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Summary

1. The comparable and integrated nature of plant functional types and advances in high-spectral-resolution

remote sensing techniques (i.e. imaging spectroscopy) make their combination highly interesting for spatially

continuous and repeatable large-scale ecosystem monitoring. Depending on physical environment and stress,

plants invest in covarying biochemical and structural traits, influencing spectral characteristics of vegetation.

These traits are assumed to bear a more direct causal relationship to plant functional types than to plant life/

growth forms. However, the connection between a vegetation community’s functional and spectral response

remains to be established.

2. We assessed the correlation structure between (i) biochemical and structural vegetation traits (biomass, dry

matter content, nitrogen content, neutral detergent fibre content), (ii) plant life/growth forms and (iii) seven plant

functional types of two categories (strategy types, indicator values) collected in heterogeneous alpine grassland.

We then used airborne imaging spectroscopy data from the same area to model and predict plant life/growth

forms and plant functional types at the vegetation community level using partial least squares regression and val-

idated ourmodels based on an independent data set.

3. We found high correlations between many of the biochemical and structural vegetation traits, plant life/

growth forms and plant functional types tested. Using airborne imaging spectroscopy data, we successfully mod-

elled and predicted most plant life/growth forms (R2 max. = 0�56) and all plant functional types (R2

max. = 0�62). However, model performance for plant life/growth forms decreased substantially during external

validation and overall model consistency was low (average change in R2 = 72%), while plant functional type

models were much more consistent (average change inR2 = 20%). Based on our findings, we developed a con-

ceptual framework using the theory and methodology of vegetation ecology and imaging spectroscopy to link

the vegetation community’s functional to its spectral signature.

4. Our results encourage the use of plant functional types in imaging spectroscopy in order to aid the large-scale

monitoring of ecosystems, which is particularly important given the increased availability of airborne data and

the prospective launches of spaceborne instruments in the near future.

Key-words: alpine grassland, CSR strategy type, growth form, indicator value, life form, partial

least squares regression

Introduction

To mitigate the effects of rapid global change, methods

enabling timely, frequent, comparative and large-scale moni-

toring of vegetational properties indicative of ecosystem func-

tion are becoming increasingly important (Pettorelli et al.

2016). Remote sensing provides the only realistic means to

acquire spatially continuous environmental data at high spatial

and temporal resolution, from which necessary consistent

monitoring schemes may be developed. However, until

recently remote sensing applications focused on simple land

cover classifications based on plant life forms and growth

forms (Schimel, Asner & Moorcroft 2013), and less on func-

tional characteristics of vegetation communities.

Plant life and growth forms mirror different adaptations to

environmental conditions based on morphological traits (e.g.

Mueller-Dombois & Ellenberg 1974). They are not only used*Correspondence author. E-mail: anna.k.schweiger@gmail.com
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tomap the world’smajor biomes (e.g. Prentice et al. 1992), but

also serve frequently as input for ecosystem modelling (e.g. in

dynamic global vegetation models; Sitch et al. 2003; Krinner

et al. 2005). Recently, the widespread use of plant life and

growth forms for ecosystem modelling was criticized (Van

Bodegom et al. 2012; Yang et al. 2015), because plant func-

tional traits are highly variable within life/growth forms and

overlap broadly among them (Reich, Walters & Ellsworth

1997; Wright et al. 2004; Kattge et al. 2011). Alternatively,

using plant functional traits directly as modelling input was

suggested (Van Bodegom et al. 2012; Yang et al. 2015; Jetz

et al. 2016), because the relationships between a variety of

plant functional traits (e.g. carbon : nitrogen (C : N) ratios,

specific leaf area, photosynthetic capacity, osmotic potential)

and ecosystem functions (e.g. climate and water regulation,

carbon storage, disturbance tolerance) are well-established

(Cornelissen et al. 2003; Kattge et al. 2011). However, field

measurements of plant functional traits, which are essential for

model validation, are costly, time-consuming and notoriously

difficult to acquire, especially in remote areas. In contrast,

plant functional types can be deduced from botanical invento-

ries (relev�e data), which are more widely available than plant

functional trait measurements (Reich, Wright & Lusk 2007).

Most importantly, plant functional types are causally linked to

biochemical, structural, physiological or demographic plant

functional traits, which have been shown to follow global pat-

terns (Reich, Walters & Ellsworth 1997; Cornelissen et al.

2003; Wright et al. 2004; Reich, Wright & Lusk 2007). While

species composition of vegetation communities varies both

among and within biomes, the roles and functions of plants

within ecosystems are comparable (Lavorel et al. 1997; Tilman

et al. 1997). These roles and functions represent different strat-

egy types, which are combinations of covarying functional

traits (Zonneveld 1983; Grime et al. 1997), and form the basis

for plant functional type classifications (Lavorel et al. 1997;

Tilman et al. 1997). Plant functional types group species hav-

ing similar ecological amplitudes and responses to environ-

mental conditions (Box 1996; Semenova & van der Maarel

2000), making them useful for bioindication, prediction of

ecosystem resistance to and resilience after disturbance, and

for modelling global change scenarios (Lavorel et al. 1997; Til-

man et al. 1997; D�ıaz &Cabido 2001; Poulter et al. 2011).

The CSR plant strategy type system (Grime 1974, 1977), for

example, categorizes plants according to their abilities to com-

pete for resources (C strategists), tolerate stress (S strategists)

and survive disturbance (R strategists), recognizing the inter-

play of plant functional types, plant functional traits and

ecosystem functions. C strategists often dominate in low-stress

(sufficient nutrients, water, light) and low-disturbance (little

damage to plant material) environments, where they consider-

ably invest in photosynthesis and fast growth (Grime et al.

1997; Hodgson et al. 1999). S strategists are, in contrast,

indicative of low-disturbance, high-stress environments, where

they grow slowly and flower late and briefly, but live long. R

strategists, in turn, are predominantly found in environments

having high disturbance frequencies, where they grow fast and

flower early, but are short-lived (Grime 1977; Cerabolini et al.

2010). Tight correlations between CSR strategy types and a

range of plant functional traits representing the world-wide

leaf economics spectrum (e.g. leaf mass per area, leaf N con-

tent, leaf life span; see Wright et al. 2004) were confirmed

across a variety of ecosystems (Hodgson et al. 1999; Cer-

abolini et al. 2010; Negreiros et al. 2014). These results

strongly suggest that the CSR strategy type system should

prove useful for bioindication, ecosystem monitoring and eco-

logical modelling on a global scale. Similar to CSR strategy

types, Ellenberg’s indicator values for species (Ellenberg et al.

1991) are tightly linked to plant functional traits indicative of

ecosystem functioning. This is because the system was built

around species showing unimodal, monotonically increasing

or decreasing responses to environmental conditions (e.g. soil

moisture, soil nutrient availability, light availability), and rela-

tively narrow amplitudes around their optima (ter Braak &

Looman 1986). Although originally developed for bioindica-

tion in central Europe (Ellenberg et al. 1991), indicator values

have been successfully applied in a variety of ecosystems, as

species can be added and their values adjusted (see Diekmann

2003 and references therein).

Remote sensing applications for ecosystem monitoring

could benefit from the causal relationships between plant func-

tional traits and plant functional types; however, the link

between the vegetation community’s spectral (Asner &Martin

2008) and functional signatures (Hunt et al. 2004) remains to

be established. Generally, the spectral response of vegetation is

determined by reflection, transmission and absorption of light,

which is caused by the structure and chemical characteristics of

plant tissues, and the three-dimensional structure of the

canopy. Imaging spectroscopy captures the spectral response

in many narrow, spectrally contiguous bands (Schaepman

2007), and has enabled the prediction of a series of biochemical

and structural vegetation traits at the community level (Kokaly

et al. 2009; Homolov�a et al. 2013; Asner et al. 2014; Schaep-

man et al. 2015). While certain regions of the spectrum are

known to be sensitive to biochemical or structural traits (e.g.

Curran 1989), other plant characteristics involve several, partly

overlapping spectral features (Kokaly et al. 2009). Detecting

complex chemical and structural characteristics in an overde-

termined spectral signal was a common problem in chemomet-

rics (Martens 2001), which can be solved using pattern

detection techniques, such as partial least squares regression

(PLSR; Wold, Martens & Wold 1983). As the independent

effects of biochemical and structural vegetation traits are

assumed to be largely preserved in the overall shape of the

spectral response (Kokaly et al. 2009), pattern detection tech-

niques can be applied to imaging spectroscopy data to search

for the combined spectral features which describe, for example,

plant functional types.

Given the causal relationships between biochemical and

structural vegetation traits and plant functional types, we

deduce that the spectral signature of plant functional types is

preserved in the vegetation community’s spectral response.

Further, we infer that PLSR coefficients can serve as proxies

for the combined biochemical and structural characteristics of

plant functional types, as they are represented in the
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vegetation’s spectral response. This should allow us to predict

plant functional types at the community level using imaging

spectroscopy. In addition, we hypothesize that plant functional

types can be predicted more consistently compared to plant

life/growth forms. To test our hypotheses, we (i) investigated

the conceptual basis for linking plant life/growth forms and

plant functional types to the vegetation’s spectral response by

assessing their correlation to a series of vegetation traits, that is

biomass, dry matter (DM), N and neutral detergent fibre

(NDF) content, (ii) used airborne imaging spectroscopy data

to model and predict plant life/growth forms and plant func-

tional types using PLSR and (iii) tested model consistency

using an independent data set.

Materials andmethods

STUDY AREA

Our study area, the Swiss National Park (SNP), is located in south-

eastern Switzerland (46°370 N, 10°50 E). Elevation ranges from 1350 to

3170 m a.s.l., average annual precipitation is 754 � 164 mm

(mean � SD) and average annual temperature is 0�9 � 0�5 °C, having

average annual minima of �29�1 � 2�7 °C and average annual max-

ima of 24�5 � 1�0 °C (recorded between 2004 and 2013 at 1968 m).

About 86 km² of the SNP’s total area (172 km²) is covered by vegeta-

tion, wherein forests occupy 53 km² and grasslands 29 km². The grow-

ing season lasts from mid-May until mid-September. The SNP was

founded in 1914 and is classified as an IUCN (International Union for

the Conservation of Nature) category 1a strict nature reserve. Despite

over 100 years of strict protection and absence of management, the

influences of former land use practices, mostly herding of cattle and

sheep, haying, but also past irrigation systems, can still be seen in

today’s vegetation communities (Sch€utz et al. 2003, 2006). The land

use history, as well as microrelief variability and grazing patterns of

herbivores (e.g. Risch et al. 2015) influence plant a- and b-diversity
levels in our study area, with the number of plant species ranging from

<10 to over 50 per 1 m2.

BOTANICAL DATA

We collected community-level trait and relev�e data in 50 research

plots measuring 6 9 6 m in the SNP’s grasslands. The plots cov-

ered a wide range of expositions, altitudes, vegetation productivity

and community composition, but were placed in areas homoge-

neous in plant species composition and cover (for details, see Sch-

weiger et al. 2015). To assess biochemical and structural vegetation

traits, we clipped 1 m² of vegetation on the day of the imaging

spectrometer overflight in the centre of each plot. We immediately

sealed the samples into plastic bags, determined fresh (g m�2) and

oven-dry biomass (g m�2; dried at 65 °C for 48 h) and calculated

DM content (mg g�1; DM = oven-dry biomass/fresh biomass).

Nitrogen and NDF contents (in %) of 24 of the 50 samples were

chemically analysed using standard laboratory methods (TruSpec

CN Analyzer, Leco Corp., St Joseph, MI, USA; Fiber Analyzer

200, Ankom Technology, Macedon, NY, USA). These samples

were used to recalibrate our laboratory near-infrared reflectance

spectrometer models (NIR Multi-Purpose Analyser; Bruker Optics,

F€allanden, CH, Switzerland), generated from more than 300 vegeta-

tion samples collected within the SNP’s grasslands in previous

years. Nitrogen and NDF contents of all 50 samples collected were

then predicted based on near-infrared reflectance spectroscopy, hav-

ing precisions of R2 = 0�93 for N and R2 = 0�81 for NDF content.

Community-level traits in the research plot data set ranged between

4�7 and 2281 g m�2 for biomass, 18�3% and 53�3% for DM con-

tent, 1�1% and 4�0% for N content, and 37�7% and 67�6% for

NDF content. For relev�e data collection, we estimated plant species

cover (in %) for all species occurring in 1 9 1 m quadrats ran-

domly placed within the 50 research plots, but avoiding previously

clipped areas. In total, 170 plant species were recorded in the

research plots, ranging from 6 to 41 species per plot.

An independent relev�e data set (hereafter referred to as external vali-

dation data) was obtained from the SNP’s long-term permanent grass-

land monitoring project. Briefly, 160 permanent plots of variable size

and distributed over the entire area of the SNPwere established as early

as 1917 and are visited every 5 to 10 years and plant species cover (in

%) is recorded. We selected data collected between 2006 and 2014,

resulting in a data set comprising 36 plots, measuring between 1 and

320 m2 in size and distributed over the entire SNP. Again, the plots

covered a wide range of exposition, altitude, productivity and vegeta-

tion communities. In total, 224 species were recorded in the external

validation data set, ranging from 4 to 81 species per plot.

For allocating life and growth forms, we classified each plant species

as graminoid, forb, legume or shrub (life form), subdivided the grami-

noids into tussock and stolon plants (growth form) according to their

dominant habitus in the SNP’s grasslands and summed their cover %

in each plot. We used Landolt & B€aumler (2010) for allocating CSR

strategy types and indicator values for soil nutrients, soil moisture, light

availability and mowing tolerance, which list ecological characteristics

of 5500 central European plant species. We standardized the research

plot and external validation data sets to 100%cover per plot andmulti-

plied both plots 9 species matrices with the CSR strategy type scores

and indicator values matrices, respectively (see Wildi 2010). Species

classified as indifferent or with missing CSR scores or indicator values

were omitted.

We included life/growth forms in our study in order to have a

baseline to which to compare the performance of our plant func-

tional type models. We used life forms related to basic plant phys-

iognomy of all plant types in our study area, because we expected

them to be easier to distinguish using imaging spectroscopy than

more complex classifications (such as the Raunkiær system), which

are assumed to have a greater overlap in biochemical and struc-

tural characteristics. The life forms chosen are frequently used to

define ‘vegetation classes’ in remote sensing and ecosystem mod-

elling, as they are expected to be spectrally distinct due to pre-

sumed differences in biochemistry and structure. Likewise, we

included growth forms of graminoids, which define the two most

dominant grassland types in our study area, because of their eco-

logical importance, as well as their assumed functional and spectral

differences. We selected biochemical and structural traits (biomass,

DM, N, NDF content), because they are known to influence the

spectral signature of vegetation (Curran 1989). Moreover, these

traits are known to be ecologically important (i.e. leaf economic

traits), they are frequently used to define plant functional types,

and among the most frequently measured traits world-wide (Kattge

et al. 2011).

We calculated Spearman’s correlation coefficients (RS) between the

measured biochemical and structural vegetation traits (i.e. biomass,

DM, N, NDF content) and the resultant plots 9 life forms,

plots 9 growth forms and plots 9 functional types (i.e. plots 9 CSR

strategy types, plots 9 indicator values) matrices. To illustrate the

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 86–95
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correlation matrix, we used the corrplot package (Wei 2013) in R (ver-

sion 3.1.2; RCore Team 2014).

IMAGING SPECTROSCOPY DATA

Imaging spectroscopy data were collected on 24 June 2010 between

09�00 and 12�00 h local time using the imaging spectrometer APEX

operated on board a Dornier DO-228 aircraft. APEX is a dispersive

pushbroom imager covering the wavelength range from 372 to

2540 nm with 312 spectral bands and a spectral sampling width rang-

ing from 0�86 to 12�3 nm (Schaepman et al. 2015). We used 285 bands

for analysis after removing noisy bands at the beginning and end of the

spectrum. The ground sampling distance depends on flight altitude and

ranged from 1�75 to 2�50 m (aircraft-ground distance between 3500

and 5230 m). All data were resampled to a regular pixel size of

2 9 2 m using nearest-neighbour interpolation (Schl€apfer & Richter

2002). Imaging spectroscopy data were geometrically and atmospheri-

cally corrected using the atmospheric radiative transfer model MOD-

TRAN-5 as implemented in PARGE (Schl€apfer & Richter 2002) and

ATCOR-4 (Richter & Schl€apfer 2002). Remaining geometric misregis-

tration of the orthorectified data was evaluated and found to be <1

pixel in flat terrain and up to 2 pixels on steep slopes (Damm et al.

2012).

MODELLING

To model plant life/growth forms and plant functional types, we

applied PLSR (Wold, Martens & Wold 1983) implemented in the pls

package (Mevik, Wehrens & Liland 2013) in R (version 3.1.2; R Core

Team 2014). We used the plots 9 life forms, plots 9 growth forms

and plots 9 functional types matrices of the research plot data as

dependent and the plots 9 spectral response matrices from imaging

spectroscopy data as predictor variables. Since plots measured

6 9 6 m and APEX pixel size was 2 9 2 m, we calculated the mean

reflectance per plot using a 3 9 3 pixel window (see Schweiger et al.

2015). We applied leave-one-out cross-validation and limited the num-

ber of PLSR components byminimizing the cross-validated estimate of

the root mean squared error of prediction (RMSEP). To evaluate

model fit, we determined the correlation coefficient of multiple determi-

nation for the cross-validated predictions (R2) and Theil’s uncertainty

coefficient (Theil’sU), which has the advantage of taking deviations of

the slope (from 1) and intercept (from 0) into account (Smith & Rose

1995). Values of Theil’s U < 0�2 indicate high and values from 0�2 to

0�4 indicate moderate predictive power. To make the performance of

all models comparable, we calculated the RMSEP in percentages of the

response range (RMSEP %) and the proportion of values predicted

within <30%mean prediction error (<MPE%).

Finally, we assessedmodel consistency by comparing the predictions

of the best PLSR models with the life/growth forms and functional

types determined in the external validation data set. We extracted the

predicted values of all pixels within each external validation plot and

regressed themean predicted values for each life/growth form and func-

tional type against the life/growth forms and plant functional types

determined from the relev�es of the validation data set. To assess the

accuracy of our models, we again calculated R2, Theil’s U, RMSEP

(%) and the proportion of values predicted within <30% MPE (%).

We used ENVI + IDL (version 4.7; Exelis Visual Information Solu-

tions, Boulder, CO, USA) to extract reflectance values from, and apply

the PLSRmodels to, the imaging spectroscopy data. All other analyses

were conducted in R (version 3.1.2; R Core Team 2014; see Supporting

Information).

Results

Correlation analyses between biochemical and structural vege-

tation community traits (biomass, DM, N and NDF content),

plant life/growth forms and plant functional types (CSR strat-

egy types and indicator values) revealed strong significant rela-

tionships for many of the pairs tested. Only legume cover was

not significantly correlated with any of the biochemical and

structural vegetation traits measured (Fig. 1). In addition, sto-

lon cover showed comparatively low correlations, with the

highest being RS = 30% for biomass (Fig. 1). This resulted in

PLSRmodels being unable to detect the spectral characteristic

of legumes and stolons, while the predictive power for all other

life/growth forms was either high (Theil’s U < 0�2 for grami-

noids, forbs + legumes) or moderate (Theil’s U ≤ 0�31 for

forbs, shrubs, tussocks), explaining between 27% and 56% of

total variation (Table 1; Fig. 2a,b). During external valida-

tion, however, model performance for all plant life/growth

forms decreased considerably and model consistency was low

(average change in R2 = 72%). Only the models for forbs and

shrubs retained moderate performance, explaining 18% and

19%of total variation, respectively (Table 1).

In contrast, PLSR models for all plant functional types had

high predictive power (Theil’s U ≤ 0�2), explaining between

28% and 62% of total variation (Table 1; Fig. 2c,d). An

exception was the model for the indicator value for light avail-

ability, which had high predictive power, but only explained

16% of total variation, likely due to its small range of rather

high values (Table 1). Model consistencies during external val-

idation were considerably higher for plant functional types

than for plant life/growth forms (average change of

R2 = 20%). Interestingly, even the indicator value for light

availability was reasonably well predicted, explaining 24% of

total variation in the external validation data.

We illustrate the spectral differences of vegetation communi-

ties with varying plant life/growth form cover and plant func-

tional type abundances by plotting the means and standard

deviations of spectra within the 1st and 10th deciles of each

class. The spectra of plots within the 1st and 10th deciles of

plant life/growth forms poorly predicted by PLSR did not

show major differences, and the standard deviations around

the mean of the deciles considerably overlapped across all

wavelengths (Fig. 3c,f,g). In contrast, the spectra of plots

within the 1st and 10th deciles of plant life/growth forms and

plant functional types well predicted by PLSR, appeared gen-

erally more different, with the standard deviations around the

mean of the deciles overlapping less. The regions of the

spectrum showing the largest differences varied, with grami-

noids and CSR strategy types being noticeably different in

the visible part of the spectrum (c. 370–700 nm; Fig. 3a,

h–j), forbs, shrubs, C strategists and indicator plants being dif-

ferent in the near-infrared (c. 700–1400 nm; Fig. 3b,e,h,k–n),
and S strategists and soil moisture indicators showing addi-

tional differences in the shortwave-infrared (c. 1400–3000 nm;

Fig. 3i,l).

Our approach for predicting plant functional types using

imaging spectroscopy is summarized in a conceptual

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 86–95
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framework (Fig. 4). The spectral response of the vegetation

community (red ellipse, plots 9 spectral response) and plant

functional type classifications (blue ellipse, plots 9 PF types)

are determined by covarying biochemical and structural vege-

tation traits (plots 9 community-level traits). Plant invento-

ries (blue ellipse, plots 9 species) can be used to determine the

abundance of plant functional types at the vegetation commu-

nity level (blue ellipse, plots 9 PF types). As long as plant

functional types and plant functional traits are tightly corre-

lated, as was the case in our study, this relationship links the

functional and spectral signatures of the vegetation community

(orange ellipse) and allows predicting plant functional types at

the vegetation community scale.

Discussion

Our results showed that imaging spectroscopy enables mod-

elling and predicting plant functional types at the vegetation

community scale with high accuracy and greater consistency

than plant life/growth forms. The ability of imaging spec-

troscopy to predict plant functional types can be explained by

their strong correlations with biochemical and structural vege-

tation traits, as well as the differences among plant functional

types regarding biochemistry and structure (Fig. 1). In sum-

mary, we argue that detecting plant functional types using

imaging spectroscopy can offer advantages over themore com-

mon use of plant life/growth forms, because plant functional

type classifications are based upon causal relationships to

biochemical and structural vegetation traits. These correla-

tions are central for spectroscopic applications, since the reflec-

tance properties measured likewise depend on biochemical and

structural vegetation characteristics. Strong causal relation-

ships between plant functional types and functional traits form

the backbone of plant functional type theory and have been

confirmed for a variety of ecosystems world-wide (Cornelissen

et al. 2003; Wright et al. 2004; Reich, Wright & Lusk 2007).

We thus assume the relationship between the vegetation com-

munities’ functional and spectral response to hold at global

scale (Lausch et al. 2016).

Generally, plants trade off their investment in photosynthe-

sis against life span and structural components of leaves

(Reich, Walters & Ellsworth 1997), trade-offs that are accom-

panied by different strategies of reproductive development and

growth (Cerabolini et al. 2010). Plants that invest in fast

growth and early and extensive flowering (R strategist) can be

expected to have high leaf N content, as the main CO2-fixing

enzyme RuBisCO (ribulose-1,5-bisphosphate carboxylase–
oxygenase) accounts for 30–60% of the total N content in

plants (Elvidge 1990). However, these plants usually have

fewer resources for structural components of leaves and stems,

and thus can be expected to have lowerDMandNDF content.

In contrast, plants able to persist in low-resource environments

(S strategists) invest more in structural tissue components, and

thus usually have high DM and/or NDF content, but low N

content. C strategists are positioned between these two

extremes; apart from considerable investments in
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Fig. 1. Correlation matrix between biomass

(Biomass g m�2), dry matter (DM mg g�1),

nitrogen (N %) and neutral detergent fibre

(NDF %) content, plant life forms (grami-

noids, forbs, legumes, forbs + legumes com-

bined, shrubs; cover %; blue square), growth

forms of graminoids (tussocks and stolons;

cover %; blue square) and seven plant func-

tional types of two categories: CSR strategy

types [competitive (C), stress-tolerant (S), rud-

eral (R) strategist; scores; red square] and indi-

cator values (soil nutrients, soil moisture,

light, mowing tolerance; orange square) mea-

sured at the vegetation community level. The

upper triangle shows significant correlations

(P < 0�05) only, with the direction

(black = positive, white = negative) and

strength (thick = weak, thin = strong) indi-

cated by the ellipses. The lower triangle shows

all values for Spearman’s correlation coeffi-

cient (RS).
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photosynthesis, they must also invest in durable tissues, allow-

ing them to overtop their neighbours, resulting in high bio-

mass, high N content and more structural components (higher

DM and/or NDF content) than R strategists (Cerabolini et al.

2010). These relationships have been found in a variety of

ecosystems (e.g Hodgson et al. 1999; Cerabolini et al. 2010;

Table 1. Results of partial least squares regression (PLSR) models predicting plant life and growth forms and seven plant functional types of two

categories (CSR strategy types, indicator values) at the vegetation community level, and external model validation. Model fit and accuracy are

described by the correlation coefficient of the cross-validated predictions (R2), Theil’s uncertainty coefficient (Theil’sU), root mean squared error of

prediction (RMSEP,%) and the per cent of predicted values below amean prediction error of 30% (<MPE,%). The number of PLSR components

(ncomps) and the value ranges, described by theminimum (min), maximum (max) andmean � standard deviation (SD), are indicated

PLSRmodel Value range External validation

R2 Theil’sU RMSEP (%) <MPE (%) ncomps Min–Max Mean � SD R2 Theil’sU RMSEP (%) <MPE (%)

Life form (cover%)

Graminoids 0�56 0�17 17�3 58�5 12 2�6–96�5 46�3 � 26�1 �0�03 0�27 28�8 38�9
Forbs 0�52 0�20 13�0 45�1 11 0�7–92�0 27�4 � 18�7 0�18 0�24 18�2 63�9
Legumes �0�06 0�50 6�2 23�2 1 0�0–31�0 4�6 � 6�1 �0�02 0�70 21�7 19�4
Forbs + Legumes 0�50 0�19 14�1 51�2 10 0�8–92�0 32�0 � 20�2 0�08 0�28 29�5 50�0
Shrubs 0�47 0�31 8�8 23�2 12 0�0–57�5 8�7 � 12�2 0�19 0�41 10�3 30�6

Growth form (cover%)

Tussocks 0�27 0�30 20�2 31�7 12 0�0–90�0 25�1 � 23�9 �0�03 0�47 24�8 16�7
Stolons 0�09 0�36 18�3 28�1 2 0�5–90�5 21�2 � 19�3 0�10 0�32 19�2 27�8

Strategy type (scores)

C strategist 0�45 0�12 0�27 82�9 5 0�14–1�73 1�09 � 0�37 0�37 0�11 0�26 83�3
S strategist 0�52 0�11 0�24 84�1 7 0�09–1�54 1�03 � 0�35 0�28 0�11 0�25 86�1
R strategist 0�39 0�20 0�15 54�9 10 0�03–0�88 0�33 � 0�19 0�36 0�25 0�23 50�0

Indicator value

Soil nutrients 0�62 0�06 0�34 98�8 7 1�71–4�06 2�60 � 0�55 0�58 0�08 0�44 94�4
Soil moisture 0�40 0�08 0�43 95�1 10 1�93–4�10 2�68 � 0�56 0�38 0�08 0�44 91�7
Light 0�16 0�04 0�34 100 1 3�04–4�73 3�82 � 0�37 0�24 0�03 0�21 100

Mowing

tolerance

0�28 0�08 0�40 98�8 5 2�03–3�49 2�59 � 0�47 0�30 0�09 0�48 88�9
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Fig. 2. PLSR models predicting (a) the %

cover of plant life forms (graminoids, forbs,

legumes, forbs + legumes combined, shrubs),

(b) the%cover of growth forms of graminoids

(tussocks, stolons), (c) CSR strategy type

scores [competitive (C), stress-tolerant (S),

ruderal (R) strategist] and (d) indicator values

(soil nutrients, soil moisture, light, mowing

tolerance) in our 50 research plots. The dotted

line represents the 1 : 1 line; for model fit and

accuracy (see Table 1).
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Negreiros et al. 2014) and were confirmed by our study

(Fig. 1). Likewise, the concept of indicator species is based on

relationships between soil biogeochemistry and biochemical

and structural vegetation traits (Diekmann 2003). We were

able to confirm strong correlations between biochemical and

structural vegetation traits and Ellenberg’s indicator values

(Ellenberg et al. 1991) (Fig. 1), which allowed us to model and

predict them with high accuracy and consistency (Fig. 2;

Table 1).

In contrast, our results point out that the relationships

between plant life/growth forms and biochemical and struc-

tural traits can be more variable. Generally, this occurs when

species having different functional characteristics are causing

high variability of leaf traits – such as DM, N, fibre content,

and associated leaf anatomy, photosynthetic capacity and

longevity – within classes and broad overlaps between them

(Kattge et al. 2011). This can lead to little distinctiveness

between the leaf optical properties of vegetation classes,

which complicates their spectral detectability. For example

in our case, the two tussock grasses Deschampsia cespitosa

(L.) P. Beauv. and Nardus stricta L. differed substantially in

functional characteristics. Deschampsia occurs on nutrient-

rich soils where it invests in rapid, tall growth, forming large,

green tussocks with relatively low fibre content. In contrast,

Nardus sustains itself on steep slopes having shallow,

nutrient-poor, parched soils, where it forms small, bristly,

fibre-rich tussocks. Consequently, these two tussock grass

species are completely different in biochemical and structural

traits, contributing to high trait variability within the growth

form ‘tussock grasses’, reducing their discrimination based

on leaf optical properties and hence complicates their detect-

ability with imaging spectroscopy. This said, Deschampsia

and Nardus are separable by plant functional type as

reflected by both CSR strategy type and indicator classifica-

tion (Deschampsia: C strategist, indicator for nutrient- and

moisture-rich soils; Nardus: S strategist, indicator for nutri-

ent- and moisture-poor soils), which are by definition tightly

coupled to biochemical and structural plant traits and thus

separable using spectral signatures. Other graminoids, as well

as forbs and shrubs, likewise occurred in areas differing in

topography, soil and microclimatic conditions, spanning a

large gradient of environmental conditions in our study area.

Thus, although several plant life/growth forms were fairly

well correlated with biochemical and structural vegetation

traits in our input data (Fig. 1), trait variability within

groups in our study system was likely too high to allow

models to be consistent (Table 1). We are aware that tighter

relationships between plant life/growth forms and biochemi-

cal and structural traits, including ones not explicitly tested

in this study, may exist in other environments. While the
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Fig. 3. Mean and standard deviation of airborne imaging spectroscopy spectra from vegetation communities within the 1st (red) and 10th deciles

(blue) of life/growth form cover (a–g), competitor scores (h–j) and indicator values (k–n). The decile class limits are indicated.
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relationship between vegetation traits and plant life/growth

forms might hold true for ecosystems that are generally spe-

cies-poor or are rather uniform with respect to soil and

microclimatic conditions, these relationships can be expected

to weaken in areas where soil conditions, microclimate and

topography vary substantially. This in turn reduces the abil-

ity of imaging spectroscopy to detect life/growth forms,

which could lead to models becoming inconsistent, as was

the case in our study area. Thus, we argue that the spectral

detectability of plant life/growth forms as well as their use-

fulness for ecosystem monitoring and environmental mod-

elling will depend on the ecosystem system and vegetation

community under study.

According to our results, PLSR coefficients can serve as

proxies for the combined biochemical and structural character-

istics of plant functional types, linking a vegetation commu-

nity’s functional and spectral responses. Although model

coefficients from empirical methods, such as PLSR, will usu-

ally vary from site to site and are thus not directly trans-

ferrable, they can be applied to different study systems, as long

as the variables included in the model cover the entire expected

variability (Martens 2001). As predictions of negative values,

for example for cover per cent (Fig. 2a,b), are clearly nonsensi-

cal, the implementation of a PLSR algorithm that constrains

predictions to positive values would be a valuable research

contribution.

Comparing the spectra of plots having high and low life/

growth form cover or plant functional type abundances indi-

cates when pattern detection techniques, such as PLSR, can be

expected to differentiate spectral signals (Fig. 3). Similar spec-

tral responses within plant life/growth forms or plant func-

tional type classes can point not only towards little spectral

distinctiveness, but also towards a narrow range of values in

the data, both of which complicate spectral separability. In

addition, more variable spectral regions can point to high trait

variability within classes, for example regarding pigment com-

position (in the visible part of the spectrum), structural compo-

sition or water content (in the near- and shortwave-infrared;

e.g. Curran 1989). Quantitative assessments of more variable

vs. more conserved spectral regions and their relationships to

leaf optical characteristics and vegetation community traits

will be an important task for future research, enabling general

rules for the optical differentiation of plant functional types,

and plant life/growth forms to be established.

As imaging spectroscopy data become more widely avail-

able and ground reference data for plant functional types and

plant life/growth forms can be derived from botanical relev�es,

it will become possible to test under which conditions detecting

plant functional types provides advantages over detecting

plant life/growth forms. Initiatives to join plant functional

trait, plant functional type and spectral data bases, such as

TRY (Kattge et al. 2011), EcoSIS (University of Wisconsin-

Fig. 4. Conceptual framework using the theory and methodology of vegetation ecology (blue ellipse) and imaging spectroscopy (red ellipse) to link

the functional to the spectral signature of the vegetation community. According to plant functional (PF) type theory, the vegetation community

(plots 9 species) integrates environmental conditions and allocates resources towards the expression of covarying biochemical and structural traits,

measurable at the community scale (plots 9 community-level traits) and causally linked to plant functional types (plots 9 PF types). The reflec-

tance of vegetation measured using imaging spectroscopy (plots 9 spectral response) is determined by reflection, transmission and absorption of

light (physical laws), which again depend on biochemical and structural traits (plots 9 community-level traits). In this study (orange ellipse), we con-

nect plant functional types and the spectral response via their link to biochemical and structural vegetation traits and suggest partial least squares

regression (PLSR)model coefficients, commonly used in chemometrics, to predict plant functional types at the vegetation community level.
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Madison 2016) and Specchio (Hueni et al. 2009), will amplify

the opportunities to test our framework in different regions.

Additionally, the launch of new remote sensing instruments, in

particular the spaceborne imaging spectrometers EnMAP

(planned in 2018; DLR 2015) and HyspIRI (planned after

2022; NASA 2012), will enable comparative studies investigat-

ing the relationships between spectral response curves of vege-

tation communities, functional vegetation characteristics and

ecosystem processes on a global scale.

Summarized, our results demonstrated that imaging spec-

troscopy data can be successfully used to model and predict

plant functional types, as PLSR coefficients serve as proxies

for the combined characteristics of biochemical and structural

vegetation community traits. This link between a vegetation’s

functional and spectral signatures can facilitate large-scale

ecosystem monitoring as both data types share advantageous

characteristics: (i) they are generalizable and thus can be used

across large spatial scales; (ii) they are integrative and hence

allow the detection of not only single factors, but also pro-

cesses; (iii) both are directly linked to plant functional traits

ensuring their interpretability; and (iv) they can be used on an

ecologically relevant and practicable level: the vegetation

community scale.
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Appendix S1. R code to (i) test correlations between functional traits,

plant life/growth forms and plant functional types, (ii) illustrate the

results of the correlation analysis and (iii) run partial least squares

regression (PLSR) to model and predict plant life/growth forms and

plant functional types using imaging spectroscopy data (example: gra-

minoids).

Appendix S2. Vegetation community trait values for biomass (g m�2,

Biomass_g m2), dry matter (mg g�1, DMC_mg g), nitrogen (%,

N_perc) and neutral detergent fibre content (%, NDF_perc) and per

cent (%) cover data for plant life/growth forms (graminoids, forbs,

legumes, forbs and legumes combined, shrubs, tussocks, stolons), CSR

strategy type scores [competitive (C), stress-tolerant (S), ruderal (R)

strategist] and indicator values (soil nutrients, soil moisture, light, mow-

ing tolerance)measured in our research plots.

Appendix S3. Per cent (%) cover data for the plant life/growth forms

(graminoids, forbs, legumes, forbs and legumes combined, shrubs, tus-

socks, stolons), CSR strategy type scores [competitive (C), stress-toler-

ant (S), ruderal (R) strategist] and indicator values (soil nutrients, soil

moisture, light, mowing tolerance)measured in our research plots.

Appendix S4. Mean reflectance spectra from our research plots

acquired by the imaging spectrometerAPEX.
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