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Abstract 

Habitat suitability modeling (HSM) can be a powerful tool for conservation management provided 

that reliable and area-wide information of climate, landscape and habitat is available for the area of 

interest. Traditionally, mostly abiotic information about habitat distribution and composition was 

used in HSM. This was a particular limitation for forest inhabiting species such as the Hazel grouse 

(Bonasa bonasia) that strongly depend on the three-dimensional (3D) distribution and composition 

of forest elements and resources. To overcome this limitation, I developed a variable set of 3D 

vegetation structure that was derived from airborne Light Detection and Ranging (LiDAR) data. These 

variables were combined with other biotic and abiotic variables describing climate, topography and 

landscape (full model) aiming for spatially predicting habitat suitability for Hazel grouse (Bonasa 

bonasia) in the Parc régional Chasseral in the Swiss Jura mountains. Moreover, I developed a second 

HSM by using exclusively biotic variables of landscape composition and 3D vegetation structure 

(biotic model). Species presence data originated from a multi-year field survey in the park and from 

the Swiss Ornithological Institute. I applied an ensemble modeling approach consisting of seven 

standard species distribution model algorithms and evaluated their predictive performance using the 

cross-validated average of the area under the receiver operating characteristic curve (AUC). Both 

models performed excellent with an AUC of 0.959 for the full model and 0.914 for the biotic model. 

In the full model, climate performed best but appeared to be mainly indirectly related to habitat 

suitability via correlations to forest structure and composition. They still show influences of historical 

and current forest use with different strength along the altitudinal gradient. Average vegetation 

height and shrub cover were the best predictor variables in the biotic model with optimal values 

around 8 m and 30-35 %, respectively. The very good performance and accurate predictions of the 

biotic model indicated the excellent potential of 3D forest structure and composition data for 

modeling potential habitats of forest organisms that depend strongly on 3D niches. Patches with high 

suitability in the Parc régional Chasseral were predominantly concentrated at the southern slopes in 

the upper forest belt along the tree line in proximity to summer pastures on two spatially separate 

mountain ranges. The majority of the park perimeter was predicted with poor habitat suitability for 

Hazel grouses. Species conservation should target to increase the size of the regional Hazel grouse 

population by restoring the occupied habitat patches and by creating more suitable habitats next to 

them. In a second step, occupied habitat patches should be functionally connected by newly created 

stepping stone habitats. 

Keywords 

3D habitat structure, Bonasa bonasia, habitat suitability modeling, Hazel grouse, Jura mountains, 

LiDAR, mountain forest, species conservation, species distribution model 
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Zusammenfassung 

Habitatmodelle können hilfreiche Instrumente für die Naturschutzplanung sein, wenn verlässliche 

und flächendeckende Informationen über das Klima, die Landschaft und die Lebensräume eines 

Gebietes vorhanden sind. In der Vergangenheit wurden meistens abiotische Informationen über die 

Verteilung und Zusammensetzung von Lebensräumen für Habitatmodelle verwendet. Dies schränkte 

deren Nützlichkeit für Waldorganismen wie beispielsweise das Haselhuhn (Bonasa bonasia) ein, weil 

sie stark von der drei dimensionale (3D) Verteilung und Zusammensetzung von Waldstrukturen und -

ressourcen abhängig sind. Informationen über den 3D Aufbau von Waldbeständen standen bislang 

meistens nur für kleine Untersuchungsflächen zur Verfügung, für grossflächige Analysen auf 

Landschaftsebene fehlen solche Daten normalerweise gänzlich. Um diese Einschränkung zu 

überwinden, habe ich ein Set von 3D Vegetationsstrukturvariablen entwickelt, das ich aus LiDAR-

Daten (airborne Light Dedection and Ranging) abgeleitet habe. Diese Variablen habe ich mit 

abiotischen und biotischen Variablen zu Klima, Topographie und Landschaft kombiniert (Vollmodell) 

mit dem Ziel, ein räumlich explizites Habitatmodell für das Haselhuhn (Bonasa bonasia) im Parc 

régional Chasseral im Schweizer Jura zu entwickeln. Um das Potenzial von LiDAR-Daten für 

Habitatmodelle von Waldvögel zu evaluieren, habe ich ein zweites Modell (biotisches Modell) 

erstellt, das ausschliesslich mit biotischen Variablen zur Landschaftszusammensetzung und 

Vegetationsstruktur kalibriert wurde. Die Artdaten zur Verbreitung des Haselhuhns stammen von 

einem mehrjährigen Haselhuhnmonitoring im Park und von der Schweizerischen Vogelwarte 

Sempach. Um das Habitatpotenzial herzuleiten, verwendete ich einen ensemble model Ansatz, 

bestehend aus sieben Standardalgorithmen. Die Modellgüte wurde anhand von kreuzvalidierten 

Mittelwerte des AUC (area under the receiver operating characteristic curve) ermittelt. Beide 

Modelle zeigten eine exzellente Genauigkeit mit AUC-Werten von 0.959 für das Vollmodell und 0.914 

für das biotische Modell. Im Vollmodell hatte die Temperatur den grössten Einfluss auf die 

Habitatqualität der Haselhühner. Der Einfluss scheint hauptsächlich indirekt zu sein über die 

Zusammensetzung und Struktur der Wälder. Diese zeigen heute abhängig von der Höhenlage 

unterschiedlich starke Spuren der historischen Landnutzung. Durchschnittliche Vegetationshöhe und 

Strauchschichtdeckungsgrad waren die besten Prädiktoren im biotischen Modell mit Optimalwerten 

von 8 m respektive 30-35 %. Die hohe Genauigkeit des biotischen Modells zeigt das grosse Potenzial 

von 3D Vegetationsstrukturvariablen für die Modellierung des Habitatpotenzials von 

Waldorganismen. Im Parc régional Chasseral gibt es zwei Waldgebiete mit hoher Habitateignung für 

das Haselhuhn. Sie befinden sich an den Südhängen von zwei räumlich voneinander getrennten 

Bergrücken im Bereich der oberen Waldgrenze neben den Sömmerungsweiden. Der grösste Teil des 

Untersuchungsgebietes wies eine schlechte bis geringe Habitatqualität für das Haselhuhn auf. Um die 

regionale Haselhuhnpopulation im Park régional Chasseral zu fördern, sollten folgende Massnahmen 
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mit abnehmender Priorität ergriffen werden: (i) bereits besiedelte, qualitativ hochwertige 

Waldstandorte erhalten oder restaurieren, (ii) neue Lebensräume in unmittelbarer Umgebung mit 

forstlichen Massnahmen oder durch Beweidung schaffen und (iii) Lebensraumfragmentierung durch 

die funktionelle Vernetzung der beiden Hauptverbreitungsgebiete mittels Trittsteinhabitaten 

verringern.  

Schlüsselwörter  

3D Habitatstruktur, Artenschutz, Art-Lebensraum Modell, Bergwälder, Bonasa bonasia, 

Habitatmodell, Haselhuhn, Jura, LiDAR 
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Introduction 

To understand how plants and animals are distributed in space and time and which factors 

determine the species-environment relationship is a central issue in ecology (Guisan & Zimmermann 

2000; Guisan & Thuiller 2005; Elith & Leathwick 2009). According to Guisan and Thuiller (2005) there 

are three main factors that influence the distribution of a species: (i) limiting factors or regulators; 

such as factors controlling a species eco-physiology, e.g., temperature, water, soil composition, (ii) 

disturbances; such as all natural and human perturbations of the environment, and (iii) resources, 

defined as all compounds that are used by an organism for survival and reproduction (e.g., energy, 

water, nest site). The specification of such species-environment relationships represent the core of 

predictive geographical modeling in ecology (Guisan & Zimmermann 2000). During the last 15 years, 

species distribution modeling (SDM) has become an increasingly important tool to understand the 

ecology, occurrence and conservation of species (Guisan & Thuiller 2005). SDMs are used to assess 

the effect of environmental and land use changes on the distribution of species (e.g. Antoine et al. 

1998; Kienast et al. 1998; Araújo & New 2007; Jeschke & Strayer 2008; Braunisch et al. 2014), to 

model the biogeographic envelop of species (e.g. Mourelle & Ezcurra 1996; Leathwick 1998; 

Zaniewski et al. 2002; Breiner et al. 2015), to investigate specific habitat requirements of species (e.g. 

Mathys et al. 2006; Graf et al. 2007; Braunisch et al. 2008; Müller et al. 2009b; Vierling et al. 2011; 

Farrell et al. 2013; Zellweger et al. 2013) or as basis for priority site selection in species conservation 

management (e.g. Schadt et al. 2002; Loiselle et al. 2003; Guisan & Thuiller 2005; Tole 2006; Phillips 

et al. 2006; Bergen et al. 2009; Müller et al. 2009b; Bässler et al. 2011; Bollmann et al. 2011; Farrell 

et al. 2013; Flaherty et al. 2014). For instance, Schadt et al. (2002) used SDM to model habitat 

suitability of Eurasian lynx (Lynx lynx) in Germany. Bollmann et al. (2011) predicted the occupancy of 

habitat patches by Capercaillie (Tetrao urogallus) in a fragmented landscape in Switzerland. Vierling 

et al. (2011) used SDM to examine spider community characteristics and single species distribution at 

scales ranging from stands to landscapes. Triggered by recent technical developments, many SDM 

tend to focus on modeling fine-grained habitat conditions (see Farrell et al. 2013; Zellweger et al. 

2014). Zellweger et al. (2014) used SDM to model species occurrence probability of Hazel grouse 

(Bonasa bonasia) in Swiss mountain forests with small-scale resolved data on vegetation structure 

and composition.  

Model fitting is usually based on pattern-recognition approaches, whereby the relationship 

between a realized geographic distribution of a species and a set of predictor variables are examined 

to investigate the main determining factors of the species distribution (Guisan & Zimmermann 2000; 

Araújo & Guisan 2006). The underlying ecological concept is a pseudo-equilibrium relationship 

between the recorded environmental patterns and the observed species (Lischke et al. 1998). A 

matter of primary interest is the relative importance between abiotic and biotic factors and the 
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significance of data resolution and scale (Guisan & Zimmermann 2000). Abiotic factors limit the 

distribution of a species due to its ecophysiology. For example climate controls the thermal and 

moisture regimes in a certain study area and limits the latitudinal and altitudinal range of a species. 

Other abiotic factors like topography or soil affect terrain attributes and therefore more regional and 

local aspects of species distribution. Otherwise, biotic factors such as vegetation composition and 

structure provide essential nutritional resources (Franklin 2009). Spatial scale is important for both 

environmental and species data (Levin 1992) and comprises both grain (resolution) and extent. The 

extent usually reflects the purpose of the analysis (Elith & Leathwick 2009). For instance, modeling 

approaches that aim to examine changes in species ranges under climate change tend to use broad 

spatial extents that are continental to global in scope (e.g., Araújo & New 2007; Cunze et al. 2013; 

Porretta et al. 2013; Crickenberger 2016), whereas models targeting to asses influences of habitat 

suitability as a basis for conservation management tend to focus on local to regional extents (e.g. 

(Flaherty et al. 2014; Vogeler et al. 2014; Zellweger et al. 2014). Grain size describes the spatial 

resolution of the data such as the grid cell size of predictor variables or the spatial accuracy of 

species data (Elith & Leathwick 2009). Environmental variables should comprise both, broad-scaled 

climate variables and finer-scaled variables that capture variation in energy and resource availability 

(Franklin 2009), because species distributions are likely driven in part by local, fine-grained habitat 

conditions (Farrell et al. 2013).  

Traditionally, SDM mostly rely on abiotic variables such as climate and topography to 

describe the correlation between environment and species distribution (Franklin 1995; Guisan & 

Zimmermann 2000; Elith & Leathwick 2009). However recent developments in remote sensing 

technologies, particular in Light detection and ranging (LiDAR) opened the possibility to directly 

measure three-dimensional (3D) ecosystem and habitat structure across large areas (Vierling et al. 

2008; Davies & Asner 2014; Zellweger et al. 2014). Therefore, this technology offers the opportunity 

to combine broad scale habitat models based on conventional GIS data with new developments in 

remote sensing techniques for developing resource selection models at local and regional scales 

(Zellweger et al. 2014). 

In particular, species inhabiting forest ecosystems largely depend on the 3D distribution, 

composition and abundance of forest elements and resources (Franklin et al. 2002; Davies & Asner 

2014; Zellweger et al. 2014). Structure encompasses both the variability of individual structural 

elements such as trees, shrubs and logs and the spatial arrangement of these elements, such as 

whether forests are single- or multi-layered, or whether the trees are uniformly spaced or clumped. 

Composition refers to the identity of plant species and their variability and proportion in a certain 

area (Franklin et al. 2002). Information on forest structure is traditionally measured by labor-

intensive field surveys, and thus, is often only available across relatively small spatial extents (Davies 
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& Asner 2014). Remote sensing techniques in the past could only provide coarse grained information 

and were not able to percolate the upper-most portion of the canopy to measure structural 

characteristics below (Lefsky et al. 2002; Vierling et al. 2008). However, recent development in 

remote sensing techniques, such as Light detection and ranging (LiDAR) opens new possibilities to 

quantify accurate and contiguous measurements of the complete 3D forest structure at a high level 

of detail, across spatial scales from fine-scaled plots to an entire landscape (Lefsky et al. 2002; 

Hyyppä et al. 2008; Vierling et al. 2008; Davies & Asner 2014; Zellweger et al. 2014). LiDAR directly 

quantifies forest structure and provides metrics of vegetation height, density or volume as well as 

information based on single tree crowns (Goetz et al. 2007). LiDAR has thus spurred interest in 

modeling habitat suitability for forest dependent species (Ackers et al. 2015) and provides an 

excellent opportunity to assess how species are affected by vegetation and topographic structure 

(Davies & Asner 2014; Zellweger et al. 2014). Including LiDAR-related variables in SDM by describing 

small-scaled environmental factors can increase the accuracy of such models, especially in regions 

with low climatic and/or topographic variation (Camathias et al. 2013). LiDAR-based habitat variables 

of forest 3D structure represent gradients of biotic habitat characteristics which can be influenced in 

forest management by silvicultural measures. This allows for an improved integration of biodiversity 

conservation in forest planning (Zellweger et al. 2014).  

Hazel grouse, a forest grouse and member of the family of Phasianidae, is a highly sensitive 

bird species with regard to small scaled forest structure and composition (Bergmann et al. 1996; 

Mathys et al. 2006; Müller et al. 2009b; Schäublin & Bollmann 2011). It mainly inhabits coniferous 

and mixed deciduous forest of the Eurasian boreal forest, but also mountain forests of central and 

eastern Europe (Bergmann et al. 1996). Hazel grouse is a highly sedentary bird and therefore has to 

meet its annual requirements within the inhabited forest stands. Territories range from 10 to 20 ha 

depending on habitat suitability (Zbinden 1979; Swenson 1991; Bergmann et al. 1996; Maumary et 

al. 2007). Three main resources have to be available in a territory: (1) food access during the whole 

year, (2) hiding and sleeping options and (3) breeding prospects. Due to seasonality in temperate and 

boreal regions, the abundance and distribution of these resources change across the distribution 

range of the species during the year. During winter Hazel grouse use the buds and catkins of light-

demanding trees from the genera Sorbus, Salix, Betula, Alnus, Sambucus, Corylus, and Populus. After 

the snowmelt, food is mainly composed by saplings and herbs and in summer by berries, which are 

collected from the ground vegetation layer. Chicks mainly feed on insects during their first weeks of 

life (Zbinden 1979; Bergmann et al. 1996; Maumary et al. 2007). To provide a minimum of light 

demanding resource trees and shrubs, forest stands must include areas with low canopy cover and 

interspersed gaps. In contrast, Hazel grouse depend on relatively dense (coniferous) stands for 

breeding and hiding options to avoid predators. Both aspects must be given within the territories. 
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Therefore, Hazel grouse strongly depends on multi-layered forests with structurally diverse stands, 

including different successional stages and forest edges (Bergmann et al. 1996; Åberg et al. 2003; 

Mathys et al. 2006; Maumary et al. 2007; Müller et al. 2009a; Schäublin & Bollmann 2011; Zellweger 

et al. 2013). Between 1970 and 1990, a strong decline and range contraction of Hazel grouse 

occurred in central Europe. Regional populations decreased between 20 and 50% (Maumary et al. 

2007). In Switzerland, Hazel grouse is now restricted to mountain forests in the Alps and partly in the 

Jura mountains. Especially in lower elevated areas, Hazel grouse disappeared (Blattner 1998; 

Maumary et al. 2007). Habitat deterioration and loss due changes in silvicultural practices is 

considered to be the main factor for the decline. During the past century, silvicultural practices have 

focused on the production of wood for economic reasons and therefore often converted structurally 

diverse and multi-layered stands into more uniform, structurally poor stands (Bergmann et al. 1996; 

Blattner 1998; Mulhauser 2003; Storch 2007). In many managed forests in cultural landscapes, there 

is a dominance of high forests (uniform single layer structure) and a lack of young successional stages 

(Bollmann et al. 2009). Therefore, structurally complex forests are often restricted to mountain 

regions, where small-scale changes in site conditions and natural disturbances support forest 

structural complexity (Čada et al. 2016). Switzerland has a high responsibility for the maintenance of 

Hazel grouse populations because of their vulnerability, the overall population size and the relative 

high species abundance in relation to the international situation (Keller & Bollmann 2001). Therefore 

Hazel grouse is listed as a priority breeding bird species for conservation action plans in Switzerland 

(Bollmann et al. 2002). Modifications in forest management that promote young successional stages 

and an adequate shrub layer with light-demanding trees and shrubs, such as Sorbus, Corylus or Salix 

spp. can support the Hazel grouse conservation and population viability at the local scale (Bergmann 

et al. 1996; Blattner 1998; Maumary et al. 2007).  

Since 2007, the Federal Office for the Environment support regions in Switzerland which 

intend to establish regional nature parks (Regionaler Naturpark) as an instrument for sustainable 

development (Bundesversammlung der Schweizerischen Eidgenossenschaft 2014). Regional nature 

parks are characterized by high nature and landscape values and a low degree of human habitat 

deterioration. Local communities that participate with an initiative for the establishment of a park 

are encouraged to protect and promote local biotopes and their diversity and rarity of indigenous 

animals and plants and their habitats (Der Schweizerische Bundesrat 2014). In 2011, the region 

around the Jura mountain range of the Chasseral has been delineated as regional nature park. Being 

part of the regional distribution range of Hazel grouse, the park management decided to support 

Hazel grouse conservation by active habitat management (A. Gerber personal communication, 

March, 2016). Hence, a systematic multi-year field survey was performed with the goal to localize 

Hazel grouse occurrence within the park perimeter and to evaluate the occupied forest areas in term 
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of habitat suitability. Since resources were restricted, the field survey focused on a limited extent to 

areas of the park which had been reported to be inhabited by Hazel grouse in the last 10 years. To 

overcome this limitation, the Parc régional Chasseral proposed a request to develop a SDM for Hazel 

grouse for the entire park perimeter. The SDM and the predicted habitat suitability map will be used 

as management tool to define priority areas for species conservation and to establish spatially 

explicit habitat management based on habitat potentials and deficits. This request of the park 

management constitutes the key motivation for this study with the aim to (1) test the potential of 

habitat suitability modeling for Hazel grouse conservation based on a combination of abiotic 

environmental variables describing climate, topographic and landscape features, and biotic variables 

describing 3D forest vegetation structure derived from airborne LiDAR, (2) to evaluate the potential 

of LiDAR to asses important structural habitat elements and resources for the forest specie and (3), 

to assess the predicted habitat suitability for conservation management.  

Depending on the numerous ecological questions and modeling goals, there is currently a 

broad and sometimes confusing use of the term species distribution modeling (SDM) (Bradley et al. 

2012; Guisan et al. 2013). In this study, I restricted my analysis to predictors that describe aspects of 

habitat suitability for Hazel grouse. Biotic interactions such as competition or predation or 

demographic data were not considered due to the lack of respective data. Hence, I use the more 

explicit term habitat suitability model (HSM) (see Bradley et al. 2012) for my purpose (Van Horne & 

Horne 1983; Bradley et al. 2012) instead of SDM to investigate the species–environment relationship 

of Hazel grouse in the Parc régional Chasseral. 
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Methods 

Study area 

The study area is located in the north-western part of Switzerland (47° 8′ N, 7° 3′ E) and encompasses 

the perimeter of the Parc régional Chasseral including a buffer zone of 250 m (Fig. 1). The purpose of 

the buffer zone was to reduce edge effects for variables along the border. The park covers an area of 

387 km2 in the western Jura mountains of the Cantons of Bern and Neuchâtel. The elevation range 

starts at 429 m above sea level at the bank of Lake Biel up to 1607 m on top of the mountain 

Chasseral. The western Jura has an oceanic climate. The mean annual precipitation (period: 

1981−2010) is 1289 mm, with a major part during summer and winter. The mean annual 

temperature is 6.3 °C with a maximum of 15.1° in July and a minimum of −1.4° in January 

(MeteoSchweiz, 2015). The landscape is characterized by a group of parallel mountain chains and a 

mosaic of forest, pastures, farmland and settlements. Forests are clustered as three forest belts in 

east-west direction. The natural timberline has been pushed down through pastoralism on the gentle 

areas in the higher zones of the mountain chains. On the north-facing slope of mount Chasseral, 

forest stands are more dense, compared to the south facing slope with dryer conditions. Forest 

composition changes from predominantly deciduous forest in low land areas to coniferous 

dominated forest at higher elevations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1: Location of the Parc régional Chasseral in Switzerland. The 
study area included the perimeter of the Parc régional Chasseral 
with an additional buffer zone of 250 m. ©Netzwerke Schweizer 
Pärke 01/2012 EB - Swisstopo 5704002947 
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Study design 

Because species respond differently to the same environmental parameter sampled at different 

resolutions (Guisan & Thuiller 2005), I analyzed the species-habitat relationship of Hazel grouse at 

different spatial resolutions. The study area was overlaid with three grids (rasters), using different 

cell sizes, i.e., 250 m, 125 m, and 50 m. Each grid cell was assessed individually and contained a 

minimum forest proportion of 20%, as delineated by the digital mapping product Vector25 

(Swisstopo, 2014). Data analysis and modeling (see below) revealed that the model based on the 

raster with 125 m cell size was most informative, and represented an optimal trade-off between 

representing a substantial part of Hazel grouse territory and a level of detail required for a proactive 

forest and conservation management. Therefore, I focused on the model with a grid cell size of 125 

m and provide the results based on the other spatial resolutions in the Appendix 3. 

Presence-pseudo-absence approach  

I predicted the habitat suitability of Hazel grouse in the Parc régional Chasseral based on a presence-

pseudo-absence data approach (Guisan & Zimmermann 2000; Araújo & Guisan 2006; Soberón 2007); 

in other words, I compared habitats used by Hazel grouse with unused habitats (Jones 2001; Brotons 

et al. 2004; VanDerWal et al. 2009). Cells were defined as “presence” if they contained at least one 

Hazel grouse record, as described below.  

Species presence data and pseudo-absence data  

I used species presence data from the Parc régional Chasseral and the Swiss Ornithological Institute 

from the time period between autumn 2011 and spring 2015. Presence data from the park were 

derived from a multi-year field survey, which was launched after the park’s establishment in 2001. 

Therefore, the park area was overlaid with a grid raster using a cell size of 250 m. Each grid cell was 

classified through visual interpretation of aerial photographs. Grid cells with low percentage of 

forests or high proportion of settlements were excluded. For the field survey, four grid cells were 

aggregated, which resulted in 632 aggregated grid cells. After a preselection of 83 aggregated grid 

cells that were classified as having the highest habitat suitability potential for Hazel grouse, 50 out of 

these 83 aggregated cells were randomly chosen and surveyed in the field. Data from the Swiss 

Ornithological Institute represent verified detection of Hazel grouse through experienced 

ornithologists. I only used species presence data recorded inside the buffered parc perimeter during 

the months of December to August. During autumn, juvenile birds disperse to find new territories 

and can therefore be observed in areas which are occupied only temporarily (Bergmann et al. 1996). 

Finally, 212 species presence point occurrences, 210 from the field survey and 2 from the database of 

the Swiss Ornithological Institute were used. They were assigned to 101 presence cells of 125 x 125 

m. 
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To get pseudo-absence data, I randomly selected 10’000 background cells and weighted them 

equally with the presence data (see Barbet-Massin et al. 2012). Pseudo-absences were cells with no 

reported species evidence between winter 2011 and winter 2015 and assumed to be locations which 

could potentially be occupied and used by Hazel grouse. 

Environmental variables 

To record environmental conditions that influence habitat suitability for Hazel grouse, a large set of 

environmental parameters were used as independent variables (Table 1). LiDAR-derived variables 

were used to characterize small-scale structural characteristics of the vegetation and GIS-derived 

variables were used to describe forest composition and topography, climate and human influence. 

Table 1: Description of environmental variables with sampling units and references squares. They describe the square size, 

for which the variables were processed. All variables were tested by pairwise correlation. If two variables had a correlation 

> 0.5, the variable with the higher ecological relevance was selected as a predictor. I selected two different predictor sets. 

The model approach “125_all” includes predictors describing forest structure or composition and topographic, climatic and 

human aspects. The model “125_biotic” consists only of biotic predictors.  

 

 

 

Variable description Unit  References squares (m)  Predictor selected in model 

   125_all 125_biotic 
LiDAR-derived variables     
     

Average vegetation height  m 25 X X 
Standard deviation of 
successional stage  

unit less 25 X X 

Shrub density  % 25 X X 
SD of shrub density  unit less 25   
Sum of small gaps  counter  5 X X 
Foliage height diversity  unit less 25   
     
GIS-derived variables     
     

Topographic position  unit less 25 X  
Roughness  unit less 25   
Slope degrees 25 X  
Solar radiation in March  kJ/day 25 X  
Mean temperature  °C/month 100 X  
Mean precipitation  mm/month 100   
Distance to forest edge  m 25   
Length of forest edge  m 125  X X 
Proportion of forest  m2 125    
Forest type  4 categories 125  X X 
Density of settlements  m2 125    
Distance to settlements  m 25 X  
Distance to roads  m 25   
Length of roads  m 25 X  
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LiDAR-derived environmental variables 

LiDAR variables were derived by using discrete multiple return LiDAR data provided by the cantons of 

Bern and Neuchâtel. LiDAR data from the canton of Bern were recorded in April 2011 using the 

scanner Leica ALS60. The minimum point density was 4 points/m2, with vertical position accuracy < 

±0.3 m and a horizontal accuracy < ±1.0 m. The reported standard deviation of height accuracy was 

less than ±0.2 m in open areas and less than ±1.0 m in the forest. The cantonal data of Neuchâtel was 

acquired between May and June 2010 using the scanner Optech Gemini 166 KHz with a mean point 

density of 7 points/m2. The mean vertical accuracy was 0.15 m and the mean horizontal accuracy 

0.25 m. Raw data processing was performed using a suite of LAStools algorithms (Isenburg 2014). 

Following the classification of the raw data point cloud into ground and non-ground points and 

derivation of the normalized vegetation heights above ground, the lascanopy tool was used to 

describe the vertical distribution of vegetation points and related structural characteristics. I 

therefore gridded the data using different cell sizes (reference squares, Table 1) and upscale local-

scale characteristics of forest structure and their spatial variation to the reference cell size of the 

species occurrence data (125 m). I excluded points below 0.5 m and above 55 m to reduce bias from 

both, potentially misclassified points, particularly towards the ground, and from bias through 

recorded objects other than the canopy. 

I developed six LiDAR variables (Table 1) to describe spatial vegetation patterns that have been 

shown to represent essential aspects of Hazel grouse habitat (Bergmann et al. 1996; Åberg et al. 

2003; Sachot et al. 2003; Mathys et al. 2006; Müller et al. 2009b; Schäublin & Bollmann 2011; 

Zellweger et al. 2013, 2014).  

The first variable “average vegetation height” was developed with the lascanopy option “avg” and 

represents the average height of the vegetation points within the grid cell. Derived from the canopy 

height, defined as the height at which 90% of all points are below (lascanopy option “p90”), I defined 

the successional stage per reference square. For this purpose, I used the same vegetation height 

classes as the forestry department of the canton of Bern is using in practice. The classes were 0.5 m 

to 1.3 m for successional stage one, 1.3 to 10 m for successional stage two, 10 to 30 m for 

successional stage three and above 30 m for successional stage four. By calculating the SD of 

successional stages over all reference squares within a grid, I created the second variable termed 

“standard deviation of successional stages”. The variables “average vegetation height” and “standard 

deviation of successional stages” were selected because mean vegetation height and standard 

deviation of canopy height are known to represent important aspects of the physiognomy of the 

vegetation (Falkowski et al. 2009; Korpela et al. 2009; Müller et al. 2009). Bässler et al. (2011) 

distinguished standard deviation of canopy height as an indicator of the horizontal heterogeneity in 
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the vertical structure of the canopy. A mosaic of different successional stages and a high vertical 

heterogeneity are expected to increase the habitat suitability for Hazel grouse (Bergmann et al. 1996; 

Mathys et al. 2006; Schäublin & Bollmann 2011).  

As a proxy for shrub cover, I calculated the variable “shrub density” using the ratio of all vegetation 

points between 0.5 m and 5 m in relation to the total point cloud. In addition, I computed the “SD of 

the shrub density” within each 125 m grid cell to represent the spatial heterogeneity of the shrub 

layer. Shrub layer and its composition are key factors influencing habitat suitability for the Hazel 

grouse (Sachot et al. 2003; Mathys et al. 2006; Müller et al. 2009b; Schäublin & Bollmann 2011; 

Zellweger et al. 2014). 

To identify forest gaps, I generated the variable “sum of small gaps”. It represents the sum of all 

reference squares of 5 m whose canopy height was below 1.3 m. The relatively small resolution of 5 

m for the reference squares was necessary to identify even very small forest gaps, which still could 

have an ecological effect on habitat suitability of Hazel grouse. Forest gaps were reported in many 

studies as an import aspect for Hazel grouse occurrence (Saari et al. 1998; Mulhauser 2003; Sachot et 

al. 2003; Müller et al. 2009b). In addition, the height cutoff of 1.3 m allowed for examining the lower 

part of forest structure, which includes important food resources, like berry bushes (Mulhauser 

2003). 

The lascanopy option “dns” was used to produce relative height density raster for calculating the 

variable “foliage height diversity” (FHD). FHD is defined as the Shannon Index H’ following MacArthur 

& Macarthur (1961). We generated four height density rasters according to the following height 

intervals: 0 to 1.3 m, 1.3 to 10 m, 10 to 30 m and >30m. FHD is a common index to assess the vertical 

complexity among the forest vegetation layers, which is expected to be positively related to Hazel 

grouse habitat quality (e.g., Bergen et al. 2009; Zellweger et al. 2013; Bae et al. 2014). 

GIS-derived environmental variables 

I used the mean and standard deviation of topographic position, topographic roughness and slope to 

represent different aspects of the terrain (Table 1). Topographic position is a variable that indicates 

the exposure of a location in space compared to the surrounding terrain. Positive values express 

ridges, hilltops and exposed sites. Negative values stand for sinks, gullies, valleys or toe slopes. The 

measure summarizes various micro- to meso-climatic and edaphic features. The topographic position 

was calculated in GIS by applying circular moving-windows with increasing radii to a digital elevation 

model (Swisstopo 2015b; Zimmermann & Roberts 2001). Topography, topographic roughness and 

slope are supposed to influence the habitat quality of Hazel grouse indirectly by influencing forest 

structure through changes in exposure, steepness and soil condition (Schäublin & Bollmann 2011). I 
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further considered solar radiation (potential shortwave radiation in March) as another environmental 

variable, because it also influences soil characteristics and light conditions and therefore plant 

development and forest structure (Kimmins 2004; Wermelinger 2004). To calculate this variable by 

using the DEM, the method developed by KUMAR et al. (1997) was used, which incorporates 

topographic shading effects.  

To represent climate, I used long-term monthly means of average temperature (°C) and precipitation 

(mm) in June during the period of 1960–2006 (Table 1). Temperature and precipitation were spatially 

interpolated using a DEM as described in Zimmermann & Kienast (1999). The local climate influences 

the reproduction of Hazel grouse by reducing chick mortality in dry and warm weather in early 

summer (Bergmann et al. 1996). 

To measure supplementary aspects of spatial vegetation patterns in addition to the LiDAR variables, 

four GIS-related variables describing forest edges, the proportion of forest and the forest type were 

developed (Table 1). For forest edge I used two variables: “Distance to forest edge” and “length of 

forest edge”. The former describes the accumulated distance to forest edges within a grid cell. It was 

constructed by subdividing each cell into the smaller scaled reference squares and calculating the 

sum of distances of all reference squares within a grid cell, which had no forest cover, to the nearest 

reference square with forest. The second variable “length of forest edge” counts the total length of 

forest edge within a grid cell. The variable “proportion of forest” represented the percentage of the 

area covered with forest within the final grid cell. The forest cover layer used for these calculations is 

based on the Vector 25 dataset provided by swisstopo (Swisstopo 2015a) in which “shrub forest” 

(Cat. 6), “forest” (Cat. 12) and “open forest” (Cat. 13) were summarized as forest cover. The variable 

“forest type” was derived from satellite images (Landsat-5, Thematic Mapper, WMG25, BFS 

GEOSTAT) by an automated maximum likelihood classification. Forest type was available in four 

different categories: conifer forest, conifer-dominated mixed forest, deciduous-dominated mixed 

forest, and deciduous forest. Graf et al. (2005) confirmed the high accuracy of this classification.  

To represent human disturbance, I used the variables “density of settlement” and “distance to 

settlements” (Table 1). Single buildings were represented by their footprint in m2, the dataset 

SwissTLM3D_1.2_Gebäudefootprint_2014 provided by swisstopo (Swisstopo 2015c). Density of 

settlement represented the sum of all footprints of buildings within a grid cell, while distance to 

settlements was calculated the same way as distance to forest edge. Settlements with a footprint 

below 80 m2 were suggest as not permanently inhabited and excluded from the analysis. Human 

activities affect habitat suitability of Hazel grouse negatively, though Hazel grouse is not as sensitive 

as other grouse species such as Capercaillie (Blattner 1998). 
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I assumed a positive effect of certain roads on habitat suitability, because they can represent open, 

linear ecotones within forests, with light-demanding woody plants providing important winter food 

resources for the Hazel grouse (cp. Bergmann et al. 1996). As indicators for this effect, I generated 

the variables “distance to roads” and “length of roads” (Table 1). Both variables were processed from 

the dataset SwissTLM3D_Strassen (2014) provided by swisstopo (Swisstopo 2015c), which comprises 

different categories of roads. I only used the categories 15 to 18 and combined them into less 

frequented roads, because of their maximum width of 2.80 m.  

Predictor selection 

For all variables, bivariate correlations were assessed. From variable pairs showing a Spearman’s rank 

correlation coefficient higher than 0.5, only the variable considered to be ecologically more 

meaningful was selected as a predictor (cp. Appendix 1 and 2). Finally, I selected two different 

predictor sets to model habitat suitability of Hazel grouse (Table 1). One predictor set included 4 

LiDAR and 8 GIS-related predictors describing forest structure or composition, topographic, climatic 

and human aspects. I chose the variable temperature, instead of precipitation. I expected that 

temperature is ecologically more relevant in the study area than precipitation, because of the 

temperature gradient along elevation. It affects forest composition more than disparity in 

precipitation in the study area. The second predictor set included 4 LiDAR and 2 GIS-related 

predictors, describing only biotic aspects of forest structure and composition. It was termed 

“125_biotic” model.  

Statistical modeling 

Model calibration, evaluation and validation 

For the statistical analysis, I calculated an ensemble prediction using seven standard species 

distribution model algorithms. To consider model variability and to improve reliability of the model 

predictions, I averaged the outcomes of the single modeling methods on the area under the receiver 

operating characteristic curve (AUC) (see Segurado & Araujo 2004; Araújo & New 2007; Elith & 

Graham 2009; Jones-Farrand et al. 2011). I fitted the ensemble prediction with generalized linear 

models (GLMs), generalized boosted models (GBMs), maximum entropy (Maxent), artificial neural 

network (ANN), flexible discriminant analysis (FDA), multiple adaptive regression splines (Mars) and 

random forest (RF). This number of alternative modeling algorithms have been used to classify the 

probability of species’ presence (and absence) as a function of a set of environmental predictors. The 

task is to identify potentially complex, non-linear relationships in multi-dimensional environmental 

space (Pearson 2007). To calibrate the models of the individual modeling algorithm and to generate 

the ensemble prediction of habitat suitability, I used BIOMOD (Thuiller et al. 2009) with the R 
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package “BIOMOD2” (R package version 3.3-3/r713) (Thuiller et al. 2015) and additionally integrated 

the BIOMOD_tuning function to tune single model parameters. 

The predictive performance of the ensemble models was assessed using a 5-fold cross validation 

procedure which was repeated five times. I thus used 80% of the data as training data and tested its 

predictive performance on the remaining 20% of the data. Model accuracy was evaluated based on 

AUC which provides a single measure of overall accuracy and is not dependent upon a particular 

threshold (Fielding & Bell 1997; Boyce et al. 2002). AUC tests both, presence and absence records 

(Pearson 2007). However, AUC can be applied using pseudo-absence data instead of absence records 

(cp. Phillips et al. 2006). AUC values >0.7 represent acceptable, 0.8–0.9 excellent, and >0.9 

outstanding model discrimination (Hosmer & Lemeshow 2000). In addition, I used sensitivity and 

specificity for the evaluation process. Sensitivity describes the proportion of recorded presence plots, 

which are predicted correctly as presence in relation to the total of recorded presences (including 

recorded presence plots which were predicted wrongly as absences). Hence, specificity defines the 

proportion of correct predicted absence plots in relation to the total of absences (including absence 

data, which were predicted wrongly as presence) (Pearson 2007). To interpret the contributions of 

the individual predictors, we calculated the relative importance of each predictor based on a variable 

randomization procedure as implemented in BIOMOD (Thuiller et al. 2009). To infer the direction and 

shape of the effect of each predictor on the Hazel grouse habitat suitability, I calculated response 

curves (Thuiller et al. 2009). 
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Results 

Model performance  

The model “125_all”, in which all predictors were used, fitted excellently (Results for the models 

based on grid cell sizes of 250m and 50m, see Appendix 3). The model achieved a median AUC value 

of 0.959 (Table 2). The marginal standard deviation of 0.021 for the AUC rejected an overfit of the 

model due the calibration process. Values higher than 90.00 for both specificity and specificity 

confirm the high accuracy of this model. Four predictors had a median predictor contribution higher 

than 0.1 and explained together 1.0 of the shared variable importance. The two GIS-derived 

predictors “temperature” and “solar radiation” were the most important predictors affecting habitat 

suitability of Hazel grouse, the former with a contribution of 0.598 and the latter with 0.246. The 

predictors “Shrub density” and “average vegetation height”, the most influential LiDAR-derived 

variables, had a median predictor contribution of 0.161 and 0.139, respectively. All other predictors 

made a marginal contribution to the model with mean variable importance below 0.05. 

Also the model “125_biotic”, in which only biotic (structural) predictors are used, had an excellent 

predictive power with an AUC from 5-fold cross-validation of 0.914 (Table 2). With sensitivity and 

specificity median values of 90.00 and 84.38, specificity was lower compared to the model that used 

all predictors. In addition, standard deviation of all evaluation values of model “125_biotic” were 

higher compared to the model “125_all”. The two most important predictor variables “average 

vegetation height” and “shrub density” had a median variable importance of 0.693 and 0.228, 

respectively. In comparison to the “125_all”, the predictor contribution of “average vegetation 

height” was much higher and the importance of the other predictors (≥ 0.1), with the exception of 

“forest type”.  
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Table 2: Median predictive performance and median predictor contribution of model ensembles for the Parc régional 

Chasseral. The model “125_all” is based on a combination of environmental variable describing climate, topographic and 

landscape and LiDAR-derived small scale structural vegetation patterns. In the model “125_biotic”, only biotic (structural) 

predictors were used. In addition to median values of AUC, sensitivity and specificity and the standard deviation 

(parenthesized) were calculated. The median predictor contribution is given in percent. All evaluation values are based on a 

5-fold-cross-validation with 5 repetitions.  

 Model  
 125_all 125_biotic 

Median predictive performance   
AUC 0.959 (0.021) 0.914 (0.036) 
Sensitivity 90.00 (6.415) 90.00 (7.576) 
Specificity 92.55 (3.886) 84.38 (5.403) 
   

Median predictor contribution   
   

LiDAR-derived predictors   

Average vegetation height 0.139 0.693 
Standard deviation of successional stages 0.016 0.153 
Shrub density 0.161 0.228 
Sum of small gaps 0.029 0.122 
   
GIS-derived predictors   

Topographic position 0.004  
Slope 0.044  
Solar radiation in June 0.246  
Mean temperature 0.598  
Forest type 0.027 0.073 
Length of forest edge 0.017 0.151 
Distance to settlements 0.005  
Length of roads 0.003  

 

Predictor response curve 

I focused my examination of the response curve on the best predictors. For further results see 

Appendix 4. 

“Temperature” as the most influential predictor in the model “125_all”, was negatively correlated 

with Hazel grouse occurrence: The response curve in Fig. 2a shows a decreasing habitat suitability by 

increasing temperature. Mean temperatures above 5°C strongly reduced habitat suitability. Contrary, 

a rising solar radiation promotes habitat suitability for Hazel grouse, especially in the range of the 

highest values. The response curve of shrub density indicates an optimum density between 30 and 

35 %. In contrast, the response curve of “average vegetation height” depicted no trend for the effect 

of vegetation height on habitat suitability. 

However, in the model “125_biotic”, “average vegetation height” as the most influential predictor, 

showed an optimum height of around 8 m (Fig. 2b). The declining function of vegetation heights 
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above 8 m depicted a decreasing habitat quality with increasing heights. “Shrub density”, the second 

most importance predictor showed a unimodal response with an optimum between 25 and 30 %. 

 

Fig. 2: Response curves of the most influential predictor variables of the ensemble model “125_all” (a) and of the ensemble 

model “125_biotic” (b). The graphs show the effect of a particular predictor: increasing values on the y- axis indicate that 

the probability of Hazel grouse presence responded positively, decreasing values the opposite. The x-axis shows the data 

range of predictor variable measurements in the study area.  
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Model predictions 

The map of habitat availability of the model “125_all” depicted habitat suitability values >600 in two 

linear patches along the upper forest line (Fig. 3). In the center of the park around the mountain 

Chasseral, high suitable areas were arranged as a band with a concentration on the southern slope of 

the mountain range. A few small patches with high suitability were spread close by. Besides, high 

suitability areas could be identified in the south-west of the park area along the Mont d’Amin, close 

to the border of the park. These two patches of high suitability were completely segregated. Across 

the remaining perimeter only very small suitable patches for Hazel grouse could be identified. 

 

Fig. 3: Predicted habitat suitability in the Parc régional Chasseral illustrated with values from 0 to 1000. The 

predictions are based on the model ensemble “125_all”. Cells with green or greenish colors implied areas with 

high suitability for Hazel grouse. Intermediate habitat suitability is indicated in yellow and areas with low 

suitability in reddish. The x- and y-axis represent the Swiss coordinate System (CH1903_LV03). 

 

The already mentioned patches with pixels of high suitability (Chasseral, Mont d’Amin) were also 

predicted in the model “125_biotic” (Fig. 4). However, the extent was smaller and suitable patches, 

in general, were more dispersed over the study area. Just as in the model “125_all”, the majority of 

the park perimeter was predicted with poor habitat suitability for Hazel grouses. 
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Fig. 4: Predicted habitat suitability in the Parc régional Chasseral illustrated with values from 0 to 1000. The 

predictions are based on the model ensemble “125_biotic”. Cells with green or greenish colors indicate areas 

with high suitability for Hazel grouse. Intermediate habitat suitability is indicated in yellow and areas with low 

suitability in reddish. The x- and y-axis represent the Swiss coordinate System (CH1903_LV03). 

 

 

  

N
o

rt
h

n
es

s 

Habitat 

suitability 

0 2 4 61
Kilometers

Eastness 

Mount Chasseral 

Mont d’Amin 



Habitat modeling for Hazel grouse – developing a management tool for the Parc régional Chasseral 

Master Thesis Christian Rechsteiner   23 

Discussion 

Potential of habitat suitability modeling for Hazel grouse 

I assessed the potential of habitat suitability modeling for Hazel grouse in the Parc régional Chasseral 

based on a combination of environmental variables describing climate and topography, landscape 

composition and vegetation structure. The excellent performance of the model “125_all” shows the 

high applicability of habitat suitability modeling for the Hazel grouse at the landscape scale. Effects of 

overfitting can be rejected due the small standard deviation of the AUC in the model evaluation. 

Even though model accuracy was only the second best of the three tested resolutions (see Appendix 

3), the model with a grid cell size of 125 m was chosen because the difference between model 

accuracy of all three models were marginal and 1 ha is a wide-spread and frequently used planning 

unit in silvicultural and conservation management (A. Gerber personal communication, March, 

2016). The 125 m cell sizes allowed for assessing habitat conditions at a high spatial precision across 

the entire landscape. An effect of losing resolution of habitat features through averaging 

environmental patterns for each grid cell is much smaller compared to larger grain sizes (e.g., 1km2) 

which are frequently applied in other studies (Gottschalk et al. 2011). The use of pseudo-absence 

due to the lack of verified absence information in the study area could have negatively affected the 

model (Brotons et al. 2004; Gu & Swihart 2004). However, Barbet-Massin et al. (2012) showed that 

selecting 10’000 cells from the background as pseudo-absences with equal weighting for presences 

appears to be a good alternative and is thus widely used in predictive distribution modeling (e.g., 

Ferrier et al. 2002a; Ackers et al. 2015; Breiner et al. 2015). I cannot exclude that the decision of the 

park management for a focus of the species field survey on the best suitable areas could have 

provoked a certain bias by missing exceptional occurrences in suboptimal habitats (see Brotons et al. 

2004; Gu & Swihart 2004). However, the integration of random observation of the Swiss 

Ornithological Institute represents a certain balance.  

Both, GIS-derived and LiDAR-derived predictors showed high median predictor contributions and 

recorded relevant aspects of habitat quality for Hazel grouse. However, the “model 125_all” revealed 

a strong influence of temperature and solar radiation on habitat suitability of Hazel grouse. The 

response curve of “temperature” indicates that the habitat suitability of Hazel grouse decreases with 

increasing temperature. Only a mean temperature in June below 5°C supports habitat suitability 

positively. This strong influence of temperature and its small suitable range raises the question of a 

direct or indirect effect of this variable on habitat suitability of Hazel grouse within the study area. 

Due to the mountainous conditions, temperature is negatively correlated with elevation, and thus, 

the model defined areas at low elevations as less suitable. However, historical records in this region 

prove former occurrence of the species at lower elevations than the topographically lowest point of 
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the study area (Blattner 1998). Climate conditions of the study area are well nested within the 

climate envelope of the species’ global range. In Siberia, Hazel grouse can withstand very low 

temperature of -45°C without problem, a situation that is exceptional in the Swiss Jura mountains 

(Mulhauser 2003). Hazel grouse also occurs in the deciduous forests of the canton of Tessin in the 

southern part of Switzerland (Maumary et al. 2007). In contrast to the predicted negative correlation 

of temperature and habitat suitability, annual variation in temperature influences the breeding 

success, whereby cold and wet weather conditions increase mortality of juveniles (Bergmann et al. 

1996). In this study, it can thus be assumed that temperature is indirectly related to Hazel grouse 

habitat suitability by its effect on forest type, i.e. coniferous vs. deciduous. Also Zellweger et al. 

(2016) showed, that the effect of climate on species richness of butterflies in forest dominated 

landscapes appeared to be mainly indirect, via correlations with habitat type and structure. 

Moreover, other studies highlighted aspects of forest structure complexity and forest composition as 

key-factors for Hazel grouse habitat (Bergmann et al. 1996; Åberg et al. 2003; Mathys et al. 2006; 

Schäublin & Bollmann 2011; Zellweger et al. 2014) and hence temperature alone cannot limit habitat 

suitability in a restricted study area of this dimension.  

The majority of grid cells with high habitat suitability occur at the southern slope of the 

Mount Chasseral and Mont d’Amin. They are concentrated as a band along the upper forest in 

proximity to the tree line and the above pastures on the mountain chain (see Fig. 3). Today, the 

natural treeline is still pushed down by pastoralism. However, the comparison of contemporary aerial 

photographs with historical maps, such as the Siegfriedkarte from the beginning of the 19th century, 

shows that the forest expanded up to 200 m into the pastures due to land use changes. This gradual 

and heterogeneous forest edge consisting of early successional stages and old growth stands provide 

suitable habitats for the Hazel grouse. Also Montadert & Klaus (2011) showed that forest edges in a 

forest-pasture mosaic were suitable habitats for Hazel grouse in a mountainous landscape. The long-

term historical use of the upper grasslands and adjacent forests as wood pastures is considered to be 

an important indicator of contemporary habitat quality for Hazel grouse. In the Swiss Jura mountains, 

as well as within the park area, wood pastures were widespread at the beginning of the 19th century 

(Grossmann 1927). I suggest that grid cells with high habitat suitability close to grassland in my study 

area still comprise positive effects on forest structure and composition due to the former land use as 

forest pasture. This reasoning is in line with Montadert & Leonard (2003) who assumed that the 

expansion of Hazel grouse in a mountainous habitat consisting of forest-pasture mosaics is largely 

related to the abandonment of grazing activities and the subsequent spontaneous reforestation of 

pastures. The subsequent spontaneous forest succession in pastures and forest pastures has created 

an optimal habitat for Hazel grouse. Moreover, Mayer & Stöckli (2005) compared grazed and 

ungrazed subalpine forests and showed that grazing caused a multi-layered forest structure with a 
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higher percentage of threes belonging to early successional stages compare to ungrazed forest with 

more dens and uniform stands. Furthermore, Mountford & Peterken (2003) showed, that species 

richness in the shrub cover increased due to grazing and that the impact of heavy grazing can be 

recognized for many decades after the abandonment. In contrast, forest stands next to open 

grassland on lower elevations were mostly predicted as less suitable in this study. The impact of 

contemporary forest management on low elevation areas is obviously negative and has replaced the 

effect of the historical land use. The higher proximity and accessibility of the forest could have 

triggered a more intensive use and may have resulted in a dominance of single-layered stands with 

lower structural diversity. Also, forest succession is faster in lower areas with milder climate and 

supports the transformation to high forest stands (DeLong & Meidinger 2003; Bolli et al. 2007). The 

combination of this forest transformation and a higher availability of anthropogenic food sources for 

generalist predators in lower areas (Storch 2007) could explain the loss of historically occupied 

stands in lower areas of the park. Based on my results, I suggest that temperature indirectly 

represents effects on forest structure and composition due to contrasting land use practices along 

the altitudinal gradient over time. 

Solar radiation seems to influence habitat suitability strongly. An increased availability of 

light on the ground allows for developing a diverse shrub cover, including many light-demanding 

trees and shrubs that provide food resources. It prevents growing of only shade tolerant plants such 

as beech. Further, forest stands with a high solar radiation will exhibit warmer soil temperatures and 

a higher potential of drought stress and are thus more susceptible to disturbance agents that 

enhance forest structural complexity (Fischer et al. 2013). Natural disturbance (e.g., wind storm, 

drought, insect calamity) are important drivers for suitable Hazel grouse habitat in natural forests 

(Bollmann 2010). However, solar radiation can only be used as an indirect indicator for such 

physiological relationships.  

The predictors „shrub density“ and „average vegetation height“ are variables describing 

biotic aspects of the 3D habitat profile and are therefore key-variables of habitat suitability for Hazel 

grouse (Bergmann et al. 1996). The summed predictor contribution of 0.3 confirms the importance of 

the 3D forest structure. The optimum proportion of shrub layer of 30 to 35% of the total vegetation 

(see Fig. 2b) reflects the tight preference of Hazel grouse for multi layered forests with abundant 

shrub cover. These results indicate that single layered high forest stands with low or absent shrub 

layers do not represent habitat for the species (see also Mathys et al. 2006; Zellweger et al. 2013, 

2014).  

The high accuracy of the model using the full predictor set showed the good applicability of 

this modeling approach for modeling habitat suitability of Hazel grouse. The use of abiotic predictors, 

in this case temperature, may buffer the signals of other predictors and have therefore a limited 
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potential to represent the potential ecological niche in a restricted study area. The high predictor 

contributions of „shrub density“ and „average vegetation height“ confirmed the importance of 3D 

forest structure for the species. 

Potential of LiDAR to assess 3D forest structure and forest composition  

To assess the potential that LiDAR data offers for habitat modeling, I developed the biotic model, 

which predicts habitats suitability of Hazel grouse in the Parc régional Chasseral solely based on 

biotic predictors. Four of the six predictors were derived from LiDAR, two from GIS-layers (Table 1). 

The high model accuracy with an AUC of 0.914 and the high values of specificity and sensitivity 

demonstrated the excellent applicability of LiDAR-derived predictor variables for modeling habitat 

suitability of Hazel grouse. These results are in line with previous studies which used LiDAR as a 

complementary source of habitat information (see Farrell et al. 2013; Flaherty et al. 2014; Vogeler et 

al. 2014; Zellweger et al. 2014; Ackers et al. 2015). In contrast to other studies, my results 

demonstrate that habitat suitability of Hazel grouse can be predicted exclusively on the basis of 

biotic forests variables. This highlights the importance of 3D forest structure for the Hazel grouse 

itself and confirms the high applicability of LiDAR for accurately recording 3D ecosystem structure. 

Modeling habitat suitability of a forest species only with biotic predictors integrate human habitat 

management. I used predictors that are at least partly controlled by silvicultural management and 

hence subject to practical implementation. The median predictor response curve of the two most 

influential predictors “average vegetation height” and “shrub density provided explicit information 

on how their combination affects habitat suitability of the Hazel grouse. The optimum contribution of 

“average vegetation height” around 8 m could indicate either a multi-storied forest with different 

successional stages, or a two-layered forest where the average of these layers is around 8 m. These 

results exclude one-layered high forest stands with marginal shrub density from suitable habitats and 

are consistent with the previous discussed results from the full model.  

However, LiDAR is not able to record and define vegetation composition and single species 

directly (Bergen et al. 2009). Measurements of shrub density with LiDAR-derived predictors cannot 

distinguish between a species rich shrub layer and a pure beech shrub cover. This limitation is 

essential for Hazel grouse because the species is a food specialist and the incidence of specific food 

plants tend to be a crucial factor for Hazel grouse occurrence in mountain areas (e.g., Müller et al. 

2009; Schäublin & Bollmann 2011). To reduce this methodological limitation, I selected predictor 

variables, which describe both, the complexity of forest structure itself and the light or temperature 

conditions in the lower stratum of the forest, as a proxy for the potential growth of light demanding 

woody species (see Müller & Brandl 2009). However, the accuracy of the model and the fine-scaled 

differentiation of suitable grid cells demonstrated the high potential of LiDAR-derived predictor 
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variables to examine forest characteristics related to the structure and the understory vegetation 

and therefore for assessing habitat suitability of forest species across entire landscapes.  

Management implications 

Despite a surge in the development of HSM/SDMs in this decade, evidence of the application of 

these models in real-world conservation management remains sparse (Guisan et al. 2013). There is 

few literature that document the use of HSM/SDMs for conservation decision making (e.g., Soberon 

et al. 2001; Ferrier et al. 2002; Leathwick et al. 2008; Bässler et al. 2011; Bennetsen et al. 2016). 

Most of the studies only underlined the high potential of HSM/SDMs for conservation management 

without specific applications and adaptions. Therefore, only little guidance exists on how HSM/SDMs 

can support decision making for conservation purpose (Guisan et al. 2013). In this study, I attempted 

to inform the conservation management in the Parc régional Chasseral on the abundance and 

distribution of suitable Hazel grouse habitat. Conservation management should target for an increase 

in the size of the regional Hazel grouse population by conserving the occupied habitat patches and by 

creating more suitable habitats next to them. In a second step, occupied patches should be 

functionally connected by newly created stepping stone habitats. 

To increase the suitability and connectivity of Hazel grouse habitat in the Parc régional Chasseral, I 

recommend the following measures:  

Habitat area 

(1) The two largest habitat patches with high suitability (Fig. 3) in the prediction of the model 

“125_all” define the core areas of the regional Hazel grouse population. A comparison of the 

predictions of the full and biotic models within these patches shows that many grid cells have 

low structural suitability. The structural improvement of these grid cells in matters of 

average vegetation height and shrub density in combination with a silvicultural promotion of 

food plants would restore the habitat and indirectly strengthens the Hazel grouse population 

itself. Only healthy populations produce enough emigrants that can colonize nearby habitat 

patches according to the source-sink metapopulation theory (Thomas & Kunin 1999).  

(2) Second, increase habitat suitability of the adjacent areas to provide space for new territories. 

According to the size of a Hazel Grouse territory of 10 to 20 ha (Bergmann et al. 1996; 

Maumary et al. 2007), successful management depends on sufficiently large area. 

(3) Third, improving the connectivity of the two core patches by silvicultural management in the 

less suitable forest between. Rueda et al. (2013) showed that Hazel grouse is very sensitive 

to habitat fragmentation. Hazel grouse as a highly sedentary and territorial bird does not 

cross open landscapes of more than 200 m (Bergmann et al. 1996). Even the effect of 
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isolation is less evident in a forest landscape, Åberg et al. (1995) supposed a maximum 

distance of around 2 km between suitable habitats. 

Habitat quality  

(1) Transformation of single-layered high forest stands to multi-storied stands with a well-

developed shrub cover. This could be achieved by creating an irregular pattern of gaps with 

unevenly distributed mature trees. Alternatively to silvicultural measures, an extensive and 

temporal restricted pasturing could also improve habitat quality.  

(2) Promotion of light-demanding shrub species e.g. Sorbus, Salix, Betula, Alnus, Sambucus, 

Corylus, and Populus as crucial food resources during winter. In particular, these species 

should be preserved during thinning actions. Rather, these resource plant can be encouraged 

by a clever silvicultural light management on the ground layer.  

(3) Creating forest gaps with diameters of around 30 m (Müller et al. 2009b) to offer foraging 

and breeding sites in summer, but still small enough to provide shelter.  
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Appendix 1 – Description of the environmental variables and their assignment to different 

models. result of the pairwise correlation 

Description of environmental variables, their units and abbreviation. The references squares describe 

the square size in meters, in which the variable processing based on. All variables were tested by 

pairwise correlation (Appendix 2). If two variables had a correlation > 0.5, the variable with the 

higher ecological relevance was selected as a predictor. I selected two different predictor sets. The 

model approach “model_all” includes predictors describing forest structure or composition and 

topographic, climatic and human aspects, which were tested for grain size of 250, 125 and 50 m. The 

model “125_biotic” consists only of biotic predictors and were used only for a grain size of 125 m. 

 

 

 

Variable description Unit  Abbreviation  Predictor selected in model 

   model_all 125_biotic 
LiDAR-derived variables     
     

Average vegetation height  m AVG X X 
Standard deviation of successional 
stage  

unit less LESD X X 

Shrub density  % SHRUB X X 
SD of shrub density  unit less SD_SHRUB   
Sum of small gaps  counter  SOSG X X 
Foliage height diversity  unit less FHD   
     
GIS-derived variables     
     

Topographic position  unit less TOPO X  
Roughness  unit less SD_topo   
Slope degrees SLP X  
Solar radiation in March  kJ/day SRAD X  
Mean temperature  °C/month TEMO X  
Mean precipitation  mm/month PREC   
Distance to forest edge  m DFE   
Length of forest edge  m LFE X X 
Proportion of forest  m2 POF   
Forest type  4 categories WMG X X 
Density of settlements  m2 DOS   
Distance to settlements  m DTS X  
Distance to roads  m DTR   
Length of roads  m LOR X  
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Appendix 2 – Bivariate correlation matrix for each pair of environmental variables. The squares with the figures show the distribution of values of each 

variable. The squares with the number show the correlation between the variable on the x-axis and the variable on the y-axis. Abbreviation are explained in 

Appendix 1. 



Habitat modeling for Hazel grouse – developing a management tool for the Parc régional Chasseral 

Master Thesis Christian Rechsteiner   III 

Appendix 3 – Results of the models “250_all”, “125_all” and “50_all”  

Model performance of model ensembles based on a combination of environmental variables 

describing climate, topography, landscape and LiDAR-derived small scale structural vegetation 

patterns with a spatial resolution of 250 m, 125 m, and 50 m (grain sizes). To measure the median 

predictive performance, AUC, sensitivity and specificity and the standard deviation (parenthesized) 

were calculated. The median predictor response is given in percent. All evaluation values are based 

on a 5-fold-cross-validation with 5 repetitions.  

 Model name   
 250_all 125_all 50_all 

Median predictive performance    
AUC 0.953 (0.029) 0.959 (0.021) 0.971 (0.021) 
Sensitivity 92.86 (7.319) 90.00 (6.415) 92.00 (5.487) 
Specificity 90.05 (5.807) 92.55 (3.886) 92.12 (4.806) 
    

Median predictor contribution (%)    
    

LiDAR-related predictors    

AVG 0.032 0.139 0.183 
LESD 0.049 0.016 0.009 
SHRUB 0.170 0.161 0.055 
SOSG 0.011 0.029 0.026 
    
GIS-related predictors    

TOPO 0.019 0.004 0.009 
SLP 0.033 0.044 0.052 
SRAD 0.283 0.246 0.240 
TEMP 0.677 0.598 0.584 
WMG 0.072 0.027 0.055 
LFE 0.010 0.017 0.023 
DSETTL 0.009 0.005 0.010 
LFROAD 0.006 0.003 0.007 
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Appendix 4 – Response curves of each predictor in the model “125_all” (a) and in the model 

“125_biotic” (b). Because of the higher predictive performance and the better resolution of data, 

only the model approach based on a grain size of 125 m was further investigated.  

(a) Response curve of each predictor used in the ensemble model “125_all”. The graphs show the 

effect of a particular predictor: increasing values on the y-axis indicate that the probability of Hazel 

grouse presence responded positively, decreasing values the opposite. The x-axis shows the data 

range of each predictor variable measured in the study area. 
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Shrub density (%) 

Solar radiation (kJ/day) Mean temperature (°C) Topographic position (kJ/day) 

Length of roads (m) Slope (degrees) Sum of small gaps 

Average vegetation height (m) Distance to settlements (m) SD of successional stage Length of forest edge (m) 
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(b) Response curve of each predictor used in the ensemble model “125_biotic”. The graphs show the 

effect of a particular predictor: increasing values on the y-axis indicate that the probability of Hazel 

grouse presence responded positively, decreasing values the opposite. The x-axis shows the data 

range of each predictor variable measured in the study area. 
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