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Abstract Climate warming has been more pronounced in Arctic and alpine areas,
and changes in the mountain flora can be expected as the temperature envelope
moves upslope. On the one hand, alpine habitats will shrink due to upward
migration of species from lower areas, such as trees and tall plants. On the other
hand, extinctions of summit plants may be slowed down considerably by the high
diversity of microhabitats, the longevity of alpine plants and positive plant–plant
interactions in extreme environments. This review chapter attempts to document
and monitor vegetation changes on mountain summits. Vegetation surveys that
repeat century-old historical vegetation records show considerable upward migra-
tion and subsequent increases in species on summits. This trend apparently has
accelerated in recent decades. Detailed monitoring of the last decade in European
mountain ranges, however, shows that this vegetation change may be at the cost of
rare endemic species and alpine specialists in drier Mediterranean regions. This
chapter furthermore reviews other factors than temperature influencing alpine
vegetation, namely precipitation and snow, nutrients, atmospheric CO2 concentra-
tions and land use. A subsequent question is how threatened mountain flora is by
the ongoing environmental changes. Finally, this chapter discusses options for
conservation and land use in high-alpine areas.
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12.1 Introduction

Mountain plant species are already showing strong responses to climate change, for
instance through upwards shifts in distribution limits (Grabherr et al. 1994; Walther
et al. 2002; Lenoir et al. 2008). Species distribution models predict that this will
lead to a contraction or total loss of high-alpine species’ distribution ranges in the
longer term (Engler et al. 2011), as their potential new habitat decreases in area at
higher altitude (Körner 2007), while they might become out-competed and replaced
by species from lower elevations (Engler et al. 2011). Through these mechanisms,
species distribution models predict losses of over one-third of all species of the
alpine vegetation belt for some regions of the Alps, and even higher extinction rates
in other European mountain ranges (Engler et al. 2011).

This chapter will give an overview of our current knowledge of vegetation
change in alpine regions with a particular focus on mountain summits in the Swiss
Alps and across Europe. First, results from different monitoring approaches will be
reviewed. One way to study vegetation changes is to repeat historical surveys, as
many historical species lists from mountain summits are available from about a
century ago, in some cases even from 170 years ago. Another suitable approach is
standardised monitoring that was initiated relatively recently but capture shorter
term vegetation changes in great detail (e.g. Roth et al. 2014). The Global
Observation Research Initiative in Alpine Environments (GLORIA) for instance
was initiated in 2001 across many European mountains and has now research sites
on summits all over the world (Grabherr et al. 2000). The first analyses from
GLORIA have demonstrated rapid vegetation changes on European summits (Pauli
et al. 2012; Gottfried et al. 2012).

This chapter will then focus on different factors influencing mountain vegetation.
The most discussed cause for vegetation changes is climate warming, but it is
important to take also other factors of global change into consideration, such as
atmospheric CO2 concentrations, nutrient availability, land use, etc. Although
temperature is, without a doubt, an important climatic driver of alpine plant dis-
tribution, it probably strongly interacts with precipitation and soil moisture
(Elmendorf et al. 2012a, b) especially in the form of snow (Grytnes et al. 2014).

Given ongoing climate and vegetation change, the question arises how threat-
ened mountain flora actually is. On the one hand, habitat for high-alpine specialists
will most likely shrink in a warming climate. On the other hand, the high diversity
of microhabitats on mountains (Scherrer and Körner 2011) and the longevity of
many mountain plants may prevent extinctions or at least result in a delayed
extinction debt (Dullinger et al. 2012). This book chapter will outline our current
knowledge about the extinction risk of alpine plants.

Finally, the key question remains whether humans can contribute to the
preservation of alpine plants or to prevent their local extinctions. Hence, the final
section of this chapter will outline opportunities for conservation, appropriate forms
of land-use, conservation and restoration measures in high-alpine environments.
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12.2 Rapid Climate Change in Arctic and Alpine Areas

Mountain ecosystems are projected to experience more dramatic climate warming
than most other regions of the world (Pepin et al. 2015; IPCC 2014). The Swiss
Alps, for instance, have already experienced a warming of 1.8 °C since the Little
Ice Age in the mid-nineteenth century (Begert et al. 2005) (Fig. 12.1), and the
warming during the past 30 years was twice as high compared with the Northern
Hemisphere (Böhm et al. 2001; Rebetez and Reinhard 2008). Since then the
duration of snow cover has decreased in many regions of the world (IPCC 2007),
and glaciers in the Alps have lost about 35% of their surface area (Hoelzle et al.
2007). Migration of plants and animals to higher elevations are impressive indi-
cators for these profound changes in climate (Walther et al. 2002; Seimon et al.
2007).

12.3 Re-surveys of Historical Vegetation Records
on Summits

Several studies have used re-surveys of historical data of summits floras to study
long-term vegetation changes in high-alpine regions (Grabherr et al. 1994;
Klanderud and Birks 2003; Walther et al. 2005). Summits are easy to relocate,
which makes them equivalent to permanent plots. Moreover, summits are partic-
ularly important in the context of climate change-driven upward shifts, as they
represent the last resort before species go extinct due to the absence of suitable
habitats at even higher altitudes. Summits might thus provide one of the most exact,

Fig. 12.1 Temperature anomalies (annual deviation from long-term mean) since the Little Ice
Age at five climate stations (mean values) in Switzerland above 1000 m a.s.l. (Grand St. Bernard,
Sils Maria, Davos, Engelberg, Säntis). Based on data from Begert et al. (2005)
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most sensitive, and longest term indicators for floristic change and species loss due
to climate change in the world. As a baseline for these re-survey studies serves plant
species lists of mountain summits collected in the late nineteenth and early twen-
tieth century by some of the most renowned botanists of their time, who were
aiming to explore the elevation limits of vascular plant life (Stöckli et al. 2011).
Europe is unique in harbouring a large number of such historical datasets, and
Swiss botanists had a leading role. Almost 200 historical summit records of high
quality (Stöckli et al. 2011) exist from Switzerland alone, and dozens more from the
French and Italian Alps, the Pyrenees, the Scottish Highlands and the Scandes (e.g.
Moen and Lagerstrom 2008; Odland et al. 2010; Grytnes et al. 2014; Klanderud and
Birks 2003).

In general, previous re-survey studies on summits found an enrichment of the
plant community and that species from lower elevation had been colonising higher
elevations over the past century (see Fig. 12.2; Hofer 1992; Grabherr et al. 1994,
2001; Camenisch 2002; Walther et al. 2005; Holzinger et al. 2008; Kullman 2010;
Wipf et al. 2013a). The rate of upward migration of plant species varied between
studies, ranging from 4 (Grabherr et al. 2001) to 28 m per decade (Walther et al.
2005). However, these results were based on studies with relatively few samples
(approx. 30 summits). While most studies suggest climate warming as a main driver
of these changes, changes in winter precipitation might be an additional factor that
fosters high-alpine community change (Grytnes et al. 2014).

Analyses of species traits indicated that species with seeds adapted to
long-distance dispersal (i.e. with wings or similar) were particularly successful new

Fig. 12.2 Species numbers on 12 summits in the Swiss National Park region along a gradient in
elevation as recorded in historical times by Josias Braun-Blanquet (1911–1927, thin line)
(Braun-Blanquet 1958) and in recent times (2010–2012, bold line). Based on Wipf et al. (2013a)
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colonisers (Holzinger et al. 2008; Vittoz et al. 2009; Matteodo et al. 2013).
Generally, trait characteristics of new colonisers on summits were similar to those
of lowland communities (Matteodo et al. 2013), further illustrating the general
upwards trend of plants in mountain areas. Also, there is evidence that the biodi-
versity change has accelerated during the past 30 years comparable to recent
temperature increase (Wipf et al. 2013b; Walther et al. 2005).

The single most prominent example for long-term vegetation change on a
mountain summit is certainly Piz Linard in South East Switzerland (Wipf et al.
2013b; see Fig. 12.3). This mountain was first visited and botanized by Oswald
Heer in 1835. He then recorded only a single plant species at the summit
(Androsace alpina, Alpine Rock-Jasmine, Primulaceae) but noted many other plant
species at a lower elevation of the same mountain (Fig. 12.3). Piz Linard was then
re-visited and re-botanized eight times, the last time in 2011, making a total of nine
botanical records in 176 years (Table 12.1). Species numbers had increased due to

Fig. 12.3 Excerpt from Oswald Heer’s 1835 notebook (Heer 1835). Diagram of species
occurrences on Piz Linard with Aretia glacialis = Androsace alpina (small photo; C. Rixen) at the
summit. A transcript of this figure with modern species names is available in Wipf et al. (2013b).
The photo of Piz Linard was taken by Josias Braun-Blanquet (Braun-Blanquet 1957), one of the
re-surveys in the 1930s and 1940s. Reprinted by permission of the publisher (Taylor & Francis
Ltd, http://www.tandfonline.com)
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upward migration to a total of 16 species in 2011. Interestingly, the species number
stagnated (at ten species) during three records between 1937 and 1992 but then
increased considerably to 16 species in the past decades, which matches well the
recent temperature increase. Most already present species increased in abundance
and colonised new areas of the summit, while new arrivals mainly established at
sites with already high species richness (Wipf et al. 2013b). Species that appeared
after 1992 differed from species already present previously by having had a 200 m
lower maximum altitude in the region during the early twentieth century. Although
the conclusions that can be drawn from one single mountain are limited, the
example of Piz Linard is nevertheless highly illustrative of ongoing vegetation
changes on summits that are also supported by larger studies.

12.4 Extensive Monitoring of Recent Changes in Summit
Plants

Re-sampling of historical vegetation surveys proved to be a very useful tool to
study long-term vegetation changes on summits, but has the downside of some
methodological uncertainties (Stöckli et al. 2011; Burg et al. 2015). This problem

Table 12.1 Species occurrences and abundances on Piz Linard summit (3410 m a.s.l.; uppermost
30 m) from 1835–2011. Abundances are indicated by colour: light grey, low (<5 individuals);
intermediate grey, intermediate (<10 individuals); dark grey, high (>10 individuals). No
abundances are available for the 1864 and 1895 records. Species present in the uppermost 10 m
are indicated with double asterisks. Highest observations of the species elsewhere in south-eastern
Switzerland up to 1911 are listed for comparison. See details in Wipf et al. (2013b). In 2014,
Doronicum clusii was rediscovered on the summit, but no full species record was taken (Wipf
et al. personal communication)
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was addressed in the Global Observation Research Initiative in Alpine
Environments (GLORIA, http://www.gloria.ac.at), which provides a detailed pro-
tocol to record summit vegetation (Grabherr et al. 2000). Within less than a decade,
significant changes in vegetation were already found in monitoring sites across
Europe that were set up in 2001 and repeated in 2008 (Pauli et al. 2012; Gottfried
et al. 2012) (and very recently in 2015). In the boreal-temperate mountain regions
of Europe, species number had increased by nearly four species on average
(Fig. 12.4; Pauli et al. 2012). In Mediterranean mountain regions, however, species
number had decreased by ca. 1.5 species, possibly because recent climatic trends
have decreased the availability of water in the European south.

Another interesting analysis of the same GLORIA data set looked at how much
the vegetation change indicated warmer conditions, i.e. if species migrating
upwards reported a warmer environment than before (so-called thermophilisation,
Gottfried et al. 2012). Across the entire data set, the vegetation indicated

Fig. 12.4 GLORIA network (Pauli et al. 2012). Vascular plant species numbers in 17 European
study regions. Blue circles indicate boreal and temperate, red circles indicate Mediterranean
regions. Bars show the number of species found in 2001 (left bar) and 2008 (right bar); the
proportion of endemic species is shown in red. Species number (endemic number) per region in
2001/in 2008: LAT (N-Scandes/Sweden, 109(0)/118(0); PUR (Polar Urals/Russia), 58(0)/60(0);
DOV (S-Scandes/Norway), 49(1)/50(1); CAI (Cairngorms/UK), 10(0)/14(0); SUR
(S-Urals/Russia), 62(9)/62(7); CTA (High Tatra/Slovakia), 53(5)/60(5); HSW
(NE-Alps/Austria), 130(27)/134(27); CRO (E-Carpathians/Romania), 33(2)/40(5); ADO
(S-Alps/Italy), 158(14)/170(17); VAL (W-Alps/Switzerland), 96(12)/105(12); NAP
(N-Apennines/Italy), 123(7)/126(7); CPY (Central Pyrenees/Spain), 87(12)/101(12); CAK
(Central Caucasus/Georgia), 113(35)/140(41); CRI (Corsica/France), 20(7)/19(7); CAM (Central
Apennines/Italy), 57(13)/57(13); SNE (Sierra Nevada/Spain), 65(39)/60(35); LEO (Lefka Ori-
Crete/Greece), 58(22)/54(19). Blue-shaded areas indicate the respective maximum distribution of
species defined as endemic (12); most endemics have a far more narrow distribution area. From
Pauli et al. (2012). Reprinted with permission from AAAS
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thermophilisation, however, differences between mountain ranges were consider-
able. Most importantly, regions with most pronounced warming during the study
period showed the highest thermophilisation (Fig. 12.5). These results illustrate
how relatively rapid vegetation changes to climate warming can be.

12.5 Global Change, Not Only Climate Change: Snow
Versus Temperature, Impacts of Nutrients, CO2

Concentration, Land Use, Grazing

Temperature is one of the most important factors influencing high-alpine vegetation
(Körner 2003). However, it always needs to be considered in combination with
precipitation and, more specifically, snow. Temperature and light are responsible

Fig. 12.5 Summit thermophilisation. The thermophilisation indicator D of mountain regions is
correlated with temperature change. a Change in June mean of daily minimum temperature (map
prepared from data provided by E-OBS (Haylock et al. 2008), resolution 0:25°), calculated as the
difference between the averages of two time periods that precede plant data recording: prior 2008
(2003–2007)–prior 2001 (1996–2000). The numbers indicate the mountain regions and are
referenced in (Gottfried et al. 2012). b Correlation of D with the change in June mean of daily
minimum temperature (prior 2008–prior 2001) in the study regions (data derived from the map in
a), using a one-sided test following the null hypothesis of no positive correlation. Vertical lines are
95% confidence intervals of D for the mountain regions, and a linear regression line is shown.
Reprinted by permission from Macmillan Publishers Ltd: Nature, Gottfried et al. (2012)
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for most physiological processes in alpine plants (Körner 2003), however, while
snow is lying on the ground, warm atmospheric temperatures are of little effect on
the plants below the snow (but see Starr and Oberbauer 2003; Palacio et al. 2015).
Furthermore, there is evidence that with climate warming precipitation in the form
of snow can actually increase and subsequently delay the timing of snowmelt and
hence shorten the vegetation period (Bjorkman et al. 2015). Hence, to understand
climate effects on alpine vegetation, we need to know summer temperatures and the
timing of snowmelt.

Unfortunately, detailed snow information with high temporal and spatial reso-
lution is often not easy to obtain. One possible approach is to use information of
climate stations that not only record temperature but also snow cover below the
stations. This approach has been used in the Swiss Alps where more than 100 metro
stations have been employed since 1998 (Jonas et al. 2008; Rammig et al. 2010;
Fontana et al. 2008). Plant phenology and productivity were analysed between
stations and between years, and variables related to precipitation and snowmelt
explained as much variance or more than temperature variables (Jonas et al. 2008).
Also, vegetation change on Piz Linard (see above, Wipf et al. 2013b) and on
Scandinavian mountains (Grytnes et al. 2014) seemed to be partly driven by the
snow distribution on the summit. Furthermore, the small-scale distribution of snow
in complex alpine terrain is extremely important for the distribution of plants:
within the same elevation, the date of snowmelt can differ by more than a month
within a few metres depending on topography (Rixen et al. 2010), which influences
vegetation and plant populations considerably (for studies on the snowbed species
Salix herbacea see Wheeler et al. 2015; Sedlacek et al. 2015; Cortes et al. 2014).
Hence, future efforts should clearly focus on not only explaining vegetation
changes by temperature but by a combination of temperature and
precipitation/snow cover.

Apart from temperatures and precipitation, also factors such as nutrient input,
elevated atmospheric CO2, extreme events, land use, grazing, etc. need to be taken
into consideration as drivers of vegetation change. Although nitrogen input is
usually smaller (Hiltbrunner et al. 2005) and land-use less intensive at high ele-
vation compared to lowlands, they are by no means negligible (Boutin et al. 2015).
There is evidence that nitrogen deposition could affect alpine plants more than
climate warming (Bobbink et al. 2010). Grazing by sheep can be observed up to the
highest alpine grasslands e.g. in the Alps or the Pyrenees, and might over the long
term have changed alpine vegetation composition profoundly. Abandonment of
remote or steep areas, which is common e.g. in the Pyrenees and the Alps, is hence
likely to change vegetation again, but in combination with climate change it is
unlikely that vegetation will change back to its previous composition. Elevated
atmospheric CO2 concentrations did not enhance plant growth in alpine grasslands
(Inauen et al. 2012; Korner et al. 1997) but in shrub communities at treeline
(Anadon-Rosell et al. 2014; Dawes et al. 2013, 2014) where the bilberry
(Vaccinium myrtillus) showed more growth, possibly at the cost of smaller or less
responsive plant species.
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12.6 Alpine Plants on the Verge to Extinction or Safe
in Cold Microhabitats?

Although most studies demonstrate an impressive increase in species numbers and
local colonisations, only relatively little local extinction, and no particular traits or
species groups that were mainly affected by local extinctions, were found in
long-term vegetation surveys in European alpine ecosystems (Hofer 1992; Walther
et al. 2005; Wipf et al. 2013b; Grabherr et al. 2001; Matteodo et al. 2013).
Moreover, the summit flora has been found to become more similar in composition
over time, and there is evidence that many high-alpine species that were already
present on few summits have meanwhile also colonised further summits (Kammer
et al. 2007; Jurasinski and Kreyling 2007). Thus, up to now, we see many winners,
but few losers on Europe’s mountain summits even after several decades of ongoing
climate warming.

Species distribution models recently predicted mountain flora to be threatened
unequally across Europe in the twenty-first century (Engler et al. 2011).
Specifically, temperature increase and precipitation decrease are expected to be
more pronounced in e.g. the Alps and the Pyrenees than, e.g. in the Norwegian
Scandes (Engler et al. 2011), which can be seen, in part, already in the temperature
changes occurred in the recent past (Gottfried et al. 2012). Short-term floristic
changes on European summits analysed by the GLORIA initiative indeed indicate a
signal towards an increased prevalence of species with higher temperature prefer-
ences over 8 years that correlates with the magnitude of recent warming (see above,
Gottfried et al. 2012).

While most studies agree that species upwards shifts are already happening,
there is little consensus on potential losses of alpine biota due to future climate
change. At first glance, the modelled projections of massive extinction rates in
high-alpine species, and the observational findings of strong increase in summits
species numbers even contradict each other. However, as the expected local
extinctions are thought to be driven by competition through species rising to higher
altitudes, it could be expected that an initial enrichment with new colonisers will be
followed by an extinction of the formerly local species after a certain time lag
(Dullinger et al. 2012; Engler et al. 2009). On the other hand, evidence for com-
petitive replacement of high-alpine species is, at best, weak, even after decades of
ongoing climate warming. Also, species in cold habitats are assumed to be less
affected by competition (Pellissier et al. 2013) and their niches to be more closely
related to their physiological limits (Normand et al. 2009). However, these studies
do not take into account that some alpine species are true cold species, i.e. that they
are not able to adapt their physiology (dark respiration) to a warmer temperature
(Larigauderie and Körner 1995).

In contrast to the massive range contractions and high extinction rates among
high-alpine plants predicted by species distribution models, recent micrometeoro-
logical studies show that due to the large variety of different microhabitats on a
small spatial scale, the alpine belt offers a large number of small-scale “refugia” that
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could potentially meet the climatic requirements of high-altitude plants under
warmer climate (Fig. 12.6, Scherrer and Körner 2011). Warmer “current
micro-sites” and colder “future refugia” can persist at the same altitude, thus within
a small distance of each other (Fig. 12.7). According to these studies, high-alpine
plants should be well buffered against climate change, as they will only have to
disperse over small distances to reach microsites that correspond with their climatic
niche, rather than over large altitudinal distances as assumed by species distribution
models. The point, however, is not so much about dispersion but about finding
favourable sites to install and to grow when the place is already occupied. Many
alpine species are in fact pioneer plants.

Support for the hypothesis of co-existence in separate microsites also arises from
species distribution models themselves: if they operate with a spatial resolution too
large to reflect small-scale microclimatic variability in the terrain, their predictions

Fig. 12.6 Topography and surface temperatures on an NNW exposed slope at the Furka Pass in
the Swiss Alps (elevation gradient of c. 100 m at c. 2450 m asl) on 29 August 2008, under full
direct solar radiation (12–18 h). Topography, slope and aspect create a mosaic of habitats with
very different temperatures. During one growing season temperature means of different
microhabitats can differ by more than 10 °C

Fig. 12.7 Where to go in a warmer climate? Species from the lowlands may have difficulties to
find suitable habitat as migration distances are long (1). Mountains can be refugia (2, 4) or traps (3,
5 if cloud forests shrink or mountains are to low). But often appropriate habitat can be nearby due
to the mosaic of microhabitats on mountains (6). Reprinted from Körner (2013), with permission
from Elsevier
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of extinction risks will be too high, and models with finer scales end up with
strikingly lower losses of high-alpine species (Randin et al. 2009). Thus, in alpine
terrain with its high microsite diversity, coexistence between new colonisers and
persisting high-alpine species may be possible if they do not show any niche
overlap nor occupy the same microsites.

Even if species occupy the same microsite, they do not automatically out-compete
each other. Neighbour facilitation, whereby plant individuals benefit from the pres-
ence of their interspecific neighbours, is a widespread phenomenon, especially under
harsh environmental conditions (Brooker et al. 2008; Callaway et al. 2002; Choler
et al. 2001; Wipf et al. 2006). Positive neighbour interactions can affect alpine plant
diversity as much as climate (Cavieres et al. 2014). Neighbours can, e.g. ameliorate
the microclimatic, environmental, and soil conditions while competing for the same
resources at the same time (space, light, nutrients). If this facilitative force outbalances
the competition, then facilitation fosters the coexistence of plant species on a small
spatial scale (Kikvidze et al. 2001; Rixen and Mulder 2009) and could also play a
major role in the colonisation of new sites through species from lower altitudes. There
is even evidence that positive species interactions can extend species distributions into
otherwise unfavourable habitats (le Roux et al. 2012). Hence, it is conceivable that
facilitative neighbour interactions enable the coexistence of high-alpine species and
new colonisers on mountain summits, which could counterbalance projected
extinctions. Nevertheless, shifts in net interactions with environmental severity may
differ among indicators of severity, growth forms and scales (Dullinger et al. 2007).
Ongoing and future research will need to target at understanding if upward migration
of plant species will lead to a loss of high-alpine specialists, or if the mosaic of
microhabitats within one elevation range will provide enough buffer to prevent spe-
cies loss, or if facilitation between neighbours enables the coexistence in the same
microhabitat.

12.7 From Knowledge to Action? Towards Conservation
of High Mountain Flora

Facing ongoing climate and vegetation change, the question remains if plants can
adapt to new conditions and if humans can preserve alpine plants and prevent
extinctions. We have seen above that the small-scale heterogeneity of the alpine
landscape may provide habitat for alpine plants in a changing climate (Scherrer and
Körner 2011). Adaptation of alpine plants through gene flow may also provide
mechanisms to withstand changing environmental conditions (Cortes et al. 2014).

Nevertheless, upward migration of trees and plants from lower elevation will
reduce the areawith high-alpine habitat, and, inmountain rangeswith human land use,
measures for conservation and restoration need to be considered. On the one hand,
moderate grazing can prevent or slowdown tall competitive plants fromoutcompeting
small alpine plants. On the other hand, if grazing pressure increases because alpine
habitat decreases, erosion in steep areas might be the consequence. Also, pressures
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related to tourism (trampling, skiing, etc.) might becomemore severe if the alpine area
shrinks (Pickering et al. 2003; Rixen and Rolando 2013; Rixen et al. 2011).

An important aspect to prevent erosion in alpine areas is that biodiversity pro-
vides an ecosystem function that is particularly relevant in steep terrain, namely soil
aggregate stability. Figure 12.8 illustrates the idea that a high number of species
and growth forms might be more likely to stabilise the uppermost soil horizons than
a monoculture (Körner and Spehn 2002; Körner 2004). Although intuitive, this
concept and the hypothesis have not often been tested in alpine vegetation. On
disturbed ski slopes in the Swiss Alps, however, it was indeed shown that plant
diversity explained soil aggregate stability better than all another measured plant,
root and soil parameters (Fig. 12.9, Pohl et al. 2009). Hence, it is important to avoid

Fig. 12.8 Plants, with their diverse root systems, can be seen as the screws and nails of mountain
ecosystems. From Körner and Spehn (2002) and Körner (2004) with permission of Springer
Nature

Fig. 12.9 Relationship
between aggregate stability
(weight percent, arcsine
square root transformed) and
number of plant species on ski
slopes (Pohl et al. 2009).
Reprinted with permission
of Springer
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severe disturbance in sensitive alpine areas and, if necessary, to restore disturbed
areas with seeds of adapted plants from high altitudes and with a large number of
plant species to provide high plant diversity (Locher Oberholzer et al. 2008).

It clearly remains a challenge for future research to fully understand and
appreciate if and how humans can provide conservation measures, appropriate
intensities of grazing, etc. in alpine areas to prevent or reduce extinctions of alpine
plant species. The established monitoring initiatives to document changes in alpine
vegetation (see above) clearly need to be continued to improve our understanding of
risks for alpine flora and possibly provide solutions for the future. Mountains are
biodiversity hotspots, which provide numerous ecosystem services also for the
lowlands, and hence we have a responsibility to maintain their precious habitats and
flora.
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