Dokumentation Arbeitsschritte Thematische Karte TBT 19:

Gilt für alle → Processing Extent: MAIN_GR.WANDERWEGE

→ CH1903+ LV95

Verwendete Datensätze:

A_BA_STOPO.vec200_road.

→ Auswahl Strassen und Datenaufbereitung: aus A_BA_STOPO.vec200_road gemäss Vorkommen in Perimeter des MAIN_GR_WANDERWEGE. Strassen mit Klassierung Wanderweg werden herausgelöscht. Ergibt Restvorkommen von im Unterengadin anzutreffende Strassenkategorien von HauptStrAB6, VerbindungsStr4, NebenStr3 und Fahrstrasse. Diese entsprechen auch der Kategorien 1 (beeinhaltet alle "paved streets") und 2 (beeinhaltet auch "unpaved streets" teils nahe am Parkgebiet). Vergleich mit Datensatz welche Strassen auch nach Strassenbreite einordnen. Übernahme aller 10m, 6m und 4m Strassen. Parkentfernte und selektierte Strassen geringerer Breite sind noch eliminiert worden. Anschliessend in einem Polylinfeature vereint.

A_BA_STOPO.vec25_wanderwege + MAIN_GR_WANDERWEGE

→ Auswahl Wanderwege und Datenaufbereitung: Vereinigung um alle Wanderwege zu selektieren und doppelte Selektion zu vermeiden.

Siedlungen (shp)

→ Auswahl und Datenaufbereitung: siehe Faktoren

Holznutzung für Saline Hall, beweidete Gebiete und Kahlschlag 1835-1847

→ Auswahl und Datenaufbereitung: Generierung neuer Files gemäss Faktoren

Modellierungs-Faktoren:

- 1) Distanz von Strassen: Da alle Strassen mögliche Störungsquellen sind, habe ich angesprochenes Restvorkommen im Unterengadin verwendet. Berechnung mittels path distance (Gewichtung 1)
- 2) **Distanz von Wanderwegen:** Distanzberechnung mittels Tool path distance und vereintem Wanderwegnetz (Gewichtung 1)
- 3) **Distanz zu Siedlungen:** Distanzberechnung mittels Tool path distance und vereintem Siedlung-shapefile (Gewichtung 1)
- 4) **Distanz zu ehemaliger Holznutzungflächen im 17 Jhd.**: Distanzberechnung mittels Tool path distance und vereintem selektierten Holznutzungsflächen gemäss Kriterium 17 Jahrhundert aus dem Holznutzungsdatensatz (Gewichtung 0.3)
- 5) **Distanz zu ehemaliger Holznutzungflächen im 18 Jhd.**: Distanzberechnung mittels Tool path distance und vereintem selektierten Holznutzungsflächen gemäss Kriterium 18 Jahrhundert aus dem Holznutzungsdatensatz (Gewichtung 0.6)

- 6) **Distanz zu ehemaliger Holznutzungflächen im 19 Jh.**: Distanzberechnung mittels Tool path distance und Datensatz zusammengesetzt aus Kahlschlagsfläche und Holznutzungsfläche des 19 Jhd. (Gewichtung 1)
- 7) **Distanz zu ehemals beweideten Gebieten:** Gleiches Vorgehen wie bei Holznutzungsflächen 17 + 18 Jhd., aber mit Weideflächendatensatz.
- 8) **Viewshed Strassen:** Vereintes polylinefeature als Grundlage. Umwandlung der Verticepoints der Strassen in Punkte. Ausdünnung der Punkte innerhalb des durch das File perimeter_viewshed vorgegebenen Perimeters im Bereich der Strassen unter 3m Breite (Gewichtung).
- 9) **Viewshed Gebäude:** Minimierung der Beobachtungspunkte innerhalb des Perimeters (identischer wie bei viewshed Strassen) indem sämtliche Punkte innerhalb von Rechtecken in einer edit-session eliminiert worden sind. Die Rechtecke entsprachen der Fläche, welche durch die Siedlungsgebiete bedeckt wurde (Gewichtung)
- 10) **Viewshed Siedlungen:** Siedlungsflächen mit Simplify vereinfacht und anschliessend deren Aussenlinien in Punkte (bei jedem Vertice) umgewandelt. Dies um die Beobachtungspunkte für den Siedlungsviewshed im Bereich der Siedlungen zu reduzieren. (Gewichtung).
- 11) Erreichbarkeit zu Fuss: Ausganspunkte sind Endpunkte von Strassen nahe dem SNP-Gebiet, Strassenpunkte nahe dem SNP-Gebiet bei welchen Wanderwege abzweigen und Punkte welcher auf der Ofenpassstrasse zu liegen kommen (beeinhaltet 2 Punkte auf der Parkgrenze und 4 Punkte innerhalb des Parkgebietes). Die horizontale Komponente wird durch ein optionaler horizontaler Kostenraster (Kostenwert selber zu bestimmen) berücksichtigt. Dieser definiert die Kosten für die Durchquerung einer Pixelzelle (gemäss Einheit * Pixelgrösse in Einheiten => für uns ergibt das 25) unabhängig von der Topologie. Durch die optionale Verwendung des Rasters A_BA_STOPO_DHM25 und eines Aspect-Rasters wird die Distanz gemäss den vorliegenden Höhenangaben korrigiert. Dadurch wird die Distanz nicht nach Luftlinie, sondern in Abhängigkeit der Topographie und der Distanz gemäss Kosten berechnet (Gewichtung).

Zu 8-10: massgeblicher Perimeter, war Perimeter gemäss Vorgabe HH. Dieser wurde mittels eines Polygon (selber generierte feature class) ausgeschieden.

Operationen:

Faktor 1:

Select by attributes und Edit sessions → export as shp

A_BA_STOPO.vec200_road → str_ohne_tunnel

Dissolve

str ohne tunnel \rightarrow str ohne tunnel dissolve

Path Distance

str_ohne_tunnel_dissolve → distanz_str

Faktor 2:

Merge

A_BA_STOPO.vec25_wanderwege_25_l und MAIN_GR_WANDERWEGE → mergeWW

Path Distance

 $\mathsf{mergeWW} \xrightarrow{\hspace*{1em}} \mathsf{pathdist_ww}$

Faktor 3:

Path Distance

siedlungen → pathdist_dorf

Faktor 4:

Export Data (to shp)

Holznutzung für Saline Hall → holznutzung _1600-1700_lv95

Path Distance

Holznutzung_1600-1700_lv95 → dist_holzalt

Faktor 5:

Export Data (to shp)

Holznutzung für Saline Hall + Kahlschlagsfläche → holznutzung _1700-1800_lv95

Path Distance

Holznutzung_1700-1800_lv95 → dist_holzm

Faktor 6:

Union + Export Data (to shp)

Holznutzung für Saline Hall → holznutzung _1800-1900_lv95

Path Distance

holznutzung_1800-1900_lv95 → dist_holzjung

Faktor 7:

Path Distance

beweidete Fläche → dist_weide2

Faktor 8:

Simplify

Siedlungen → siedlungen_simple

Feature to Line

siedlungen_simple → siedlungen_line

Feature to point

siedlungen_line → siedlungen_verticepoints

Viewshed (mit OFFSETA = 8)

siedlungen_verticepoints → view_siedl

Reclassify

view_siedl → view_d_rclass

Faktor 9:

Feature to point

str_ohne_tunnel_dissolve → road_points (noch manuell Punktdichte ausgedünnt)

Viewshed

view_street → view_s_rclass

Faktor 10:

Select by Features (Herauslöschen der Punkte innerhalb der Siedlungspolygonflächen) + Export Data

A_BA_STOPO_vec200_buildings → point_buildings_perimeter

Viewshed (mit OFFSETA = 8)

point_buildings_perimeter → view_build

Reclassify

view_build → view_b_rclass

Faktor 11:

Eigene New Feature class (points)

→ Eingangspunkte_pathdistance

Feature to Raster

MAIN_INFRA_SNP.borderline.polygon → horiz_cost

Reclassify

horiz_cost → horiz_cost2

Path Distance (mit Berücksichtigung der Topographie im Gebiet)

Eingangspunkte_pathdistance + optionaler Verwendung eines dhm (A_BA_STOPO_DHM25) und eines horizontalen Kostenrasters (horiz_cost2) → access4

Path Distance

siedlungen → pathdist_dorf

Faktor 4:

Path Distance (mit Pixel Size 25 und output unknown = meters)
mit mergeWW → pathdist_ww
mit A_BA_STOPO.vec200_road → pathdist_road
mit shapefile-Dörfer→ pathdist_dorf

Path Distance (unter Berücksichtigung der Topologie mit

Reclassify jeweils mit Natural Breaks (Jenks)
mit pathdist_ww → reclass_dww
mit pathdist_road → reclass_droad
mit pathdist_dorf → reclass_ddorf

Raster Calculator

1 * reclass_dww + 1 * reclass_droad + 1 * reclass_ddorf → remotness

Ziel:

Wildnismodellierung bei der die Regionen Vals Tantermozza, Cluozza da l'Acqua, Ftur, Nüglia, Val Foraz und Val da Diavel als wild klassiert werden.