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Abstract

Recent studies show that light detection and ranging (LiDAR) derived habitat

variables significantly increase the performance and accuracy of species distribu-

tion models (SDMs). In particular, the structure of complex habitats such as

forest can be accurately parametrized by an area-wide, LiDAR-based vegetation

profile. However, evidence of specific applications of such models in real-world

conservation management still remains sparse. Here, we developed a resource

selection SDM for hazel grouse (Bonasa bonasia L.) in a Swiss nature park with

the aim to map habitat suitability and to inform the park management about

habitat improvement measures. We used remote sensing, particularly LiDAR to

derive ecologically relevant forest vegetation characteristics at the local scale and

used them as predictors in an ensemble SDM approach. The predicted habitat

suitability was mainly affected by local, fine grained vegetation structure. Aver-

age vegetation height, shrub density and canopy height variation contributed

most to the habitat quality for hazel grouse. This clearly shows how LiDAR

provides the means to develop ecologically interpretable predictor variables of

forest habitat structure and that these predictors can be used to reliably map

local-scale habitat quality, indicated by high model performance scores (median

AUC of 0.918). This improves spatial conservation planning, and at the same

time, provides meaningful information to derive habitat improvement measures

that can be implemented in the field by foresters. Hazel grouse occurrence in

the park is restricted to a few highly suitable, disjunct habitat patches. There-

fore, conservation management should increase the connectivity of suitable

habitat with the aim to stimulate an increase and better exchange of individuals

in the regional hazel grouse population. Habitat improvements can be achieved

by forestry measures that regularly integrate early successional forest stages into

production forests. They should contain stands with a shrub density of around

30% as well as heterogeneous stands in terms of vegetation height.

Introduction

During the last two decades, species distribution models

(SDMs) and habitat suitability maps have become an

increasingly important tool to understand the ecology and

occurrence of species and to support their conservation

(Guisan and Thuiller 2005; Guisan et al. 2013). SDMs are

used to assess the effects of environmental and land use

changes on species richness and distribution (Zaniewski

et al. 2002; Jeschke and Strayer 2008; Braunisch et al. 2014;

Vogeler et al. 2014; Breiner et al. 2015), to investigate

specific habitat requirements of species (Vierling et al.

2011; Farrell et al. 2013; Zellweger et al. 2013) or as basis

for priority site selection in species conservation manage-

ment (B€assler et al. 2011; Flaherty et al. 2014). A matter of

primary interest is the relative importance of ecological
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parameters that are the causal, driving factors for a species

distribution (Guisan and Zimmermann 2000). It depends

on habitat availability that is driven by different habitat

characteristics at multiple spatial extents and grains (Meyer

and Thuiller 2006). Coarse environmental factors (e.g. cli-

mate, macro-topography) are important predictors of spe-

cies distribution at the landscape scale (Franklin 2009).

They show a good correlation with observed species distri-

butions but have often no direct physiological relevance for

a species’ performance (Guisan and Zimmermann 2000).

Hence, the relative importance of coarse environment fac-

tors remain controversial at smaller scales (Field et al.

2009), in particular for mobile species. At the small scale,

species distributions are likely driven by local, fine-grained

habitat conditions (Farrell et al. 2013) such as vegetation

composition and structure (Zellweger et al. 2016). They

provide nutrition and cover, and therefore control the

regional and local distribution of a species (Franklin 2009).

Especially in forest-dominated landscapes, animal species

largely depend on the distribution, composition and abun-

dance of vegetation elements (MacArthur and MacArthur

1961; Davies and Asner 2014). Vegetation elements such as

trees, shrubs and logs and their spatial arrangement and

heterogeneity are directly associated with the diversity and

availability of resources, shelter, as well as breeding and

hiding sites which constitute a large variety of ecological

niches (MacArthur and MacArthur 1961; Stein et al. 2014).

Composition refers to the identity of plant species and their

proportion and variability in a certain area (Franklin 2009).

Hence, fine-grained three-dimensional (3D) vegetation

data are considered to be good resource based predictors

for assessing habitats of forest animal species (Davies and

Asner 2014).

Recent developments in remote sensing technologies,

particular in light detection and ranging (LiDAR), facili-

tate the accurate quantification and contiguous measure-

ment of the 3D habitat structure from fine-scaled plots to

entire landscapes (Vierling et al. 2008; Davies and Asner

2014; Zellweger et al. 2014). Based on single tree crowns,

LiDAR is able to quantify small scaled alterations in forest

characteristics caused by site effects or natural and

anthropogenic disturbances (Davies and Asner 2014).

LiDAR has thus spurred interest in modelling habitat

suitability for forest species (Ackers et al. 2015) and pro-

vides an excellent opportunity to assess how species are

affected by vegetation structure (Davies and Asner 2014;

Zellweger et al. 2014). LiDAR offers the opportunity to

develop resource selection habitat models at local and

regional scales (Zellweger et al. 2014). Moreover, LiDAR-

based habitat variables of 3D forest structure represent

gradients of biotic habitat characteristics which are shaped

by forest management (Hyypp€a et al. 2008). The growing

availability of detailed information of vegetation structure

and its relationship to habitat quality supports

evidence-based decisions in conservation and an improved

integration of biodiversity conservation in forest planning

(Bergen et al. 2009; Zellweger et al. 2014, 2016).

The hazel grouse is a small, sedentary forest grouse that

strongly depends on multi-layered forests with structurally

diverse stands (Bergmann et al. 1996; Maumary et al.

2007). The species inhabits territories ranging from 10 to

20 ha in coniferous and mixed deciduous forests in the

Eurasian boreal forest and in mountain forests of Central

and Eastern Europe (Bergmann et al. 1996; Maumary et al.

2007). Used forest stands are partly composed by early suc-

cession stages with pioneer plant communities. Pioneer

woody plants with buts and catkins are the most important

food components of hazel grouse in the winter habitat. A

rich and divers composed shrub layer complies with the

species requirement for nutritious and well digestible food.

Beside, interspersed dense, coniferous stands reduce the

probability of depredation by forest-dwelling raptors and

carnivores (Wiesner et al. 1977; Bergmann et al. 1996).

Hazel grouse is listed as a priority breeding bird species

for conservation action plans in Switzerland because of its

Red List status (NT) and the relative high species abun-

dance in relation to the international situation (Keller et al.

2010). Between 1970 and 1990, a strong decline and range

contraction of hazel grouse occurred in Central Europe

(Bergmann et al. 1996). Regional populations decreased

between 20 and 50% (Maumary et al. 2007). Changes in

silvicultural practices caused landscape modification and

habitat fragmentation which are considered to be the main

factors for the population decline (Bergmann et al. 1996).

In the 18th and 19th centuries, silvicultural practices such

as planting of conifers, extensive livestock grazing and

small-scaled stand harvesting (Kirby and Watkins 2015)

have improved habitat conditions for hazel grouse (Berg-

mann et al. 1996; Blattner 1998; Storch 2007). These

anthropogenic modifications of forest ecosystems had

important long-term impacts on the vegetation (Gimmi

et al. 2008) and often produced structurally diverse and

multi-layered forests (Montadert and Leonard 2003). Later,

in the second half of the 20th century, forest conversion

often resulted in uniform, structurally poor stands (Storch

2007; Savill 2015) that are dominated by uniform single

layered high forests with a lack of young successional stages

(Bollmann et al. 2009; Savill 2015). In Switzerland, hazel

grouse is nowadays restricted to mountain forests in the

Alps and partly in the Jura mountains (Maumary et al.

2007). There, the heterogeneous topography causes small-

scale changes in site conditions and forest structural com-

plexity (�Cada et al. 2016) and thus, is considered to have a

high landscape potential as hazel grouse habitat.

To inform the park management about appropriate,

spatially explicit species conservation measures, we
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developed a resource selection SDM for the hazel grouse

in the Parc r�egional Chasseral. Our objectives were to (1)

derive biotic variables from remote sensing, especially

LiDAR datasets, to assess the importance of specific forest

vegetation parameters for the distribution of hazel grouse

at the local scale, and (2) to spatially evaluate forests in

term of habitat suitability at the landscape scale for evi-

dence-based priority site selection and active forest habi-

tat management.

Material and Methods

Study area

We used the Parc r�egional Chasseral as study area with an

additional buffer zone of 250 m to reduce edge effect on

predictive variables along the border. The park is located

in the Jura mountains in the north-western part of

Switzerland (47°80N, 7°30E) and covers an area of 387 km2

(Fig. 1). The elevation ranges from 429 m to 1607 m a.s.l.

at the top of the Chasseral, a mountain chain in the center

of the park (Association Parc r�egional Chasseral 2015).

The oceanic climate provides a mean annual precipitation

of 1289 mm (peaks in summer and winter) and a mean

annual temperature of 6.3°C with a maximum of 15.1°C
in July and a minimum of �1.4°C in January (MeteoSch-

weiz 2016). The landscape is characterized by parallel

mountain chains and a mosaic of forests, pastures, farm-

lands and settlements. Forests are clustered as three forest

belts in east-west direction. Historically, the natural tim-

berline has been pushed down through pastoralism on the

gentle areas in the higher zones of the mountain chains.

Forest composition changes from predominantly decidu-

ous forest in low areas to coniferous dominated forest at

higher elevations (Zbinden 1979).

Species data

We used 212 species presence points provided by the park

authorities and the Swiss Ornithological Institute from the

Figure 1. Location of the Parc r�egional

Chasseral in Switzerland. The park is located in

the Jura mountains of the Cantons of Bern

(BE) and Neuchâtel (NE). ©Netzwerke

Schweizer P€arke 01/2012 EB - Swisstopo

5704002947.
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time period between autumn 2011 and spring 2015. Pres-

ence data from the park were derived from a multi-year

field survey, launched 2013 by the park management. To

reduce the workload for the field survey, clusters of four

aggregated grid cells (250 9 250 m each) were visually

classified with aerial photographs according to their habitat

suitability potential for hazel grouse. Grid cells with low

percentage of forests (<20%) or high proportion of cliffs/

settlements were excluded. 50 out of 83 clusters were ran-

domly chosen and surveyed for species presence in the win-

ter. Because this field survey covered only those parts of the

park with moderate to good habitat suitability and only

winter data, we complemented our species data with pres-

ence data from the Swiss Ornithological Institute (N = 2).

We considered only species presence data that were

recorded during the months of December to August, thus

excluding the period of juvenile dispersal (Bergmann et al.

1996).

Predictor variables and expected
relationships

We developed six forest predictor variables that were

considered to influence the local-scale habitat conditions

and thus, the habitat use of hazel grouse (Table 1). The

variable length of forest edges represents the length of

forest boundary (m) between forest and non-forest cover

based on a forest cover GIS dataset provided by swis-

stopo (Zellweger et al. 2013; swisstopo 2014). An

increasing length is expected to increase hazel grouse

suitability due to the promotion of light demanding

trees next to hiding options of dense forest stands. The

variable forest type was derived from satellite images

(Landsat-5, Thematic Mapper, WMG25, BFS GEOSTAT)

by an automated maximum likelihood classification

(Burkhalter and Sager 2003). Forest type had at a resolu-

tion of 25 m (pixel extent). It was classified in four cate-

gories: (1) deciduous forest, (2) deciduous-dominated

mixed forest, (3) conifer-dominated mixed forest, and

(4) conifer forest, whereas conifer-dominated forests is

assumed to suit best for hazel grouse (Bergmann et al.

1996). Graf et al. (2005) confirmed the high accuracy of

this classification.

The LiDAR variables were derived from discrete multi-

ple return airborne LiDAR data recorded between May

2010 and April 2011, during leaf-off conditions. They

originate from two flight missions with two different sen-

sors (Leica Scanner ALS60, Optech Gemini 166 KHz) due

to the fact that the study area included two different

political and administrative areas (cantons). The mini-

mum point density was 4 points/m2 (echo) with a mini-

mum vertical and horizontal accuracy <�0.3 m and
<�1.0 m, respectively (Syst�eme d’information du territoire
neuchâtelois 2010, Amt f€ur Wald des Kantons Bern 2013).
The raw point cloud data was pre-processed using a suite
of LAStools algorithms (Isenburg 2014) to derive the nor-
malized vegetation heights above ground. We used the
LAScanopy tool to calculate average vegetation height,
canopy height and a proxy for shrub density (see below)
based on grids with a 5 m pixel size. We used the 5 m

Table 1. Environmental predictor variables for developing the resource selection SDM for the hazel grouse in the Parc r�egional Chasseral. We

analyzed the species-habitat relationship at a grain size of 125 m. Some variables were processed with higher resolution (pixel size listed in brack-

ets) and thereafter up-scaled for the data analysis and modelling process. In the last column, the expected relationship between the predictor vari-

able and the habitat suitability for hazel grouse derived from literature is given as: positive, positive linear relationship; unimodal, unimodal

relationship; cat. 3, peak at conifer-dominated mixed forest.

Variable name Description Unit Resolution [m] Source Expected relationship

Average vegetation height Average height of all vegetation return heights

above 0.5 m

m 125 LiDAR Unimodal

Canopy height variation Standard deviation of canopy heights based on the

90th height percentile (see text for details)

m 125 (5) LiDAR Positive

Shrub density Number of vegetation height below 5 m divided by

the total number of all returns, including terrain

points (Morsdorf et al. 2006)

% 125 LiDAR Unimodal

Sum of small gaps Sum of squares with a canopy height below 1.3 m,

based on the 90th height percentile (see text for

details)

Count 125 (5) LiDAR Unimodal

Length of forest edges Boundary length between forest, shrub forest,

open forest to non-forest (see text for details)

m 125 Swisstopo Positive

Forest type Classification of forest stands in four categories:(1)

deciduous forest, (2) deciduous-dominated mixed

forest, (3) conifer-dominated mixed forest, and

(4) conifer forest (see text for details)

Category 125 (25) Landsat cat.3
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grids, which approximates a single-tree crown projection,
to integrate fine-scale variability of the heterogeneous for-
est characteristics and to increase the accuracy of the for-
est/non-forest classification. To this end we aggregated
each 5 m grid to a 125 m grid by using either the mean
or standard deviation as described below. The aggregation
at a raster of 125 m was chosen because small harvesting
interventions of approx. 1 ha are wide spread in the Swiss
high montane and sup-alpine forests, including the Parc
r�egional Chasseral. We only considered 5 m pixels that
were covered by forest, as derived from the forest cover
dataset mentioned above, and considered all vegetation
return heights between 0.5 and 55 m to reduce biases from
potentially misclassified points.

We used the average vegetation height to represent

the successional stage (see M€uller and Brandl 2009),

assuming a positive effect of early successional stages

due to hazel grouse’s preference toward young forest

stages (Bergmann et al. 1996; Mathys et al. 2006;

Sch€aublin and Bollmann 2011). The effect of average

vegetation height on hazel grouse occurrence should

thus show an optimum at low to medium values.

Canopy height variation was defined as the standard

deviation of the 90th percentile of the vegetation return

heights (Zellweger et al. 2016) and represents important

aspects of the physiognomy of the vegetation indicating

the horizontal structural heterogeneity (Falkowski et al.

2009). Hazel grouse is linked to structurally diverse for-

ests and avoids single layered forest stands (Mathys et al.

2006; M€uller et al. 2009a; B€assler et al. 2011). We thus

expect a positive linear relationship between hazel grouse

occurrence and canopy height variation. Shrub layer and

its composition are key factors influencing habitat suit-

ability for hazel grouse, for example,. by providing food

resources and cover from predators (Sachot et al. 2003;

Mathys et al. 2006; M€uller et al. 2009b; Sch€aublin and

Bollmann 2011; Zellweger et al. 2014). Therefore, an

intermediate shrub cover is assumed to support hazel

grouse territories best. We calculated a proxy for shrub

density by using the ratio of vegetation heights between

0.5 and 5 m divided by the total number of all vegeta-

tion heights. Forest gaps were reported in many studies

as an important predictor of hazel grouse occurrence

(Saari et al. 1998; Mulhauser 2003; Sachot et al. 2003;

M€uller et al. 2009b) as an intermediate number of gaps

within a single cell should provide feeding options next

to hiding places and thus supports hazel grouse habitat.

Using the 90th percentile of the vegetation return

heights, a gap was defined as a 5 m reference pixel with

a maximum canopy height of 1.3 m. The height cutoff

of 1.3 m allowed for examining the lowest layers of for-

est stands which include important food resources like

berry bushes (Mulhauser 2003).

Presence – pseudo-absence approach

We predicted the habitat suitability of hazel grouse using

a presence–pseudo-absence data approach (Guisan and

Zimmermann 2000; Ara�ujo and Guisan 2006; Sober�on

2007). Cells were defined as ‘presence’ if they contained

at least one hazel grouse record, as described above. We

used 10 000 randomly selected background cells as

pseudo-absence data and weighted them in the way that

the weighted sum of presence equals the weighted sum of

absences (Barbet-Massin et al. 2012). Pseudo-absences

were defined as cells with no reported species evidence

between winter 2011 and winter 2015 and assumed to be

locations which could potentially be reached, occupied

and used by hazel grouse.

Ensemble modelling and statistical analyses

We analyzed the species-habitat relationship of hazel

grouse by using a cell size of 125 m. A raster with 125 m

cell size represents an optimal trade-off between repre-

senting a substantial part of hazel grouse territory and a

level of detail required for a proactive stand-level forest

and conservation management. Only grid cells which have

a minimum forest proportion of 20% were considered for

modelling.

We calculated an ensemble prediction using seven

standard species distribution model algorithms. To con-

sider model variability, to reduce uncertainty of differ-

ent modelling algorithms and to improve reliability of

the model predictions, we averaged the outcomes of the

single modelling algorithm weighted by the area under

the receiver operating characteristic curve (AUC) (see

Segurado and Araujo 2004; Ara�ujo and New 2007; Elith

and Graham 2009; Buisson et al. 2010; Jones-Farrand

et al. 2011; Breiner et al. 2015). We fitted the ensemble

prediction with generalized linear models (GLMs), gen-

eralized boosted models (GBMs), maximum entropy

(MAXENT), artificial neural network (ANN), flexible

discriminant analysis (FDA), multiple adaptive regres-

sion splines (MARS) and random forest (RF). Various

parameter values were tuned for the single algorithms

(e.g. feature types for MAXENT) by keeping the para-

meters with the best cross-validated model performance

in terms of AUC. To tune and calibrate the models of

the individual modelling algorithms and to generate the

ensemble prediction of habitat suitability, we used the R

package BIOMOD2 (version 3.3-3/r713) (Thuiller et al.

2015).

The predictive performance of the ensemble models

was assessed using a 5-fold cross-validation procedure

with 10 repetitions. Model accuracy was evaluated based

on the Area under the Curve (AUC) (Fielding and Bell
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1997), True Skill Statistic (TSS) (Allouche et al. 2006)

and the Continuous Boyce Index (CBI) (Boyce et al.

2002; Hirzel et al. 2006). To evaluate the contributions of

the individual predictors, we calculated the relative

importance of each predictor based on a variable ran-

domization procedure as implemented in BIOMOD

(Thuiller et al. 2009) and calculated the response curves

to infer the direction and shape of the predictor effect on

hazel grouse habitat suitability (Elith et al. 2005; Thuiller

et al. 2009).

Results

Model performance and predictor
contribution

The predictive performance of the ensemble model was

outstanding for the three evaluation indices. The cross-

validated median AUC, TSS and CBI values were 0.92,

0.73 and 0.84, respectively (Fig. 2).

Average vegetation height was the most important pre-

dictor for habitat suitability, followed by shrub density

and canopy height variation (Table 2). All three predic-

tors were derived from LiDAR. The length of forest edges

reached a similar predictor contribution as canopy height

variation. Forest type was the second least important pre-

dictor with a contribution less than half of that of canopy

height variation. The sum of small gaps made a small

contribution to the SDM.

Predictor response curves

Average vegetation height and shrub density both showed

unimodal responses, with optima from 5 to 10 m and

30%, respectively (Fig. 3). Canopy height variation had

an optimum at values around 4 m. However, the uni-

modal response curve was less evident compared to aver-

age vegetation height or shrub density. The expected

positive linear relationship between length of forest edges

Figure 2. Violin boxplot for model evaluation.

The plot is combining boxplot information with

information from kernel density estimation

(grey shade). The model evaluation is based on

10 times repeated 5-fold cross-validation for

three different evaluation scores. Red points

indicate the evaluation scores of not cross-

validated models using the entire data for

calibration and evaluation. TSS, true skill

statistic; AUC, area under the curve; CBI,

continuous boyce index.

Table 2. Median predictor contribution of the ensemble model for

the hazel grouse in the Parc r�egional Chasseral.

Median predictor contribution Value

Average vegetation height 0.502

Canopy height variation 0.264

Shrub density 0.338

Sum of small gaps 0.062

Length of forest edges 0.212

Forest type 0.120
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and the expected unimodal relationship of sum of small

gaps with hazel grouse habitat suitability was not found.

Forest type increased habitat suitability toward rising pro-

portions of conifer trees. However, the expected optimum

at conifer-dominated forests (i.e. category 3) was not

found.

Habitat suitability map

Habitat suitability was predicted in a range from 0 (no

suitable habitat) to 1 (very suitable habitat). Less than 5%

of cells were predicted with suitability values higher than

0.6. Most of them were aggregated to habitat patches dis-

tributed across most regions of the park (Fig. 4). The two

largest patches with highly suitable cells were located in

the western part of the park and along the upper tree line

on the southern slope of the Chasseral mountain chain in

the center of the park. Beside other small patches with

high suitability, the main part of the park was predicted

to be less suitable.

Discussion

Remote sensing and biotic variables

Our SDM was based exclusively on remotely sensed biotic

variables describing forest characteristics. The outstanding

predictive power of the model indicates that remote sensing

is a valuable tool to derive habitat parameters for forest spe-

cies at the local scale which confirms recent findings (Tattoni

et al. 2012; Holbrook et al. 2015; Dymytrova et al. 2016).

Moreover, the expected effects of the most important

Figure 3. Response curves of the six predictor

variables used in the ensemble model:

increasing values on the y-axis indicate that the

probability of hazel grouse presence responded

positively, decreasing values the opposite. The

x-axis shows the data range of predictor

variable measurements in the study area.

ª 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 7

C. Rechsteiner et al. LiDAR Improves Regional Species Conservation



predictors, that is, average vegetation height and shrub den-

sity, on the habitat suitability and the results match perfectly.

This clearly shows how we can use LiDAR to derive ecologi-

cally meaningful variables of forest habitat structure. The

fact that the models’ outstanding predictive power is solely

based on biotic vegetation variables implies that small scale

habitat suitability is driven by local, fine-grained vegetation

conditions (Farrell et al. 2013; Zellweger et al. 2016). Espe-

cially for habitat specialists, such as hazel grouse, that

depend on small-scaled habitat features and are sensitive

to anthropogenic land-use change, the distribution and

abundance of habitat within the overall distribution range

tend to be strongly influenced by fine grained habitat

metrics (Meyer and Thuiller 2006; Gottschalk et al. 2011;

Farrell et al. 2013).

Habitat structure and hazel grouse
occurrence

Our results confirm the importance of forest structure

and composition in influencing habitat suitability for for-

est species in general. We focused on biotic metrics that

had a clear foundation in hazel grouse ecology at the local

scale and hypothesized the relationship of each variable

on the habitat. Our study demonstrates that habitat suit-

ability of hazel grouse is strongly controlled by small

scaled forest structure, such as average vegetation height

and shrub cover. Vegetation height and its variability are

widely used predictors for LiDAR based habitat assess-

ments of forest-dwelling species (Goetz et al. 2007; Davies

and Asner 2014; Zellweger et al. 2014) and have also been

considered in previous studies to be key habitat elements

for hazel grouse (Mathys et al. 2006; Bae et al. 2014). The

combination of an optimum vegetation height from 5 to

10 m with moderate deviations in canopy height may

represent forests in early successional stages with a slight

growth variability. Vertically well-structured forests pro-

vide short escape distances between different vegetation

layers and support the hazel grouse’s escape behavior

from predators (Wiesner et al. 1977; Bergmann et al.

1996). As a distinctive food specialist, hazel grouse is

known to depend on buds and catkins of soft-wood spe-

cies in early successional stages (Bergmann et al. 1996).

Therefore, the optimum of around 30% shrub density as

the second most important predictor confirms the species

requirements for a relatively dense understorey (Sachot

et al. 2003; Melin et al. 2016) in both, primeval and in

extensively used forests (Wiesner et al. 1977). However,

LiDAR is not able to directly identify the species compo-

sition in the understorey (Bergen et al. 2009; Yao et al.

2012). Measurements of shrub density with LiDAR-

derived predictors cannot distinguish between a shrub

layer that is composed of preferred food-plant species or

of rejuvenation of other tree species, such as beech (Fagus

sylvatica). This differentiation is essential for hazel grouse

in mountain areas were the incidence of specific food

plants tend to be a crucial factor for hazel grouse occur-

rence (M€uller et al. 2009b; Sch€aublin and Bollmann

2011). The relatively small predictor contributions of

length of forest edges, forest type and sum of small gaps

indicate that forest horizontal composition tends to be

less important for habitat suitability of hazel grouse than

aspects of the vertical forest structure. Our conceptual

approach to model habitat suitability with a cell approach

based on high resolution reference pixels without consid-

ering habitat relationships to neighboring cells may have

reduced the influence of horizontal forest composition.

Therefore, using focal explanatory predictors of forest

composition that integrate proximity information of these

variables might have improved their contribution to the

model (Guisan and Thuiller 2005).

Management implication

Despite a surge in the development of SDMs in this dec-

ade and growing model performances based on remote

Figure 4. Predicted habitat suitability in the

Parc r�egional Chasseral illustrated with values

from 0 to 1. Cells with green or greenish

colors implied areas with high suitability for

hazel grouse. Intermediate habitat suitability is

indicated in yellow and areas with low

suitability in reddish. The x- and y-axis

represent the coordinate system

(CH1903_LV03).
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sensing techniques (He et al. 2015), evidence of the appli-

cation of these models in real-world conservation man-

agement remains sparse (Guisan et al. 2013). Habitat

management should be targeted towards cells with high

habitat suitability and hazel grouse occurrence to prevent

a decline in the regional hazel grouse population. Occur-

rence cells with low habitat suitability may constitute

degraded habitat were the species still persists but does

not reproduce (Fischer and Lindenmayer 2007). Our use

of fine-grained habitat predictors promote the decision

making at the grid scale. Moreover, the biotic variables

directly integrate the impact of human land use and habi-

tat management (Hyypp€a et al. 2008).

The two largest habitat patches with high suitability

located in the western part of the Park perimeter and

along the southern slope of the Chasseral mountain

chain are the core areas of hazel grouse occurrence

within the park. Their habitat should be preserved or

restored. The two best suitable patches are completely

segregated. As hazel grouse is considered to be sensitive

to habitat fragmentation (Rueda et al. 2013), the conser-

vation management should improve the connectivity of

these patches by creating stepping stones between.

Besides, the park management should increase the total

area of suitable habitat in the vicinity of patches and

stepping stones such as to provide space for new territo-

ries. Structural restoration of less suitable stands com-

prise measures that promote early successional stages

with a shrub density of around 30% and a slight growth

variability within the stand. Such stands can be achieved

by adequate forestry practices aiming at structurally

diverse forest stands with mixed stages of development

or by forest browsing by livestock. In former times and

partly still today, the core patches were part of summer

pastoralism in the higher area (Grossmann 1927; Zbin-

den 1979; A. Gerber personal communication, March

2016). We suggest that the long-term impact of this

practice on forest characteristics is responsible for the

highest density of species occurrence in the core patches.

Grazing in forests causes a heterogeneous mosaic of

ground and shrub vegetation with a higher percentage of

early succession pioneer plant communities compared to

ungrazed production forests with more dense and uni-

form stands (Montadert and Leonard 2003; Mayer and

St€ockli 2005). Hence, we support an extensive and tem-

porally restricted forest pasture as an alternative to silvi-

cultural measures that aim to improve habitat suitability

for hazel grouse by transforming single-layered high for-

ests to multi-storied stands with a well-developed ground

and shrub cover which provide important food resources

for hazel grouse. Independent of the methodological

approach, successful management depends on sufficiently

large areas with viable populations that produce enough

emigrants that can colonize nearby suitable habitat

patches (Thomas and Kunin 1999).

Conclusion

We show that regional species conservation can substan-

tially benefit from modelling habitat preferences using the

growing availability of airborne LiDAR datasets. LiDAR

provides the means to develop ecologically interpretable

predictor variables of forest habitat structure and allows

for high-fidelity mapping of local-scale habitat quality. It

thus facilitates spatial planning and priority setting.

LiDAR variable based results can be used to derive habitat

improvement measures that are meaningful to forest

managers who can directly implement them in the field.
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