. The following main questions will be 

addressed:  

 

• How are sediment storage landforms distributed in the Turtmann Valley? 

• What kind of functional relationships exists between these landforms? 

• How can the sediment storage volume be quantified for an entire Alpine meso-scale 

catchment? 

• How much sediment is stored in the Turtmann Valley? 

• Which storage landform types store the largest quantities of sediment? 
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• What can be inferred from the sediment storage distribution on the sediment flux 

system of the Turtmann Valley? 

• What does the distribution of sediment storage landforms reveal about the landscape 

evolution of the Turtmann Valley?  

• How can the paraglacial landform evolution of the Turtmann Valley be characterised? 

 

The approach adopted in this study focuses on three spatial scales of investigation: (a) single 

landforms, (b) a hanging valley, and (c) the entire catchment. Sediment thickness was 

determined for single landforms. This information is used to quantify landform volumes on 

the scales b and c. Landform distribution patterns and characteristics of sediment storage 

types are analysed at the scale of the entire valley. No information on the absolute timing of 

landform evolution in the Turtmann Valley exists and little is known about the glacial history 

of the valley as no dating of landforms or deposits has been performed. Therefore, only a 

relative model of paraglacial landform evolution will be established. A calculation of mean 

denudation rates refers to a time period of 10 ka as assumed length of the Post Glacial period 

in the Turtmann Valley. However, as revealed during the analysis, this time span over- and 

underestimates process activity for different landform types. 

 

In order to address the main questions above, the objectives of this study are to: 

 

• characterise the spatial structure of storage landform distribution; 

• understand spatial and functional relationships between the sediment storage 

landforms within different sediment cascade types; 

• quantify sediment volumes using geophysical investigation techniques and DEM 

analysis; 

• model the volumes of sediment storage on a catchment wide scale; and 

• discuss the role of sediment storage within the landscape evolution and the sediment 

flux system of the Turtmann Valley. 
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2 Scientific framework 

2.1 Mountain environments as geomorphological systems 

Mountain landscapes are very heterogeneous and variable geomorphological environments, 

hosting a wide span of different geomorphological landforms and processes. The particular 

importance of mountain environments in geomorphology is not only due to the 

geomorphological activity within but originates from its influence on the surrounding lowland 

environments. Mountains are the most important sources of water and sediment within the 

Earth’s biogeochemical system and thus have strong impacts on both natural and 

anthropogenic systems even at great distances from mountain regions. 

Four main factors characterise mountain environments from a geomorphological perspective 

(Troll 1966; Barsch and Caine 1984): elevation, steep gradients, surficial bedrock, and the 

presence of snow and ice. These fundamental characteristics exhibit strong influences on the 

mountain climate and the geomorphological process activity. High precipitation, low 

temperatures, and increased process activity compared to lowlands are some particular effects 

of these conditions (Owens and Slaymaker 2004). Barsch and Caine (1984) specify other 

typical criteria of mountain environments:  

 

• a sequence of climate-vegetation zones; 

• high potential energy for sediment movement; 

• evidence of Quartenary glaciation; and 

• tectonic activity and instability. 

 

Mountain environments show a pronounced variability and diversity of processes, landforms, 

distribution of vegetation, and environmental conditions. They are characterised by 

metastable conditions expressed by infrequent but intense episodic process activity (Owens 

and Slaymaker 2004). 

To manage the diversity and complexity of mountain environments in geomorphological 

research, Slaymaker (1991) proposes a systems approach as a framework for measurement 

programmes. Based on the systems theory introduced into Geomorphology by Chorley (1962) 

and Chorley and Kennedy (1971), and on a hierarchical landform classification, Slaymaker 

establishes ten geomorphic systems, five on a macro and five on a meso scale, respectively 

(Table 2.1).  
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Table 2.1 Mountain geomorphic systems and appropriate approaches to measurement (Slaymaker 1991) 

System Category Macroscale  Mesoscale  

 Example Measurement 
approaches 

Example Measurement 
approaches 

Morphological:  Regional 
geomorphic and 
tectonic 
framework 

Remote sensing Terrain and 
land analysis 
Zero order 
basins 

Mapping and air 
photos 

Morphologic 
evolutionary: 

Relief evolution 
and paleo-
environmental 
reconstruction 

Surface 
chronology 
Sediments 
Geochronology 

Kinematics of 
landform 
change 

Surface 
chronology 
Sediments 
Geochronology 

Cascading: Regional water, 
solute and 
sediment 
budgets 

Monitoring Basin water, 
solute and 
sediment 
budgets 

Monitoring 
Pathway 
identification 
Storage volume 

Process-
response: 

Energy input 
and landform 
response 

Physical models 
Neotectonics 

Process 
studies 

Experiments 
Strength of 
response 

Control:  Global change 
management 
and prediction 

Environmental 
indicators 
Global Climate 
Models 

Geomorphic 
hazards 

Mapping and 
zoning 
Magnitude and 
Frequency 
analysis 

 

The study of sediment storage and the analysis of sediment budgets belongs to the concept of 

cascading systems (Table 2.1). According to Chorley and Kennedy (1971) cascading systems 

are composed of:  

“…a chain of subsystems, often characterised by thresholds having both spatial 

magnitude and geographical location, which are dynamically linked by a cascade of mass 

and energy.”  

The term cascade describes a flow of energy and/or material along a gravitational gradient. 

When subsystem boundaries are crossed the output from the above subsystems becomes the 

input in to the next subsystem. Internal regulators and thresholds play an important role in 

cascading systems. Regulators determine whether material or energy is stored within a 

subsystem, or conveyed towards the adjacent subsystem. When thresholds are passed system 

changes can occur, and energy and material are released after a period of accumulation. 

Changes can be abrupt or continuous. The sediment cascade is only one example of cascading 

systems in Physical Geography, others include the solar energy cascade, the stream channel 

cascade or the valley glacier cascade (Chorley and Kennedy 1971).  

Sediment is mobilised, routed, stored, remobilised and deposited through different subsystems 

in form of solid and solute matter. The driving force originates from the potential energy 

determined by the height of the source area above a base level and the impact of climate in 
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form of water, in various physical conditions, and wind. Process activity, relief, lithology, 

climate, and the existing landsurface provide the boundary conditions for sediment transfer. 

Caine  (1974) has illustrated this relationship for the flow of sediment in alpine environments 

(Figure 2.1). 

 
Figure 2.1 Caine’s alpine sediment cascade model (Caine 1974) 

This sediment flux model depicts some basic internal components of a valley subsystem, 

together with input and output relationships. Main sources of sediment in this slope subsystem 

are the exposed bedrock and the atmosphere that introduces aeolian sediments. The elements 

of this system are interconnected landforms located along an altitudinal gradient, which 

provides the energy for sediment movement. The output from this subsystem is delivered into 

the adjacent subsystem that takes up the sediment. In a mountain environment this could be a 

low-order valley, a lake basin, or the ocean. The valley subsystem can be modified in 

different ways according to the scale of investigations. Otto and Dikau  (2004) identify four 

sedimentary subsystems in the Turtmann Valley: (1) the hanging valleys, (2) the main 

glaciers, (3) the main valley trough slopes and (4) the main valley floor (Figure 2.2). Each of 

these subsystems contains its own set of sediment transport processes and storage landforms. 
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Figure 2.2 Meso scale sediment flux model of the Turtmann Valley (Otto and Dikau 2004) 

Geomorphological processes link the landforms of the sediment cascade. Consequently, Caine  

(1974) uses a functional classification approach and distinguishes four process systems in 

mountain environments:  

 

1. The glacial system:  

Frozen water in form of snow and ice occupies the highest elevations within mountains. 

However, glacier movement can extend the location of the glacial system into lower 

elevations, for example into valley floors or even towards the sea. The important role of 

glaciers for sediment production derives not only from their enormous erosive force, but 

also from the storage and release of water. Glacierised mountain environments produce 

the highest denudation rates in the world (Caine 2004).  

 

2. The coarse sediment system: 

Coarse sediment is produced at cliffs and rock walls, creating typical depositional 

landforms like talus slopes, mass movement deposits or rock glaciers. Mainly 

gravitational processes like rock falls, landslides, avalanches and debris flows operate the 

sediment movement. Steep gradients, high potential energy and increased weathering 

favour mass movement processes and enable the production of coarse sediment. Where 

process activity and intensity are high coarse sediment is transferred into rivers, thus 

coupling slopes to channels. However, if local terrain conditions or reduced process 

activity hamper the slope-channel coupling, the coarse sediment can be trapped within the 

subsystems (Otto and Dikau 2004). 
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3. The fine-grained sediment system: 

The fine-grained sediment system is dominated by the activity of fluvial processes that 

remove the material from its provenance area. Weathering and soil erosion, as well as 

aeolian sedimentation are the main sources for fine-grained sediment.  

 

4. The geochemical system: 

Geochemical denudation is linked with solution weathering, nivation and fluvial 

processes. Though chemical denudation rates are usually lower compared to mechanical 

denudation, the importance of the geochemical system is increasingly realized (Rapp 

1960; Owens and Slaymaker 2004).  

 

Two main factors govern the intensity and efficiency of sediment transport in the three later 

systems: bedrock and surficial geology and the basin’s topographical characteristics i.e. the 

size, relief and landsurface structure (Owens and Slaymaker 2004). Though Caine’s (1974) 

classification is a functional approach, the different sediment systems imply an altitudinal 

differentiation of mountain areas. Glacier and coarse sediment systems most often cover 

higher altitudes, while fine-grained and geochemical systems typically occur in valley floors 

and at lower elevations.  

A purely topographic classification of mountain environments is given by Fookes et al. 

(1985). Their “mountain model” includes five zones, each associated with typical landforms, 

material and processes (Figure 2.3) located at different altitudinal levels of the mountain 

system.  
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Figure 2.3 Mountain Zones by Fookes et al. (1985). Zone: 1 – High altitude glacial and periglacial, 2 – Free 
rock faces and associated slopes, 3 – Degraded middle slopes and ancient valleys floors, 4 – Active lower 
slopes, and 5 – Valley floors. 

Focussing on geological and geotechnical aspects of mountain environments in the context of 

road construction, Fookes et al. (1985) use the altitudinal zonation to distinguish surface 

materials, denudation processes and landforms in each zone. Though one emphasis is set on 

surface materials, additional information like average slope gradients are given as well. 

The landforms within a sediment cascade often act as storages, where material is deposited for 

a variable period of time. Shroder and Bishop (2004) identify five different storage 

environments for non-volcanic mountains: (1) Nonglacial alpine and ablational valley floor 

storage, (2) glacier and moraine storage, (3) terrace storage, (4) lacustrine and aeolian storage 

and (5) channel and braided plain storage. 

2.1.1 Time and space in mountain geosystems 

Time and space plays an important role for sediment budget analysis. The scale dependency 

of landforms with respect to time and space is widely acknowledged (Figure 2.4). The way in 

which landforms are arranged in a landscape is termed a palimpsest (Chorley et al. 1984). 

This term expresses a nested arrangement of objects of different age and thus creating a 

hierarchy of landforms. The assemblage of different polygenetic landforms within a landscape 
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is the result of different processes, which have been operating at different times or at different 

phases, and with various intensities. Generally smaller and younger forms rest on top of larger 

and older objects. Therefore, a landscape can contain different generations of landforms 

(Büdel 1977), which represent different stages of evolution. In mountain environments these 

generations almost always include imprints from former glaciations. In an alpine valley for 

example, a hanging valley represents a large and old landform formed by several cycles of 

Pleistocene glaciation in several hundred thousand years. The talus slopes, moraines and rock 

glaciers, which are located within the hanging valley, were accumulated after the deglaciation 

within a few hundreds or thousands of years only. On top of talus slopes processes like debris 

flows or avalanches can operate within even shorter time scales (minutes, hours, years) 

creating smaller landforms (debris cones, levees, avalanche tongues). Landform size interacts 

with time; thus space and time have to be considered together (Massey 1999). This 

assemblage of relict, overlap and replacement landforms (Hewitt 2002) in a landscape 

exhibits how past processes still have an influence on today’s environments. On the one hand, 

land surface variations and landforms created by past processes serve as a grounding, 

boundary condition and regulator for current processes. On the other hand, deposits from past 

processes act as sediment sources for subsequent processes.  

 

 
Figure 2.4 Time and space scales in geomorphology (Brunsden 1996) 
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Landforms of various sizes take different time to form and last for different lengths of time 

before they are eroded away (Figure 2.4). Besides a spatial hierarchy, expressed in the size of 

the landform, a temporal hierarchy of formative process events can be defined as well 

(Brunsden 1996). The time scale of an event can be equated with the duration of the process 

and the time required to generate a landform. Debris flows or rock falls are rapid events 

operating on very short time scales of a few minutes or seconds, thus the resulting form may 

be created very quickly. Sustained climate change, which caused for example the Little Ice 

Age and associated large moraine complexes, has a significantly longer duration, e.g. several 

hundred years. Orogeny takes several million years, thus operating on a time scales of a 

different order of magnitude. The composition of landforms results from a constant 

adjustment to environmental conditions, where variations within the adjustment represent 

sensitivity towards change of a geomorphological system (Brunsden and Thornes 1979; Dikau 

1998). Sensitivity is a function of coupling of processes and process-response between the 

different system elements and is often associated with negative feedbacks.  

 

The evolution of the land surface is generally regarded as a dynamic equilibrium, which 

suggests that the system responds in a complex, linear manner to environmental changes or 

random internal fluctuations that cause the crossing of internal thresholds in order to reach a 

balance between the formative forces (Schumm 1979). Many concepts of landscape evolution 

(cf. paraglacial landscape response, chapter 2.3.2) assume steady-state conditions, where 

fluctuations occur around a mean equilibrium. However, this assumption is critically 

questioned by Jordan and Slaymaker (1991) and Ballantyne (2003).  

The dynamic equilibrium paradigm is challenged by the concepts of complexity and 

nonlinearity, which give rise to a more chaotic and less predictable model of landscape 

evolution (Phillips 2003). These concepts reduce the incidence of steady-state equilibriums in 

nature through various types of non linear response. These include thresholds, storage effects, 

saturation and depletion, positive feedback mechanisms (self-reinforcing), self-limiting 

processes, competitive interactions, multiple modes of adjustment, self-organisation and 

hysteresis (Phillips 2003). Complexity describes a system behaviour, which emerges from the 

interaction of the system components (De Boer 2001). Emergent phenomena or properties 

(landforms, structures, and reactions) appearing within complex systems that cannot be 

immediately explained or predicted by simple interaction of the systems individual 

components (Spedding 1997). These emergent properties only become apparent at a certain 

level of system complexity, but do not exist at lower levels (Favis-Mortlock et al. 2000). In 
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mountain environments the formation of moraines is an example of emergent structures. Two 

conditions produce moraines: the creation of large amounts of debris through bedrock erosion, 

and the transport and deposition of this material by the glacier, instead of removal by 

glacio-fluvial processes. Thus, the debris production and deposition represent the emergent 

results of interdependent variables, like bedrock topography, glacier dynamics or subglacial 

drainage network (Spedding 1997). The sediment dynamics of a drainage basin can also be 

regarded as an emergent property of the drainage basin system itself (Wasson 1996). 

Although they result mainly from local, small-scale processes, sediment dynamics and 

sediment yield cannot be explained by analysis of small-scale process alone (De Boer 2001).  

Temporal and spatial scales, system configuration, complexity, and coupling also have to be 

considered in mountain sediment budget analysis. Additionally, Jordan and Slaymaker (1991) 

point out that the occurrence of events is another aspect that affects sediment budget models. 

Sediment supply may be more or less constant or characterised by episodic or singular events. 

Such behaviour affects the choice of time scales and methods of data gathering for sediment 

budget studies (Jordan and Slaymaker 1991). 

 

2.2 The sediment budget approach 

A budget is the quantity of objects involved in or available for a particular situation. Hence, a 

sediment budget is a summation of all the sediment within a landscape, or as Reid and Dunne 

(1996) define it, 

“ … an accounting of the sources and disposition of sediment as it travels from its point of 

origin to its eventual exit from a drainage basin.”  

This definition includes the main elements of sediment flux through a landscape, the sources, 

the transfer processes and the sinks, where sediment is finally or temporarily deposited. The 

sediment budget approach provides a framework for the analysis of landform and land surface 

evolution. Additionally sediment budgets are useful tools for resource management, 

especially when human impact on geomorphic systems is studied (Reid and Dunne 1996).  

 

Various sources of sediment production exist for mountain environments. Slaymaker et al.  

(2003) identify four sediment sources in mountains with a present or past glacial history: 

 

1. fine-grained glacial deposits (rock flour) derived from subglacial erosion and located 

in glacier forefields;  
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2. fluvioglacial deposits derived from paraglacial valley fill and terraces from the early 

Holocene; 

3. fluvioglacial deposits derived from exposed glacier forefields and moraines during 

neoglacial advances; and 

4. sediments originating from hillslope instabilities.  

 

In other words bedrock outcrops, hillslopes and glacigenic depositions of various ages are the 

main sediment sources in mountain environments. Hence, weathering and glacial erosion are 

the major processes that produce sediment. Gravitational, glaciofluvial and periglacial 

processes often dominate sediment transport in the vicinity of the source area, while fluvial 

processes are responsible for the reworking of intermediate storage, the discharge of material 

from catchments and the final transfer to the sinks. The coupling between slopes and channels 

governs the transport efficiency between source and drainage basin outlet (Caine and 

Swanson 1989). Lakes and oceans are sinks for sediments excavated from mountains. 

However, large volumes of sediment have accumulated in sedimentary basins and valleys. 

Sedimentary basins are generally of tectonic origin, for example related to orogeny (Einsele 

2000) and are filled over very long time scales (millions of years). Valleys are temporary 

sediment sinks and store sediment until an environmental change allows a process, for 

example glacier advance to remove the sediment from the valley. 
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The principle of the sediment budget approach is the relationship between the input and the 

output of a system:  

 

SIO ∆−=  (2.1) 

 

O is the output of a system and I is its input, while S∆ is the change of storage within the 

system. This principle describes the flow of sediment through a landform as well as through 

an entire catchment. Changes in the relationship between I and O at specified temporal and 

spatial scales indicate changing process activity, intensity and changing boundary conditions 

within the system.  

A quantification of the sediment transfer process is expressed by the sediment load (SL), 

which is the amount of material that crosses a defined area per time unit. The sediment load is 

commonly calculated for fluvial systems; however a sediment load of a glacier or a rock 

glacier can be calculated as well. The measurement unit is tons per year (t/a).  

The sediment yield (SY) describes the amount of sediment that is discharged from a drainage 

basin in a specified period of time, usually looking at fluvial processes and focusing on the 

suspended river loads. Sediment yield is also given in tons per year (t/a). SY is calculated 

using the following equation: 

 

TA
SVSY

d

bρ=  (2.2) 

 

Where SV is the volume of stored sediment, ρb is the dry bulk density of the bedrock, Ad is the 

denudation area and T is the time period of sediment discharge.  

The specific sediment yield (SYspec) includes a specific unit area in the sediment yield 

calculation: 

 

SYspec = SY / A (2.3) 

 

Sediment yield is regarded as an indicator of erosion and sediment delivery of a drainage 

basin, emerging from its geological history, the geomorphological setting and the climatic 

regime (Schiefer et al. 2001). Specific sediment yield declines with increasing catchment size 

(Milliman and Meade 1983; Chorley et al. 1984), indicating a scale dependency of this 

parameter (Schiefer et al. 2001), and the negative influence of sediment storage within a 
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catchment on the sediment yield. However, this relationship is not valid for formerly glaciated 

drainage basins, as Church and Slaymaker (1989) have shown.  

The sediment delivery ratio (SDR) is a dimensionless parameter describing the ratio between 

sediment yield and total erosion for a catchment: 

 

SDR = SY / E (2.4) 

 

The SDR compares the amount of sediment that is actually transported from the sources of 

erosion to the catchment outlet, to the total amount of material eroded from the same area 

above the basin outlet. Various factors influence the SDR including slope length, basin 

morphology, channel-hillslope coupling, dominant processes, to name just a few. Steep slopes 

and channels, high relief, and drainage density tend to produce high SDR, whereas large 

distances between sediment sources and channels, and low-gradients produce lower SDR 

(Milliman and Syvistki 1992).  

Erosion within a drainage basin is quantified by the denudation rate (DR), describing the 

amount of material eroded per unit area over time. The DR dimension is usually mm a-1, or 

mm ka-1. The corresponding depositional rate is the sedimentation rate (SR). The sediment 

volume SV can be used to calculate the mechanical denudation rate DR.: 

 

TA
  SV DR

ds

b

ρ
ρ=  (2.5) 

 

This term includes the dry bulk density ρ of the sediment ρs and the bedrock ρb, the 

denudation area Ad and the time period of deposition T. If the denudation area is bedrock only, 

for example a cliff, the denudation rate is termed rock wall retreat rate. The rock wall retreat 

rate can be calculated using equation 2.5 as well and has the same unit as the DR.  

A combination of equations (2.2) and (2.5) allows calculating the sediment yield from the 

mechanical denudation rate: 

 

SY = DR ρs (2.6) 

 

In practice, the construction of sediment budgets is a very complex task, challenged by the 

difficulty of measuring exact rates, the understanding of process mechanics and the 

quantification of storage elements. Additionally, transport and storage processes may vary in 
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time and space. Very few works have studied the sediment budget over longer time scales, or 

in form of monitoring programs. One of the most famous works was started by Rapp  (1960) 

in northern Scandinavia and is still partially continued today (Schlyter 1993; Gude et al. 2002; 

Beylich et al. 2004).  

 

Dietrich et al. (1982) give three requirements for sediment budget studies in order to integrate 

temporal and spatial process variations:  

 

1. recognition and quantification of transport processes; 

2. recognition and quantification of storage elements; and 

3. identification of linkages among transport processes and storage elements. 

 

Hence, the foundation for all sediment budget studies following these three requirements is a 

detailed geomorphological mapping campaign in order to identify the processes and storage 

landforms. Based on this information linkages can be identified by the construction of a 

qualitative sediment budget model (Dietrich and Dunne 1978). Figure 2.5 depicts the 

qualitative sediment budget model for a hanging valley in the Turtmann Valley created by 

Otto and Dikau (2004).  

 
Figure 2.5 Qualitative sediment flux model of the Brändjitaelli hanging valley (Otto and Dikau 2004) 
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2.2.1 Denudation rates and sediment yield 

Denudation rates and sediment yields quantify the amount of land surface change in 

geomorphic systems and represent an integral signal of the systems activity, connectivity and 

configurational state. Sediment storage volumes are often used to calculate denudation rates 

and sediment yields. 

For larger drainage basins, denudation rates are estimated from sediment yield measured or 

assessed in rivers or from lake or valley fill deposits at a catchment outlet (Owens and 

Slaymaker 1992; Einsele and Hinderer 1997; Hinderer 2001; Schiefer et al. 2001). Some 

studies have measured sediment yield in small catchments using sediment traps or nets placed 

below slopes (Caine and Swanson 1989; Johnson and Warburton 2002; Krautblatter and 

Moser 2005). Relief and drainage basin area are regarded as the major controlling factors for 

sediment yield (Milliman and Syvistki 1992). Areas of high relief generally produce high 

yields, while low yields are associated with lowland areas. A climatic control on sediment 

yields is observable in different climatic zones. Precipitation and glacier occurrence strongly 

influence sediment yields; consequently mountain environments affected by these two factors 

often produce high sediment yields (Hallet et al. 1996). Lithology controls sediment yields to 

a far lesser extent in mountain areas compared to precipitation and glacial erosion. However, 

sediments and rocks especially sensitive to weathering, like loess, volcanic or alluvial 

deposits, or mudrocks can produce increased levels sediment discharge from limited areas 

where other variables remain equal. In contrast, protection from weathering by thick 

vegetation cover or clayey soils hampers erosion and decreases sediment yields especially in 

lowland areas. In alpine environments however, vegetation is often significantly reduced, 

especially at higher elevations. Finally human activities strongly influence sediment yields, 

expressed by increased soil erosion, earthworks in floodplains or reservoir construction 

(Einsele and Hinderer 1997). Hence, high relief, strong climate variations, the presence of 

glaciers and lack of vegetation cover are contributory factors for high sediment yields in 

mountain areas. 

However, the sediment yield provides only a rough approximation of the sediment budget, as 

denudation, considered as bedrock retreat or surface lowering, is estimated for an entire 

catchment, without local differentiation or respect to spatial and temporal scales. The 

limitations of the sediment yield approach have been stressed by various authors (Phillips 

1986; Harbor and Warburton 1993). When derived from sediment yield data, denudation rates 

are only valid when no change in storage occurs (Phillips 1986). This limitation underlines the 

importance of sediment storage, but as well stresses the close relationship between time scales 
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and denudation rates. Temporal variations in the denudation rate together with the effect of 

storage have a strong impact on sediment yield. These influences can be averaged out, when 

the time span of the sediment yield measurement is extended and both storage and release of 

sediment are included in the denudation rate estimation. However, extreme events, periodic 

phenomena or major environmental changes can influence drainage basins over longer time 

scales, thus altering the denudation rate (Phillips 1986). 

2.2.2 Sediment budget and storage quantification 

Early sediment budget studies have been carried out very often in lowland environments and 

within small drainage basins (Dietrich and Dunne 1978). Jordan and Slaymaker (1991) point 

out that for large glacierised mountain basins approaches used in lowlands cannot be applied, 

because of entirely different conditions in mountain environments. Due to the highly episodic 

nature of mountain geomorphological processes steady-state models, often used in lowland 

budget approaches are not appropriate for mountain regions (Jordan and Slaymaker 1991).  

Early work on alpine sediment budget quantification was done by Jäckli (1957) and Rapp 

(1960). Jaeckli (1957) produced the first sediment budget in the Alps for the upper Rhine 

catchment. He included all major processes in his sediment flux quantification and concludes 

that about 80 % of the sediment movement is done by fluvial processes. Rapp (1960) 

investigated sediment movements and storages in the Kärkevagge valley in northern 

Scandinavia over a period of more than ten years. His results indicate that coarse debris and 

bedrock slopes are the most important elements of the sediment flux system, contributing 

about 60 % of the sediment budget, followed by soils mantled and fine sediment slopes with 

30 %. Barsch (1981) investigated the sediment flux in an high Arctic mountain valley in 

Ellesmere Island, Canada. His studies indicate a dominance of fluvial processes (96 %) 

followed by glacier erosion (2 %) and rock fall processes (1 %). Though other erosional 

processes like solifluction, debris flows or slope wash operate on large areas, they make only 

minor contributions to the sediment flux of this region.  

Caine’s intensive work in the Colorado Rocky Mountains (USA) produced sediment budgets 

for three small mountain catchments. His results for William Fork, Eldorado Lake and Green 

Lakes Valley showed that talus shift and rock glacier flow (only Green Lakes valley) are the 

most effective processes within the coarse debris system, moving more than 90 % of the 

available material. Soil creep and solifluction dominate the fine sediment system making up 

over 90 % of total fine debris movement (Caine 1986, 2001).  
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Jordan and Slaymaker (1991) investigated sediment movement and storage along several 

reaches of the Lillooet River (British Columbia, Canada) and compared these quantities with 

the sediment yield from the basin. Storage volumes were estimated from field investigations 

and average thickness values, process activities were taken from the literature. Debris flows, 

glaciers and landslides are the most important sources of sediment in this basin; however, 

Jordan and Slaymaker detected sediment originating from human activities like logging and 

agriculture in the basin fill as well. Most of the sediment is stored in landslide deposits (> 

70%), the floodplain (> 20%) and in fans (> 2%). They conclude that the estimated sediment 

supply from the different sources is not balanced with the observed long-term sediment yield 

from the basin. Their conclusions led to a modification of the paraglacial concept by Church 

and Ryder (1972) (cf. chapter 2.3.2).  

 

The constraints on denudation rate assessment from sediment yield show that estimation of 

storage volumes is the crucial element of all sediment budget analysis. Various methods are 

applied in order to estimate sediment storage in mountain environments. Fundamental 

geomorphological methods like mapping, topographic survey and photogrammetry are the 

most basic methods and hence frequently used (Jäckli 1957; Rapp 1960; Jordan and 

Slaymaker 1991; Watanabe et al. 1998; Curry 1999). 

Though not included in a sediment budget, Barsch  (1977a; 1977b) estimated the storage 

volume of rock glaciers in the Swiss Alps. Based on air photo mapping he used different 

thickness scenarios to calculate a volume of 0.8 to 1.4 km³ of coarse sediment stored in active 

rock glaciers. Referring to numbers given by Jaeckli (1957), Barsch (1977a) concludes that 

active rock glaciers transport around 20% of all mass-wasting processes with an estimated 

denudation rate of 2.5 mm a-1. In the Turtmann Valley, Nyenhuis (2005) applied Barsch’s 

approach to assess rock glacier volumes. He estimated between 0.05 and 0.07 km³ of rock 

glacier volume.  

 

With the availability of digital elevation models (DEM), simple geometric forms representing 

actual landform shapes are used to estimate storage volume, for example a half-cone 

representing a talus cone landform (Shroder et al. 1999; Campbell and Church 2003). 

Following geomorphometric approaches for glacial valley description (Graf 1970), quadratic 

or power-law equations have been applied to cross-sections of glacial valleys in order to 

estimate valley fill deposits (Hoffmann and Schrott 2002; Schrott and Adams 2002; Schrott et 

al. 2003). However, this method compared to geophysical data on sediment thickness in 
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valley bottoms, tends to overestimate sediment volumes and can only be used as a rough 

estimation (Schrott et al. 2003). A new approach to estimating sediment volumes based solely 

on DEM data is introduced by Jaboyedoff and Derron  (2005). Their interactive routine, 

named Sloping Local Base Level (SLBL) is based on geometric assumptions about the glacial 

trough shape. Using this technique, they calculated a volume of 118 km³ sediment for the 

upper Rhone Valley, which correlates well with the available geophysical information on 

sediment thickness (cf. chapter 3.3.2). 

Occasionally, sediment coring has been applied to determine sediment volumes (Schrott and 

Adams 2002; Schrott et al. 2002). However, this method is restricted to very few landforms in 

mountain environments, like flood plains and alluvial deposits, due to technical difficulties 

and associated high costs evoked by remote locations and subsurface materials characteristics.  

 

The use of geophysical investigation techniques becomes increasingly important for the 

quantification of sediment storage, especially in rugged mountain terrain. Non-destructive 

geophysical methods permit a faster and often less expensive acquisition of high-resolution 

data on structure and composition of storage landforms compared to other methods such as 

drilling. Geophysical investigations on storage landforms are applied on two spatial scales, 

governed by expected sediment thickness and the penetration depths of the applied method. 

Large scale investigations often use the seismic reflection method and strong seismic sources, 

such as explosives or weight droppers, or gravity surveying, enabling bedrock detection at 

several hundred meters of depth. These surveys are applied to quantify sedimentary fills of 

large valley systems or other sedimentary basins. The operating expense, both in time and 

cost, for seismic reflection surveys of this scale are very high compared to small scale 

investigations. Therefore, very few investigations of this size exist. The major valleys in the 

Swiss Alps have been investigated in this way within a National Research Program (Pfiffner 

et al. 1997b). Seismic reflection and gravity survey have been applied along several transects 

in the Rhone Valley (Figure 2.6) between Brig and Lake Geneva (Finckh and Frei 1991; 

Besson et al. 1992; Pfiffner et al. 1997a; Rosselli and Olivier 2003). Sediment thicknesses 

between 300 and 900 metres have been detected, and a total mass of 106.2 km³ stored 

sediment was calculated for this part of the Rhone Valley based on these surveys (Hinderer 

2001). A similar study, but on a different scale has been carried out by Froese et al. (2005), 

who investigated a 1000 km long reach of the Yukon River in North America. They detected 

a sedimentary fill between 8 and 30 m in depth using ground penetrating radar and resistivity 
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sounding. However, this study does not focus on the sediment budget, but rather uses 

floodplain stratigraphy to interpret the equilibrium state of the river.  

 
Figure 2.6 Cross profile through the Rhone Valley derived from seismic reflection surveying at Turtmann 
(Finckh and Frei 1990) 

Small scale, shallow geophysical investigations require much less effort and are more 

frequently applied. The most common methods include seismic refraction (SR), electric 

resistivity tomography (ERT), and ground penetrating radar (GPR) (for a more detailed 

description of these methods cf. chapter 3.2). Talus slopes are the most frequently studied 

landforms in alpine environments using geophysical methods. Quantified talus volumes are 

frequently used to calculate a retreat rate of the adjacent rock walls (Sass and Wollny 2001, 

Schrott and Adams 2002, Hoffman and Schrott 2002, Sass 2006).  

 

Sass and Wollny (2001) used GPR to determine thickness and internal composition of talus 

slopes in the German Alps. They detected the regolith-bedrock boundary at depths between 5 

and 15 metres below the surface, referring to rock wall retreat rates of 0.1 mm a-1 for the 

Holocene. Schrott and Adams (2002) applied seismic refraction and resistivity soundings, 

combined with coring and C14 dating to quantify the sediment storage volume in an Alpine 

basin in the Dolomites, Italy. They derived sediment thicknesses in the glacial trough of 15 to 

72 m and a total volume of 0.35 km³ for a 17 km² sized valley. Their best estimate of volume 

results in a denudation rate of 1.1 mm a-1. Investigations by Schrott et al. (2002; 2003) in the 

Reintal, Germany, can be regarded as the most detailed application of geophysical methods in 

a single glacial trough valley in the northern European Alps. A total of 66 geophysical 

soundings have been carried out on various storage landforms including talus slopes, debris 

cones, avalanche deposits, alluvial fans and floodplain deposits. Talus slopes and talus cones 
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store more than 70 % of material in this catchment. For talus slopes a mean regolith 

thicknesses between 3 and 23.5 m was determined (Hoffmann and Schrott 2002) using 

seismic refraction, resulting in a rock wall retreat rate of 0.5 mm a-1. A combination of the 

geophysical surveys, detailed geomorphological mapping of storage landform including 

process activity, coring along the valley floor and C14 dating allowed for the construction of a 

detailed sediment budget and enabled conclusions to be drawn about the paraglacial evolution 

of the Reintal (Schrott et al. 2002). The backfilling volume of a small alluvial sink, produced 

by a landslide event, was calculated to be 0.9 million m³, with a mean sedimentation rate 

between 18 and 27 mm a-1.  

2.3 Evolution of mountain landscape systems 

2.3.1 Uplift and erosion of mountains 

The influence of tectonics and climate on long-term sediment fluxes is currently discussed 

avidly in earth sciences, fuelled by new dating methods like cosmogenic nuclides (Peizhen et 

al. 2001; Schaller et al. 2001; Kuhlemann et al. 2002; Molnar 2004; Nichols et al. 2005). 

Mountains are the result of complex interactions between tectonics, climate and surface 

processes. Plate tectonic processes, causing orogeny, are responsible for most of the world’s 

highest mountains. According to the plate setting and the tectonic process, divergence or 

convergence, different types of orogeny produce different mountain types. Ocean-to-continent 

plate margins lead to the formation of continental margin building orogens, like the Andes for 

example. Continent-to-continent plate margins create collisional mountains like the Alps or 

the Himalaya (Huggett 2003; Slaymaker 2004). When crustal material is accumulated in the 

orogenic wedge the surface is elevated. In case of a collisional orogeny for example, material 

from the continent crust and the ocean crust gets deformed, uplifted and finally exhumed. 

These processes produce the complex lithologic conditions of stacked, folded and overlapping 

lithologies which characterise mountains.  

For a long time erosion was believed to be the opponent to uplift. Advanced understanding of 

interaction and feedbacks between tectonics, isostasy, climate and erosion processes tackles 

this belief and produces a far more complex image of mountain evolution (Pinter and Brandon 

1997). This new perspective on mountain evolution is studied in the field of tectonic 

geomorphology (Burbank and Anderson 2005),a research field located at the interface 

between geomorphology, geophysics and sedimentology (Summerfield 1996). The effect of 

erosion on uplift rate is generally discussed in close connection with the impact of climate on 
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mountain building and regarded as a feedback system (Molnar and England 1990; 

Summerfield and Kirkbride 1992; Molnar 2003). Erosion of sediment, strongly influenced by 

climatic conditions, represents the removal of material from one area. Due to isostatic 

response, this removal of material leads to tectonic uplift, as load from the earth’s mantle is 

relieved (Molnar and England 1990). Thus, erosion could lead to mountain building. The 

system feeds back when surface uplift perturbs regional climate conditions, leading to 

increased erosion rates (Summerfield 1996).  

Schlunegger and Hinderer (2001) studied the correlation between erosion and uplift in the 

central Swiss Alps. They infer a positive feedback between surface erosion and tectonic 

forcing for the drainage basins of the rivers Rhone and Rhine. In these two basins both 

present-day sediment yields and uplift rates are significantly higher compared to other 

drainage basins in the study area. This correlation is interpreted as a response of the earth’s 

crust to locally increased surface erosion rates through enhanced uplift rates combined with 

frequent earthquakes. For the same area, Bansemer (2004) suggests that uplift and erosion are 

in a dynamic equilibrium on a long-term scale (5 Million years). Based on a multiple 

regression of geomorphometric landform parameters, uplift and erosion rates, he showed how 

rock failure and gravitational mass movements compensate for tectonic uplift in the Swiss 

Alps. A correlation between Quaternary snowlines, as a proxy for Pleistocene glaciation, and 

geomorphometric parameters provided an alternative model of steady-state conditions for the 

Swiss Alps. Hence, Bansemer (2004) concludes that mechanical rock properties and high 

erosion rates induced by Quaternary glaciation are the controlling factors governing the height 

of Alpine peaks in Switzerland. 

Various numerical models exist to simulate the evolution of mountain landscapes (Tucker and 

Slingerland 1996; Kühni and Pfiffner 2001; Schlunegger and Hinderer 2001). These models 

generally focus on the influence of surface processes on the landsurface evolution and its 

relationship to tectonic activity. Kühni and Pfiffner (2001) use a surface process model to 

reproduce different patterns of uplift combined with the evolution of drainage networks in the 

Swiss Alps. Tucker and Slingerland (1996) model the rate of sediment flux into a foreland 

basin, in order to understand the functional relationship between the sediment volumes 

expelled from a mountain area and the assumed independent variables like relief and climate. 

They conclude that sediment storage, in this case located in an intramontane basin caused by a 

drainage basin being cut off through a rising thrust, produces a mismatch between the tectonic 

event and the timing of sediment delivery to the foreland basin. 
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In order to investigate the main tectonic and climatic impacts on long-term sedimentation 

from the European Alps to the surrounding sedimentary basins, Kuhlemann et al. (2002) 

construct a sediment budget for the entire European Alps. Based on stratigraphic data of 

sedimentary basin fills, they estimate volumes of sediment excavated from the mountain 

range since the onset of its existence. Kuhlemann et al. (2002) identify several phases since 

the Oligocene of increased discharge rates into the basins, which are associated with possible 

climatic or tectonic controlling factors. This sedimentologic approach differs strongly from 

the geomorphological sediment budget approach, in terms of the significantly larger spatial (> 

250,000 m²) and temporal (> 30 Ma) scale addressed. 

2.3.2 The paraglacial sedimentation cycle 

Specifically contrasted to the term periglacial, paraglacial sedimentation defines “nonglacial 

processes that are directly conditioned by glaciers” (Church and Ryder 1972). For mountain 

environments Church and Ryder (1972) introduced the concept of paraglacial sedimentation 

based on data from sedimentation studies in two areas in Canada affected by glaciation. They 

showed to what extend glaciation disturbs fluvial denudation conditions in the alpine 

environment. The paraglacial sedimentation concept describes how geomorphic systems react 

to the impact of glaciation and how landforms recover and relax in the ensuing period. 

The unifying condition, which underlies all geomorphological processes and landforms 

affected by paraglacial sedimentation, is the release of glacially conditioned sediment 

(Ballantyne 2002a). Glacier activity increases erosion rates (Hallet et al. 1996) and produces 

large amount of debris that is stored in valley floors and on glacial trough slopes. Church and 

Ryder (1972) note that this material has reached a position of stability with respect to the 

glacial processes in various types of moraines at the ice margins. However, with respect to the 

nonglacial processes, these deposits are in unstable or metastable conditions and sediment is 

subsequently released from these sources by various processes. Processes such as debris 

flows, glaciofluvial erosion, and rock avalanches caused by debuttressing of rock slopes after 

deglaciation are considered to be the most important agents in the redistribution of sediment 

in proglacial areas (Church and Slaymaker 1989; Cruden and Hu 1993; Ballantyne and Benn 

1996; Curry 1999).  
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Figure 2.7 The paraglacial model by Church and Ryder (1978)  

Ballantyne (2002b) identifies six paraglacial landsystems with individual sets of landforms 

and sediment facies. Paraglacial landsystems can be divided into primary and secondary 

systems. Primary systems are directly glacially conditioned and the sediment involved has not 

yet been reworked by non-glacial processes. These systems tend to be in the immediate 

vicinity of glaciers. In contrast, secondary systems include not only the release of in situ 

glacigenic material, but also a reworking of paraglacial deposits further from the glacier 

(Ballantyne 2002b). These landforms can be regarded as storage components of an interrupted 

sediment cascade with various primary sediment sources: (1) rockwalls, (2) drift-mantled 

slopes, (3) valley floor deposits and (4) coastal deposits; and several sediment sinks: (1) 

alluvial valley fill, (2) lacustrine deposits, (3) coastal / near offshore deposits and (4) shelf 

deposits (Ballantyne 2002b). 

The time span during which these paraglacial processes operate is termed the paraglacial 

period (Church and Ryder 1972). This period starts when glacial sedimentation ceases and 

ends, when glacially conditioned sediment sources are depleted, or when a steady-state in 

relation to the reworking processes is achieved. The depletion of sediment sources with time, 

as an integral element of the paraglacial cycle has led to the idea of exhaustion (Cruden and 

Hu 1993; Ballantyne 2002a, b). Conceptual models of paraglacial sediment movement are 

generally represented by a declining curve (Figure 2.7), describing the change of sediment 

yield from an initial high level, at the onset of deglaciation, to a constant low yield towards 

the end of the paraglacial period. The exhaustion model assumes steady-state conditions in 

which no change occurs in the process mechanisms or boundary conditions. Of course this 

assumption is highly speculative especially in mountain environments, as it pays no attention 
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to episodic environmental changes like base-level changes, extreme events or human impact 

(Ballantyne 2003). In the exhaustion model the paraglacial sediment release through time is 

assessed by: 

t
at eSS λ−=  (2.7) 

 

Where St is the available amount of sediment at time t, Sa is the total available sediment at 

time t = 0 and λ is the rate of loss of available sediment by either release or stabilisation.  

For Sa = 1 at t = 0, λ is expressed as:  

 

tSt −= /)ln(λ  (2.8) 

 

Thus, the rate of sediment release follows an exponential decline (Figure 2.8, Ballantyne 

2002a), allowing for the estimation of remaining sediment available for release. The extent of 

the paraglacial period spans from a few decades to some ten thousand years depending on the 

spatial scale and the processes regarded (Church and Slaymaker 1989; Cruden and Hu 1993; 

Harbor and Warburton 1993; Curry 1999; Ballantyne 2002a). This implies that paraglacial 

sediment storage landforms may be accumulated, while at the same time other formerly 

deposited landforms are eroded and vice-versa.  

 
Figure 2.8 The paraglacial exhaustion model (Ballantyne 2002). Rate of sediment release (λ) is related to 
the proportion of sediment ‘available’ (St) at time (t) since deglaciation as tSt −= /)ln(λ . 
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Church and Slaymaker (1989) elaborated this idea with respect to the sediment yield of 

drainage basins of different sizes. In contrast to the conventional models, in which the specific 

sediment yield declines as drainage basin area increases, they proved that for the rivers in 

British Columbia (BC), Canada, sediment yield increased for larger basins. They conclude 

that most of the sediment transported in the rivers originates from a remobilisation of valley 

fill deposits, including river banks and the immediate valley sides. The material involved in 

the remobilisation has been deposited in the valleys by Quaternary glaciation more than 10 ka 

ago. With respect to the original concept of paraglacial sedimentation by Church and Ryder 

(1972), Church and Slaymaker (1989) infer that the observed sediment yield of rivers in BC 

still responds to the impact of deglaciation on the landsystem. Thus, they extended the 

paraglacial period proposed from a few thousand years to more than 10 ka. This challenges 

the traditional view on landscape evolution, where the sediment yield is considered to reflect a 

denudation rate for a prevailing climate and regional geology. Emphasising the extraordinary 

impact of Quaternary glaciation, they conclude that recent sediment yields are still a 

consequence of these events, instead of reflecting Holocene erosion rates. However, the 

impact of deglaciation, reflected by increased sediment yield, has shifted from the upland 

catchments towards the major valleys (Figure 2.9).  

 

 
Figure 2.9 The paraglacial sedimentation cycle modified by Church and Slaymaker (1989). The time scale 
spans approximately 10 ka.  
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Church and Slaymakers model stresses the importance of sediment storage with respect to 

sediment budgets and sediment yields in mountain landscapes and underlines the role of 

relaxation time in systems (Schumm and Lichty 1965).  

The distribution and arrangement of sediment storage can be regarded as a paraglacial 

landform assemblage, in which landforms with the greatest formative longevity and 

persistence dominate the landscape (Ballantyne 2003). Thus, after the deglaciation a 

succession of landforms evolves from the initial setting of glacigenic landforms to post-

paraglacial landforms, where sediment is routed through different landforms representing the 

sediment cascade. With respect to the role of sediment storage Ballantyne (2003) transferred 

the original paraglacial model, where sediment yield is plotted against time since deglaciation, 

to a model where sediment volumes decline with time (Figure 2.10). The volume of sediment 

storage S at time t in Ballantyne’s model is defined as: 

 

tt
aa

t
i eeSSeSS κλκ −−− −== )(  (2.9) 

 

where Si is the input of sediment, and κ the rate of sediment loss from the storage. A 

calculation of the rate of sediment loss both from a storage landform κ and the entire basin λ 

requires the total available volume of sediment Sa, which is usually not known. To overcome 

this constraint Ballantyne states four prerequisite values: (1) the time since deglaciation at 

which sediment volume achieved its maximum t’ ; (2) the time interval between deglaciation 

and the present t’’ ; (3) the maximum volume of the sediment store Sm at t’ ; and (4) the present 

volume of stored sediment Sv. Therefore, Sm and Sv can be calculated by:  

 

'' )( tt
aam eeSSS κλ −−−=  (2.10) 

 

And 

'''' )( tt
aav eeSSS κλ −−−=  (2.11) 

 

In order to calibrate this curve and solve the equations (3), (4) and (5), dating techniques 

provide information regarding the time scale t’  and t’’ , while sediment volumes Sm and Sv can 

be derived from geophysical surveying (Ballantyne 2003). 
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Figure 2.10 Changing volume of sediment storage (Ballantyne 2003) 

A first modification of the paraglacial model was introduced by Jordan and Slaymaker (1991) 

while constructing a sediment budget for the Lillooet River in Canada. Their paraglacial 

sedimentation model for this drainage basin allows for the impacts of episodic changes in 

sediment input on the sediment yield (Figure 2.11). For the Lillooet River these changes result 

from volcanic activity and associated debris flows and landslides as well as from human 

intervention. Thus one constraint of the original model, the steady-state assumption is dealt 

with in this approach. Harbour and Warburton (1993) include the variation of basin size into 

the paraglacial concept, resulting in a suite of paraglacial sedimentation curves, with varying 

relaxation times depending on the basin scale (Figure 2.12). This scale dependency has two 

effects: (1) Basins of different size could experience the same sediment yield, and (2) the 

relative magnitude of sediment yield for basins of different size will vary at different 

measurement times. 

 

 
Figure 2.11 Episodic impacts on the sediment input within the paraglacial cycle of the Lillooet River, 
Canada (Jordan and Slaymaker 1991) 
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Figure 2.12 Model of paraglacial sediment yield for catchments of different size 
(Harbour and Warburton 1993) 

The paraglacial sedimentation concept is the fundamental geomorphological model for 

sediment flux and landscape evolution in mountain areas affected by glaciation. It underlines 

the importance of sediment storage for mountain sedimentary systems with respect to 

sediment delivery, sediment residence times and relaxation from the impact of glaciation. 

However, many parts of these different paraglacial models need calibration and verification, 

for which knowledge of volumes of stored sediment and timing of onset of deglaciation are 

required (Ballantyne 2003). Today’s composition of mountain landscapes shows a dichotomy 

of sediment movement. On the one hand intensified processes produce, transport and deposit 

great amounts of material. On the other hand, once deposited, sediment stays immobile for 

very long time in many places, because the forces necessary for remobilisation and transport 

only operate occasionally (Church 2002). Typical examples of this situation are fluvial valley 

bottom landforms, hanging valleys filled with talus cones and relict rock glaciers. 
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2.4 Sediment storage landforms 

The role of sediment storage within a sediment budget approach has already been stressed 

above. Consequently, the sediment storage landforms within a catchment need to be 

investigated. For alpine environments these are: slope storage landforms, glacial derived 

landforms and fluvial derived landforms. In this study seven alpine landform types are studied 

in detail: (1) talus slopes, (2) talus cones, (3) block slopes, (4) moraine deposit landforms, (5) 

rock glaciers, (6) rock fall deposits, and (7) alluvial deposits. They are considered as the main 

sediment storages in the hanging valleys of Turtmann Valley and can be regarded as the most 

important storage landforms in many upper high mountain areas. These landform types will 

be introduced here briefly focussing on their role within the sediment flux system. Fluvial and 

glaciofluvial deposits have not been studied in detail here and are therefore not considered. 

2.4.1 Talus slopes and talus cones 

Talus slopes are valley-side slopes formed by the accumulation of debris at the foot of 

rockwalls (Figure 2.13). Rockwall-talus systems are an important part of mountain 

landscapes. Talus accumulations represent the first element in the sediment cascade that takes 

up the input from the rockwall. Secondary processes acting on talus slopes such as periglacial, 

or gravitational processes transfer the material into the next landform. In case of periglacial 

creep the follow-up landform is a rock glaciers or protalus rampart. Processes related to talus 

formation are regarded as azonal acting over a wide range of altitudinal and climatic zones 

(Perez 1993). Rock fall as the main process has been studied in great detail (Rapp 1960; Caine 

1967; Luckman 1976). Snow avalanches contribute to talus formation (Jomelli and Francou 

2000) as well, but are also, together with debris flows and dry grain flows, responsible for the 

remobilisation of talus material (van Steijn 2002). Ballantyne and Harris (1994) define 

different types of talus slopes corresponding to the form of the talus body and the secondary 

processes acting on them (Figure 2.14). Talus slopes are often well sorted with increasing 

clast size downwards, caused by higher potential energy of larger clasts and sieving effects 

towards the foot of the slope. Dry grain flows cause a movement of fines downwards leading 

to a stratified internal structure of finer and coarser layers (van Steijn 2002) that is clearly 

distinguishable in ground penetrating radar soundings (Sass 2006). Talus slopes are among 

the most frequently studied landforms in geomorphology using geophysical techniques. 

Consequently, comparably extensive information exists on sediment thickness and volumes of 

these forms. Some thickness values are compiled in Table 2.  
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Figure 2.13 Coalescing talus slopes at the entry to the Bortertaelli. 
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Figure 2.14  Different talus slope types (Ballantyne and Harris 1994). 

 

Table 2.2 Mean sediment thickness values from preceding studies. 

Location Reference Method Mean sediment thickness 

(m) 

Bavarian Alps (GER) Sass and Wollny(2001) GPR 10-15 

Lechtaler Alps (AT) Sass (2006) GPR, SR, ERT 25 

Bavarian Alps (GER) Hoffmann and Schrott (2002) SR 7-23.5 

South Wales (UK) Curry and Morris (2004) Geometry 5 

Snowdonia, North Wales 

(UK) 

Sass et al. (subm.) GPR 8-10 
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2.4.2 Block slopes 

Straight slopes that are not located below bedrock walls will be termed block slopes in this 

study (Figure 2.15). Various terms and theories exist about the formation of block slopes 

including rectilinear slopes, Richter denudation slopes or debris-mantled slopes (Ballantyne 

and Harris 1994). Two main theories exist on the formation of these slopes: (1) an earlier 

theory by Richter (1901) and Lehmann (1933) interprets rectilinear slopes as the final stage of 

parallel bedrock recession, with the former rockwall buried under the regolith (Bakker and 

LeHeux 1952). Alternatively (2), these slopes are associated with periglacial conditions 

(French 1996). Höllermann (1983) gives three prerequisites for the formation of rectilinear 

slopes: (a) intensive, mostly mechanical in situ weathering, (b) lack of linear denudation 

processes, and (c) no removal of debris at the foot of the slope. The regolith composition 

spans from medium to coarse grained sand fractions to block size clasts. Following theory 

two, rectilinear slopes can be proofs of former periglacial conditions, if a formation of in situ 

weathering of underlying bedrock is demonstrated (van Steijn 2002). However, a combination 

of these different ways of evolution is possible as well. Information on sediment thickness of 

these slopes in alpine environments is scarce. Ballantyne and Harris (1994) give depths 

between 0.6 and 3.5 m quoting several sources. As a lack of removal of material at the slope 

foot is one prerequisite for the formation of rectilinear slopes, they are often decoupled from 

sediment cascade. However, in the Turtmann Valley a coupling with periglacial creep 

phenomena such as relict rock glaciers and gelifluction lobes can be observed. 
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Figure 2.15 A block slope exposed to the south in the Hungerlitaelli. 

2.4.3 Rockglaciers 

Rock glaciers are periglacial landforms formed by creep of a mixture of sediment and ice. 

They are defined as tongue- or lobe-shaped bodies that are separated from their surrounding 

environment by steep frontal and side slopes (Figure 2.16). The state of activity is used as one 

classification criteria: active (moving), inactive (not moving, but still frozen) and relict (not 

moving, not frozen) (Barsch 1996). Other classification schemes differentiate lobate and 

tongue shaped forms. Additionally, elongated protalus rock glaciers represent an early stage 

in the landform development. Rock glaciers explicitly represent the continuum character of 

landscapes as they develop from pre-existing landforms (Burger et al. 1999). According to the 

debris source they are termed either talus rock glaciers or glacier-derived rock glaciers. 

However, the transition between the original landform (talus slope, or moraine) is usually not 

a sharp boundary, thus an exact discrimination of the onset of the rock glacier is not possible. 

Within the alpine sediment cascade rock glaciers represent an important element in both 

sediment movement and sediment storage (Jäckli 1957; Barsch 1977b; Barsch and Jakob 

1998). When the sediment movement ceases, due to lack of gravitational forces, sediment 

input or decrease of ice content, rock glacier often persist as relict landforms in a landscape 

for a very long time, for example more than 10 ka (Frauenfelder and Kääb 2000), thus being 

decoupled from input and output processes. The determination of rock glacier thickness is a 

complicated task, especially applying geophysical techniques. Due to similar physical 
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characteristics of ice and bedrock and the internal composition, i.e. a mixture of large blocks 

and fines, ice and air, the lower boundary is often not detected. Table 2.3 gives a summary of 

rock glacier thicknesses found in the literature, a more extensive list of which has been 

compiled by Burger et al. (1999). In order to assess the sediment volume of a rock glacier the 

internal composition and the ice content needs to be considered. According to borehole 

information the ice content can vary considerably (Arenson et al. 2002). Ice contents are 

generally considered to be between 50 and 70 % for active rock glaciers (Barsch 1977b; 

Barsch 1996; Haeberli and Vonder Mühll 1996; Burger et al. 1999; Humlum 2000; Ikeda and 

Matsuoka 2006).  

 

 
Figure 2.16 Active rock glacier in the Hungerlitaelli. 
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Table 2.3 Compilation of rock glacier thickness from literature. 

Location  Reference Method Rock glacier 
thickness (m) 

Swiss Alps (CH) Barsch (1977a) Estimation based on height of 
frontal lobe 

30-100 

Khumbu Himalaya (IND) Barsch and Jacob (1998) Estimation based on height of 
frontal lobe 

11-41 

Himalaya, Karakorum 
(IND, PAK) 

Owen and England (1998) Estimation > 15 

Various Burger et al. (1999) Various 8-120 
Swiss Alps (CH) Ahrenson et al. (2002) Borehole drilling > 63 
Turtmann valley (CH) Nyenhuis (2005) Estimation based on height of 

frontal lobe 
3-38 

2.4.4 Moraines 

Moraines are landforms created by the direct action of glaciers. Due to the enormous erosive 

forces of glaciers (Hallet et al. 1996), glacier deposits often dominate presently and formerly 

glacierised mountain landscapes (Figure 2.17). Moraines are classified into ice-marginal, 

subglacial and supraglacial types. Thus, moraine deposits are stored in different landforms 

and locations. Ice-marginal accumulations form longitudinal ridges of lateral and terminal 

moraines around the glacier margin with heights up to a few hundred metres. Subglacial 

deposits cover the formerly glacierised surface as sheets of till, often creating a hummocky 

surface. Supraglacial till is usually delivered to the glacier margin as medial moraines and 

contributes to ice-marginal deposits (Benn et al. 2005). Additionally, melting waters remove 

large amounts of till from the glacier bed and margin, which are accumulated below in valley 

fills and lacustrine sinks. Sediment thicknesses of trough valley fills have been investigated 

by various authors on different scales (Hinderer 2001; Schrott and Adams 2002, cf. chapter 

2.2.2). However, little is known about glacial deposits of small cirque glacier in hanging 

valleys. Sass (2006) investigating talus landforms in the Parzinn cirque, Austria, determined 

the thickness of some adjacent moraine ridges to be between 10 and 24 m. Within the 

sediment cascade, glaciers represent an important primary sediment source, while glacial 

deposits act as secondary sediment sources, when a remobilisation of these deposits starts 

after deglaciation (cf. chapter 2.3.2). 
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Figure 2.17 Lateral moraine deposits in the Pipjitaelli 

2.4.5 Rock fall deposits 

Rock fall processes occur at very different scales and produce different kinds of depositions 

and landforms (Figure 2.18). While small scale, high frequent fall processes produce talus 

slopes and cones, large events with lower frequencies produce distinct debris accumulation in 

a certain distance to the bedrock or source area. These accumulations are termed rock fall 

deposits here. The processes related to these deposits range from fall, to slide and flow (Dikau 

et al. 1996). Rock falls are classified according to their size: Whalley (1974) differentiates 

debris fall (< 10 m³), boulder falls (10-100 m³, single large boulders), block fall (> 100 m³), 

cliff fall (104-106 m³), and Bergsturz (>106 m³). The location of the debris accumulation 

depends on the kinematic energy involved, which is a function of mass, vertical distance and 

friction. Rock avalanches mostly of Bergsturz type, produce the longest run-out movements. 

Within the sediment cascade, rock fall deposit landforms often represent isolated objects that 

are formed within a single or low frequent event. Though a coupling of this deposit to other 

elements of the cascade, for example rock glaciers or rivers, is possible, rock fall deposits 

often persist in a landscape for long time. Deposits of large post-glacial rock fall events, for 

example the Flims rock fall in the Upper Rhine Valley, cover valley floors up to several tens 

of metres of depth (Heim 1932; Eisbacher and Clague 1984). The Randa rock fall of 1991, in 

the Matter Valley, east of the Turtmann Valley, included 30 x 106 m³ of rock (Schindler et al. 

1993).  
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Figure 2.18 Rock fall deposit in the Niggelingtaelli 

2.4.6 Alluvial deposits 

Alluvial deposits are fluvially transported accumulations of fines deposited at flat, usually 

lower locations in the hanging valleys (Figure 2.19). The sediments deposited here originate 

from all of the other storage landforms. The locations of alluvial deposits may often include 

small shallow lakes, formed from dead ice bodies after deglaciation. Depending on the size of 

these lakes a complete filling with alluvial sediments is observable. However, these locations 

are generally rare in upper high mountain areas, thus alluvial deposits play only a minor role 

in the sediment cascade analysed here. In the Reintal, German Alps, Schrott et al. (2003) 

measured a sediment thicknesses of 3-10 m for the alluvial valley floor fill.  
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Figure 2.19 Alluvial deposit have almost filled up a small lake the Niggelingtaelli 
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3 Methods for sediment storage analysis 

3.1 Geomorphological system and land surface pattern analysis 

The land surface is a patchwork of natural and man-made elements of different form and 

material. This patchwork often reveals some kind of pattern, following a certain configuration 

or structure. A structure is defined as “the way in which the parts of something are connected 

together, arranged or organised” (Oxford Advanced Learners Dictionary 2006). The 

distribution pattern or structure of landforms within a landscape emanates from its evolution, 

conditioned by climatic, lithologic boundary conditions and human impact. Production, 

movement and storage of sediment within a sediment cascade create landform patterns. 

Landscape structure is frequently analysed in landscape ecology studies, where distribution 

patterns of ecological environments, for example plant habitats, are quantified (Blaschke 

2000). Numerous indices have been developed in order to describe the distribution structure, 

neighbourhood relationships and spatial configuration of objects in an area (Haines-Young 

and Chopping 1996; McGarigal 2002). In geomorphology the distribution of patterns and 

relationships of geomorphic objects within a landscape is analysed, but approaches differ 

from those applied in landscape ecology studies. Many analyses of geomorphological 

landscape structure focus on geometrical patterns on the land surface, rather than on patterns 

of process, landform or process domain distribution. Mutual to most of the geomorphometric 

approaches is the development of an analytical taxonomy of land surface units, for example, 

by Penck (1894), Kugler (1974), Speight (1974) or Dikau (1988). An overview of different 

taxonomies can be found in Rasemann (2004). Land surface units are commonly classified in 

a hierarchic way. Smallest units (form facets) have homogenous geomorphometric parameters 

(slope, aspect, and curvature), larger units (form elements), which are composed of the 

smaller ones, only have homogenous curvature characteristics (Dikau 1989). These units can 

be derived by geomorphometric analysis using different approaches (Dymond et al. 1995; 

Schmidt et al. 2003; Schmidt and Hewitt 2004). A very extensive list of landform elements is 

given by Speight  (1990). However, landform units in a geomorphometric sense often only 

represent parts of the land surface and only very basic, mostly erosional landforms. Most 

sediment storage landforms are not detected by geomorphometric analysis only, because 

process and material of the landform is not considered in a purely geomorphometric approach.  

Thus, a geomorphometric land surface classification is not sufficient for a landform structure 

analysis (Dehn 2001).  
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The concept of geomorphological mapping represents a more holistic approach towards the 

geomorphic landscape structure analysis, taking into account both geometric and functional 

characteristics, as well as neighbourhood relationships of landforms within a landscape. The 

geomorphological map is a very complex tool to systemise a landscape and its 

geomorphological components. It represents key elements of the geomorphological system, 

serving as an inventory of landforms, subsurface material, observed recent processes and 

inferred past processes at different scales. Based on this inventory the structure of a 

geomorphological system and emerging pathways of sediment transfer can be studied in 

detail. 

 

Geomorphic mapping traditionally is done in the field. Owing to advances in remote sensing 

and GIS technology many geomorphological maps are now often produced digitally, with or 

without a field mapping campaign included. First attempts to automatically derive landforms 

using digital elevation and remote sensing data have proved to be very successful (van 

Asselen and Seijmonsbergen; Schneevoigt and Schrott 2006). Recent developments in semi-

automated digitizing tools make use of three-dimensional visualisation techniques and high 

resolution elevation and remote sensing data, in order to accelerate and improve the quality of 

landform mapping on a screen (Schneider and Otto in press). 

 

Legends and guidelines for geomorphic maps differ from country to country. A review of 

different geomorphical mapping systems can be found in Rothenbühler (2003), recent 

mapping concepts are presented by Gustavsson et al. (2006) and Seijmonsbergen and de 

Graaff  (2006). In Germany guidelines for geomorphological mapping at large scales 

(1:25,000 and 1:100,000) scale have been developed by Kugler (1964) and within a national 

geomorphological mapping research programme (Stäblein 1980). A 1:25,000 

geomorphological map of the Turtmann Valley is used in this study for the identification of 

sediment storage landforms (Otto and Dikau 2004). At this scale information is often 

generalised for cartographic reasons, which restricts resolution and therefore the ability to 

discriminate between landforms. Therefore, the geomorphological map of the Turtmann 

Valley, together with High Resolution Stereo Camera (HRSC) data (aerial photographs, 

digital terrain model (DTM)) served as a basis for the detailed mapping of storage landforms, 

which have been digitised as polygons with sharp boundaries and stored in a GIS database.  
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3.2 Landform classification 

A classification of landforms implies different attributes that not only describe individual 

characteristics, but also reveal information about patterns of distribution and relationships 

between the landforms. Dikau (1989) divides these attributes into primary and secondary 

attributes (Table 3.1). Primary attributes include only geomorphometric parameters such as 

slope, aspect or curvature, and represent derivates of the elevation data. Secondary attributes 

refer to the position of the landform relative to the surrounding environment, shape, material, 

and the geomorphodynamic and geomorphogenetic processes responsible for the landform 

evolution. An extensive list of primary and secondary landform attributes that can be 

calculated from a DTM was compiled by Huggett and Chessman (2002). 

  

Table 3.1 Primary and secondary landform attributes (Dikau 1989) 

Primary Attributes Secondary Attributes  

• Slope 
• Aspect 
• Curvature 

• Position in relation to the hierarchically higher-level unit 
• Type of toposequence 
• Height 
• Distance to the drainage divide 
• Distance to the drainage channel 
• Height difference to the drainage channel 
• Shape 
• Type and association of superimposed forms 
• Subsurface material 
• Geomorphodynamic processes 
• Geomorphogenetic processes 
• Geomorphochronology 

3.2.1 Derivation of primary attributes 

Primary attributes of the sediment storage landforms have been derived by geomorphometric 

analysis of the HRSC data of the Turtmann Valley. The HRSC data contains a 1 m DTM and 

multispectral imagery at 50 cm resolution (c.f. chapter 3.3). High resolution DTM data 

combined with multispectral imagery provides a very detailed and useful basis for digital 

landform mapping. However, high resolution can be an obstacle for geomorphometric 

analysis as well. Small objects (< 2 m) produce a high degree of surface roughness, which 

represents a factor of noise in the data. Derivates of elevation, such as slope, aspect or 

curvature therefore contain information from smallest changes, for example a large boulder 

(e.g. 5 m high) within an otherwise even surface. In order to remove this noise the 1 m DTM 
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has been smoothed using a 7 x 7 pixel analysis window for the geomorphometric calculations 

(slope, aspect, and curvature). This smoothing removes small systematic errors of the HRSC 

DTM data as well (see chapter 3.2.3). The size of the analysis window was chosen after 

comparing the results derived using different window sizes (3, 5, 7, 9). The 7x7 window 

proved to be the most efficient in order to remove surface roughness and errors, but retain 

important surface structure elements and the original altitude information.  

Geomorphometric parameters are calculated according to Evans (1980). The implementation 

of the interpolation algorithms into Arc/Info GIS was established by Schmidt et al. (2003) 

using the Arc Macro Language (AML). This implementation provides not only different 

algorithms for parameter calculations, compared to standard GIS software, but also allows a 

definition of the analysis window size. A complete list of the algorithms used to calculate the 

geomorphometric parameters can be found in Evans (1980) and Shary et al. (2002). 

3.2.2 Derivation of secondary attributes 

Secondary landform attributes represent not only the shape, material and formative process of 

the landform, but provide information about the environmental setting and neighbourhood 

relations around the landform. Therefore, they correspond to the geomorphological landscape 

structure of an area. A relative location of the landforms within a hanging valley is expressed 

by the distance to the drainage divide and drainage way. This parameter indicates the relative 

position of landforms within the sediment cascade for example. These distances have been 

calculated on a pixel basis using ridge data from the geomorphological map as drainage 

divides and drainage ways from the digital topographic map 1:25,000 (Swisstopo).  

A concept to study functional relationships and neighbourhood characteristics of landforms is 

the idea of toposequences. Although, originally introduced to study patterns of landform 

elements by Speight (1974), the concept can be extended to entire landform distribution. A 

toposequence is a topographic succession of landforms or landform elements passed by a 

virtual particle following gravitational forces through a landscape (Speight 1974; Rasemann 

2004). Figure 3.1 shows the toposequence in arctic-alpine environments developed by 

Stäblein (1984) for the mountains of Greenland. This example includes the entire 

geomorphological set of processes, landforms and subsurface material found in an arctic-

alpine environment. However, no functional relationship between the elements of 

toposequences is included in the toposequence approach. Not all neighbouring landforms 

within a toposequence represent the real transportation route of sediment. Landforms can be 

coupled or decoupled leading to sediment storage or sediment throughput and creating a 
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neighbourhood relationship between the landforms. This functional relationship between 

landforms, resulting from process activity, sediment flux and position leads to a landscape, 

where the landforms are not distributed randomly, but reveal a distinct pattern of sediment 

flux. Hence, a toposequence represents a sediment cascade, when sediment is transferred from 

one landform to another. Time plays a strong role in this classification. Changing process 

activity and intensity over time determine whether sediment is delivered from one landform to 

the other and hence, whether a toposequence represents a sediment cascade or not. Landform 

successions can temporarily become or stop being sediment cascades. 

Up to now, no automatic procedure exists to derive toposequences from a digital dataset. 

Rasemann (2004) notes that the identification based on quantitative criteria alone is not 

enough to map toposequences. The formative semantic model of geomorphological objects 

presented by Löwner (2005) provides a promising approach to the identification of 

toposequences and sediment cascades. In additions to landforms he specifies coupling 

processes to define valid functional relationships among landforms. 

In this study, toposequences have been mapped manually based on the storage landform 

database by linking each landform with its lower neighbour. Different typical toposequences 

could be identified that led to the classification of toposequence types (cf. chapter 5.1). 

 
Figure 3.1 Toposequence for arctic-alpine environments, Greenland (from Huggett and Cheesmann 2002, 
originally by Stäblein 1984)  
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3.3 Topographical, digital imagery and geomorphological base data 

A high resolution data set derived by the HRSC technique is used as elevation and imagery 

base data. The “High Resolution Stereo Camera” (HRSC) sensor is a multi-spectral, stereo 

scanner containing nine bands: one blue, one green, one red (tending to near infrared), one 

near infrared and five panchromatic bands covering the green and red spectrum. It is a 

pushbroom scanner consisting of CCD sensors in nine lines. 

The HRSC data includes multispectral image of 0.5 m geometrical resolution and a 1 m DTM 

that includes vegetation and buildings. DTM altitude accuracy is given with 10-30 cm. The 

DTM data shows non random errors along overlapping swath locations. These errors are 

represented by regular fabric-like structures that rise 10 - 30 cm above the surface (Rasemann 

2004). The multispectral imagery is slightly blurred caused by different viewing angles colour 

lines. This blur has been removed for the NADIR-channel, resulting in sharp black and white 

images that served as the main aerial photo basis for geomorphological mapping. For more 

information about the camera and dataset please refer to Neukum (2001). 

The geomorphological map 1:25,000 of the Turtmann Valley is based on a field mapping 

campaign during a preceding study by the author (Otto and Dikau 2004). Field maps of 

1:10,000 together with aerial-photograph interpretation were used to produce the map within a 

GIS environment. The mapping legend is based on the principles of the GMK 25 national 

research program (Stäblein 1980). Geomorphic symbols have been taken from the mapping 

legend for high mountains introduced by Kneisel et al. (1998). Modifications of the symbols 

and the GMK25 principles have been made in order to adjust to the observed geomorphology. 
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3.4 Methods for sediment storage quantification 

Approaches towards a quantification of sediment storage volumes in alpine environments can 

be divided into two spatial scales: (a) micro to meso scale, representing single landforms and 

valley fill storage, and (b) meso to macro scale, representing sedimentary basin and lake fills. 

While landforms on smaller scales act as intermediate storage on a medium time 

scale (103-104 a), basin and lake fillings often serve as sediment sinks that are only depleted 

by tectonic processes on very long time scales (105-107 a). Herein only micro to meso scale 

objects are under consideration. In general, four different types of methods are applied to 

assess the volume of sediment deposits on these different spatial scales (Table 3.3). However, 

in this study only DTM analysis and geophysical surveying are used to asses the sediment 

volumes.  

Table 3.2 Methods and previous studies of storage volume quantification 

Method Scale  
(acc. Dikau 1989) 

Reference 

Geometric approaches (valley 
cross profile, geometric objects, 
DTM analysis) 

micro – macro Shroder et al. (1999), 
Schrott et al. (2003), 
Jaboyedoff and Derron (2005) 

Geophysical surveying micro – meso Sass and Wollny (2001), 
Schrott and Adams (2002), 
Hoffmann and Schrott (2002) 

Sedimentological analysis 
(stratigraphy) 

meso – macro Schlunegger (1999), 
Hinderer (2001) 

Drillings micro – meso Schrott et al. (2002) 

3.4.1 Shallow subsurface geophysical investigations 

Geophysical surveys measure the variation of some physical property of the lithosphere that 

might reflect the subsurface geology. Various geophysical methods exist to investigate 

underground characteristics such as geological structures, mineral deposits, fossil fuels, 

underground water supplies, environmental, engineering or archaeological site issues (Kearey 

et al. 2002). In contrast to investigation through borehole drilling, which provides only point 

information, geophysical surveys deliver 2D or 3D information of the subsurface conditions. 

Moreover, geophysical investigations are non-destructive, often more rapid and cost-effective 

than drilling campaigns and usually represent the only possible method for underground 

exploration in rough mountain terrain, where drilling is impossible due to, for instance 

monetary or technical constraints. In general, geophysical methods can be divided into 

techniques using natural fields of the Earth, such as magnetic or gravitational fields and 
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techniques that require the input of an artificially generated energy into the ground, such as 

seismic waves or electrical and electro-magnetic fields.  

 

In geomorphology geophysical methods are used to study shallow subsurface features. In 

alpine environments two main research fields make use of variations in physical subsurface 

properties: (1) periglacial geomorphology (Berthling et al. 2000; Hauck 2001; Musil et al. 

2002; Kneisel and Hauck 2003; Kneisel in press) and (2) sediment budget analysis i.e. 

investigation of sediment storage bodies (Sass and Wollny 2001; Hoffmann and Schrott 2002; 

Schrott and Adams 2002; Schrott et al. 2003). However, geophysical methods become 

increasingly popular in other areas of interest in geomorphology, for example in landslide 

studies (Sass et al. in press). 

 

Although geophysical methods provide a comparably rapid way to investigate subsurface 

conditions, an ambiguity in the interpretation of the results remains a major drawback. The 

principle of geophysical techniques is based on knowledge of the internal structure and the 

physical properties of the material under investigation. However, this information is generally 

unknown and measured physical parameters, e.g. seismic wave velocity, are used to deduce 

some internal structure. This problem is referred to as the inverse problem. Since physical and 

chemical properties of rocks differ significantly in most cases no direct connection between 

physical property and internal structure can be drawn. This ambiguity cannot be 

circumvented, but an interpretation of the results is improved when different methods are 

combined. Hauck (2001) gives a good introduction into the inverse problem. 

This study makes use of changes in physical ground characteristics between the regolith 

coverage and the bedrock base. Differences mainly derive from changing material density, 

porosity and water/ice content. Seismic and electromagnetic radar waves as well as electric 

currents are used to detect these differences. Thus, the methods applied here are: seismic 

refractions surveying (SR), 2-dimensional electric resistivity tomography (ERT), and ground 

penetrating radar surveying (GPR). These techniques will be briefly described in this chapter. 

For a more detailed description of the methods and physical properties of subsurface materials 

refer to geophysical textbooks (Knödel et al. 1997; Reynolds 1997; Kearey et al. 2002). 

 

3.4.1.1   Seismic refraction (SR) 

Seismic surveys measure the propagation of waves of energy through ground from a 

controlled source. The application of an external impulse, for example a blow from a 
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sledgehammer, creates an internal stress on the ground. Vibration of the rock or soil results in 

a temporal deformation of the material. This strain manifests as a change in material shape 

and size. Up to a certain level this strain is proportional to the applied stress leading to an 

elastic deformation. Hence, the deformation is reversible and when the stress is removed, 

strain is removed as well. The linear relationship between the stress and strain of a material is 

determined by its various elastic moduli. Seismic waves are made up of the elastic strain that 

propagates outwards from the source of stress.  

Seismic surveys use the velocity of the seismic waves that travel through the ground. Two 

types of waves are created depending upon the type of stress acting in the ground. 

Compressional waves, also termed primary, longitudinal or p-waves, travel by compressional 

strain in the direction of the wave. Shear waves, called secondary, transverse or s-waves, 

propagate by a shear strain perpendicular to the wave direction. In general only the 

propagation of the p-waves is used, because they are faster than s-waves, and therefore are 

detected before the s-waves arrive. Typical p-wave velocities range between some hundred m 

s-1 for loose debris to more than 6000 m s-1 for igneous or metamorphic rocks. In the 

Turtmann Valley the bedrock velocities of the mica-shists and gneisses range between 2800 

and 4000 m s-1 (Table 3.4). 

Table 3.3 Geophysical properties of chosen subsurface material (different sources). 

Material  P-wave velocity (m/s) Resistivity (Ohm m) 
Water  1430 - 1590 10 - 300 
Permafrost Ice 2500 - 4300 104 - 107 
Glacier Ice 3100 - 4500 106 > 107 
Clay 600 - 2600 1 -30 
Talus deposits 600 - 2500 1000 > 20000 
Till  1500 - 2700 500 - 3000 
Schist 2700 - 4800 50 - 104 
Granite 5500 - 6000 150 - 106 
Talus debris  400 - 500  
Moraine (Egesen) 600 - 900  
Dolostone  3500 - 6000 5000 - 104 

In the Turtmann valley:   
Mica-shists, gneisses  
(Pfeffer 2000, Knopp 2001) 

2600 - 4000 2000 - 104 

Mica-shists, gneisses (this study) 2900 - 4000 5000 - 7500 
Mica-shists, gneisses (Krautblatter, subm.)  - 2000 - 8000 (wet) 

8000 - 18000 (dry) 
> 18000 (frozen) 

Dry debris (Pfeffer 2000, Knopp 2001) 300 - 600 103 - 104 
Compacted debris  
(Pfeffer 2000, Knopp 2001) 

1100 - 2200 - 

Dry loose debris (this study) 200 - 800 2000 - 5 * 105 
Compacted debris (this study) 700 - 2000 - 
Frozen debris (Pfeffer 2000, Knopp 2001, 
Nyenhuis 2005) 

1800 - 4000 104 - 106 

Frozen debris (this study) 3500 - 4000 2 * 104 - 106 
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If subsurface characteristics change at geological boundaries, the waves will be refracted at 

the interface. While part of the energy is transferred into the deeper layer, some energy is also 

reflected back towards the surface. The seismic refraction method makes use of the energy 

refraction at subsurface boundaries, as waves of energy can be recorded at geophones at the 

surface.  
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The angle of incidence is equal to the reflection angle. The refraction angle follows Snell’s 

law, which is: 

 

21 /sin/sin VVri =θθ  (3.1) 

 

Where θi is the angle of incidence, θr the angle of refraction and V1 and V2 the seismic 

velocities of the upper and lower layers, respectively. When the velocity of the lower layer is 

higher than the upper layer, a critical refraction θc of the incoming wave occurs and the 

refracted waves travel parallel to the interface with velocity V2. The critical refraction is given 

by the ratio of the layer velocities: 

 

21 /sin VVc =θ  (3.2) 

 

The resulting stress produces upward waves, called head waves that travel towards the surface 

and may reach the geophones faster than the direct wave travelling at the velocity of the upper 

layer (V1). Thus, one prerequisite for the seismic refraction method is an increase in velocity 

towards deeper layers (V2 > V1). As the distance between the trigger location and the recording 

geophone increases, the first impulses to arrive come from successively deeper layer 

boundaries (Figure 3.2 A). First arrivals are recorded and time-distance plots are interpreted in 

order to derive information on the depth of subsurface boundaries. In the case of a layered 

subsurface structure, the first arrivals lie on a straight line (Figure.3.2 B). The first line 

segment represents the travel-time of the direct wave, while the following segments are 

associated with the underlying layers. The gradient of the travel-time segment represents the 

reciprocal velocity of the layers, which is equal for both layers at the crossover distance Xcross. 

The depth of the refractor can be calculated from the location of the intercept time ti, which is 

the intercept of the travel-time segment with the time axis t: 
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Thus, the refractor depth z is: 
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Figure 3.2 A – Principle of seismic wave refraction and reflection. B – Travel-time–distance plot (ic – angle 
of incidence, V1 – velocity layer 1, V2 – velocity layer 2, ti – intercept time, Xcross – crossover point). 

Different inversion methods exist to analyse wave travel-time data for the calculation of p-

wave velocities and interface depths. In this survey wavefront-inversion (WFI), network 

raytracing and seismic tomography are applied to calculate p-wave velocities and refractor 

locations. These methods yield more complex results in contrast to, for example, the intercept 

method, corresponding to the expected complex underground situations of the study area 

(Kearey et al. 2002).  

The main method applied here is the network raytracing. Structural models of synthetic 

travel-times are compared to the observed travel-times. Based on a starting model, the 

synthetic travel-times and the refractor location are repeatedly adjusted until they are in good 

agreement with the observed data. The starting model in this case was derived using the 

wavefront-inversion method. This method tries to reconstruct the configuration of successive 

wavefronts based on the measured travel-times. Using the forward and reverse wave travel 

paths the depth of the refracting surface are derived, starting from the uppermost layers and 

descending to the underlying layers. This method strongly depends on an exact knowledge of 
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first arrivals and is based on the Finite Difference approximation of the eikonal equation that 

migrates the combined forward and reverse travel-times into depths (Sandmeier 2005). 

Seismic refraction tomography is an automatic inversion technique. In an iterative procedure 

travel-times are modelled based on a simple starting model, until the residuals between 

modelled and observed travel-times are minimised. The result is a 2-dimensional (2D) grid 

model of the observed velocity distribution. 

3.4.1.2   2D- electrical resistivity tomography (ERT) 

Resistivity measurements make use of the ability of subsurface material to conduct electricity. 

Electricity is conducted through the ground in various ways, for example through the passage 

of electrons in certain minerals, e.g. metals, or through the passage of ions in pore waters, i.e. 

electrolytic conductivity. Hence, porosity, pore size and distribution, and boundary 

conductivity between pore water and rock surfaces, strongly influence the resistivity of rocks 

along with other material properties, such as temperature, water and ice content, and other 

chemical properties. The resistivity ρ of a material is defined as the resistance R between the 

opposite faces of a cube. Resistance is proportional to the cubes length L and inversely 

proportional to the cube’s face A: 

 

R = ρ L/A (3.5) 

 

Resistivity is the product of resistance over distance:  

 

ρ = V A / I L (Ω (Ohm) / m), (3.6) 

 

where V is the potential drop between the faces of the cube, and I is the electrical current. In 

resistivity measurements a constant current is injected into the ground through two current 

electrodes (A, B) and the resulting voltage differences at two potential electrodes (M, N) are 

detected (Figure 3.3). Due to inconsistent subsurface conditions only apparent resistivities are 

measured. The resistivity for uniform ground is the product of the potential drop between the 

current electrodes and the potential electrodes. For a homogenous earth model the potential 

difference ∆Φ between the electrodes M and N is given by: 
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where AM represents the distance between current electrode A and potential electrode M. 
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In order to calculate the resistivity the term can be arranged to: 

 

I
K

φρ ∆= , (3.8) 

 

The geometric factor K combines the effect of electrode separation distance a conditioned by 

the electrode configuration. Different electrode configurations exist. In this study the Wenner 

configuration has been applied, where the two outer electrodes are used as current electrodes 

with the two potential electrodes in between. During the survey the spacing is changed by a 

multiple of a and moved along the spread. The Wenner configuration minimises the time for a 

complete survey, as the number of measurements is relatively small. It provides a good 

vertical resolution, but small scale lateral variations are often not resolved. However, it is less 

susceptible to flaws resulting from heterogeneous ground conditions and weak signal strength 

(Kneisel and Hauck 2003). The Wenner configuration is one of the most common electrode 

configurations in geomorphological ERT studies. It is also commonly used in permafrost 

detection (Hauck 2001; Hauck and Vonder Mühll 2003; Kneisel 2003) and in storage 

quantification studies (Schrott et al. 2003).  

 
Figure 3.3 Configuration of the Wenner Array: A current is passed from electrode A to B. By measuring 
the potential between electrodes M and N the apparent resistivity ρ in layers 1 and 2 is determined. The 
distance a between the electrodes always remains constant, while the configuration is shifted along the 
spread. 

For the Wenner configuration K is derived from the electrode distance a: 

 

aK π2= , (3.9) 

  

The field data are commonly arranged in form of pseudosections, giving the distribution of 

the apparent resistivity of the subsurface, based on the geometry of the electrodes. In order to 

obtain the true resistivities an inversion of this pseudosection data has to be carried out. The 

inversion technique used in this study is called smoothness-constrained least-squares method 

(deGroot-Hedlin and Constable 1990) and is implemented in the inversion software package 

RES2DINV (Loke and Barker 1995). This method solves the inverse problem by creating a 



3. Methods for sediment storage analysis 

 54 

model of rectangular blocks of constant resistivity that is compared to the measured apparent 

resistivities. The model blocks are generated by the least-square equation: 

 

gJpCCJJ TTT =+ )( λ , (3.10) 

 

where J  is the Jacobian matrix of partial derivates, λ is the damping factor, C is a flatness 

filter that is used to constrain the smoothness, g is the discrepancy vector containing the 

logarithmic differences between the measured and the calculated apparent resistivities, and p 

is the correction vector to the model parameters. The RES2DINV inversion algorithm takes 

three main steps (Loke and Barker 1995): 

• Calculate the apparent resistivity value for the present model. 

• Calculate the Jacobian matrix J  of partial derivatives. 

• Solve the least-square equation (3.10).  

These steps are repeated until the algorithm converges, or a maximum number of iterations is 

reached. RES2DINV allows a change of some parameters of equation 3.10, like for example 

the size of the blocks or the damping factor, in order to adjust the model to the survey 

conditions (cf. chapter 3.3.1.5). The difference between the model and the measured apparent 

resistivity is given by a root mean square error (RMS). While the RMS error doesn’t 

necessarily predict whether the model represents the true geologic situation or not, the model 

is considered to be optimised when the change in RMS between the iterations becomes 

insignificant. 

Typical resistivity values for different materials are given in table 3.3. In the study area the 

mica-shists and gneisses show resistivity values between 5000 Ω m and 7500 Ω m. These 

numbers correspond well to other studies in this valley.  

3.4.1.3   Ground penetrating radar (GPR) 

Ground penetrating radar surveys introduce pulses of radar waves into the ground. The 

electromagnetic impulse from a transmitter is reflected by subsurface irregularities or 

boundaries, and similar to the seismic survey, the wave’s travel-time is measured (Figure 3.4). 

In contrast to seismic waves, the velocity of the radar wave is controlled by electrical 

properties of the travel medium, mainly the relative permittivity (dielectric constant κ´) and 

the electrical conductivity σ.  

The speed of radar waves through a material is given by: 
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2/1]}1²)1)[(2//{( ++= PcV rrm µε , (3.11) 

 

Where c is the speed of light, rε is the relative dielectric constant, rµ is the relative magnetic 

permeability. P is the loss factor that includes the conductivity σ, the frequency of the signal f 

(ω=2πf) and the permittivity ε: 

 

P=σ/ωε, (3.12) 

 

Permittivity is strongly influenced by the water content, since water has a high dielectric 

constant, as well as the porosity of the material. Table 3.4 gives some typical values for 

electrical properties of different materials. Radar waves travel at the speed of light through air 

(0.3 m ns-1). Through subsurface material the waves are slowed down to a range between 0.01 

and 0.17 m ns-1 (Moorman et al. 2003).  

 
Figure 3.4 Principle of GPR measurement. T – Transmitter of radar waves; R – Receiver; a – Offset 
between T and R.  

Different wave frequencies (10-1000 MHz) are used in order to improve the penetration 

depth, or the resolution of the image. Higher frequencies usually provide higher subsurface 

resolution, but shallower penetration depth due to absorption and attenuation of the wave 

within the ground. In addition to the descending waves that are reflected by subsurface 

objects, two direct waves are generated that travel parallel to the surface, similar to the 

seismic waves: the air wave and the ground wave. These waves need to be considered in the 

interpretation of the radar image.  
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 Table 3.4 Electrical properties of different material (Dielectric constant, conductivity and radar wave 
velocity) (different sources)  

Material  Dielectric constant rε  
(no dimension) 

Conductivity σ  
(mS m-1) 

Wave velocity v (m ns-1) 

Air 1 0 0.3 
Water 80 0.5 0.033 
 Saturated sand 20 - 30 0.1 - 1 0.06 
Limestone 4 - 8 0.5 - 2 0.12 
Shist 5 - 15 1 - 100 0.09 
Granit 6 0.01 - 1 0.12 
Permafrost 1 - 8 - 0.1 - 0.3 
Loose debris  - - 0.1 - 0.18 
Egesen moraine debris  - - 0.09  
Moraine debris (dry), this 
study 

- - 0.105 (Egesen age) 
0.095 (LIA) 

Talus debris (coarse, dry), 
this study 

- - 0.12 - 0.14 

 

The resulting radargram is commonly interpreted visually, but filters can be used to improve 

the visual quality of the image. Although this technique provides a high resolution image of 

the subsurface conditions, an interpretation of the reflection interfaces is not easy as analysis 

of the measured travel-times or velocities is not usually performed. However, data 

interpretation is supported through combination with data from other geophysical 

investigations or borehole data (Otto and Sass 2006). 

A more detailed discussion of the GPR method and application examples can be found in 

Daniels (1996), Reynolds (1997), Moorman et al. (2003), and Sass (2006). 

3.4.1.4   Acquisition of geophysical data 

Geophysical methods have been applied in this study to detect the regolith–bedrock boundary 

of single landforms in one hanging valley. The acquisition of geophysical data was done 

during field campaigns in summer 2004 and 2005. The Hungerlitaelli hanging valley was 

chosen because it has been studied the most intensively by previous studies within the 

RTG 437. Previous geophysical surveys in the Hungerlitaelli by Nyenhuis (2005) delivered 

additional subsurface information. Although, Nyenhuis does not provide bedrock depths, his 

information on permafrost distribution was considered in this study. 

The seismic surveys were performed using a 24 channel GEOMETRICS GEODE 

seismograph at 27 locations. Locations were chosen in central parts of landforms, usually 

parallel and sometimes perpendicular to the slope; and also along the deepest locations within 

the hanging valley. The 24 geophones were placed along a spread with an equal spacing of 3 

and 4 m, resulting in profile lengths of 69 and 92 m, respectively. One profile (SR05_15) in 

the central part of the Hungerlitaelli was performed using 5 m geophone spacing resulting in a 

profile length of 120. Seismic waves were created using a 5 kg sledgehammer. On blocky 
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terrain the hammer was applied directly on large rocks, on locations covered with fine 

material, soil or vegetation, the hammer was applied on a metal plate to improve the 

penetration of waves into the ground. Fifteen recordings before, between and after the 

geophone locations were made along a profile to improve the resolution of the subsurface 

information. Offset shots were located 2.5 and 0.5 times the geophone spacing before and 

after the spread, inline shots were placed between every second geophone. Trigger signals 

were stacked 10 times at each recording to improve the signal-to-noise ratio, which proved to 

be very useful as background wind noise is always present in this region.  

The data was analysed using the REFLEXW software (Sandmeier 2005). Figure 3.5 shows 

the main steps of the data analysis, wave velocity determination and refractor depth location 

applied in this study. In some locations two overlapping seismic profiles have been spread on 

the landforms. Where possible these profiles have been analysed together in order to improve 

the underground image. Subsurface information from the other geophysical methods was 

incorporated in the refractor surface modelling.  

 
Figure 3.5 Procedure steps of seismic refraction data analysis 
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For the 2D-resistivity surveying we used an ABEM Lund imaging system with a Terrameter 

300 device. Forty-one electrodes with 4 and 5 m spacing were installed, resulting in profiles 

of 160 m and 200 m length, respectively. The penetration depth of energy using the Wenner 

array is roughly one-third of the profile length, i.e. 27 and 33 m, respectively. Currents of 1 or 

0.5 mA were applied. The current was injected into the ground using 80 cm long stainless 

steel rods, placed at a depth up to 60 cm deep. Occasionally large boulders at the talus surface 

hampered the contact between the electrode and rocks. This problem was overcome by 

applying sponges saturated with salt water between rocks and the electrode.  

The inversion of the apparent resistivity was performed using the software RES2DINV. This 

software package produces a two-dimensional subsurface model from the apparent resistivity 

pseudosection (Loke and Barker 1995). Model parameters have been adjusted according to 

the survey conditions, the data quality, which is considered to contain a lot of noise, and the 

expected subsurface characteristics. Some of the adjustments that were made inlcude (cf. 

Appendix for a list of the entire model parameters): 

 

• Change of damping factor: Initial 0.3, minimum 0.1, corresponding to noisy data 

• Model using a robust inversion to help identify sharp changes 

• Model refinement (half block size) 

• Change of vertical to horizontal flatness filter to search for horizontal structures. 

 

Inclusion of local topography of the profiles was included in the data processing. The routine 

was iterated between 3 and 8 times, generally until the RMS change was smaller than 1%. 

However, some spreads took as much as 16 iterations before this change rate occurred. 

 

GPR surveying was carried out in cooperation with Dr. Oliver Sass, Augsburg University, in 

summer 2004. We used a RAMAC GPR (Malå Geosystems) with a 25 MHz antenna for the 

GPR surveys. Data were acquired at 6 profiles of lengths of between 180 and 290 m. A 

transmitter – receiver offset of 4 m was applied and the trigger interval along the profile lines 

was 1 m. The specific velocity adaptation was carried out performing several wide angle 

reflection and refraction (WARR) measurements with stepwise increasing antenna distance. 

The radar wave velocities derived from these measurements ranged from 0.095 m ns-1 in 

vegetated moraine debris to 0.14 m ns-1 in the very coarse and dry talus bodies. The vertical 

resolution of GPR data is a quarter of the wavelength which is itself dependant upon the 

frequency and propagation velocity of the radar wave. In the current investigation the vertical 
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resolution was calculated to be 1.0 to 1.4 m. The REFLEXW software (Sandmeier 2005) was 

used for data interpretation. In most instances a DC-shift correction, a bandpass filter, a time-

dependant gain function and a static correction of the first onset times were applied. Data 

interpretation was performed visually on the radargrams. 

3.4.2 Volume quantification using DTM analysis 

A quantification of sediment volumes in the 139 km2 large Turtmann Valley cannot be done 

within reasonable time by geophysical methods only. These methods provide the most 

detailed information on bedrock locations, but field work is time-consuming and restricted in 

this environment to a very short period of time during the year. Consequently, the sediment 

thickness information gathered from geophysical surveying at few locations was used to 

estimate the entire sediment volume of the hanging valleys using digital terrain data and a 

geomorphological landform database in a Geographical Information System (GIS) (cf. chapter 

3.3). Sediment volumes have been estimated using different methods according to the 

different scales of investigation and sediment storage environments. Some of the volume 

estimation methods applied have not been previously used in other studies, but will be 

presented here in detail. The quality and certainty of volume quantification varies for the 

different scales and subsystems and is discussed at the end of this chapter (cf. chapter 3.5). 

Some of the volumes calculated include estimations on sediment thickness that are based on 

assumptions. These assumptions follow a geomorphological logic and are based on a 

literature review, several years of geomorphological field experience, discussions with fellow 

scientists, and are backed up, where possible, by comparison with similar previous studies.  

3.4.2.1   Sediment thickness interpolation in the Hungerlitaelli 

In order to assess the sediment volume for the Hungerlitaelli, the depth information on single 

landforms derived from geophysics was used. First, the sediment thickness is interpolated 

along several transects through the Hungerlitaelli (Figure 3.6). These transects have been 

constructed by including the depth information from the geophysical surveys. Due to the 

limited number of surveys and the lack of bedrock data from some of the soundings, 

additional bedrock locations needed to be inserted in order to raise the number of data points 

for interpolation. Additional points have been placed at specific locations such as breaks in 

slopes, changes in landforms or central positions within the valley.  
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The estimation of sediment thickness at these additional points is based on several 

assumptions:(1) The known thickness values from the geophysical surveying can be taken as 

representative values and transferred to equal positions and landforms within the hanging 

valley. (2) Where certain landforms, for example rock glaciers, clearly rise above the 

surrounding surface this indicates a minimum thickness, which can be used as or added to the 

assumed value. (3) The shape of the bedrock surface caused by tectonic processes and 

lithologic structure influences the land surface morphology and hence the sediment thickness. 

A visual interpretation of the structure, location and tectonic setting of the outcropping 

bedrock influenced the estimation of certain landform thicknesses. For example: as the shape 

and location of the large central moraine corresponds to the direction of the ridge towards the 

east of it, it has been assumed that the moraine is based on a buried ridge of bedrock. This 

assumption is backed up by the geomorphological interpretation of this hanging valley. The 

geometric shape and orientation of the Hungerlitaelli favours the presence of glaciers on the 

more shaded northern oriented slopes. Thus, the erosive force of the glaciers must have been 

of longer duration in the southern part (oriented towards north) than on the northern part of 

the Hungerlitaelli, causing more bedrock erosion and debris removal. 

 
Figure 3.6 Locations of geophysically derived (yellow) and modelled (blue) thickness locations used for the 
sediment thickness interpolation in the Hungerlitaelli.  
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The points along the transects have been interpolated to 5 m spacing along the profile line. 

This interpolation was made using a double parabolic function in Excel. The function was 

chosen because it represents an idealised, glacially-smoothed topography better than a linear 

interpolation. The resulting differences between linear and parabolic interpolation increase 

with larger interpolation point spacing.  

Transects were then combined and entered the GIS as point data. Regolith thickness was 

interpolated for the entire hanging valley, while additional points from bedrock outcrops and 

ridgelines were combined with the regolith thickness information as zero metre thickness 

points in order to define the interpolation boundary. 

 

ArcGIS 9.1 offers several ways to interpolate these kinds of data. Following the positive 

results of a previous study by Hufschmidt (2002), the interpolation method TOPOGRID was 

applied. TOPOGRID is an interpolation method originally implemented in the ANUDEM 

software created by M.F. Hutchinson (Australian National University) in order to create 

hydrologically correct digital elevation models (DEM) (Hutchinson 1989). The TOPOGRID 

method is an iterative finite interpolation that uses thin splines. The method allows the 

inclusion of different types of available input data, such as breaklines, boundaries or drainage 

ways. One major advantage of the TOPOGRID method is the interpolation of elevation data 

based on very few data points. A comparison to other interpolation methods (Spline, IDW, 

Kriging) revealed that only the TOPOGRID method created a thickness “surface” that is 

constantly below the topographic surface. All other algorithms produced negative thickness 

values from the source data points. Thus, the recommendation given by Hufschmidt (2002) 

could be verified for the Hungerlitaelli data. Finally, the sediment volume of each pixel of the 

debris area in the Hungerlitaelli is calculated by multiplying the interpolated sediment 

thickness by its real surface area. A zonal statistics query within the GIS sums up the volumes 

of the pixels that construct a landform and delivers landform volumes.  

3.4.2.2   Volume quantification of the Turtmann Valley 

In order to estimate the sediment volumes of the remaining hanging valleys, a proxy is 

required that allows the transfer of thickness information from the local geophysical 

investigation to the entire valley. Attempts to find a statistical correlation between the bedrock 

depths detected and geomorphometric surface characteristics like slope, aspect, profile 

curvature or distance to bedrock failed. Linear regression analyses delivered correlations of 

r=0.03 and below. This could be due to the limited number of data points, or because no 

relationship exists between geomorphometric characteristics and the thickness of debris cover.  
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A similar interpolation approach as taken for the Hungerlitaelli is not feasible for the entire 

valley. Thus, a more simple approach is applied: 

The mean sediment depth of the storage landform types in the Hungerlitaelli is used quantify 

volumes in the other hanging valleys. This transfer is founded upon some general 

assumptions: (1) That the composition and distribution of sediment storage landforms in the 

Hungerlitaelli can be regarded as representative for the Turtmann Valley since they are 

conditioned by equal lithology, tectonics and climate. This assumption is constrained by the 

few locations of different lithology in the Turtmann valley, mainly the Pipji hanging valley 

and some parts along the western main ridge (upper parts of hanging valleys Blüomatt, Augst 

and Meid). However, the Hungerlitaelli lacks two landform types that are found in other 

hanging valleys: alluvial deposits and protalus rock glaciers. These landforms cover less than 

1% of the Turtmann Valley together, while protalus rock glaciers making up less than 0.2 %. 

Thus they play only a minor role in the sediment budget of the Turtmann Valley.  

(2) Furthermore it is assumed, that values of alluvial sediment thickness found in the literature 

provide reasonable approximation for similar landforms in the Turtmann Valley. Alluvial 

sediment thickness is based on values determined by Schrott et al. (2002). (3) Finally, the 

mean frontal height of protalus rock glaciers is held as a reliable approximation for the mean 

landform thickness, corresponding to the approach used by Barsch (1977).  

 

However, some sediment storage landforms cannot be quantified by transferring thickness 

values from the hanging valleys. These include storages in the remaining subsystems of the 

sediment flux system: (1) the main glacial trough, (2) the trough slopes and (3) the glacial 

forefield at the valley terminus. These subsystems possess a less complex patterns of storage 

landforms compared to the hanging valleys and can be regarded as open systems. Material 

stored in the glacier forefield and the main valley trough is most probably only a fraction of 

the entire eroded bedrock, as almost no barrier hinders the material’s removal by glaciofluvial 

processes. 
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The depth of the main trough filling exceeds the detection range of the available geophysical 

methods in this study, as unpublished tests by the author have shown. However, the 

application of other geophysical techniques, for example a stronger seismic source for seismic 

reflection surveys would overcome this constraint.In order to estimate the storage volume for 

the main valley trough, the Sloping Local Base Level (SLBL) approach by Jaboyedoff and 

Derron  (2005) has been applied. The SLBL approach is founded on the concept of the base 

level in geomorphology, defined as the lower limit of subaerial erosion processes affected by 

fluvial erosion. The sea level is the general base level for all processes. However, local base 

levels above and below the sea level, lakes or basin floors, exist as well. Jaboyedoff et al.  

(2004) define the SLBL as a surface above which rocks are assumed to be erodible by 

landslides, indicating a potential sliding surface, represented by a surface that joins all rivers. 

They developed a method to calculate this volume. Jaboyedoff and Derron (2005) adapted the 

SLBL method in order to estimate the bedrock surface of the Rhone valley, Switzerland. The 

SLBL method in this case deepens a DTM grid surface based on the following steps 

(Figure 3.7): 

First, the four neighbouring grid cells of a point are analysed, and the greatest difference in 

altitude between the four points is derived. If a point is located above the mean of its two 

extreme neighbours minus a tolerance value ∆z, its altitude is replaced by the mean value of 

the two extreme neighbours minus ∆z. This procedure is repeated until the surface remains 

unchanged between two iterations. The area affected by the routine is defined by fixed points. 

These points represent the boundary of the valley floor with the trough slopes. 
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Figure 3.7 Principle of the SLBL method indicating intermediate steps of the procedure. At each step a 
point is replaced by the mean of its two neighbours minus the tolerance ∆∆∆∆z. (from Jaboeydoff and Derron 
2005) 

In order to estimate the value of ∆z, Jaboyedoff and Derron (2005) use a parabola, based on 

the assumption, that glacial valley cross-sections can be described using quadratic profiles 

(Wheeler 1984). This parabola is expressed by: 

 

²axz =  (3.13) 

  

where a is a constant equal to half of the second derivative: 
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where ∆x is the size of the grid mesh.  

Four parameters govern the SLBL-calculation: the grid size, the curvature tolerance of the 

parabola ∆z, the maximum depth and the curvature limit. The calculation for the valley floor 

fill was done using a 5 m DTM grid. This DTM has been resampled from the 1 m HRSC 
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DSM and filtered with a Gaussian filter in order to smooth the topography and remove large 

trees, boulders and houses. This process is recommended by Jaboyedoff and Derron (2005) in 

order to create a smoother bedrock boundary, less influenced by surface artefacts. The 

parameters need to be calibrated in order to prevent the algorithm from deepening the grid too 

much. The determination of the parameters used in this calculation was done by extensive test 

runs in order to produce a surface that resembles the expected glacial trough floor, based on 

geomorphological knowledge. The two aspects characterising this ideal shape are the 

steepness of the sides, defined by the shape of the parabola applied and the maximum depth. 

A maximum depth limit of 75 m was applied based on a comparison of different know valley 

depth values from other locations (see chapter 5.3.2.2 for details). The curvature tolerance of 

-0.1 m produced the best visual results for the inclination of the parabola. Lower values (-0.2, 

-0.5) produced steeper parabolas. The curvature limit proofed to be the more important 

variable for the parabola shape. In order to derive the limiting curvature value for this 

parameter a mean curvature was chosen that correspondents to the profile curvature of the 

trough slopes and was based on the assumption that the curvature tendency continues 

underneath the surface. The mean profile curvature of the trough slopes was calculated on a 

25 m DTM using the Evans (1980) method on a 20x20 pixel moving window. 

  

A determination of sediment stored on the trough slopes by geophysical methods has not been 

done so far and could not be performed within the time frame of this study. The sediment 

volume of the trough slopes was estimated by using an average sediment depth. Although this 

approach is very rough and basic and no verification or comparison with other data is 

possible, this remains the only chance to fill this gap in the sediment budget. Valley trough 

deposits are generally very stable and mostly covered with forest. Bedrock crops out very 

frequently in the forest above the valley floor indicating a rather shallow sediment cover. 

Most creeks are only shallowly (3-5 m) cut into the debris covered slopes with some 

exceptions where debris flows have removed more material. Thus, a mean sediment thickness 

of 5 m is used to calculate a volume of the trough slope sides 

 

Besides the glacial trough, hanging valleys and the glacial forefield there are some other areas 

covered by debris. At the valley entrance the slopes span from the creek up the v-shaped 

valley part to the ridges. Towards the valley end around the large glaciers talus slopes and 

block slopes cover the space between ice and rock walls. No information exists about these 

areas. One characteristic of these areas is the steep inclination of the slopes (above 
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30 degrees). If assumed that this inclination is close to the angle of repose a relatively thin 

debris cover can be expected. A mean value of 3 m is used to quantify these volumes.  

 

 
Figure 3.8 The glacier forefield of the Turtmann Valley.  

The glacial forefield is the most dynamic part of the entire sediment flux system, though it has 

been an almost closed system since the construction of the dam in the 1950s (Figure 3.8). The 

sediment fill of the glacier forefield at the valley end was modelled using the same approach 

as applied in the Hungerlitaelli. Eight transects were placed across the forefield perpendicular 

to the forefield orientation. Three longitudinal profiles were spread, one in the central 

forefield area and two along the ridge of the two large lateral moraines next to the glacier 

tongue. The glacier forefield terminates at a bedrock outcrop, where the barrage dam is 

located today. This roche moutonnée is incised by the river to depths of up to 30 m deep. 

Assuming that the glaciofluvial runoff was discharged at the bottom of the subglacial surface, 

this incision is used as the maximum excavation depth of the forefield. The bedrock surface 

along the transects has been constructed by fitting a parabola through the bedrock outcrop 

points towards the end and the central maximum depth point. The parabola was adjusted to fit 

estimated auxiliary points in order to represent an expected glacial trough. Additional, depths 

of the lateral moraines was incorporated by measuring the height difference between the top 

of the moraine and the lowest neighbouring areas, most often drainage ways. The sediment 

depths along the transects are interpolated at a 10 m point spacing. The points have been used 

for the TOPOGRID algorithm analogue to the Hungerlitaelli approach. The area covered by 

the glacial tongue was erased from this interpolated surface, before the volume was 
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calculated. Thus, debris underneath the glacier is not considered here. Very few studies 

quantified pro-glacial sediments (Small 1987; Etzelmüller 2000). These studies show large 

differences in both methods and result and are difficult to compare the approach used her, 

because no sediment thickness information is reported for pro-glacial debris. 

3.4.3 Calculation of denudation rates and mass transfer  

The denudation rate (DR) for the Turtmann Valley is calculated using equation 2.5. A mean 

bedrock density ρb of 2.7 g cm-3 for the lithology of the Turtmann Valley (mica-shist, gneiss 

and dolomite) is applied. Density of deposits depends on the consolidation process and the 

state of the landforms and is assumed to be higher for glacial and fluvial deposits than for 

talus or rock glacier deposits. Debris density values determined or applied in other studies 

range from 1.5 to 2.6 g cm-3 (Jäckli 1957; Rapp 1960; Hinderer 2001; Sass and Wollny 2001). 

As this study includes different types of storage landforms a mean value of 1.6 g cm-3 is 

applied to calculate the DR. A time period of 10 ka was used for the DR calculation. 

Denudation rates are calculated for the entire valley, the hanging valleys, the glacier forefield 

and the Hungerlitaelli. For each part two denudation rates are determined, one based on the 

total area, another based on the area of the current sediment sources, including bedrock 

outcrops and glaciers. The total mass transfer per area represents the volume of material in 

tons per area and time. Mass transfer is similar to sediment yield and calculated using 

equation 2.2 for the same land surface parts of the valley. In contrast to the sediment yield, the 

mass transfer relates to material that has not left the denudation area. The unit for mass 

transfer per area is t km2 a-1. 

 

Additionally, denudation rates for single landforms are calculated using equation 2.5. Four 

landform types are used to derive single landform denudation rates: (1) talus slopes, (2) talus 

cones, (3) block slopes, and (4) active rock glaciers. These landforms were chosen because 

their source area can be defined with the greatest confidence. Sediment sources for talus 

slopes, talus cones and active rock glaciers were determined by using the WATERSHED 

command in ArcGIS 9.1. Taking the upper boundary of the landform as the source locations 

the algorithm calculates the potential drainage area above the landform. This is assumed to 

correspond to the source area of the debris that builds up the landform. Denudation rates of 

block slopes are based on the entire block slope area.  
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3.4.4 Uncertainties and error estimation of bedrock detection and volume 

estimation 

3.4.4.1   Uncertainties of bedrock detection using geophysical methods 

Geophysical methods include inherent uncertainties due to the inverse problem (cf. chapter 

3.4.1). Another source of uncertainty, especially in mountain terrain, results from similar 

physical characteristics of frozen ground and bedrock that can lead to a biasing of the 

interpretation (cf. chapter 3.4.1.1). However, with increasing application of these methods in 

geomorphology, and hence more experience with the equipment and subsurface material, 

uncertainties will decrease. Additionally, the combination of the different methods, as partly 

performed in this study helps to explain uncertain or doubtful results (cf. Hoffmann and 

Schrott 2003; Otto and Sass 2006), especially when other subsurface information from 

boreholes, for example is missing. 

Regarding the seismic refraction method, different inversion techniques have been applied 

and combined in order to generate propagation velocities and bedrock surfaces. This can be 

regarded as a cross check that the model used is realistic, or at least consistent with other 

modelling results, which may also be wrong. Here, the network raytracing method provided 

the most useful results, which were often, but not always, in good agreement with the 

tomography inversion results (cf. chapter 5.2.1). Differences range from a few meters to more 

than 10 meters. The network raytracing method itself provides a source of uncertainty when 

the artificially calculated travel-times are fitted to the observed ones. This fit depends on the 

quality of the recorded first-arrivals, which are never as symmetrical as the artificially 

calculated travel-times. Thus, occasional outliers do occur for single rays. The modelling here 

was stopped when a good overall fit for both types of travel-time was established. Further 

modifications in order to eliminate single differences would have brought about changes in 

the order of some 1-2 m of depth of the refractor surface. 

  

The inversion of electric resistivity data strongly depends on the inversion algorithm used. 

The algorithm used here (cf. chapter 3.4.1.2) is one of the most widely accepted and 

frequently applied in geomorphology, and is therefore regarded as reliable. The inversion 

software Res2Dinv enables the modification of a great variety of inversion parameters. These 

include the size of the model blocks, damping parameters, a horizontal structure filter or a 

factor of layer increase with depth. These parameters have been tested and the results 

compared visually. The configuration used is assumed to suit to the expected subsurface 

situation and detection of inclined, linear structures best. A complete list of the parameters 



3. Methods for sediment storage analysis 

 69 

used is attached in the appendix. The quality of the inversion is highest for a small number of 

iterations and a small root mean square error (RMS). However, these values don’t ensure that 

the modelled structures correspond to the reality. A sharp change in resistivity was often 

detected at the regolith–bedrock boundary. However, a value range of 2-3 k Ω m, rather than 

a single value, indicates the occurrence of bedrock. Thus, the bedrock boundary location 

could only be determined within a depth range. This range is between 2 and 3 m. 

 

Picking the exact location of the reflections is a potential source of error when analysing GPR 

data. Another source of uncertainty is the applied radar wave velocity. The wave velocity 

determined by WARR measurements is usually only valid for the upper few metres of the 

material. Because the velocity influences the depth calculation, the location of deeper 

reflections could be overestimated. However, no solution for this problem is discussed in the 

literature. Sass (pers. communication 2006) estimated this error to be less than 15%. More 

problematic is the correct interpretation of the reflections itself. Reflections in the radargram 

are interpreted as bedrock, but in reality they are also caused by loss of wave energy. This 

uncertainty can only be overcome by experience in radargram interpretation and no error 

estimation is possible here. To conclude, the detection of the regolith–bedrock boundary by 

geophysical surveying is assumed to include an average error of 5–10%.  

 

3.4.4.2    Error estimation in volume calculation 

The interpolation of sediment thickness in the Hungerlitaelli is based on field data and 

estimated depth information. Field data are liable to the above discussed points of uncertainty. 

However, the number of survey points is limited in relation to the size of the Hungerlitaelli 

and the number of landforms observed. Estimations of interpolation points rely on 

geomorphological analysis and interpretation of the observed land surface and are backed up 

by a comparison with observations made in preceding studies in similar environments. 

Corresponding to the position of the sediment storage landform in the hanging valley, 

uncertainty about sediment storage depth varies. In general, sediment thickness of landforms 

at lower locations, for example rock glaciers and moraine deposits, is assumed to be 

underestimated, especially where estimation is based on the landform height above the 

surface. In contrast, on talus and block slopes at upper elevations regolith depth might be 

overestimated. Other studies on block slopes indicate very shallow regolith thickness of only 

a few centimetres (Ballantyne and Harris 1994) compared to the 0.5-2 m assumed here. An 
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uncertainty of 20–50% is assumed for the sediment thickness interpolation in the 

Hungerlitaelli. 

The transfer of regolith thickness information from the Hungerlitaelli to other hanging valleys 

is based on the mean regolith depth of each landform type found in the Hungerlitaelli. An 

application of mean depths for landform types naturally causes an error in the volume 

calculation as variations both within single landforms and between landforms are eliminated. 

Size, shape and position of the landforms within one type can differ widely and consequently, 

volumes will be affected strongly by landform size and area–height ratio. This is especially 

the case for moraine deposits, because lateral and basal moraines have been included in only 

one class despite large differences in area–height ratio. Thus, the modelled sediment volumes 

of the hanging valleys include a significant uncertainty with a degree of error of 50–100%. 

Trough floor volume calculated by the SLBL approach depends on the assumption that the 

morphology of the trough can be modelled with parabolas. As Hoffmann and Schrott (2002) 

have shown this assumption leads to an overestimation of the trough volume, because the 

bedrock surface is generally flatter then the parabola of a curve. The applied maximum 

thickness relates to the few similar studies (Finckh and Frei 1991; Hoffmann and Schrott 

2002; Schrott et al. 2003), though a valley the size of the Turtmann Valley has never been 

studied before. The maximum depth of the valley floor is assumed to include an error of 

20-50%. A constraint of the SLBL algorithm is the strong dependency of the modelled depth 

on the valley width (cf. chapter 5.3.2.2). This creates shallower locations in narrow valley 

floor parts. About 12% of the valley floor is less than 100 wide, while the average width is 

about 180 m. At these narrow parts the modelled bedrock depth is significantly 

underestimated compared to the wider parts. The overall error in trough volume is considered 

to be 20-50%. 

 

The volume calculation of the glacier forefield bases upon interpolation of estimated 

parabolic transects. Several sources of uncertainty can be identified. First, the maximum depth 

may be underestimated, as no information about over-deepend trough parts in the glacier 

forefield is available, nor considered. Such over-deepening is possible at the former 

confluence of the Turtmann and Brunegg glaciers and before or behind roche moutonées. 

Another source of uncertainty is the depth of the two lateral moraines. The height of these 

landforms is estimated relative to the neighbouring valley floor. However, no information 

about buried bedrock or underlying glacial deposits is available and this could lead to an over- 

or underestimation of the volume. To conclude, an error of 20-50% is considered here. 



3. Methods for sediment storage analysis 

 71 

The volume of the remaining areas is entirely based upon assumptions. No mean regolith 

thickness for valley slopes or trough slopes could be found. Although, the mean depth values 

applied in the modelling are considered to be rather conservative, an error of 50-100% is 

possible. 

To conclude, though the errors estimated for the single subsystems include a large 

uncertainty, the errors include both over- and underestimations. Consequently, errors may 

equalise as well as reinforce each other. In general, the sediment volume modelled is 

considered rather a minimum scenario based on the geomorphological analysis in the field. A 

proof of this assumption is only provided by further geophysical soundings in other hanging 

valleys. 
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4 Study area 

The Turtmann Valley is an alpine catchment located in the southern mountain range of the 

Valais Alps between the Matter Valley and the Anniviers Valley in Switzerland (Figure 4.1). 

The Turtmann Valley stream is a southern tributary of the Rhone River and drains a 

catchment of app. 110 km2 (139 km² real surface) at altitudes between 620 m and 

4200 m a.s.l. The valley is around 20 km long and up to 7 km wide; oriented from north to 

south. The highest peaks along the valley’s margins are Bella Tolla (3025 m), Pointe de 

Tourtmagne (3080 m), Frilihorn (3120 m) and Les Diablons (4135 m) along the western ridge 

and Signalhorn (2911 m), Schwarzhorn (3201 m), Stellihorn (3409 m), Brunegghorn 

(3833 m) and Bishorn (4135 m) along the eastern ridge. The small hamlet of Gruben/Meiden 

(1818 m) is located in the central valley, but is inhabited only during the summer months.  

 
Figure 4.1 Location of the Turtmann Valley, Swiss Alps 
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4.1 Geomorphology 

The Turtmann Valley is a typical, glacially-shaped, high Alpine valley. The main valley can 

be separated into two parts: The lower section of the Turtmann Valley is v-shaped covering 

approximately one third of the valley's total length. It opens into an up to 300 m wide glacial 

trough that terminates at the complex of Turtmann and Brunegg glaciers (Figure 4.2). 

Fourteen hanging valleys (called Taelli in the local dialect) are located on both sides of the 

trough slopes (Figure 4.3) most of them oriented west-east. Hanging valley floor elevation 

increases from 2300 m to 2600 m from north to south. In addition to some of the hanging 

valleys, which contain small glaciers, the dominant ice surfaces of the Turtmann and Brunegg 

glaciers at the valley head cover about 14% of the valley surface. The hanging valleys contain 

a typical set of high alpine processes and landforms with an observable strong influence of 

periglacial processes. Rock glaciers are very frequent and almost every slope is modified by 

small-scale periglacial creep. The main valley floor is characterised by a mixture of large 

fluvial and debris-flow cones, avalanche tracks and glaciofluvial terraces. Areas below 

2600 m on north facing slopes and 2800 m on south facing slopes show continuous vegetation 

cover. Rock fall, rock glacier and solifluction creep and avalanches are the most active 

processes, while debris flows only occur randomly along the main valley trough and around 

the Turtmann glacier forefield. Most fluvial sediment transport is inhibited by the deviation of 

the majority of the surface drainage from the hanging valleys into the barrage in the glacier 

forefield. The main stream is almost completely disconnected from the glaciofluvial sediment 

drainage system due to the construction of the barrage, since the water is entirely routed into 

the neighbouring Anniviers Valley.  
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Figure 4.2 The southern end of the Turtmann Valley terminated by the Turtmann glacier to the right and 
Brunegg glacier to the left. The peaks in the left background are Bishorn (4135 m) and 
Weisshorn (4504 m) 
 

 
Figure 4.3 View from the Hungerlitaelli across the main trough into some western hanging valleys. The 
peak towards the left is Les Diablons (3609 m).  
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4.2 Geology 

The study area is located within the middle-penninic Bernard nappe that covers large areas of 

the valaisanne Alps south of the Rhone valley (Labhart 2001). This nappe is divided into 

several sub-units with the Siviez-Mischabel nappe (S-M) as the main part (Figure 4.4). 

Lithostratigraphically the S-M nappe contains different methamorphic layers that consist 

mainly of micashists and paragneisses. Palaeozoic shists and gneisses build up most of the 

northern and eastern parts of the valley and dominate the lithologic setting (Bearth 1980). 

Mesozoic dolomites, limestones and marbles in western and south-eastern parts of the 

Turtmann Valley are easily distinguishable because they form large cliffs, like for example in 

the Pipjitaelli. They cover the crystalline rocks and are wedged between the S-M nappe and 

the overburden Dent Blanche nappe. The rocks of the S-M nappe are heavily folded and often 

contain thin layers of amphibolites, quarzites and eclogites (Bearth 1980; Rahn 1991). The 

general strike direction is south-west with average dipping between 20 to 30 degrees influence 

by the folding of the nappes (Bearth 1980). The inclination of the bedrock influences the 

formation of rock walls and slopes. Slopes inclining perpendicular to the bedding result in 

steep rock walls and the formation of talus slopes and cones. In contrast, slopes dipping 

parallel to the bedrock inclination favour the development of block slopes (Cruden and Hu 

1996). 

 
Figure 4.4 Geological cross section through the penninic nappes around the Turtmann Valley. The nappes 
are: 1–Houillère-Pontis, 2–Siviez-Mischabel, 3–Mont Fort, 4–Monte Rosa, 5–Zermatt-Sass Fee, 6– Tsaté, 
7–Dent Blanche (from Laphart 2001) 

4.3 Climate 

The inner alpine location of the Turtmann Valley produces continental climatic conditions. 

The valley is sheltered from heavy precipitation brought about by major frontal systems from 

the southwest and southeast. Thus, comparably low precipitation and increased temperatures 

characterise the entire southern Valaisan Alps. The climatic snow line is elevated under these 

conditions as well, rising to an altitude of 3450 m (Escher 1970). Mean annual precipitation 

ranges between 575 mm in Sion (482 m) and 710 mm in Visp (640 m) for lower stations 

(Rhone Valley) higher stations (Zermatt, 1638 m & Evolène 1825 m) receive between 600 
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and 700 mm of precipitation per year. Mean annual air temperature varies between 8.5o C in 

the Rhone valley at Sion and 3.5o C in Zermatt (Meteoschweiz). In 2002 climatic monitoring 

started in the Hungerlitaelli. During the three year of recording, some probable climatic trends 

can be observed. Temperature distribution thoughout the year shows a minimum in February 

and a maximum in August (Figure 4.5). 
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Figure 4.5 Mean annual air temperature and monthly precipitation figure from the climate station in the Hungerlitaelli (Altitude 2770 m).  
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The Mean annual air temperature is -1.2o at an altitude of 2770 m a.s.l. indicating that the 

lower limit of permafrost lies around this altitude (Nyenhuis 2005). Precipitation is highest in 

August. However, snow is not registered and therefore not included in this record. Between 

September 2004 and August 2005 492.6 mm of rain have been measured. About 20% of this 

precipitation (92 mm) was recorded in August 2005. Summer precipitation often occurs as 

thunderstorms that develop in the late afternoon and can bring significant amounts of rain. 

Especially the southern part of the Turtmann Valley is often affected by thunderstorms that 

form around the largest peaks. Debris flows around the glacier forefield have been observed 

caused by such events.  

4.4 Glacial history and paleoclimate 

The Swiss Alps are among the best studied regions of quaternary glaciation. The introduction 

of a general theory on glaciation, established in the 18th and early 19th century by Agassiz and 

predecessors, marks the onset of glacial research. The famous works by Penck and Brückner 

(1909) lead to a differentiation of distinct phases of quaternary glacial retreat at the end of the 

Würm glaciation in the Alps. Their classical division into the three main stages “Bühl – 

Gschnitz – Daun” has since been verified and refined by various authors. Eight major stages 

of glacial extends have been classified based on moraine mapping for the Alps (Maisch 1982). 

The lowest extend (Bühl) is located around 1000 m below the Little Ice Age (LIA) reference 

level. 

The Late-Glacial maximum glacier extend during the last glaciation (Würm) in the western 

Swiss Alps was studied by Kelly et al. (2004a) Based on mapped trimlines and other 

evidences of glacial erosion on bedrock, they concluded that the ice surface reached altitudes 

up to 2600 m in the Rhone valley near Brig, dropping to 1600 m towards Lake Geneva. For 

the Turtmann Valley only rough interpolated information is given, indicating for the main 

valley floor an ice surface altitude between 2200 and 2800 m, rising towards the hanging 

valley cirques and the Bishorn peak (4058 m). Thus, most of the peaks in the Turtmann 

Valley would have been free nunataks. 

 

 A detailed mapping of the moraines has been done by Otto (2001) and Wolff  (2006). 

However, no dating of moraine deposits and glacier extents exists. Wolff  (2006) associates 

mapped moraine locations in the Turtmann Valley with comparable studies from 

neighbouring locations in the Valais. Detailed glacier histories of neighbouring areas have 

been accomplished by Bircher (1983) for the Sass Valley, Müller  (1984) for the Simplon area 

and Val de Nendaz, and by Haas  (1978) for the Zinal Valley. 
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The Egesen stage marks the most wide-spread, prominent extend towards the end of the late 

glacial. Egesen moraines are often well preserved and because of their larger size compared to 

the LIA moraines frequently observed throughout the Alps. Maisch (1982) locates the Egesen 

stage between 170 and 240 m below the 1850 snow-line level. The mean 1850 snow-line 

altitude for the study area is around 2906 m (mean value for the Dent Blanche glacier region, 

after Maisch et al. (1999). Hence, a paleo-snow-line for the Egesen stage in the Turtmann 

Valley would have been located between 2660 and 2730 m. In comparison, the 1973 snow-

line has been determined at around 3200 m for the study area (National Snow and Ice Data 

Centre 1999). The main valley floor does not show remains of distinct moraine deposits 

below the 1850 extend, or near the inferred Egesen level. However, in some of the hanging 

valleys large lateral and frontal moraines can be observed. Although no dating information 

exists on these moraines, they can be associated with Daun and Egesen levels based on snow-

line modelling Wolff (2006). 

 

The Egesen stage is associated with the Younger Dryas time period. This period represents a 

late glacial climate depression at end of the Pleistocene glaciation and is usually dated 

between 11,000 and 9,500 BP. In the neighbouring Saas Valley, Bircher (1982), using 14C and 

pollen records dated bog sediments associated with the Egesen stage at 1800 m a.s.l. to 

9760 ±175 yr BP. Transferring this altitude level to the Turtmann valley, the Younger Dryas 

extent of the Turtmann glacier complex would have been located near the settlement of 

Gruben. A map created by Burri (cited in: Schweizerische Gesellschaft für Ur- 

undFrühgeschichte 1993) showing the Younger Dryas glacier extent in the Valais supports 

this assumption (Figure 4.6). Kelly et al. (2004b) dated the Egesen moraine of the Great 

Aletsch glacier to 9640 ±430 yr BC using cosmogenic nuclide 10BE. However, this glacier is 

not comparable to the Turtmann Valley glaciers due to its larger size. 
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Figure 4.6 Younger Dryas extent in the Valais, Switzerland. (modified after Burri 1990, from: 
Schweizerische Gesellschaft für Ur- und Frühgeschichte 1993) 

The Holocene glacier and climate fluctuations have been investigated in numerous studies 

through out the Swiss Alps. Methods applied include lake sediment analysis (varves, pollen, 

and others, e.g. Leemann and Niessen 1994; Haas et al. 1998; Heiri et al. 2003), 14C dating of 

fossil soils and woods (Röthlisberger 1976; Hormes et al. 2001; Holzhauser et al. 2005), 

dendrochronology (Holzhauser and Zumbühl 1996), lake level variation analysis (Holzhauser 

et al. 2005) and more recently surface exposure dating (Ivy-Ochs et al. 1996; Kelly et al. 

2004b). Studies on lake sediments, using varve analysis of proglacial lake sediments at lake 

Silvaplana, Eastern Switzerland, determined the end of the Younger Dryas at 9400 BP 

(Leemann and Niessen 1994). Additionally, the study by Leemann and Niessen (1994) 

observes that there wa sonly minor glacial acitivty in this catchment from 9400-3300 BP. 

Most recent glacier fluctuations since the Little Ice Age (LIA) are recorded only for the 

Turtmann glacier. Reliable information on most Late Holocene glacier extents in the hanging 

valleys is very scarce. However, some information about the LIA maximum extent of some of 

the smaller glaciers does exists (Maisch et al. 1999).  
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4.5 Previous work in the Turtmann Valley 

Previous research in the Turtmann Valley focused on glacial and periglacial geomorphology 

as well as geomorphometry. Rock glaciers have first been studied by van Tatenhove and 

Dikau (1990) using geophysical methods. This work was continued by Pfeffer  (2000), von 

Elverfeld (2001), Nyenhuis (2005) and Roer (2005), working on permafrost distribution 

(Pfeffer, Nyenhuis) and rock glacier kinematics (von Elverfeld, Roer). Glacial research 

include the study of push moraines in the Turtmann glacier forefield (Eybergen 1986) and the 

observation of drumlin in the Augsttaelli (van der Meer and van Tatenhove 1992). Most 

recently, the barrage in the glacier forefield has been investigated by hydrological engineers, 

as the volume of the barrage is almost filled up with sediment. Technical modifications to the 

forefield have been studied in order to prevent further silting-up and keep the barrage 

functioning (Martinerie et al. 2005). The Late Glacial and Holocene moraine distribution has 

been studied by Wolff (2006), who models paleo snow-line altitudes based on his field 

mapping.  

A geomorphological map was compiled by Otto (2001) that was used to construct a first 

qualitative sediment flux model of the valley (Otto and Dikau 2004). The first study on 

sediment storage was carried out by Knopp (2001). 

Rasemann (2004) analysed the geomorphometric structure of the land surface using DTM 

data in GIS. A semantic modelling of geomorphological landforms based on the sediment 

cascade principle was performed by Löwner (2005). König (2006) used remote sensing 

methods on the HRSC data to derive grain-size distribution from sediment storage landform. 

The distribution of vegetation was studied using remote sensing techniques by Hörsch (2003).

 



5. Results 

 82 

5 Results 

5.1 Characteristics and spatial distribution of sediment storage landforms 

A total of 593 sediment storage landforms have been mapped in the fourteen hanging valleys 

of the Turtmann Valley in an area of around 58 km2 (Figure 5.1). About 75% of this area is 

covered by sediment; the remaining parts of the surface include bedrock, glaciers and lakes. 

Sediment is trapped in lakes and underneath glaciers, however these deposits will not be 

considered here. More than 50% of the land surface covered by sediment is classified as slope 

deposits that include talus slopes (20%), talus cones (2.5%) and block slopes (28.7%). 

Moraine deposits cover around 37% of the land surface, followed by 11% covered by rock 

glaciers and 2% by alluvial sediments and rock fall deposits (Table 5.1). Mean landform size 

ranges from around 10,000 m2 for alluvial deposits and protalus rock glaciers to more than 

175,000 m2 for moraine deposits, covering entire hanging valley floors. Slope storage 

landforms, talus slopes, talus cones and block slopes cover 42,000 m2, 35,000 m2 and 85,000 

m2 respectively. Rock glaciers have average sizes of 67,000 m2 for active forms, 23,000 m2 

for inactive ones and 72,000 m2 for relict rock glaciers.  

Table 5.1 Sediment storage size and altitudinal distribution 

Sediment storage 
landform type 

Number 
of 
objects 

Proportion of  
land surface 
(%) 

Area  
(106 m2) 

Mean 
area (m 2) 

Min. 
altitude 
(m) 

Max. 
altitude 
(m) 

Talus slope 191 14.2 8.1 42,250 2264 3328 
Talus cone 29 1.8 1.0 35,329 2199 3171 
Block slope 143 21.5 12.2 85,485 2150 3261 
Moraine deposit 89 27.4 15.6 175,075 2137 3227 
Rock fall deposit 24 0.4 0.3 10,442 2406 2936 
Alluvium 24 1.0 0.6 24,221 2152 2791 
Rock glacier (active) 36 4.2 2.4 67,113 2419 2968 
Rock glacier (inactive) 24 2.0 1.1 26,717 2426 2727 
Rock glacier (relict) 22 2.3 1.3 74,168 2237 2760 
Rock glacier (protalus) 9 0.2 0.1 11,811 2442 2789 

Total landform cover   593 74.7 42.5 
Other:    
Bedrock - - 13.2 
Glacier - - 1.1 
Lakes - - 0.1 

Total Area -  100 57.0 
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Figure 5.1 Land surface classification of the hanging valleys 
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The hanging valleys are located at altitudes between 2137 and 3589 m a.s.l. The highest 

accumulation of sediment is found at 3328 m. Figure 5.2A depicts the altitudinal distribution 

of the land surface area covered by the different storage landform types. Though influenced 

by the hypsometric distribution of the hanging valleys (Figure 5.2B), the distribution reveals a 

dominance of slope storage landforms in the upper locations (above 2700 m) in contrast to 

lower altitudes that are primarily covered by glacial and alluvial deposits. The location of rock 

glaciers shows a distinct correlation between altitude and state of activity, as active types are 

found above inactive and relict types. Rock fall deposits are found between 2400 and 2800 m, 

which indicates their position between slope foots and valley floors. 

 
Figure 5.2 A - Altitudinal distribution of classifi ed storage land surface. B – Hypsometric curve of the 
hanging valley area. 
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Mean geomorphometric parameters are given in Table 5.2. Slope inclination distribution 

allows for a distinction of landform types with steeper inclination of slope types (28-31o) and 

more gently inclined landforms like moraines and rock glaciers (19-23o); the lowest 

inclinations are observed for alluvial deposits (10o). The aspect of the different landforms 

shows little variation when considering average values (Table 5.2). However, a more detailed 

distribution pattern is observed in a directional histogram for the single landforms. Figure 5.3 

depicts the frequency distribution of mean aspect values for the single landforms classified 

into the 8 major directions. The superimposed signal of the general hanging valley orientation 

influences the data distribution as indicated by the two largest sectors facing ESE and WNW. 

Looking at the proportional distribution within the direction classes some trends are 

observable: Talus slopes dominate at northern directions as well as towards ESE. Block 

slopes in contrast are generally facing towards southern directions. Moraine deposits follow 

the general hanging valley orientations of ESE and WNW corresponding to their overall 

position in the central and lower parts of the hanging valleys. Active rock glaciers have a peak 

WNW, while rock fall and alluvial deposits do not reveal an orientation trend. Curvature is 

not a good indicator for feature characteristics at this scale. Mean values of the almost 600 

landforms don’t indicate any tendency for each of the curvature types. This is probably due to 

a large scatter of values that is averaged out by observing mean values only. 

Table 5.2 Geomorphometric parameters of storage landforms. 

Sediment storage 
landform type 

Mean 
slope 
(degrees)  

Mean 
aspect 
(degrees)  

Profile 
curvature  
(m-1) 

Tangential 
curvature 
(m-1) 

Max. 
curvature  
(m-1) 

Min. 
curvature  
(m-1) 

Mean 
curvature  
(m-1) 

Talus slope 31 157 -0.0018 -0.0015 0.014 -0.018 -0.0017 
Talus cone 28 171 -0.0013 -0.0007 0.013 -0.015 -0.0010 
Block slope 31 182 -0.0003 -0.0003 0.016 -0.016 -0.0003 
Moraine deposit 21 185 -0.0008 0.0001 0.018 -0.019 -0.0003 
Rock fall deposit 21 163 -0.0027 -0.0015 0.021 -0.025 -0.0021 
Alluvium 10 152 -0.0042 -0.0037 0.012 -0.020 -0.0040 
Rock glacier (active) 21 210 -0.0001 0.0001 0.021 -0.021 0.0000 
Rock glacier (inactive) 23 202 -0.0003 0.0006 0.022 -0.022 0.0001 
Rock glacier (relict) 19 168 -0.0002 0.0001 0.023 -0.023 0.0000 
Rock glacier (protalus) 22 194 -0.0006 -0.0008 0.021 -0.022 -0.0007 
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Figure 5.3 Directional frequency distribution of mean aspect values for sediment storage landforms. 
(Colours correspond to Figure 5.2) 

The analysis of secondary landform attributes (cf. chapter 3.2) focuses on the relative position 

of the landforms with respect to drainage divides and drainage ways, as well as the relative 

position of the landforms towards each other. The latter is expressed by the identification of 

toposequences. Table 5.3 shows minimum and maximum distances of storage landforms to 

the ridge and the drainage ways in the hanging valley. Distances have been calculated on a 

pixel basis and are given in metres. The spatial arrangement observed in these distances fits 

well to the landform types and their formative process behaviour. Block slopes do not have 

overhanging rock walls, hence they start at the ridges, while talus slope are located in a 

relatively small distance from the ridge separated by the rock wall. Rock glaciers are located 

relative to the drainage divide with increasing distance according to their status of activity. 

Moraine deposits cover areas within the largest maximum distance, including points at the 

hanging valley entries, while alluvial deposits are located at the largest minimum distance to 

the ridge. The position of the landforms types towards the drainage way is almost vice-versa. 

Glacial and alluvial deposits flank the creeks. Rock fall deposits, relict rock glaciers and talus 
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cones are located closest to the drainage ways, while active rock glaciers and block slopes 

cover the most distant locations (according to the minimum distance). 

Table 5.3 Mean minimum and maximum distance of storage landforms to ridges and drainage ways. 

Min. distance 
to ridge 

Max. distance 
to ridge  

Min. distance to 
drainage way  

Max. distance to 
drainage way 

Sediment storage 
landform type 

(m) (m) (m) (m) 
Talus Slope 35 1187 177 1806 
Talus Cone 153 800 70 1733 
Block Slope 0 1116 246 1994 
Moraine Deposit 203 1654 0 2138 
Rock fall deposit 295 999 113 1046 
Alluvium 463 1301 0 639 
Rock glacier (active) 73 1075 279 1764 
Rock glacier (inactive) 133 675 288 1451 
Rock glacier (relict) 192 1075 94 1605 
Rock glacier (protalus) 97 709 118 1786 
 

Seven toposequence types have been identified in the Turtmann Valley (Table 5.4) that 

illustrate the topographic, downslope neighbourhood of the storage landforms. The most 

frequent neighbourhood situation is toposequence type I: a talus slope or cone is located 

bellow a rock face and adjacent to the moraine valley fill, followed by alluvium parts at lower 

locations. Due to the high number of rock glaciers in the Turtmann Valley, their role in the 

toposequence distribution is quite strong; about 39% of the toposequences and 4 out of 7 

types (II, III, IV, and V) include rock glaciers. Here, talus derived rock glaciers dominate with 

28% compared to 11% moraine derived forms. Figure 5.4 depicts toposequences of the types 

I, II and VI in the Grüobtaelli hanging valley. In order to relate the toposequence approach to 

a functional relationship between adjacent landforms, the sediment flux needs to be 

considered (Table 5.4). Sediment flow directions and coupling of processes can be derived 

from the spatial landform distribution. With respect to the coarse sediment flow, the current 

transport cascade in the hanging valleys is very short, including a direct combination of 

primary source areas (bedrock, moraine deposits) and first and second order storage 

landforms. First order storage is the accumulation of material in closest proximity to the 

primary source area. In case of toposequence I this is the talus slope that takes up the rock fall 

debris. When sediment is transferred from this storage landform into another, for example by 

periglacial creep, the second storage landform in the cascade is formed. For example in 

toposequence type II, a rock glacier develops underneath a talus slope incorporating its debris. 

Most of the storage landforms in the sediment cascades are decoupled from the adjacent 

landform in the toposequence, caused for example by the absence of a process that removes 

coarse debris from landforms like rock glaciers or talus slopes. Debris flow activity is very 
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low and rock glacier creep usually simply overrides moraine deposits without adding to their 

storage volume. With respect to fine sediment, fluvial outwash processes and debris flows 

remove material and extend the sediment cascade into the main valley subsystem. 

Table 5.4 Landform toposequence mapped in the Turtmann valley. The gray shaded sequence parts 
represent a landform coupling in a coarse debris sediment cascade. 

I II III IV V VI VII 

Rock face Rock face Rock face Block slope Glacier Block slope Rock face 
Talus 
slope/cone 

Talus 
slope/cone 

Talus 
slope/cone 

Rock glacier Moraine 
Deposit 

Moraine 
deposit 

(Talus 
slope) 

Moraine 
deposit  

Rock-
glacier 

Rock glacier 
(active) 

Moraine 
deposit  

Rock-
glacier 

(Alluvium) Rock fall 
deposit 

(Alluvium) Moraine 
deposit  

Rock glacier 
(inactive) 

(Alluvium) (Rock-
glacier) 

 Moraine 
deposit 

 (Alluvium) (Rock glacier 
(relict)) 

 Moraine 
deposit 

 (Alluvium) 

  Moraine 
deposit 

 (Alluvium)   

  (Alluvium)     
Frequency:       
45 % 20 % 2 % 6 % 11 % 9 % 7 % 

 
Figure 5.4 Different toposequences found in the Grüobtaelli. The roman numbers indicate the 
toposequence type (cf. Table 5.4) 

5.1.1 Landform distribution within hanging valleys 

Of the fourteen hanging valleys have been investigated in the Turtmann Valley eight are 

located on the western side of the trough, and six are located in the east. The position of the 

central valley axis strikes perpendicular to the main valley longitudinal axis in east-west 

directions. Only the most northern hanging valleys differ from this orientation pattern towards 
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north and south (Table 5.5). Mean valley size is 4 x 106 m2, ranging between 1.7 x 106 m2 

(Simmigtaelli) and 8.3 x 106 m2 (Bortertaelli). The hanging valley altitude increases towards 

the south, following the general altitudinal trend from 2137 m in the Griebeltaelli to highest 

elevations (3589 m) attained in the Pipjitaelli. The mean altitudinal range between the 

hanging valley entry and the ridge is about 850 m. The relative storage area averages about 

75%; the exception from this distribution is the the Pipjitaelli with only 47% of the land 

surface covered by debris. This is influenced by a significant change in lithology that creates 

higher and steeper rock walls compared to the other hanging valleys, adding to the 

3-dimensional area.  

Table 5.5 Geometric characteristics of the hanging valleys in the Turtmann Valley 

Hanging 
Valley 

3D-Area  
 

Altitude (m) Orientation of central 
valley axis 

Storage Area (%) 

 (106 m2) Min Max   
Augst          2.45   2365 3085 E 79.7 
Blüomatt          4.00   2306 3079 E 78.6 
Borter          8.27   2150 3025 NE 68.6 
Brändji          4.32   2345 3396 W 58.4 
Chummetji          3.46   2259 3029 NW 90.2 
Frili          2.48   2384 3141 E 72.5 
Griebel          2.03   2137 2873 NE 86.7 
Grüob          6.03   2238 3169 W 79.7 
Hungerli          4.22   2298 3273 W 77.5 
Meid          5.35   2216 3084 E 78.2 
Niggeling          5.24   2154 3204 W 81.8 
Pipji          4.99   2431 3589 W 46.6 
Rotig          2.46   2252 2960 SE 84.7 
Simmig          1.67   2223 2849 SE 76 
Total        56.95       
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Figure 5.5 Relative landform storage type area (%) per hanging valley. 

The internal distribution of storage types in the hanging valleys is depicted by Figure 5.5. At 

first sight, each hanging valley seems to have its own composition of storage landforms. 

Though the distribution appears very heterogeneous, the variations between the three main 

and ubiquitous landform types, talus slopes, block slopes and moraine deposits are relatively 

small, within some exceptions. Talus slopes most often cover between 15% and 25% of the 

land surface. Larger relative areas are observed in Blüomatt- and Augsttaelli, while very few 

parts are covered by talus slope debris in the Chummetjitaelli (8%). The latter is clearly 

balanced by a dominance of block slopes here (50%). The block slope proportion ranges at an 

average between 20% and 30%, the smallest relative coverage being found in the Meidtaelli 

(17%). Moraine deposits cover at average between 35% and 45% of the hanging valley areas. 

The large and especially wide Meidtaelli stands out here, with 55% of the surface being 

covered with glacial sediments. The relative distribution of the remaining landform types 

shows very little patterns. However, the rock glacier distribution reveals a culmination of 

active rock glaciers in the hanging valleys to the east (Niggeling, Pipji, Hungerli, Grüob, 

Brändji). In the Hungerlitaelli block slopes and moraine deposits are almost equally 

distributed covering 30% of the land surface each. Rock glaciers contribute about 20%, while 

talus slopes and cones cover about 15% of the valley. Protalus rock glaciers and alluvial 

deposits are not observed in the Hungerlitaelli.  
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5.2 Geophysical surveys 

5.2.1 Detection of the regolith-bedrock boundary with seismic refraction 

surveying (SR) 

Refraction seismic soundings have been performed along 27 profiles in the Hungerlitaelli. 

Profiles have been placed on talus slopes, talus cones, rock glaciers, moraines and along 

central positions within the hanging valley (Figure 5.6). Most profiles spread parallel to the 

slope inclination; but some perpendicular profiles have been added. Applying a geophone 

spacing of 3, 4, and 5 m spreads of 69, 92 and 120 m respectively could be covered. 

Subsurface structures have been detected at a maximum depth of 27 m. Table 5.6 gives a 

summary of all seismic profiles. A detailed collection of all seismic modelling results can be 

found in Appendix A. 

All seismic records show an internal composition of two to three different subsurface layers. 

Surface velocities of most of the spreads in an upper zone between 0.5 and 10 m thick are 

between 200 and 800 m s-1. An intermediate layer of increased velocity follows in some of the 

soundings, represented by velocities between 650 and 2000 m s-1. This zone is located at 

depths from 2 to more than 30 m. 23 soundings show subsurface conditions that create wave 

velocities of more than 2900 m s-1. Seventeen of them reveal a refractor layer that was 

interpreted as bedrock with velocities 2900 and 4000 m s-1. The overburden layers above the 

bedrock are interpreted as loose debris at the surface (200–800 m s-1) and compacted debris 

within the landform (700–2000 m s-1). Higher velocities in regolith and associated compaction 

can be due to different grain compositions, water and/or ice contents and hence may indicate 

different accumulative times or processes. Infiltration of fines through large pores at the 

surface leads to a reduction of pore space in deeper layers (van Stein et al. 2002) that can also 

cause higher velocities. However, buried moraine deposits may be occurring within talus 

slope as well, representing the action of different processes in the formation of a landform. 

Permafrost has been observed in ten surveys, provoking wave speeds between 3500 and 4500 

m s-1. 

Permafrost is clearly observable in active rock glaciers (SR04_5r/l, SR05_6, SR05_8, 

SR05_13), which hinders the distinction of the deeper bedrock layer. Thus, no sediment 

thickness information could be derived for rock glaciers. At the foot of one talus slope 

(SR05_1) a large permafrost area is observed, hence, here the dipping bedrock surface cannot 
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be detected throughout the entire profile. In some cases geophysical surveys proved the 

permafrost occurrence (compare for example SR05_1 and ER05_1). At two locations no 

distinct layering can be observed. These profiles are both placed on glacial sediments. Spread 

SR04_4 is located on the lateral margin of a rock glacier draining a small cirque. This margin 

is interpreted, based on the sedimentological composition, as a lateral moraine merged with 

the rock glacier side. Wave velocity of this material increases gradually downwards after a 

shallow surface layer (mean depth 2.8 m) of 320–700 m s-1. Profile SR05_3 is a combination 

of two overlapping spreads along the thalweg in the glacier forefield. The surface sediment 

cover is composed of large clasts (size of 0.5–2 m), under which the sound of running water 

could be heard from inside the slope. The modelled results reveal similar subsurface 

characteristics in the two profile parts with increasing velocities downwards. However, the 

lower part (left) of the profile shows an increase of velocity towards the surface in the central 

part. This could probably be due to a large boulder buried in the debris that accelerates the 

wave speed.  

 
Figure 5.6 Location of seismic profiles (SR) and sediment storage landforms in the Hungerlitaelli. (For a 
description of landform colours please refer to Figure 5.1). 
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Figure 5.7 depicts the modelling results of survey SR04_2. This survey will be discussed here 

in more detail in order to exemplify the interpretation of the seismic modelling results. Survey 

SR04_2 was placed on a small talus slope below the Hungerlihorli peak at an altitude between 

2572 and 2624 m. The uppermost geophone was located about 1 m beneath the bedrock face. 

The geophones were spaced 3 m apart generating a profile of 69 m in length. Shots were 

triggered between every second geophone at a distance of 6 m. Two shots have been placed 

before and after the spread at -7.5, -1.5, 70.5 and 75.6 m. The travel-times geometry indicates 

a two-layer composition of the underground. A first layer is characterised by a wave velocity 

of 350 m s-1 and dips parallel to the surface with depths increasing from 2.2 to 6 m. The 

surface of the second refractor has more irregular profile (Figure 5.7C). A sharp drop of 5 m 

at a distance of 20 m to the cliff interrupts a first surface parallel part close to the rock face at 

a depth of 2–4 m. Below this drop the refractor surface has a slight curved shape dipping at 

depth between 10 m in proximity to the drop and 6 m towards the end of the profile. The 

modelled travel-times by the network raytracing method correspond quite well to the 

observed ones, except for one shot in the centre of the spread (cf. Figure 5.7B), where the 

observed travel-times show some irregularities. This could be caused by wrong picking of the 

first arrivals. A comparison between the network raytracing and the tomography model shows 

a comparably good representation of the shape of the lower refractor, including the sharp 

drop, but slightly lower wave velocities in the tomography model. However, no indication for 

the upper refractor is observable from the tomography results. Thus, the location of the 

refractor surface is confirmed by two interpretation methods and can be regarded relatively 

accurate.  

According to the wave velocities of these three layers the internal composition of this slope is 

interpreted as a regolith cover with increasing compaction and density downwards (velocities 

350 to 800 m s-1) on top of a (possibly strongly weathered and fractured) bedrock surface with 

a velocity of 2900 m s-1. The observed bedrock step in proximity to the rock face may indicate 

a buried rock face or step. 

The propagation velocities of waves in debris and bedrock material observed in this study 

correspond well to values given in general textbooks (cf. Chapter 3.3) and preceding studies 

in the Turtmann valley by Pfeffer (2000), Knopp (2001) and Nyenhuis (2005). Pfeffer (2000) 

and Knopp (2001) reported p-wave velocities between 100 and 2000 m s-1 for loose debris, 

between 1700 and 4000 m s-1 for frozen ground and 2600–4000 m s-1 for bedrock. Nyenhuis 

(2005) looking for Permafrost in the upper Hungerlitaelli stated wave velocities between 300 
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and 1900 m s-1 for unfrozen debris and values of 2700–3800 for permafrost locations. 

However, Nyenhuis (2005) never reached bedrock in his study. 

 

Maximum regolith thickness derived from seismic refraction soundings in the Hungerlitaelli 

for talus landforms range from 18 m on block slopes to more than 30 m on talus cone. 

Moraine deposits show a sediment thickness of more than 33 m in the central part of the 

Hungerlitaelli on former basal moraine deposits and of more than 16 m on a lateral moraine at 

the valley entry. Knopp (2001) gives similar values for the neighbouring Braendjitaelli 

towards the south. He observed the bedrock surface underneath talus cones at 20 to more than 

36 m, while for glacial deposits he gives thickness values between 5 and 28 m. Rock glaciers 

in his study have been estimated to be at least 13-24 m thick. For alluvial deposits in the 

valley bottom Knopp (2001) observed sediment thickness between 2 and 11 m. 
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Table 5.6 P-wave velocities and refractor depths of seismic profiles in the Hungerlitaelli. 
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Figure 5.7 Sounding SR04_2: Model of refractor locations and velocity distribution (A), travel-times (B) 
and cross-section of refractor layers (C). The seismic modelling includes the location of the refractor 
surfaces calculated with the network raytracing method and of the velocity distribution derived from the 
tomography modelling. The numbers give the velocities (in m s-1) of the modelled layers using the network 
raytracing method. Diagram B shows the observed (black lines) and modelled (coloured lines) travel-times 
of this sounding. The colour scale on the right refers to the modelled velocity distribution derived from the 
tomography modelling. The lower diagram (C) depicts a cross-section through the talus slope indicating 
the location of the two observed refractor surfaces. 
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5.2.2 Detection of the regolith-bedrock boundary using Electric Resistivity 

Tomography (2D-ER) 

Fifteen, two-dimensional electric resistivity soundings (2D-ER) were conducted in the 

Hungerlitaelli (Figure 5.8). On talus slopes, talus cones and block slopes profiles were spread 

parallel and, at two locations, perpendicular to the slope inclination. In central positions of the 

hanging valley, the profiles followed the line of steepest inclination and lowest elevation 

(thalweg). Profile lengths were 120, 160 and 200 m with electrode spacing of 2, 3 and 4 m, 

respectively. The penetration depth of the electrical current in the subsurface was between 12 

to 30 m with a mean depth of 22 metres. Table 5.7 gives a summary of the 2D-ER 

measurements. The graphics of the modelled resistivities along all profiles can be found in 

Appendix B.  

 
Figure 5.8 Location of the electric resistivity profile (2D-ER) and sediment storage landforms in the 
Hungerlitaelli. (For a description of landform colours please refer to Figure 5.1). 
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Resistivities generally ranged between < 3 k Ω m and 50 k Ω m. Only two profiles, ER05_1 

and ER05_4, show values above 100 k Ω m. These high resistivities can be caused by a local 

occurrence of permafrost or due to very dry conditions. At profile ER05_1 resistivities 

increased with depth at the lower end of the profile from below 10 k Ω m to values above 

100 k Ω m. This slope is located in the recently deglaciated forefield of the Rothorn glacier, 

and high resistivity at this location is interpreted as permafrost, possibly the remains from a 

frozen lateral moraine now buried by talus deposit. The profile ER05_4 was a critical survey 

with strong contact difficulties between the electrodes and the rocks. Therefore, very few data 

points entered the inversion modelling produced a high RMS error of more than 25%. 

Permafrost is unlikely in this situation (south facing slope at 2700 m altitude) and these high 

values are possibly due to very dry debris with large, air-filled pores. One profile, ER05_4, 

showed values below 5 k Ω m over most of the spread. The location of this profile in the 

thalweg of the glacier forefield coincides with the main drainage way of the glacier’s 

meltwaters. These waters seep into the coarse debris some 50 m above this location and 

percolate downhill below the surface, which can be observed acoustically at few locations. 

This subsurface drainage may be responsible for the low resistivities along the profile, even 

though the surficial rock cover appears to be dry.  

Table 5.7 2D-ER soundings in the Hungerlitaelli. 

Length:  Spacing:  Max. depth:  Boundary observable by 
strong resistivity contrast 

Boundary 
interpreted as: 

Profile 
name: 

(m) (m) (m) (yes/no)  
ER04_1 200 5 26 yes Permafrost 
ER04_1q 160 4 21 yes ambiguous 
ER04_2 160 4 24 no -- 
ER04_3 80 2 12 yes Bedrock 
ER04_4 160 4 15 yes Bedrock 
ER04_5 200 5 30 yes Bedrock 
ER04_5q 160 4 18 yes Bedrock 
ER04_5q2 160 4 19 yes Bedrock 
ER04_6 120 3 18 yes Bedrock 
ER05_1 120 3 18 yes Permafrost 
ER05_2 160 4 24 no -- 
ER05_3 200 5 30 no -- 
ER05_4 160 4 25 yes Bedrock 
ER05_5 160 4 24 no -- 
ER05_6 200 5 30 yes ambiguous 
 

In order to acquire the apparent resistivity for the underlying bedrock in the study area some 

profiles were located in immediate proximity to surficial bedrock like rock walls or outcrops. 

Figure 5.9 shows profiles ER04_5q and ER04_5q2 in a combined inversion. The two 

soundings overlap in the central part by 60 m. The eastern (right) part of the profile passes a 
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rock wall at a distance of app. 2 m. Thus, the sharp resistivity drop from 20 k Ω m to less than 

7.5 k Ω m at a depth of app. 3.5 to 5 m below the surface is interpreted as the bedrock surface. 

The same feature is apparent on the western (left) half of the profile at a depth of 13 m. This 

boundary can be detected at the perpendicular profile ER04_5 and is observable in the 

corresponding SR soundings (RS04_1 and RS04_3) as well. The boundary observed here is 

interpreted as the regolith- bedrock boundary with a resistivity value between 5 k and 7.5 k Ω. 

In earlier electrical survey studies on comparable landforms in the Turtmann valley, Nyenhuis 

(2005), studying the permafrost distribution in the source area of a rock glacier near the 

Rothorn glacier (upper Hungerli hanging valley), apparently never reaches the bedrock. His 

measurements reveal resitivities above this threshold. Pfeffer (2000) and Knopp (2001) also 

measured resistivity in the southern adjacent hanging valley of the Hungerlitälli the 

Brändjitälli. They considered resistivity values between 2 and 10 k Ω m representative for 

bedrock in the Brändjitälli, whose lithology is identical to the Hungerlitälli. However. recent 

measurements on free rock faces of the same lithology in the eastern adjacent Steintälli by 

Krautblatter (submitted) revealed values between 8 k Ω and 16 k Ω. The difference in 

resistivity can be explained by a higher moisture content and higher degree of weathering of 

bedrock under a regolith cover and resulting lower resistivitiy. Geophysical textbooks give a 

wide range values for metamorphic rock (cf. Table 3.4), which cover the observed resistivities 

in this study as well.  

 
Figure 5.9 Combined inversion of ER profiles ER04_5q and ER04_5q2. Bedrock boundary is indicated by 
the white dashed line. 
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Seven of the 15 2D-ER profiles show surface parallel structures expressed by distinct drop of 

resistivity within the range given above. Hence, these structures are interpreted as the bedrock 

surface. Profiles ER04_3, ER04_4, ER04_5, ER04_5q, ER05_q2, ER04_6, and ER05_6 show 

this sudden decrease of resistivity along a linear structure. These structures were incorporated 

in the modelling and interpretation of the refraction seismic and ground penetrating radar data 

in order to asses the probability of bedrock occurrence. 

 

Profile ER05_6 (Figure 5.10) was located at the lowest possible location (2591 m) in the 

central part of the hanging valley on a slightly inclined, flat meadow between the rock 

glaciers to the south and the large lateral moraine that divides the hanging valley. The surface 

is covered by former basal moraine deposits. Though the subsurface conditions at profile 

location ER05_6 show the strong resistivity drop, the location of this boundary doesn’t fit to 

the expected position of the bedrock surface at this location. Corresponding the seismic data 

failed and other explanations need to be considered for the resistivity change observed. One 

possibility is the occurrence of subsurface water. In this part of the Hungerlitälli no surficial 

drainage exists. Glacial meltwater infiltrated the coarse debris already some 200 m above this 

location (2785 m). Further down the valley the meltwaters of the glacier and the rock glaciers 

appear at the surface again below the front of the inactive rock glaciers in the centre of the 

valley (2540 m). The lateral and vertical position of the low resistivity values in profile 

ER05_6 could indicate the underground drainage of water from the Rothorn glacier cirque. 

The two distinguishable positions of the resistivity boundary can be explained by two 

different sources of subsurface flow. The left (east) side of the profile is influenced by water 

originating possibly from Rothorn glacier and the rock glacier near the LIA maximum of the 

glacier. The inclination of this boundary however, could be affected by the bedrock location. 

The boundary less deep at the right (western) end of the plot could be due to meltwater from 

the rock glacier front towards the south of the profile. This rock glacier is one in a series of 

three rock glacier originating in the western, non-glacierised part of the Rothorn cirque. 

 

Measurements on talus slopes often show resistivities of more than 20 k Ω m at the slope 

surface, usually towards the foot of the slope. These values are attributed to dry, coarse debris 

accumulations with large pores, where the finer sediments have been washed out (cf. ER04_1, 

ER04_3, ER04_5, and ER05_2). Where these resistivity values appear below the surface, they 

are attributed either to dry conditions and large pores, due to buried blocks within the 

landform, e.g. in the thalweg in the central part of the valley, or on the moraine/relict rock 
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glacier at the entrance (ER04_4, ER04_6, ER05_6). Alternatively, these values represent 

small local ice lenses within slopes, as for example at the rectilinear slope at the valley 

entrance. 

 
Figure 5.10 Inversion of profile ER05_6 located in the centre of the Hungerlitaelli. A strong resistivity 
change is observed at two locations that is attributed to the groundwater situation assumed. 

5.2.3 Detection of the regolith-bedrock boundary with ground penetrating 

radar (GPR) 

In cooperation with Dr. Oliver Sass from Augsburg University, six locations in the 

Hungerlitälli were investigated using GPR. Three profiles were spread on moraine deposits, 

two profiles on talus cones and one profile on a block slope (Figure 5.11). Profile lengths 

ranged from 180 to 290 m. Maximum penetration depth of the radar waves using a 25 MHz 

antenna was 50 m on a large talus cone and 38 m on moraine deposits (Table 5.8). All profiles 

investigated reveal reflections that were interpreted as the regolith-bedrock boundary. 

However, two profiles only reflected small parts of the bedrock surface towards the end of the 

spread in close proximity to surface bedrock (GPR04_2, GPR04_5). Bedrock was detected at 

mean depths of between 13.6 and 22 m below the ground considering profiles with 

continuous bedrock reflectors only. Regolith cover is thinnest on the block slope (12.7 m 

GPR04_4, without moraine surface). Moraine deposits were accumulated at mean thicknesses 

between 16.1 and 19.8 m above the bedrock surface, with a maximum of more than 30 metres 

of deposited glacial sediment (GPR04_3, GPR04_4, GPR04_6). The large talus cone in the 

centre of the Hungerlitälli has a regolith cover of up to 29.5 m (GPR04_1). These boundaries 

are often in good agreement with the seismic records.  
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Figure 5.11 Location of GPR-profiles and sediment storage landforms in the Hungerlitaelli (For a 
description of landform colours please refer to Figure 5.1). 

Figure 5.12 depicts the result of one GPR sounding (GPR_04_6) and will be interpreted 

below in detail. All radargrams can be found in Appendix C and but will not be discussed 

here.  

Located at the glacier forefield of the Rothorn glacier, this profile stretched uphill on moraine 

deposit from 2780 to 2840 m and terminated at the formerly ice covered rock face below 

today’s glacier margin. A strong reflector between 200 and 250 m of the profile at a depth of 

around 6 m is interpreted to be the rising bedrock surface towards the rock face. Weak, 

crossed reflectors below this zone represent internal structures, joints and fractures, within the 

bedrock (cf. Sass in press), strengthening the argument for bedrock here. The strong shallow 

reflector can be traced along the profile downwards to the left. In the following section 

(140-200 m) two reflectors are visible; a shallow one parallel to the surface, and a reflector 

dipping into the ground. Thus two possibilities for the interpretation of the bedrock surface 

are given here. However, following the profile downwards (left) more linear reflections are 

observable at a level below the shallow reflector. These linear reflections appear to strong for 

internal bedrock structures and hence are interpreted as regolith structures that could be 

related to glacial or glaciofluvial deposition of different layers of sediment. Thus the bedrock 

surface is more probably represented by the dipping reflector at depths between 10 and 22 m 



5. Results 

 103 

below. The upper reflector may be caused by a decrease in porosity or water content. The 

glaciers drainage water trickles through the rocks as the slope starts dipping and flows below 

the surface. Towards the left end of the radargram (0 – 70 m) the deep reflector seems to 

disappear between the linear reflectors and the bedrock surface may not be detected without 

doubt here. Thus, the lower regolith boundary may be located here at depth of 34 m or more. 

 
Figure 5.12 Radargram of survey GPR04_6 in the forefield of the Rothorn glacier, upper Hungerlitaelli. 
Internal reflections are marked in red. The upper image shows the recorded data without including the 
topography, the lower image includes the topography. 
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Table 5.8 Ground penetrating radar profiles and detected bedrock surfaces in the Hungerlitaelli 

Profile ID  Landform  
type 

Profile  
length 

Trigger  
Spacing  

Antenna  
frequency  

Radar 
wave 
velocity 

Max. wave  
penetration  

Bedrock  
reached  

Bedrock  
depth, 
range 

Bedrock  
depth, 
mean 

  (m) (m) MHz (m/ns)  (m) (yes/no)  (m) (m) 

GPR04_1 Talus cone /rock glacier 290 1 25 0.14 40 yes 8.2 - 29.5 22.0 

GPR04_2 Talus cone  180 1 25 0.14 50 partially 6.8 - 13.9 11.1 

GPR04_3 Moraine deposit 200 1 25 0.1 38 yes 13.5 - 25.6 19.8 

GPR04_4 
Block slope/Moraine 

deposit 
280 1 25 0.14/0.1 30 yes 9.5 - 19.5 13.6 

GPR04_5 Moraine deposit 235 1 25 0.1 38 partially 4.5 - 7.7 6.0 

GPR04_6 Moraine deposit 220 1 25 0.1 34 yes 1.5 - 31.3 16.1 
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5.3 Sediment volume quantification 

The sediment volume quantification was performed at two spatial scales of investigation: (1) 

the Hungerlitaelli hanging valley, and (2) the entire Turtmann Valley.  

5.3.1 Sediment volume of the Hungerlitaelli 

The modelling of the regolith thickness within the Hungerlitaelli was based on 35 transects 

through the hanging valley (Figure 5.13). Transects were placed throughout the hanging 

valley and coverd the locations of the geophysical profiles and additional locations, where no 

geophysical surveying was performed.  

 
Figure 5.13 Interpolated regolith thickness in the Hungerlitaelli. Geophysical data is indicated in yellow. 
Blue lines indicate the transects used for the interpolation. The interpolation was done with the 
TOPOGRID algorithm in ArcGIS 9.1. 

Figure 5.14 depicts two profiles used in the interpolation that will be discussed here in detail 

in order to illustrate the interpolation procedure. The cross profile (Figure 5.14A) is located in 

the centre of the Rothorn cirque, running from a rock face at the eastern end, crossing the 

lateral moraine at the left of the graph and the active rock glacier at the right of the graph. The 

longitudinal transect (Figure 5.14B) starts at the roche mountonée below the glacier front, 

follows the eastern thalweg into the centre of the hanging valley and runs further down along 

the creek terminating at the northern margin of the relict rock glacier at the exit of the 

Hungerlitaelli (Figure 5.13.X1 A in red, B in blue). Transect A was interpolated using a 

double parabolic interpolation, which produces a smooth, rounded profile that should 

resemble a glacial trough. The interpolated and measured location of the regolith-bedrock 
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boundary reveals the surface parallel dipping at the talus slope towards both ends of the 

profile (cf. SR05_4, Appendix A). Towards the east end of the transect, the geophysical 

information reveals a shallow regolith thickness, with the bedrock surface located only 5–10 

m below the surface. The central interpolation points are all assumed, as no depth information 

is available here. The assumed minimum sediment thickness of 40 m below the lateral 

moraine is based on the GPR sounding GPR04_5 that did not detect the bedrock within the 

maximum penetration range of the radar waves at 38 m below here. Thus, this thickness is 

regarded as a minimum value for this location. The thickness of the rock glacier at the western 

end of the transect was assumed to be 35 m. This depth includes a height difference of the 

lateral rock glacier margin above the surface of about 10 m at this location and an assumed 

additional thickness of 25 m. 

 

Transect B was interpolated using a linear interpolation in order to avoid over deepening 

between the widely spaced points. The bedrock profile in close proximity to the roche 

moutonnée indicates the existence of a bedrock platform at a depth of 5-8 m, followed by a 

drop of the bedrock to a depth of 30 m under ground (cf. GPR04_6) below the moraine 

deposits. At the crossing with transect A another bedrock platform at 5-10m depth is visible 

(SR05_4, SR05_5). Towards the valley bottom in the centre of the Hungerlitaelli seismic 

refraction soundings detected the bottom of the regolith at 30 m (Profile X-location 800 m, 

SR05_15). In between these two locations an additional bedrock point underneath the onset of 

a rock glacier was assumed to be situated at a depth of 10 m. Further down the valley, a depth 

of 30 m was assumed at position 1100 m serving as an interpolation point in between 

SR05_15 the next depth information backed up by geophysics (1310 m, GPR04_1). GPR04_1 

starts at the valley floor next to a protalus rock glacier and runs across the rock glacier and 

onto a talus cone. Though, the radar waves couldn’t detect the bedrock without doubt here, a 

minimum depth of 25 m was assumed according to the maximum wave penetration. Towards 

the exit of the hanging valley, where the relict rock glacier crosses the trough shoulder, a 

sediment thickness of 15 m was used, based on a correspondent ER survey (ER04_6) next to 

the southern margin of the relict rock glacier. The rock glacier tongue on the trough wall rises 

only 5-8 m above the neighbouring surface. A sediment thickness is assumed to be 10 m for 

this part of the rock glacier, as the relict rock glacier may have collapsed substantially and did 

not erode much of its underlying base material while still active. 
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Figure 5.14 Bedrock transects through the Hungerlitaelli. The dark line represents the land surface, the 
grey line is the interpolated bedrock surface based on the squares. The gray diamonds represent bedrock 
surface information derived from geophysics, the black squares show points of assumed depth. Transect A 
– Cross profile through the Rothorn cirque (vertical exaggeration: 3.75:1), Transect B – Longitudinal 
profile along the central thalweg of the Hungerlitaelli starting below the Rothorn glacier and terminating 
at the valley entry (vertical exaggeration: 4.2:1). 

Based on this interpolation of the sediment thickness debris cover, the sediment volumes are 

quantified for each landform of the Hungerlitaelli. The Hungerlitaelli has a total area of 2.7 

km2 with 92 % being covered by debris. The 54 landforms that store the sediment include 18 

talus slopes, 3 talus cones, 8 block slopes, 9 moraine deposits, 5 rock glaciers in each activity 

status (active, inactive, relict) and 1 rock fall deposit. Talus landforms cover about 44% of the 

land surface, followed by rock glaciers (25%) and moraine deposits (22%) (Table 5.9).  
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The interpolated sediment thickness varies strongly within the different landform types 

(Figure 5.15). Talus slopes and block slopes have the thinnest debris cover of 1–18 m. As 

revealed by the geophysical surveys these landforms often show a strong increase of debris 

depth down slope. Further, many upper locations of the hanging valley are included in this 

class, where the debris cover is estimated to be less than 1 m on average. Talus cones have a 

considerably higher sediment thickness due to their formative process. The channelling of 

debris input from above limits the accumulation area and hence increases the debris thickness. 

Moraine deposits show the largest scatter of thickness values. This class includes all types of 

moraine deposits including wide-spread but thin basal moraines and linear but higher lateral 

deposits. The largest thickness values are observed for inactive and relict rock glaciers. These 

values result solely from what is assumed to bed bedrock as no geophysical information is 

available here. However, the interpolated sediment thickness of inactive and relict rock 

glaciers, located in central positions of the valley, possibly includes overridden glacial 

deposits. Hence, their sediment thickness is most probably overestimated. Active rock 

glaciers are mostly located on steeper, upper positions, where the underlying till base is 

expected to be less and thus not considered here. In order to correct both rock glacier and 

moraine deposit thicknesses the rise of the lateral rock glacier margin above the surrounding 

surface is used for the thickness estimation. The inactive rock glacier complex in the centre of 

the Hungerlitaelli has a lateral height of 10–20 m, while the relict rock glaciers rise between 

5–10 m above the surrounding areas. The interpolated depth of these landforms is 

overestimated by 30–60%. The remaining sediment volume, derived from the difference 

between the rock glacier height and the interpolated thickness is then added to the moraine 

deposit class. This addition to the moraine deposit volume increases mean sediment thickness 

from 19 m to 35 m. 
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Figure 5.15 Boxplot of storage landform sediment thickness derived from the interpolation in the 
Hungerlitaelli. The single marks represent extreme values that lie outside a range of more than 1.5 box 
length away from the upper quartile. 

The total sediment volume stored in the Hungerlitaelli, calculated from the sediment thickness 

interpolation is 33.7 ±10.1 x 106 m³. Of this volume 64% is stored in moraine deposit 

landforms resulting from both the large area covered by these deposits and the thickness of 

the sediment layer. Talus slope deposits store about 20% of the total debris. Rock glaciers 

hold about 15% of the accumulated material using the corrected sediment thickness. The 

volumes of rock glaciers are calculated assuming a debris content of 30% for active types and 

50% for inactive types. 

The interpolated mean sediment thickness values from the Hungerlitaelli will be used for an 

assessment of the debris volumes in the other hanging valleys of the Turtmann Valley. 
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Table 5.9 Area and volume distribution of sediment storage landforms in the Hungerlitaelli. Rock glacier volumes are calculated assuming an ice content of 50% for 
active, and 30 % for inactive rock glaciers. Mean depth of moraine deposits, inactive and relict rock glaciers include uncorrected values in brackets (see text). 

Storage landform type  Number  3D-Area  Debris volume  Mean Depth  
  (106 m2) % of total Area  (106 m3) %  20 % Error (10 6 m3) (m) 
Talus slope 18 0.46 16.81 1.73 5.12 0.52 5.1 

Talus cone 3 0.06 2.20 0.96 2.85 0.29 16.0 

Block slope 8 0.69 24.98 4.03 11.97 1.21 5.8 

Moraine deposits 9 0.60 21.91 21.65 64.23 6.50  35.8 (18.9) 

Rock fall deposits 1 0.02 0.56 0.31 0.92 0.09 20.2 

Rock glacier (active) 5 0.21 7.66 1.06 3.14 0.32 15.0 

Rock glacier (inactive) 5 0.15 5.46 0.95 2.81 0.28 11.1 (29.7) 

Rock glacier (relict) 5 0.35 12.61 3.02 8.96 0.91 7.6 (29.0)  

        

Total storage 54 2.54 92 33.71  10.11  

Total hanging valley   2.76 100  100   
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5.3.2 Sediment volume of the Turtmann Valley  

The sediment volume of the Turtmann Valley is determined for the four sediment flux 

subsystems defined in chapter 2 (Figure 2.2): (1) Hanging valleys, (2) glacial trough slopes, 

(3) Turtmann glacier, and (4) the main trough (Figure 5.16). 

 
Figure 5.16 Location of the sediment storage subsystems and sediment source areas 

5.3.2.1   Subsystem hanging valleys 

The Hungerlitaelli is taken as a representative for the remaining hanging valleys. Inspite of 

differences in size, orientation, most of them share a uniform lithology, tectonics and the same 

climatic conditions. The storage landform composition is regarded as typical for a hanging 

valley of the Turtmann Valley (cf. chapter 5.1.1), though two landforms types, alluvium and 

protalus rock glaciers are not observed here. Table 5.10 shows the distribution of modelled 

sediment storage volumes for all hanging valleys based on the mean sediment thickness of the 

different landform type observed in the Hungerlitaelli. Alluvial deposits were quantified using 
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the assumed sediment thicknesses of 2 m, based on literature values and own estimations. 

Protalus rock glaciers were quantified by applying the mean frontal height for each individual 

landform.  

Landform volumes were calculated in two scenarios. Scenario I uses the mean debris depth 

corrected for rock glaciers and moraines. Scenario II includes the uncorrected, interpolated 

debris thicknesses.  

 

A total sediment volume of 750.3 ±360.3 x 106 m³ (Scenario I) or 498.4 ±249.2 x 106 m³ 

(Scenario II) is accumulated in the hanging valleys of the Turtmann Valley. The sediment 

storage distribution is dominated by moraines that contain between 77 % (I) and 60 % (II) of 

the total debris content of the hanging valleys (Figure 5.17). Slopes store 18 % and 25 % of 

sediment, respectively, while rock glaciers take up 4 % (I) or 15 % (II). Active and inactive 

rock glacier volume considers a debris content of 30 % and 50 %, respectively. Relict rock 

glaciers are considered to be free of ice. Protalus rock glaciers have not been studied by 

previous studies in the Turtmann Valley (Nyenhuis 2005, Roer 2005) and no information on 

their activity is available. Their volume was calculated without consideration of potential ice 

contents. Alluvium and rock fall deposit landforms include less than 1 % of the total sediment 

volume modelled in both scenarios. Scenario I amplifies the role of glacial storage, while 

scenario II strengthens the role of periglacial storage, especially in relict rock glaciers. 
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Table 5.10 Modelled sediment storage volumes in the Turtmann hanging valleys. Volumes for active and inactive rock glaciers consider debris contents of 30 % and 50 
%, respectively. 

Scenario I  Scenario II  Storage landform type Number  Area 
 

(106 m2) 
Mean depth  

(m)  
Volume  
(106 m³) 

50 % error 
(106 m3 ) 

Mean 
depth (m)  

Volume  
(106 m³) 

50 % error 
(106 m3 ) 

Talus slope 191 8.1 5.1 41.2  20.6  5.1 41.2  20.6  
Talus cone 29 1.0 16.0 16.4  8.2  16.0 16.4  8.2  
Block slope 143 12.2 5.8 71.0  35.5  5.8 71.0  35.5  
Moraine deposit 89 15.6 35.8 558.3  279.1  19.0 295.4  147.7  
Rock fall deposit 24 0.3 20.2 5.1  2.5  20.2 5.1  2.5  
Alluvium 24 0.6 2.0 1.2  0.6  0.5 1.2  0.6  
Rock glacier (active) 38 2.3 15.0 10.2  5.1  15.0 10.2  5.1  
Rock glacier (inactive) 24 1.1 11.1 6.0  3.0  29.7 9.2  4.6  
Rock glacier (relict) 22 1.3 7.6 10.0  5.0  29.0 47.6  23.8  
Rock glacier (protalus) 9 0.1 9.5 1.4  0.7  9.5 1.4  0.7  
     0.0                      0.0  
Total 593 42.5       750.3   360.3   498.4  249.2  
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Figure 5.17 Comparison of volume distribution between scenario I (A) and scenario II (B) in all hanging 
valleys. Main differences between scenario I and II result from correction of rock glacier thicknesses. 

5.3.2.2   Subsystem main valley floor 

The trough area was mapped on aerial photos and includes the glaciofluvial terraces and the 

avalanche and debris flow cones that have been formed in the bottom of the valley.  

A maximum depth threshold value was applied in the calculation of the SLBL to prevent the 

algorithm from over deepening the trough. Unfortunately, no information about valley fill 

thickness is available for a valley of this size. Detailed trough depth information exists for the 

Rhone Valley, where several geophysical surveys have been conducted (Finckh and Frei 

1991, Pfiffner et al. 1997, Rosselli and Olivier 2003). These studies revealed a postglacial 

filling between 400 m at Turtmann and about 900 m near Lake Geneva. However, the Rhone 

Valley is about 45 times bigger than the Turtmann Valley, draining an area of 5220 km2. For 

the 24 km2 large Rein Valley in the German Alps, Schrott et al. (2003) determined a valley fill 

maximum depth of up to 20 m, a value that has been questioned by recent radar investigations 

by Sass and Kraublatter (accepted), who failed to detect the bedrock boundary within a 

maximum penetration depth of the radar waves of 30-40 m. For the Turtmann Valley a 

maximum depth of 75 m is assumed and used in the SLBL calculation. However, this value 

will require verification by geophysical surveying in the future. 

Figure 5.18 depicts the modelled trough base, derived from the SLBL procedure. The bedrock 

surface modelled is of parabolic shape, defined by the SLBL parameters described in chapter 

3.3.2. One characteristic of the SLBL algorithm is the dependence on the valley floor width. 

At wider parts of the valley floor the SLBL produces a deeper surface, in contrast to narrow 

parts, where the surface is less deep. Consequently, a surface is produced that may not 
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correspond to a realistic subglacial bedrock surface. This artificial surface contains sinks 

upstream of narrow valley parts. In reality these narrow parts would have resulted in the 

formation of steep gorges, corresponding to the two gorges located in the Turtmann Valley. 

Thus, these parts are underestimated by the SLBL modelling. 

 

 
Figure 5.18 A – 3-dimensional shaded relief image (DTM 5m) of the modelled glacial trough base. The 
valley floor part of the DSM has been lowered using the SLBL procedure. The curvature of the modelled 
bedrock surface corresponds to the mean trough slope profile curvature. B – Depth of the modelled valley 
fill. Bright colours represent deeper areas, dark colours shallower parts. C – Close-up of the modelled 
trough surface showing the deeper surface (dark colours) in the wider valley parts (foreground) and a 
decrease of depth (bright colours) at the narrow locations (background). 

The trough valley floor investigated spans an area of 1.2 x 106 m2 on a distance of 

approximately 6 km. The topographic surface is lowered by the SLBL at an average of 27 m 

and up to a maximum of 75 m. The sediment filling the glacial trough results in 

26.3 ±13.1 x 106 m3. Figure 5.19 depicts two cross profiles through the glacial trough. The 

cross profiles given in figure 5.19A shows the bedrock surface in gray at a narrow part of the 

valley floor. Figure 5.19B was placed in a wider part of the valley. Note the difference in 

modelled bedrock depth caused by the SLBL algorithm.  
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Figure 5.19 Cross-profiles through the valley floor with modelled bedrock surface (gray line). A – Profile 
crossing a narrow valley floor part. B – Profile located across a wider part of the valley floor. 

5.3.2.3   Subsystem glacier forefield 

In order to quantify the sediment volume deposited by the Turtmann and Brunegg glacier, the 

most recently influenced part of the glacier forefield was considered. Though, the greatest 

modern ice extent during the Little Ice Age (LIA) surpassed the dam of the Turtmann barrage 

by almost 300 m, only the area before the dam is quantified here. The sediment cover behind 

the dam is relatively small compared to the rest of the forefield and is neglected in this 

quantification.  
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The dam is located at a roche moutonée that crosses the valley, which served as a sediment 

trap. Glaciofluvial meltwaters created a 30 m deep gorge here that drained the forefield until 

the construction of the dam. 

 

Eleven profiles were spread throughout the glacier forefield that spans an area of 1.6 x 106 m3. 

These profiles run perpendicular and parallel to the orientation of the forefield, crossing the 

main moraine ridges on both sides of the glacier. Above the moraine ridges profiles stretched 

up to the closest bedrock outcrop. Where bedrock was missing, profiles ended on the talus 

slope. Thus, it is assumed, that mainly glacial deposits enter this quantification. Figure 5.20 

depicts two of these profiles. Profile A (Figure 5.20 A) is located in close proximity to the 

lake dam and marks the lower end of the glacier forefield. The bedrock surface has been 

modelled using three interpolation points. The interpolation is based on a parabola with the 

central point as maximum depth. This depth corresponds to the maximum depth of the gorge 

located below the dam. Assuming that this is the maximum erosion depth of the glaciofluvial 

discharge from the glacier, the maximum thickness of the glacier forefield is determined to be 

30 m. Two additional points were placed in order to create a smooth parabolic line that should 

resemble the trough, excavated by the glacier. Profile B (Figure 5.20 B) depicts the 

longitudinal transect through the glacier forefield. This profile includes the glacier tongue in 

its upper parts and a bedrock outcrop between 1500 and 2000 m distance. The interpolation 

points result from the cross profiles that run perpendicular to this transect. The depth of the 

profile below the glacier tongue was assumed to be 50 m at the most deepest parts, including 

an assumed glacier thickness of up to 50 m. As the subglacial sediment deposit is assumed to 

be rather thin, the glacier tongue has been removed after the interpolation in order to enhance 

the interpolated surface morphology and prevent sharp steps in this part. The large lateral 

moraines have been included in the calculation by placing two profiles along the moraine 

ridges. Ridge altitude was measured relative to neighbouring terrain, mostly relative to 

proximate creeks.  
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Figure 5.20 A – Cross profile through the lowest part of the glacier forefield in close proximity to the dam. 
Black dots represent the inserted assumed interpolation points. See text for details. B – Longitudinal 
profile through the glacier forefield. Black dots mark interpolation points at crossings with the cross 
profiles. 
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Figure 5.21 shows the interpolated depth of the assumed bedrock surface. Interpolation points 

are shown in light blue. Bedrock outcrops were included in the interpolation as zero m of 

depth and served as a boundary for the forefield area. Using this model, the average sediment 

depth in the forefield is 18 m. The maximum depth of 91 m is modelled underneath the most 

recent eastern lateral moraine. The volume created with this model sums up to 19.6 ±9.8 x 106 

m3 of glacial till. 

 
Figure 5.21 Interpolation of the Turtmann glacier forefield sediment thickness. The blue dots represent 
the interpolation points used in the surface modelling. The glacier area was removed afterwards before 
the sediment volume is calculated. 

5.3.2.4   Subsystem trough slopes and remaining areas 

The remaining areas of the Turtmann Valley include the trough slopes, the slopes at the valley 

entry above the v-shaped part and talus slopes around the Turtmann and Brunegg glaciers 

outside of hanging valleys. For these parts mean sediment thickness values have been applied 

to estimate a trough volume of stored sediment.  

Mean sediment depth estimation for the slopes above the trough slopes is based on the 

maximum incision depth of transecting creeks from the hanging valleys (cf. chapter 3.3.2). 

Trough slopes are characterised by steep slopes (20o – 35o) covered by forest. Bedrock 
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outcrops are very frequently observed within the forest and often show signs of rock flow 

(sacking). Linear acting fluvial processes remove material from this subsystem along creeks 

and avalanche tracks. Assuming a mean sediment cover of 5 m these areas of 33 x 106 m3 

contain about 168.5 ±84.2 x 106 m3 of material.  

The remaining parts have been modelled applying mean sediment depth of 3 m. These slopes 

cover an area of 15.2 ±7.5 x 106 m2 and consequently store about 50.7 ±25.3 x 106 m3 of 

debris. 

5.3.2.5   Total Sediment volume of the Turtmann Valley 

Summing up the debris quantified in the previous paragraphs for all four sediment flux 

subsystems, a total volume of 1,030.7 ±515.3 x 106 m3 or 778.8 ±389.4 x 106 m3 is currently 

deposited in the Turtmann Valley according to scenario I and scenario II, respectively 

(Table 5.11).  

Table 5.11 Modelled sediment volume distribution and volume–area ratio for different subsystems of the 
Turtmann Valley. For a description of the two scenarios refer to chapter 5.3.2.1. 

 Area Volume  V / A  V / A  
  

Scenario I Scenario II 
Scenario I 
-50%, mean,+50% 

Scenario II 
-50%, 
mean,+50% 

 (106 m2) (106 m3) (106 m3) (m3/m2) (m3/m2) 
Hanging 
valleys 
subsystems 

42.5 750.3 ±360.2 498.4 ±249.2 
8.8 

17.6 
26.5 

5.9 
11.7 
20.6 

Glacier 
Forefield 
subsystem 

1.7 19.6 ±9.8 - 
5.9 

11.8 
17.7 

- 

Trough floor 
subsystem 1.2 26.3 ±13.8 - 

11.2 
22.3 
33.5 

- 

Trough 
slopes 
subsystem 

55.7 234.5 ±117.0 - 
2.1 
4.2 
6.3 

- 

Turtmann 
Valley 
system  

139.3 1030.7 ±515.3 778.8 ±389.4 7.4 5.6 

 

The hanging valleys contain the largest amount of sediment in both scenarios compared to the 

other subsystems and include between 72% and 63% of the total sediment volume. Though 

the trough slopes subsystem that includes slopes above the trough and the remaining slopes 

outside the hanging valleys covers a very large area, it stores comparably less material than 

the hanging valleys. However, they contribute 20% (Scenario I) and 30% (Scenario II) to the 

total storage volume. The remaining 2% and 3% of the material are currently stored in the 

glacial forefield and the main trough floor, respectively. The sediment volume–area ratio V/A 
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allows a comparison of the volume distribution without the effect of the variable depositional 

areas. The greatest debris volume per m2 is observed in the valley trough floor. A sediment 

volume of 22.3 m3/m2 is modelled here. According to the different scenarios the hanging 

valleys are filled with 17.6 ±8.8 (I) or 11.7 ±5.9 (II) m3/m2 of material. A similar sediment 

thickness is found in the glacier forefield (11.8 m3/m2), while the trough slopes store about 4.2 

m3/m2 of sediment.  

5.4 Mass transfer and Denudation rates  

The total mass transfer in the Turtmann Valley is 1997.6 ±998.8 and 1509.5 ±754.8 t km-2 a-1 

for scenarios I and II, respectively (Table 5.13). An increase of about 40% of mass transfer is 

observed in the hanging valleys compared to the entire valley. A corresponding volume of 

3560.4 ±1780.2 (I) and 2322.3 ±1139.8 t km-2 a-1 is determined for the Hungerlitaelli. The 

glacier forefield subsystem reveals a very low amount of only 208.9 ±104 t km-2 a-1. Sediment 

masses based on the current source area increase equally to the DR by three-fold and four-fold 

and are considered to be overestimated.  

The mass transfer per storage type is depicted in Table 5.14. Glacial processes dominate the 

mass transfer contributing 2649.2 ±1324.6 and 1400.7 ±700.9 t km-2 a-1, in scenario I and II in 

that order. Gravitational processes on slopes move 610.2 ±305.1 t km-2 a-1, in contrast to only 

24.2 ±12.1 t km-2 a-1 provided by large single rock fall events. Periglacial creep in rock 

glaciers transfers 131 ±65.5 and 324.6 ±162.3 t km-2 a-1, respectively. Compared to the 

material transported by glacial processes, periglacial processes move up to 23% on just 15% 

of the surface area. 
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Table 5.12 Mass transfer within the different subsystems of the Turtmann Valley. 

Based on total area: 

 Source area 
(106 m2) 

Volume 
(106 m3) 

Mass Transfer  
(t km 2 a-1) 

  Scenario I Scenario II Scenario I Scenario II 

    Min Mean Max Min Mean Max 
Turtmann 
Valley 139.3 1030.7 ±515.3 778.8 ±389.4  998.9 1997.6 2996.6 754.8 1509.5 2264.3 

Hanging 
valleys 56.9 750.3 ±360.2 498.4 ±249.2  1780.2 3560.4 5340.6 1139.8 2322.3 3504.8 

Glacier 
Forefield 25.3 19.6 ±9.8 - 104.4 208.9 313.3 - - - 

Hungerli-
taelli 2.8 33.7 ±10.11 - 2274.8 3249.6 4224.5 - - - 

Based on real source area: 

Turtmann 
Valley 38.6 1030.7±515.3 778.8 ±389.4  3607.9 7215.3 10823.8 2726.2 5452.4 7971.9 

Hanging 
valleys 14.3 750.3 ±360.2 498.4 ±249.2  7083.5 14167.0 21250.6 4535.2 9240.4 13945.6 

Glacier 
Forefield 21.8 19.6 ±9.8 - 121.2 242.4 363.6 - - - 

Hungerli-
taelli 0.2 33.7 ±10.11 - 31846.5 45495.0 59143.5 - - - 
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Table 5.13 Mass transfer of the different storage types within the hanging valleys. 

Area Volume  Mass transfer Sediment storage landform type 

(106 m2) (106 m³)  (t km -2 a-1)  

   Scenario I  Scenario II  Scenario I  Scenario II  
Slope deposits (total):  21.3 128.6 ±64.4 128.6 ±64.4 610.2 ±305.1 610.2 ±305.1 

     Talus Slope 8.1 41.2 ±20.6 41.2 ±20.6 195.5 ±97.8 195.5±97.8 

     Talus Cone 1 16.4 ±8.2 16.4 ±8.2 77.8 ±38.9 77.8 ±38.9 

     Block Slope 12.2 71 ±35.5  71 ±35.5  336.9 ±168.5 336.9 ±168.5 
      

Moraine Deposit 15.6 558.3 ±279.2 295.4 ±147.7 2649.2 ±1324.6 1400.7 ±700.9 

Rock fall deposit 0.3 5.1 ±2.6 5.1 ±2.6 24.2 ±12.1 24.2 ±12.1 

Alluvium 0.6 1.2 ±0.6 1.2 ±0.6 5.7 ±2.8 5.7 ±2.8 
      

Rock glaciers (total):  4.8 27.6 ±13.8 68.4 ±34.2 131 ±65.5 324.6±162.3 

    Rock glacier (active) 2.3 10.2 ±5.1 10.2 ±5.1 48.4 ±24.2 48.4 ±24.2 

    Rock glacier (inactive) 1.1 6 ±3 9.4  ±4.6 28.5 ±14.2 43.7±21.8 

    Rock glacier (relict) 1.3 10 ±5 47.6 ±23.8 47.5 ±23.7 225.9 ±112.9 

    Rock glacier (protalus) 0.1 1.4 ±0.7 1.4 ±0.7 6.6 ±3.3 6.6 ±3.3 
                       
Total sediment area: 42.5 750.3 ±375.2 498.4 ±249.2   

Total hanging valley area: 56.9        
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Denudation rates (DR) are calculated for the entire valley, the hanging valleys, the glacier 

forefield and the Hungerlitaelli. For each part of the land surface two denudation rates are 

determined, one based on the total area, another based on the area of the current sediment 

source areas. These areas include the bedrock outcrops and rock walls and the glaciers. Based 

on the total valley area, the mean denudation rate for the entire Turtmann Valley is 0.6–1.9 

and 0.5–1.4 mm a-1 for the two scenarios, respectively (Table 5.12). The hanging valleys 

have a higher DR of 1.1–3.4 and 0.7–2.2 mm a-1, while the DR for the glacier forefield is 

very low (0.07–0.2 mm a-1). For the Hungerlitaelli a DR of 1.4–2.6 mm a-1 was calculated, 

which corresponds well to the mean DR of all hanging valleys. 

Based on the current source area, DR increases significantly. For the entire valley storage DR 

increases three-fold, while for the hanging valley storage DR increases by a factor of four. 

This effect results from the difference in bedrock and glacier area of 30% for the entire valley 

to 25% in the hanging valleys. In the glacier forefield the differences are small due to the 

dominance of the large glaciers in the source area compared to the storage area. The 

Hungerlitaelli contains only 8% of land surface not covered by sediments causing a high DR 

of 19.9–36.9 mm a-1. The denudation rates based on the current source area are judged to be 

too high in relation to the 10 ka time period applied.  
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Table 5.14 Denudation rates for different subsystems of the Turtmann Valley. 

Based on total area 
 Source 

area 
 

Volume 
 
(106 m3) 

Denudation rate ( DR)  
(mm a-1)  

 (106 m2)   Scenario I Scenario II 

 
 Scenario  

I 
Scenario 
II 

Min Mean Max Min Mean Max 

Turtmann 
Valley 139.3 

1030.7 
±515.3 

778.8 
±389.4 

0.62 1.25 1.87 0.47 0.94 1.42 

Hanging 
valleys 56.9 

750.3 
±360.2 

498.4 
±249.2 

1.11 2.23 3.34 0.71 1.45 2.19 

Glacier 
Forefield 25.3 

19.6 
±9.8 

 0.07 0.13 0.20 - - - 

Hungerlitaelli  2.8 
33.7 

±10.11 
- 1.42 2.03 2.64 - - - 

Based on real source area 
Turtmann 
Valley 38.6 

1030.7 
±515.3 

778.8 
±389.4   

2.25 4.51 6.76 1.70 3.41 4.98 

Hanging 
valleys 14.3 

750.3 
±360.2 

498.4 
±249.2  

4.43 8.85 13.28 2.83 5.78 8.72 

Glacier 
Forefield 21.8 

19.6 
±9.8 

 0.08 0.15 0.23 - - - 

Hungerlitaelli  0.2 
33.7 

±10.11 
- 19.90 28.43 36.96 - - - 
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Denudation rates of source areas of single landforms have been calculated for four different 

landform types: (1) talus slopes, (2) talus cones, (3) block slopes, and (4) talus–derived active 

rock glaciers. Only landforms with well defined source area were chosen in order to reduce 

the uncertainty about debris input. For block slopes, the entire block slope area was used as 

debris source, assuming in situ sediment production for these landforms. Rock glacier source 

area includes the talus slope and the rock wall above. Eight landforms of each type were 

analysed (Table 5.14). Talus cones range between 0.5 and 2.6 mm a-1 had the highest DR, 

followed by block slopes (0.6–1.8 mm a-1) and talus slopes (0.2–1.0 mm a-1). Rock glacier 

source areas showed a DR between 0.1 and 0.7 mm a-1. For comparison rock glacier volumes 

of the same landforms from the study by Nyenhuis (2005) were used. For his two scenarios 

DR ranges between 0.2–1.4 mm a-1, and 0.1–1.0 mm a-1, respectively.  

Table 5.15 Denudation rates of single landforms: A – talus slopes, B – talus cones, C – block slopes, D – 
talus–derived active rock glaciers based on volumes of this study, and E – talus–derived active rock 
glaciers based on volumes of Nyenhuis (2005).  

A 

Source Area Volume DR Talus slopes: 
(106 m2) (106 m3) (mm a-1)  

TS1 0.01 0.09 1.00 
TS2 0.08 0.23 0.40 
TS3 0.02 0.04 0.24 
TS4 0.03 0.09 0.47 
TS5 0.11 0.21 0.26 
TS6 0.11 0.49 0.61 
TS7 0.30 2.17 0.98 
TS8 0.13 0.43 0.45 
 

B 

SRC Area Volume DR Talus cones: 
(106 m2) (106 m3) (mm a-1)  

TC1 0.03 0.30 1.39 
TC2 0.02 0.37 2.03 
TC3 0.08 0.30 0.52 
TC4 0.17 2.05 1.59 
TC5 0.03 0.52 2.60 
TC6 0.06 1.20 2.55 
TC7 0.10 1.00 1.39 
TC8 0.09 0.98 1.47 
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C 

Source Area Volume DR Block slopes: 
(106 m2) (106 m3) (mm a-1)  

BS1 0.11 1.49 1.77 
BS2 0.14 1.87 1.84 
BS3 0.24 2.20 1.24 
BS4 0.18 1.03 0.78 
BS5 0.19 1.13 0.78 
BS6 0.12 0.70 0.78 
BS7 0.60 2.66 0.60 
BS8 0.13 0.77 0.78 
 

D 

Source Area Volume DR Rock glaciers: ID Nyenhuis 
(2005) (106 m2) (106 m3) (mm a-1)  

RG1 HT02b 0.18 0.42 0.32 
RG2 HT05 0.13 0.40 0.42 
RG3 HT08 0.33 0.36 0.14 
RG4 HT10 0.36 0.26 0.10 
RG5 NT01 0.29 1.53 0.71 
RG6 GT09 0.24 0.86 0.48 
RG7 GT01 0.18 0.74 0.55 
RG8 CU01 0.34 0.46 0.18 
 

E 

DR using volumes from Nyenhuis(2005):  
Volume  
Nyenhuis (2005) 

DR 

(106 m2) (106 m3) (mm a-1) (mm a-1) 

Rock 
glaciers: 

ID  
Nyenhuis (2005) 

I II I II 
RG1 HT02b 0.34 0.50 0.26 0.39 
RG2 HT05 0.54 0.46 0.56 0.48 
RG3 HT08 0.58 0.27 0.23 0.11 
RG4 HT10 0.67 0.43 0.25 0.16 
RG5 NT01 2.36 2.31 1.10 1.08 
RG6 GT09 1.63 1.39 0.92 0.78 
RG7 GT01 1.88 1.09 1.41 0.82 
RG8 CU01 0.62 0.52 0.25 0.21 
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6 Discussion 

The spatial structure of sediment storage landforms in the hanging valleys emerges form the 

paraglacial evolution of the Turtmann Valley. Although no dating information is available for 

the Turtmann Valley, the paraglacial evolution can be reconstructed to a certain extent based 

on the spatial structure of the sediment storages. Landform size and volume, absolute and 

relative position and neighbourhood relationships suggest the evolutionary phases of landform 

development. There is a logical, evolutionary succession of landforms in a sediment cascade, 

landforms at higher positions within the cascade are thought to be older than succeeding 

landforms. Additionally, the 2-dimensional extent and the volume of a landform may indicate 

the duration of process activity and/or the intensity of the process.  

6.1 Paraglacial landform evolution of the Turtmann Valley 

The large erosional force of glaciers is well known (Hallet et al. 1996) and the dominance of 

glacial storage landforms in terms of both spatial coverage and volume in the Turtmann 

Valley is not surprising (cf. Tables 5.1 and 5.10). Consequently, glaciation plays a leading 

role in the landform evolution of the Turtmann Valley. First, glacial erosion serves as a major 

sediment source. Secondly, the time of deglaciation determines the onset of non-glacial 

landform formation. Thirdly, glaciers shaped the eroded bedrock surface and deposited 

material that serves as the morphological boundary conditions for the development of 

landforms in Post Glacial times. Several glacial cycles combined with phases of non-glacial 

conditions shaped the hanging valleys during the Pleistocene. Late Pleistocene deglaciation 

left a glacial debris cover and large lateral moraines in the central parts of most hanging 

valleys. 

The reworking of glacial sediment during the paraglacial period in the hanging valleys of the 

Turtmann Valley is dominated by periglacial creep and glacier-derived rock glacier 

formation. Relict and inactive rock glaciers formed in moraine deposits are landforms that 

prevail in the landscape and are the strongest evidence of Post Glacial paraglacial evolution. 

Additionally, the position and size of slopes indicates a paraglacial land surface development. 

In contrast, small-scale processes on moraines, for example solifluction of debris flows have 

not created landforms that are still visible today. Nevertheless, these processes were active in 

the past, as lateral moraines of Late Pleistocene age have a much smoother appearance 

compared to for example LIA moraines. Since the Late Pleistocene, the role of glaciers as 

primary sediment sources in the hanging valleys decreased in favour of bedrock weathering. 
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Simultaneously, the dominant process domain in the hanging valleys switches from glacial to 

periglacial. During the Holocene most of the hanging valleys have been almost free of 

glaciers, besides some hanging valleys on the eastern side. Sediment input during the 

Holocene is mainly provided by disintegration of bedrock and reworking of Pleistocene 

glacial deposits. The lithology of the Turtmann Valley includes metamorphic mica shists, 

gneisses, dolomites and calcareous shists. These rocks have been heavily modified by tectonic 

forces during orogeny and show signs of strong folding and foliation. Consequently, bedrock 

outcrops are characterised by heavy fracturing, large fissures and large zones of easily 

weathered mica pegmatites. These physical and lithological preconditions favour the force of 

physical and chemical weathering and cause a high erodibility of the bedrock. Post-Glacial 

unloading most probably plays only a minor role in the formation of fractures, as most of the 

bedrock was not covered by very large quantities of ice, compared to, for example, the Rhone 

valley (Kelly et al. 2004a). 

The paraglacial evolution of the Turtmann Valley can be roughly described in three time steps 

(Figure 6.1): (1) A period when the hanging valley glaciers were at their largest Late Glacial 

extent, after seperation from the main valley glacier. This would probably be associated with 

the Daun advance (13 ka BP). (2) Another Late Glacial glacier maximum, however smaller 

than the extent at phase 1. This could be the Egesen extent at Younger Dryas times (10-11 ka 

BP). (3) The last step represents today’s situation, but is probably representative for most of 

the Late Holocene.  

The relict, glacier-derived rock glaciers are the landforms that would have dominated the first 

step of paraglacial evolution. Although their age is not known in the Turtmann Valley, a 

relative age can be assumed from their position within the hanging valleys. Relict rock 

glaciers are positioned at the entry of the hanging valleys and on south facing slopes. Some of 

them even left the hanging valley and flowed down the trough shoulder. These locations have 

been freed of ice first and the preservation of the rock glaciers indicates that no later glacier 

advance altered these landforms. This image is confirmed by Frauenfelder and Kääb (2000) 

who estimate the time of decay of relict rock glaciers in the Swiss Alps to be at the end of 

Alpine Late Glacial. Almost 50% of relict rock glaciers are glacier-derived (Nyenhuis 2005) 

and consequently must have formed from Late Glacial deposits. Relict rock glaciers cover the 

largest areas and contain more material compared to active and inactive rock glaciers. This 

may indicate long process duration on the one hand, and a large availability of material 

required for the formation on the other. Thus, the formation of the now relict rock glaciers 

represents the first stage of paraglacial evolution in the hanging valleys in the Turtmann 
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Valley. Relict talus rock glaciers are in general located on south facing locations below block 

slopes, for example in the Grüobtaelli or the Niggelingtaelli. The onset of their formation is 

conditioned by the development of the block slopes that provide the sediment input. The 

formation of most block slopes is associated also with step 1. Block slopes dominate on south 

facing slopes (Figure 5.3) where deglaciation started first and periglacial conditions must have 

prevailed for most of the Late Glacial period. In contrast, talus slopes are more often found on 

slopes exposed to the north, where glaciers and perennial snow patches have persisted longer. 

Furthermore, block slopes can represent the late stage of talus slope evolution with the talus 

burying a rock wall requiring a long formation time. Thus, two different processes can create 

block slopes representing an example for equifinality. Most southern exposed block slopes are 

vegetated today indicating that the evolution of many block slopes, especially on lower 

elevations, has probably terminated or slowed down today. 

 
Figure 6.1 Model of paraglacial landform succession based on the formation of glacier derived rock 

glaciers in the hanging valleys in three time steps.  
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At step 2 (Figure 6.1) a re-advance of the glaciers deposited material above the relict rock 

glaciers. This material is taken up by a second generation of rock glaciers, those that are 

classified as inactive today. These rock glaciers are located at higher elevations and have most 

probably formed during the Holocene or immediately after the Younger Dryas. The amount of 

glacier-derived rock glaciers among the inactive and active forms declines to 25% and 10%, 

respectively (Nyenhuis 2005). This probably indicates that less material was deposited at 

locations favourable for glacier-derived rock glacier development. Nevertheless, periglacial 

conditions prevailed and allowed the formation of talus rock glaciers. The development of 

talus rock glaciers is conditioned by the talus formation and falls into a later stage of the 

paraglacial evolution. The position of the inactive and active rock glaciers represents a much 

more complex evolution compared to the relict forms. Often younger, active rock glaciers 

override older, now inactive forms indicating strong climatic variations during the Holocene 

(Nyenhuis 2005). 

 

The entire Holocene probably lies between step 2 and 3. Large climatic fluctuations, including 

several warming periods, have been reported for the Swiss Alps during this period (Gamper 

and Suter 1982; Leemann and Niessen 1994; Schlüchter and Jörin 2004; Holzhauser et al. 

2005). Unfortunately, a further differentiation during the Holocene is not possible from 

geomorphological analysis only and dating is required here. However, today’s landform 

distribution reveals that the reworking of glacial deposits in the hanging valleys by rock 

glaciers and other processes, for example debris flows, has almost stopped. The Little Ice Age 

had only minor impact on the sediment storage situation in the hanging valleys; however, the 

Turtmann glacier forefield was affected significantly. Glacier forefields in the hanging valleys 

show no significant debris input compared to non glaciated hanging valleys. Only the Brändji 

and the Pipji glacier deposited a large frontal moraine complex. In the Hungerlitaelli, the 

recently deglaciated area below the Rothorn glacier is largely filled with rock fall deposits 

that cover the glacial deposits. Assuming that bedrock weathering is the dominant source of 

sediment input into the hanging valley systems today and that weathering is not any more 

affected by Post Glacial unloading, the paraglacial cycle in the hanging valleys of the 

Turtmann Valley is almost finished. This is consistent with the model of Church and 

Slaymaker (1989) which considers a different the paraglacial response with time between 

upland and lowland environments (Figure 2.9). With respect to the longer time scale 

introduced into the paraglacial concept by Church and Slaymaker (1989), the length of the 

paraglacial period in the hanging valleys of the Turtmann Valley is probably less than 10 ka. 



6. Discussion 

 132 

In contrast to the exhaustion model by Ballantyne (2002a), denudation within the hanging 

valleys would not necessarily decrease if the bedrock weathering rate remained constant. With 

respect to the storage situation in the hanging valleys, this may cause further increases in talus 

deposits and talus-derived rock glaciers, while the amount of moraine deposits and 

glacier-derived rock glaciers remains as it is.  

6.2 Sediment storage in the sediment flux system of the Turtmann Valley 

The sediment flux system of the Turtmann Valley includes four subsystems (Otto and Dikau 

2004): (1) Hanging valleys, (2) Turtmann and Brunegg glacier complex, (3) main valley 

lateral slopes, and (4) valley floor subsystem. Each subsystem contains a different amount of 

stored sediment that varies with the size of the subsystem (Figure 6.2). Sediment production 

and transport in the main valley is characterised by glacial and glaciofluvial processes with 

expected high erosion rates and high sediment transport by the glacier’s meltwaters. Up until 

the construction of the dam in the forefield in the 1950s, the glacier forefield and the main 

valley trough had been fully coupled since the end of Pleistocene glaciation. Equal coupling 

existed between the trough and the Rhone Valley, until a large rock fall event caused a 

contemporary separation of the main valley trough from the v-shaped valley entry and the 

subsequent Rhone Valley system. Although, today material is still removed from the main 

valley by the Turtmann creek and delivered to the Rhone Valley today, the valley floor 

represents a temporary sink in the glacial system of the valley. However, glaciofluvial 

transport most likely includes only fine sediment, while coarse debris is trapped in the glacier 

forefield and in the main valley trough. The largest amount of fine debris is probably routed 

from the glacier forefield subsystem into the main valley floor and out of the valley. Only a 

fraction of the material eroded in the past is stored within these subsystems, with less storage 

in the glacier forefield due to higher glaciofluvial activity and Holocene glacier fluctuation, 

and more storage in the main trough due to its lower position in the cascade. A relative 

sediment thickness of 11.8 m3/m2 in the glacier forefield and 22.3 m3/m2 in the main valley 

reveals this situation. Nevertheless, the glacial system can be regarded as an open system for 

most of the Post Glacial period.  

In contrast, the hanging valleys are closed systems with respect to coarse sediment. This 

explains the 20% smaller, relative sediment cover compared to the trough and indicates that 

most of the coarse sediment produced since the Pleistocene glaciation is still stored within the 

hanging valleys. The hanging valleys are de-coupled from the Turtmann Valley sediment flux 

system and do not contribute to the main valley sediment storage. Few Late Glacial rock 

glacier advances caused the only output of coarse sediment from some of the hanging valleys. 
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However, this material is now stored on the main valley slopes. Lateral slopes of the main 

trough and the main valley floor are partially coupled. Material is only transported along 

narrow corridors, for example creeks or avalanche tracks, while the remaining parts are 

covered by forest stabilising the sediment cover.  

 
Figure 6.2 Sediment storage and Post Glacial subsystem coupling in the Turtmann Valley sediment flux 

system. Coupling between glacier forefield and main valley floor does not regard the construction of the 

dam (A = area and V = volume)  

6.2.1 Storage volumes and mass transfer  

A comparison of sediment volumes per process domain with other studies is strongly 

conditioned by variable study area sizes and changing storage landform compositions. For 

example, Rapp (1960), Caine (1986), Schrott and Adams (2002), or Schrott et al. (2003) 

studied drainage basins about an order of magnitude smaller (1-27 km2) than the Turtmann 

Valley (139 km2). In contrast, Jäckli (1957) and Jordan and Slaymaker (1991) investigated 

drainage basins order of magnitude larger (4000-5000 km2). Thus, this study bridges a gap 

between small meso-scale and macro-scale drainage basins. Additionally, apart from Jäckli 

(1957) and Caine (1986) no comparable study has been carried out in an environment where 

rock glaciers have such a strong role in the sediment flux system. According to the scale 

investigated, different process domains dominate the sediment flux und storage situation. 
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Talus processes and storage are the most important sediment flux agents observed in small 

scale studies (Rapp 1960; Caine 1986; Schrott and Adams 2002; Schrott et al. 2003), while 

fluvial processes and glaciofluvial storage take over in large basins environments (Jäckli 

1957; Jordan and Slaymaker 1991). This observation fits with the paraglacial model of 

Church and Slaymaker (1989).  

 

In the Turtmann Valley the proportion of talus storage is reduced compared to the small scale 

studies (see above). Due to the morphology of the hanging valleys large areas in central 

positions are covered with glacial deposits. Though slope deposits cover a larger area, the 

mean sediment thickness of glacial deposits is significantly higher and results in greater 

volumes. Rock glaciers store up to 50 % of the debris volume on only 20% of the area. Thus, 

periglacial creep causes a concentration of debris and creates landforms with higher volume to 

area ratio compared to other slope deposits. Based on the model of paraglacial evolution of 

the Turtmann Valley (cf. 6.1) the deposition of glacial sediments were mainly deposited 

during the Late Glacial, while all other landforms, apart from relict rock glaciers and block 

slopes are products of the Post Glacial period. In contrast to most other studies (see above), 

fluvial processes play only a very minor role in the sediment storage system due to the dry, 

inner Alpine climatic conditions of the Turtmann Valley combined with high summer 

temperatures and increased summer evaporation. Additionally, at the altitude of the hanging 

valleys, periglacial conditions store significant amounts of water in the ground.  

 

The mean annual mass transfer per area calculated from the sediment volumes over a period 

of 10 ka for the entire Turtmann Valley is 1509 ± 755 – 1960 ±998 t km2 a-1 corresponding to 

a denudation rate of 0.94 ±0.47 – 1.25 ±0.62 mm a-1. However, this rate does not remove 

material that has already been removed and delivered to the Rhone Valley. Hinderer (2001) 

calculated a mean annual sediment yield into Lac Leman of 2370 t km2 a-1 since the Late 

Glacial Maximum for the Rhone River based on the Rhone Valley trough sediment volume. 

Thus, the mean mass transfer of the Turtmann Valley might correspond to a mean Post 

Glacial rate of mass transfer for the Region. However, few data exist on annual mass transfer 

per area for the Alps and the scatter is quite high. For example, Vezzoli (2004) determined 

current bedload sediment yields for 21 small catchments rivers in the western Italian Alps and 

reports rates between 19 and 1926 t km2 a-1.  
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6.2.2 Denudation rates 

The denudation rate (DR) calculated on the basis of the entire catchment area for the 

Turtmann Valley corresponds well with other studies in the Alps. A mean DR for Post Glacial 

times of 0.58 - 1.5 mm a-1 is observable in the Alps (cf. Table 6.1) compared to 0.94 ±0.47 – 

1.25 ±0.62 mm a-1 in the Turtmann Valley. However, a comparison of Alpine-wide 

denudation rates is critical, as many different environments with variable lithologies and 

processes have been studied and different methods and parameters have been used to calculate 

the rates. 

The hanging valley storage volume represents a two-fold increase in DR compared to the 

entire valley (Table 5.12). The lack of sediment removal strongly influences the DR in this 

subsystem. Consequently, this rate may be more exact compared to the DR of the entire 

valley, which includes an underestimation caused by the lack of material already removed 

from the main valley. The DR of the hanging valleys emerges from a mixture of erosional 

processes during paraglacial times and includes the change from glacier-dominated erosion to 

weathering-dominated erosion. 

 

The glacier subsystem has a DR of 0.13 ±0.07 mm a-1, which is an order of magnitude smaller 

than the one apparent for the entire valley. Recent studies at the glacier forefield by 

Martinerie et al. (2005) report a DR of 0.3 mm a-1 for the Turtmann glacier. This rate indicates 

that the modelled sediment volume of the forefield may be underestimated by more than 50%, 

This material could also represent the amount of debris already removed from the subsystem. 

However, compared to other glaciers in the Valais, the Turtmann glacier shows a significantly 

lower DR. For example, Small (1987) reports 1.7–2.1 mm a-1 for the Tsidjiore Nuove glacier 

and Bezinge (1987) gives erosion rates between 0.4 and 1.7 mm a-1 for various glaciers in 

southern Valais. This compilation reveals that glacial denudation rates in the Alps vary 

strongly. The difference in DR between the glacier forefield and the entire valley can be 

explained by the different time scales and storage volumes used in the calculation. The DR for 

the glacier subsystem is calculated on the basis of the current storage volume that was 

deposited to a great extent during and since the Little Ice Age, but the calculation is based on 

a time period of 10 ka. In contrast, the DR of the entire valley includes material deposited in 

Post-Glacial times. A denudation rate of the glacier forefield subsystem using a time period 

of, for example 500 years, results in a DR of 1.3–3.9 mm a-1.  
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The DR of the Hungerlitaelli of 2.0 ±0.6 mm a-1 corresponds to the rate calculated for all 

hanging valleys and also to a DR of 1.07 - 3.06 mm a-1 by Knopp (2001) for the neighbouring 

Brändjitaelli. 

Table 6.1 Comparison of alpine denudation rates. 

Location DR (mm a-1) Time period Author 

Turtmann Valley (CH) 0.62 – 1.87 Post Glacial (10 ka) This study 

Hungerlitaelli (CH) 1.42 – 2.64 Post Glacial (10 ka) This study 

Brändjitaelli (CH) 1.07 – 1.84 Post Glacial (10 ka) Knopp (2001) 

Walensee (CH) > 1.5  15 ka  Müller (1999) 

Upper Rhone Valley (CH) 0.95 Late + Post Glacial Hinderer (2001) 

Alps (mean) 0.13 Present Hinderer (2001) 

Alps (mean) 0.62  Late + Post Glacial Hinderer (2001) 

Bündner Rhine (CH) 0.58 Quaternary Jaeckli (1957) 

Langental (I) 1.1 Post Glacial Schrott and Adams (2002) 

Reintal (D) 0.3 Post Glacial Hufschmidt (2002) 

 

Time plays an important role in the calculation of denudation rates, especially for single 

landforms. The time span applied represents the assumed duration of denudation and hence is 

governed by the time of deglaciation and the beginning of landform formation. As no dating 

information is available for the study area, a time period of 10 ka was assumed in all 

calculations, which may be too long or too short according to different landform types and 

individual objects. For example, the onset of rock glacier development in particular is not 

clearly defined. Relict rock glaciers and block slope have most probably formed during Late 

Glacial. Hence, their denudation rate consider an underestimated time period. The same is 

valid for most of the moraine deposits that stem from Late Glacial times. In contrast, active 

rock glaciers have formed during the Holocene and a period of formation of 10 ka is most 

probably too long. 

 

Denudation rates for single landforms show some variability between the landform types and 

the single objects (Table 5.14). Rock wall retreat rates for talus slopes and cones fall within 

the range of rates previously published for other alpine regions (cf. Table 6.2). However, 

compared to other environments, for example the Arctic or the Himalaya, denudation rates are 

usually much lower in the Alps. Retreat rates calculated from talus cone volumes are 

significantly higher than talus slopes. This is affected by differences in the shape of the source 

area. While talus slopes develop under the whole length of a rock wall that provides the 
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material input, talus cones are characterised by a more funnelled input channel in the rock 

wall. The consequence is a more condensed area of deposition resulting in higher ratio of 

denudation / deposition area and higher denudation rates.  

Table 6.2 Comparison of denudation rates and rock wall retreat rates in alpine and arctic environments. 

Location Rock wall retreat / denudation rate (mm 
a-1) 

Author 

 Min Mean Max  
Talus slopes:     
Turtmann Valley (CH) 0.2 0.7 1.3 This study 
Kärkevagge(N) 0.04 - 0.15 Rapp (1960) 
Reintal(D) 0.1 - 1.0 Hoffmann and Schrott (2002) 
Bavarian Alps (D) 0.06 0.28 0.73 Sass and Wollny (2001) 
Talus cones:     
Turtmann Valley (CH) 0.6 2.2 3.1 This study 
Lechtaler Alps (AT) 0.5  0.8 Sass (in press) 
Central Himalaya (NP) 3.2 - 15.6 Watanabe et al. (1998)  
Nanga Parbat (PK), (Alpine 
fans) 

0.3 2.5 7.0 
Shroder et al. (1999) 

Block slopes:     
Turtmann Valley (CH) 0.8 1.4 2.3 This study 
     
Rock glaciers:     
Turtmann Valley(CH) 0.12 0.62 1.8 This study 
Swiss Alps (CH) 0.5 2.5 4.6 Barsch (1977a) 
Sierra Nevada (USA) 0.8 - 1,9 Höllermann  (1983b) 
South Tirol (I)  0.5  Höllermann (1983b) 
Middle Asia 0.4 - 0.7 Gorburnov (1983) 
West Greenland (DK) 2 - 5 Humlum (2000) 

 

Denudation rates calculated for active talus rock glaciers correspond well with other studies 

from the Alps. However, preceding studies in rock glacier denudation are often based on 

rough estimations or are not well documented. Barsch (1977a) for example, uses the estimated 

mean thickness of two rock glaciers to calculate the volume of almost 1000 rock glaciers in 

the Swiss Alps. Barsch’s DR values are higher than the DR in the Turtmann Valley because 

his assumptions on rock glacier thickness are about three times higher than the rock glacier 

thickness used here.  

Although Barsch (1996), referring to the works of Gorburnov (1983), regards DR values 

similar to those of the Turtmann Valley as low for alpine environments in general, they 

correspond well to the rock wall retreat rates of talus slopes in the study area. However, there 

is a logical correspondence between talus slope and rock glacier DR, as talus slopes provide 

the input for rock glaciers. Denudation of rock walls should be consistent, because the 

removal of debris from the talus by rock glaciers does not affect the weathering rate of the 

rock wall.  
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7 Conclusion 

The analysed and quantified storage landforms of the Turtmann Valley reveal a detailed 

paraglacial evolution of this Alpine geosystem. The analysis of the spatial distribution of 

storage landforms allows for a relative reconstruction of the Post Glacial land surface 

evolution of the Turtmann Valley. Though partially based on assumptions, the applied 

methods resulted in sediment volumes that allow calculating denudation rates in good 

agreement to previous results for other Alpine environments. As previous sediment storage 

analysis were performed whether in much smaller or much larger drainage basins, this study 

bridges between these two extremes by analysing a meso scale catchment. Finally, the 

importance of rock glaciers in the paraglacial evolution of the valley and the sediment storage 

distribution stresses the role of periglacial processes in the sediment flux system of high 

alpine environments. The main results of the study are as follows: 

 

• The distribution of sediment storage landforms shows a distinct high Alpine pattern 

and distribution structure.  

• The relative and absolute positions of landforms within the sediment cascade together 

with their spatial extent and volume hint on a sequence of landform development. 

From this spatial pattern a relative model of paraglacial landform evolution can be 

inferred. 

• Slope sediment storage landforms cover more than 50% of the hanging valley surface, 

followed by moraine deposits (38%) and rock glaciers (11%). Alluvial deposits and 

large rock fall debris cover less than 2% of the land surface.  

• Sediment volumes were modelled on two spatial scales: (1) in one hanging valley, 

sediment volumes are based on extrapolation of sediment thickness information 

derived by geophysical surveying. (2) For the entire Turtmann Valley, volumes are 

calculated applying different approaches according to the four sediment flux 

subsystems. Two scenarios of sediment volumes are proposed. 

• Sediment storage is dominated by moraine deposits that include 77 or 60 % of the 

volume according to scenario I and II, respectively. Between 18 (I) and 25% (II) of 

debris is located on slopes, while 4 (I) or 15% (II) of sediment volume is stored in 

rock glaciers.  

• A total sediment volume of 1,030.7 ±515.3 x 106 m3 (I) or 778.8 ±389.4 x 106 m3 (I) is 

stored in the Turtmann Valley. More than 70 % of the material is located in the 
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hanging valleys, 20% is found on the main valley lateral slopes, while the main trough 

and the glacier forefield each contain 3% of the sediment volume. 

• Relative sediment volumes per area in the hanging valleys exceed the volume per area 

stored in the main valley trough. 

• The hanging valleys subsystems are considered as closed with respect to the coarse 

debris flux and consequently decoupled from the main valley system. Lateral valley 

slopes and main valley floor are only coupled along avalanche corridors or creeks. The 

glacier forefield was coupled with the main valley floor for most of the Holocene; the 

closure of the forefield by the dam disconnected the sediment cascade of the glacial 

sediment flux. 

• A mean volume of 1997.6 ±998.8 and 1509.5 ±754.8 t km-2 a-1 was transported within 

the Turtmann valley based on 10 ka of process activity for scenarios I and II, 

respectively. 

• The average denudation rate for the Turtmann Valley varies between 1.25 ±0.62 and 

0.94 ±0.47 mm a-1 following scenarios I and II, respectively. The denudation rate for 

the hanging valleys is slightly higher showing rates of 2.23 ±1.11 (I) and 1.45 ±0.71 

(II) mm a-1. In contrast, volumes stored in the glacier forefield result in a mean 

denudation rate of 0.13±0.07 mm a-1.  

• Denudation rates for single processes range from 0.2–2.6 mm a-1 for talus deposits and 

between 0.1 and 1.4 mm a-1 for active talus-derived rock glaciers. 

• The paraglacial reworking of glacial deposits in the hanging valleys was accomplished 

mainly by glacier-derived rock glaciers. Their distribution is used to generate a model 

of relative paraglacial landform succession in the hanging valleys. 

•  The paraglacial period can be divided into three main phases: Today’s relict 

glacier-derived rock glaciers and block slopes are the landforms that formed during 

the earliest stage of the paraglacial period. Rock glaciers formed from deposits of a 

first Late Glacial glacier maximum (probably from the Daun phase). Talus slopes and 

inactive rock glaciers formed during a second stage, when deposits from a smaller 

Late Glacial glacier advance were reworked (probably Egesen phase, Younger Dryas). 

Active glacier-derived rock glaciers are the most recent last landforms that have 

developed from glacial deposits in the hanging valleys of the Turtmann Valley during 

the Holocene. 

• Since most of the active rock glaciers are talus-derived, the reworking of paraglacial 

deposits is most probably completed. Assumed that most of the current bedrock 
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weathering is not influenced any more by stress release following deglaciation, the 

paraglacial period in the hanging valleys of the Turtmann Valley is considered to be 

terminated.  
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8 Summary 

Sediment flux plays a central role within the evolution of land surfaces and Earth’s 

biogeochemical systems. Within sediment flux systems, the role of sediment storage is often 

the least understood part. A quantification of storage volumes is often based on rough 

assumptions. However, geophysical methods, high resolution digital terrain data and GIS 

techniques open up new possibilities for the more accurate quantification of sediment storage 

volumes. 

This study analyses the spatial distribution of sediment storage landforms and quantifies 

sediment volumes in the high alpine Turtmann Valley, Swiss Alps. A detailed 

geomorphological mapping provided information on the spatial structure of storage 

landforms. Geophysical methods were used to derive sediment thickness of storage landforms 

in one hanging valley, known as the Hungerlitaelli. Sediment volumes of single landforms 

were quantified in the Hungerlitaelli by extrapolating sediment thickness data into the entire 

hanging valley. The sediment storage of the entire Turtmann Valley was assessed for the four 

different sediment flux subsystems. Quantification of sediment stored in the hanging valleys 

was performed by transferring the average sediment thickness of the different landforms 

observed in the Hungerlitaelli hanging valley to landforms located in the other hanging 

valleys. The valley floor volume was estimated using the SLBL method that excavates a 

digital elevation model until an assumed glacial trough surface is formed. The sediment 

storage volume of the glacier forefield was quantified by constructing an assumed bedrock 

surface, while the storage volume on main valley slopes was estimated using an assumed 

average sediment depth. 

 

The distribution of sediment storage landforms reveals a typical high Alpine land surface 

pattern. Slope sediment storage landforms cover more than 50% of the hanging valley surface, 

followed by moraine deposits (38%) and rock glaciers (11%). Alluvial deposits and large rock 

fall debris cover less than 2% of the land surface. Sediment volumes were quantified using 

two scenarios. Scenario I considers the moraine debris layer buried underneath rock glaciers 

and increases the amount of material stored in moraine deposits that is removed from the rock 

glacier class. In scenario II the entire modelled volume of the rock glaciers is considered 

causing less volume stored in moraine deposits and an increase in rock glacier storage. 

Sediment storage is dominated by moraine deposits that include 77 or 60 % of the volume 
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according to scenario I and II, respectively. Between 18 (I) and 25% (II) of debris is located 

on slopes, while 4 (I) or 15% (II) of sediment volume is stored in rock glaciers.  

A total sediment volume of 1,030.7 ±515.3 x 106 m3 (I) and 778.8 ±389.4 x 106 m3 (II), 

respectively is stored in the Turtmann Valley. More than 70 % of the material is located in the 

hanging valleys, 20% is found on the main valley lateral slopes, while the main trough and the 

glacier forefield each contains 3% of the sediment volume. The hanging valley subsystems 

are considered as closed with respect to the coarse debris flux and consequently decoupled 

from the main valley system. Lateral valley slopes and main valley floor are only coupled 

along avalanche corridors or creeks. The glacier forefield was coupled with the main valley 

floor for most of the Holocene; the closing of the forefield is caused by the dam disconnected 

the sediment cascade of the glacial sediment flux. 

The average denudation rate for the Turtmann Valley varies between 1.25 ±0.62 and 0.94 

±0.47 mm a-1 following scenarios I and II, respectively. The denudation rate for the hanging 

valleys is slightly higher showing rates of 2.23 ±1.11 (I) and 1.45 ±0.71 (II) mm a-1, 

respectively. In contrast, volumes stored in the glacier forefield result in a mean denudation 

rate of 0.13±0.07 mm a-1.  

 

The relative and absolute positions of landforms within the sediment cascades together with 

their spatial extent and volume hint on a sequence of landform development. From this spatial 

pattern a relative model of paraglacial landform evolution can be inferred. A reworking of 

glacial deposits in the hanging valleys was accomplished mainly by glacier-derived rock 

glaciers. Their distribution is used to generate a model of relative paraglacial landform 

succession in the hanging valleys. The paraglacial period can be divided into three main 

phases: Today’s relict glacier-derived rock glaciers and block slopes are the landforms that 

were build up during the earliest stage of the paraglacial period. Rock glaciers developed from 

deposits of a first Late Glacial glacier maximum (probably Daun). Talus slopes and inactive 

rock glaciers were created during a second stage, when deposits from a smaller Late Glacial 

glacier advance were reworked (probably Egesen; Younger Dryas). Active glacier-derived 

rock glaciers are the most recent landforms that have been developed from glacial deposits in 

the hanging valleys of the Turtmann Valley during the entire Holocene. 

Since most of the active rock glaciers are talus-derived, the reworking of paraglacial deposits 

is probably completed. Assuming that most of the current bedrock weathering is not 

influenced any more by stress release following deglaciation, the paraglacial period in the 

hanging valleys of the Turtmann Valley is considered to be finished. 
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To conclude, the analysis of the spatial distribution of storage landforms allows for a relative 

reconstruction of the Post Glacial land surface evolution of the Turtmann Valley. Though 

partially based on assumptions the applied methods result in sediment volumes that allow 

calculating denudation rates in good agreement to previous results for other Alpine 

environments. As previous sediment storage analyses were performed, whether in much 

smaller or much larger drainage areas, this study bridges between these two extreme by 

analysing a meso scale catchment. Finally, the importance of rock glaciers in the paraglacial 

evolution of the valley and the sediment storage distribution stresses the role of periglacial 

processes in the sediment flux system of high alpine environments. 
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A. Seismic refraction modelling results 
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B. 2D-resistivity inversion results 
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C. Ground penetrating radar images 
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2D-resitivity inversion parameters 

Inversion settings  

Initial damping factor 0.3 

Minimum damping factor 0.1 

Line search option 2 

Convergence limit 5 

Minimum change in RMS error 0.4 

Number of iterations 5 

Vertical to horizontal flatness filter ratio 0.5 

Model for increase in thickness of layers 2 

Number of nodes between adjacent electrodes 2 

Flatness filter type, Include smoothing of model resistivity 1 

Reduce number of topographical datum points? 0 

Carry out topography modeling? 1 

Type of topography trend removal 1 

Type of Jacobian matrix calculation 1 

Increase of damping factor with depth 1.2 

Type of topographical modeling 4 

Robust data constrain? 1 

Cutoff factor for data constrain 0.05 

Robust model constrain? 1 

Cutoff factor for model constrain 0.005 

Allow number of model parameters to exceed datum points? 1 

Use extended model? 0 

Reduce effect of side blocks? 2 

Type of mesh 2 

Optimise damping factor? 1 

Time-lapse inversion constrain 0 

Type of time-lapse inversion method 0 

Thickness of first layer 0.5 

Factor to increase thickness layer with depth 1.1 

USE FINITE ELEMENT METHOD (YES=1,NO=0) 1 

WIDTH OF BLOCKS  1 

MAKE SURE BLOCKS HAVE THE SAME WIDTH  1 

RMS CONVERGENCE LIMIT (IN PERCENT) 1 

USE LOGARITHM OF APPARENT RESISTIVITY  0 

LIMIT RESISTIVITY VALUES(0=No,1=Yes) 1 

Upper limit factor (10-50) 20 

Lower limit factor (0.02 to 0.1) 0.05 

Type of reference resistivity (0=average,1=first iteration) 0 

Model refinement (1.0=Normal,0.5=Half-width cells) 0.5 

Combined Combined Marquardt and Occam inversion  0 

Type of optimisation method  0 

Convergence limit for Incomplete Gauss-Newton method 0.005 

Use data compression with Incomplete Gauss-Newton  0 
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Use reference model in inversion (0=No,1=Yes) 0 

Damping factor for reference model 0.005 

Use fast method to calculate Jacobian matrix.  1 

Use higher damping for first layer? (0=No,1=Yes) 0 

Extra damping factor for first layer 1.5 

Type of finite-element method  0 

 




