
ARTICLE

Size-dependent loss of aboveground animals
differentially affects grassland ecosystem coupling
and functions
A.C. Risch 1, R. Ochoa-Hueso2, W.H. van der Putten 3,4, J.K. Bump 5,6, M.D. Busse7, B. Frey 8

D.J. Gwiazdowicz9, D.S. Page-Dumroese10, M.L. Vandegehuchte 1,11, S. Zimmermann 8 & M. Schütz1

Increasing evidence suggests that community-level responses to human-induced biodiversity

loss start with a decrease of interactions among communities and between them and their

abiotic environment. The structural and functional consequences of such interaction losses

are poorly understood and have rarely been tested in real-world systems. Here, we analysed

how 5 years of progressive, size-selective exclusion of large, medium, and small vertebrates

and invertebrates—a realistic scenario of human-induced defaunation—impacts the strength

of relationships between above- and belowground communities and their abiotic environment

(hereafter ecosystem coupling) and how this relates to ecosystem functionality in grasslands.

Exclusion of all vertebrates results in the greatest level of ecosystem coupling, while the

additional loss of invertebrates leads to poorly coupled ecosystems. Consumer-driven

changes in ecosystem functionality are positively related to changes in ecosystem coupling.

Our results highlight the importance of invertebrate communities for maintaining ecological

coupling and functioning in an increasingly defaunated world.
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Rapid human-induced decline in global biodiversity across
all trophic levels1–6 reduces the ability of ecosystems to
maintain key ecosystem functions2,3,7. As species engage in

numerous and often-hidden interactions with other species and
their physicochemical environment8, a loss of ecological inter-
action may have far-reaching consequences for the functioning of
ecosystems. In fact, it has been proposed that ecological inter-
actions may disappear well before species do8. An approach to
investigate the consequences of losing interactions between
multispecies communities and their environment is to analyse the
degree of ecosystem coupling9, defined as the overall strength of
correlation-based associations between above- and belowground
plant, animal and microbial communities, and of these commu-
nities with their surrounding physicochemical environment9.
Visually and analytically, ecosystem coupling can be represented
as a network in which individual species are substituted with
multispecies communities (e.g., microbes, plants and nematodes).
Under undisturbed conditions we would expect that the com-
munities are more strongly connected with one another and their
abiotic environment than under disturbed conditions10–12. The
connections can result from both direct and indirect, positive or
negative interactions, depending on the communities and the
dominant mechanisms involved (e.g., predation, parasitism and
competition)13. A greater number of significant correlations,
regardless of their sign, represents greater ecosystem coupling.

Extirpation of vertebrates and invertebrates from ecosystems,
i.e., defaunation1,4,5, alters the structure, composition and
strength of correlation networks within and between trophic

levels13, potentially weakening interactions such as those between
the aboveground invertebrate and belowground decomposer
communities14, or between the soil arthropod community and
their physicochemical environment4. However, only a few studies
have investigated such responses in real-world ecosystems and
under realistic scenarios of animal biodiversity loss1,4,15,16. Thus,
relatively little is known about the consequences of defaunation
for ecosystem coupling. Moreover, defaunation often operates in
a size-selective, non-random manner, with larger species dis-
appearing before smaller-sized species4,17. Although vertebrates
have been progressively excluded in the size-selective order in
which they are expected to disappear18–21, we are not aware of
any study that has considered how the progressive, size-based loss
of different vertebrates and invertebrates affects the strength of
ecosystem coupling. In addition, it is not known how
defaunation-induced changes in ecosystem coupling may affect
ecosystem functioning. Stronger interactions among communities
and between communities and their environment should lead to
greater ecosystem functionality due to more efficient transfer of
nutrients and energy through the system22,23, which should result
in a greater ability to withstand environmental stress7.

We carried out a 5-year field experiment in subalpine grass-
lands in which we progressively excluded large, medium and
small mammalian vertebrates, and, ultimately, all aboveground-
dwelling invertebrates with size-selective fences24,25 (Fig. 1 and
Supplementary Table 1). Large mammals are often assumed to
drive trophic interactions via top–down effects and impact other
communities and abiotic properties via predation, grazing,
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Data collected in 90 plots

Tall-grass vegetation
Low grazing intensity,
nutrient poor

9 replicates each

Short-grass vegetation
High grazing intensity,
nutrient rich
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Fig. 1 Size-selective fences to progressively exclude vertebrates and invertebrates. Nine exclosure setups were established in each of the two different
vegetation types; short-grass and tall-grass vegetation. The 2 × 3m plots inside the main 7 × 9m fence were randomly assigned an exclusion treatment in
each of our 18 size-selective exclosure setups. Data were collected on a total of 90 plots, from which we calculated ecosystem coupling and
multifunctionality. The photo in the background shows two of our 18 exclosure setups in the field. We use the following abbreviations to describe our
treatments throughout the manuscript: L/M/S/I = Large mammals, medium mammals, small mammals, and invertebrates have access, M/S/I =Medium
mammals, small mammals, and invertebrates have access, S/I = Small mammals and invertebrates have access, I = Invertebrates have access, None = No
animals have access. L/M/S/I plots (reference plots) are located outside of the fences as indicated by the arrow. Martijn L. Vandegehuchte created the
animal and vegetation images for use in this paper. The animal images were adapted from Vandegehuchte et al.40. Anita C. Risch took the background
photo and created the design image, Pablo Hueso composed the Figure
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resource competition or facilitation26–29. We therefore predicted
that the loss of large animals would reduce ecosystem coupling
more than a subsequent loss of smaller animals. Expecting that
stronger links between communities and between communities
and their environment result in a more efficient flow of energy
and matter through the ecosystem22,23, we also predicted a
positive relationship between ecosystem coupling and
functionality.

The field experiment encompassed 18 size-selective exclosure
setups distributed across two clearly differentiated vegetation
types in the Swiss National Park (SNP; nine in short-grass, nine in
tall-grass vegetation; Fig. 1). The vegetation types differ in grazing
intensity and productivity due to historical differences in land use
prior to the park’s foundation (1914)24,30 and represent a long-
term trajectory of changes in grazing regimes30. Each exclosure
setup contained four treatment plots that progressively excluded
large, medium and small-sized mammals and aboveground-
dwelling invertebrates24 (Fig. 1). Next to each exclosure (>5 m
away) a reference plot provided access to all animals. The
grasslands under study can be considered natural, as humans
have not directly disturbed the ecological processes within the
SNP since 1914 (protection status IUCN category Ia31).

We calculated how our treatments affected ecosystem cou-
pling using correlations between multivariate components
[principal component analyses (PCA) axes scores] that
represent the structure and composition of ecological com-
munities as well as correlations between these components
and the physicochemical environment9. As such, ecosystem
coupling is a measure of how communities (not species)
respond to alterations of the ecosystem9 as happens through
eutrophication, climate warming or species loss1,4,32,33. Eco-
system coupling can then be compared against a null model
where the average correlation strength (absolute value of
pairwise Spearman rank correlations) does not differ from
random22,34,35. The greater the mean of absolute correlations,
the more tightly coupled the ecosystem is. We considered both
biotic–biotic and abiotic–biotic correlations, and used a total
of 14 abiotic and biotic ecosystem constituents: soil bulk
density, pH, carbon (C) content, moisture (Supplementary
Table 2), as well as the first two PCA axes scores of the
community composition of soil microorganisms, nematodes,
arthropods, aboveground-dwelling invertebrates and plants.
We assessed how the progressive animal exclusions affected
overall ecosystem coupling, i.e., the average correlation
strength, including both above–belowground biotic–biotic and
abiotic–biotic interactions, as well as the coupling between
above–belowground biotic–biotic and abiotic–biotic compo-
nents separately. We also calculated overall, biotic–biotic and
abiotic–biotic ecosystem coupling based on belowground
constituents only to evaluate the potential effects of our
treatments on belowground coupling (i.e., soil networks)22.
Note that abiotic–abiotic correlations were not included in our
analyses as the focus of this study was on interactions invol-
ving communities.

We considered six ecosystem functions and process rates:36 soil
net nitrogen (N) mineralisation, soil respiration, plant tissue N
content, plant species richness, root biomass, and microbial
biomass carbon (Supplementary Table 2), and calculated eco-
system multifunctionality based on the multiple threshold
approach36,37. We then assessed how our ecosystem coupling
measures were related to ecosystem functions as well as to eco-
system multifunctionality.

Excluding all mammals, results in the greatest level of eco-
system coupling, while the additional loss of invertebrates leads to
poorly coupled ecosystems. Changes in ecosystem functionality
are positively related to ecosystem coupling. Our findings

highlight the importance of invertebrate communities for main-
taining ecosystems in an increasingly defaunated world.

Results and Discussion
Defaunation and ecosystem coupling. Our size-selective exclu-
sions of aboveground vertebrates and invertebrates changed the
overall degree of ecosystem coupling with comparable trends
across the two vegetation types (Figs. 2a, 3, and Supplementary
Fig 1a). Progressive exclusion led to greater ecosystem coupling,
reaching highest values when all mammals were excluded,
although coupling values dropped again when no animals
(mammals+ invertebrates) were present (Fig. 2a and Supple-
mentary Table 3). In the heavily grazed short-grass
vegetation24,30, ecosystem coupling was, however, only sig-
nificantly different from the null model when all mammals were
excluded (Supplementary Fig 1a and Supplementary Table 3). In
addition, we found the greatest biotic–biotic coupling in this
vegetation type when all animals were present (Supplementary
Fig 1b and Supplementary Table 3). This suggests strong
top–down effects of large ungulates on other communities in the
short-grass vegetation, in agreement with our hypothesis and
previous studies30,38–40. This tight biotic–biotic coupling (Sup-
plementary Fig 1b) was countered by a low abiotic–biotic cou-
pling (Supplementary Fig 1c) in the situation where all animals,
including large mammals, were present (Supplementary Fig 1a
and Supplementary Table 3). In the tall-grass vegetation, which is
under comparatively lower grazing pressure24,30, all treatments
where animals had access were significantly coupled, although
only marginally when all animals were present (permutation-
based, p= 0.07; Supplementary Fig 1a and Supplementary
Table 3).

Interestingly, invertebrates alone, i.e., in the absence of all
mammals, were able to maintain or even increase ecosystem
coupling regardless of vegetation type (Fig. 2a, Supplementary
Fig 1a and Supplementary Table 3). However, in the short-grass
vegetation, coupling within the invertebrates-only treatment was
due to stronger abiotic–biotic interactions (Supplementary Fig 1c),
while in the tall-grass vegetation biotic–biotic interactions were
the main drivers of coupling in this treatment (Supplementary
Fig 1b and Supplementary Table 3). Thus, shifts in the strength of
biotic–biotic and abiotic–biotic coupling due to progressive
animal exclusion had a profound impact on the way communities
were connected with one another and with their abiotic
environment, in particular when all mammals were missing, in
which case overall coupling was highest (Fig. 2, Supplementary
Fig 1 and Supplementary Table 3). When only considering
belowground interactions, i.e., between soil biotic and abiotic
constituents, we found similar patterns compared to when all
above–belowground interactions were included, although cou-
pling values did not differ from random when large and medium-
sized mammals were present (Fig. 2d–f and Supplementary
Fig. 1d–f). These findings indicate that belowground interactions
are an important component of overall ecosystem coupling. The
greater variation in coupling for soil networks and the less
significant results compared to the overall networks is likely due
to the small number of belowground-only links compared to the
overall number of interactions and not a reflection of the
underlying biology of the system.

Defaunation and ecosystem functioning. Together with treat-
ment responses in ecosystem coupling, four of our six individual
ecosystem functions responded to the experimental exclusion
treatments (Fig. 4a–f). Average ecosystem multifunctionality
calculated from all thresholds between 30 and 80% was only
slightly affected by the treatments (F4,64= 2.22, permutation-
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based p= 0.08, Fig. 4g). However, significant treatment differ-
ences in multifunctionality were detected at the 50% threshold
(linear mixed-effects model: F4,64= 4.51, p= 0.003). This is the
threshold at which the ecosystem coupling–multifunctionality
relationship was tightest. Somewhat lower multifunctionality was

found when large mammals were still present or when all animals
were absent, while the presence of medium- and small-sized
mammals and/or invertebrates resulted in greater multi-
functionality. While the decline of multifunctionality with the
additional loss of invertebrates warns about the importance of
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Fig. 2 Effect of progressive animal exclusion on ecosystem coupling. Ecosystem coupling (absolute values of Spearman’s rho) calculated based on a all
interactions, b biotic–biotic interactions, c abiotic–biotic interactions involving above- and belowground constituents, and d all interactions, e biotic–biotic
interactions, f abiotic–biotic soil interactions involving belowground constituents only. Each treatment includes interactions calculated for both vegetation
types (i.e., short-grass and tall-grass) separately. All above–belowground interactions: n= 160 (n= 112 in the case of the ‘None’ treatment). Biotic–biotic
above–belowground interactions: n= 80 (n= 48 in the case of the ‘None’ treatment). Abiotic–biotic above–belowground interactions: n= 80 (n= 64 in
the case of the ‘None’ treatment). All belowground interactions: n= 72. Biotic–biotic belowground interactions: n= 24. Abiotic–biotic belowground
interactions: n= 48. Red line: null model below which average correlation happens by chance. Red dashed lines: greatest/smallest coupling values possible.
Error bars: 95% confidence interval of the mean. Notations above the confidence intervals (ns, +, *, **) indicate statistical, permutation-based differences
from the null model: ns not significant, +p value= 0.05–0.1, *p value = 0.05–0.01, **p value <0.01. All p values can be found in Supplementary Table 3.
Background points: individual interactions between biotic–biotic (blue) and abiotic–biotic (red) constituents. L/M/S/I = Large/medium/small mammals,
and invertebrates have access, M/S/I = Medium/small mammals, and invertebrates have access, S/I = Small mammals and invertebrates have access, I
= Invertebrates have access, None = No animals have access (see Fig. 1). Abv. = aboveground, blg. = belowground
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Fig. 3 Effect of progressive animal exclusion on correlations between constituents. Network graphs with absolute Spearman rank correlations between
constituents for each fence type and both vegetation types together. Green lines: pairwise interactions that exceed the expected strength from the null
model. Green line width: proportional strength of the association between two constituents. Blue circles: biotic constituents, red circles: abiotic
constituents, circle size: proportional average strength of pairwise interactions involving a particular constituent. L/M/S/I = Large/medium/small
mammals, and invertebrates have access, M/S/I =Medium/small mammals, and invertebrates have access, S/I = Small mammals and invertebrates have
access, I = Invertebrates have access, None = No animals have access (see Fig. 1). PC1, PC2 = principal component 1 and 2, Nema = nematodes, Micro =
microbes, Abv = aboveground, inv = invertebrates, Arthr = soil arthropods, BD = soil bulk density, SWC = soil moisture
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this group for ecosystem functionality in a progressively defau-
nated world1,5,10,41,42, the slightly lower average multi-
functionality found when large mammals were present should not
be interpreted as a sign that their presence is negative for eco-
system functioning. Instead, this lower-average functionality
might reflect the strong top–down control that these animals can
have in the absence of large predators (e.g., through biomass
consumption and physical disturbance)1,41, as found in our

system where wolves, bears and lynx were locally extinct by the
late nineteenth century and remain functionally absent.

Changes in ecosystem coupling and functioning are related.
More tightly coupled ecosystems may support a wider range of
functions, which could be associated with a greater efficiency in
the use of resources and the processing of organic matter22,23.
Indeed, soil net N mineralisation and soil microbial biomass C
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standardised and were used to calculate ecosystem multifunctionality. Statistics refer to the results of linear mixed-effects models, with treatment (Treat)
and vegetation type (Veg) as fixed factors and fence as a random factor. Mean values and standard errors of all individual functions across treatments can
be found in Supplementary Table 2. n= 18. L/M/S/I = Large/medium/small mammals, and invertebrates have access, M/S/I =Medium/small mammals,
and invertebrates have access, S/I = Small mammals and invertebrates have access, I = Invertebrates have access, None = No animals have access (see
Fig. 1)
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were related to several of our ecosystem coupling measures
(Supplementary Table 4). We found that ecosystem coupling was
positively related to ecosystem multifunctionality at thresholds
between 36 and 65% when all interactions were included (Fig. 5a),
but when we calculated multifunctionality as the average of
thresholds, this relationship was only marginally significant
(Pearson correlation; r= 0.63, p= 0.052, Fig. 5d). This response
was driven by the strong positive relationship between
abiotic–biotic coupling and multifunctionality (Fig. 5c–f) as well
as by the coupling of all belowground interactions and ecosystem
multifunctionality (Fig. 5g–j). In contrast, above–belowground
biotic–biotic, belowground biotic–biotic and belowground
abiotic–biotic interactions (Fig. 5b–l) were not related to eco-
system multifunctionality. Abiotic–biotic interactions that
involved aboveground invertebrates (e.g., interactions between
the aboveground invertebrate community and soil properties,
Supplementary Table 5) were particularly relevant for ecosystem
multifunctionality.

Invertebrates are important for maintaining ecosystems. Our
results support the view that invertebrates and soil networks are
key for multifunctional ecosystems41 and that more tightly cor-
related belowground interactions enhance the efficiency of C and
N cycling22. Our results also suggest that the invertebrate com-
munity may promote ecosystem coupling, and thus multi-
functionality, in situations where vertebrate mammals have
disappeared or have become functionally extinct1,15. Yet, not
surprisingly, our findings also reveal that systems where all
aboveground animals have disappeared are no longer coupled
and fall apart (Figs. 2, 3, Supplementary Fig 1 and Supplementary
Table 3). Thus, our results show that invertebrates are important
for maximising ecological functioning and warn about their on-
going decline4,5,42,43, including pollinators42,44 and detritivores45,
from ecosystems worldwide, especially in intensively managed
agricultural systems where mammals are absent4,46, but alar-
mingly also in protected areas42. Our results also strongly suggest
that maintaining functionally diverse invertebrate communities in
grasslands and agro-ecosystems may have positive effects on
ecosystem functionality and the provision of ecosystem services36

through increasing ecosystem coupling. While we undoubtedly
need to maintain our efforts in protecting mammals and restoring
their ecological roles where needed47–50, we also need to put
considerably more effort into determining and understanding the
causes51 of the progressive and often unseen loss of invertebrates
from terrestrial ecosystems5,42,51 as a way to preserve the complex
network of interactions that depends on them.

Methods
Study sites. The experimental exclosure setups were installed within the SNP
(IUCN category Ia preserve31), in south-eastern Switzerland. The park covers 172
km2 of forests and subalpine and alpine grasslands along with scattered rock
outcrops and scree slopes. The entire area has been protected from human impact
(no hunting, fishing, camping or off-trail hiking) since 1914. Large, fairly homo-
genous patches of short- and tall-grass vegetation, which originate from different
historical management and grazing regimes, cover the park’s subalpine grasslands
entirely. Short-grass vegetation developed in areas where cattle used to rest
(nutrient input) prior to the park’s foundation (fourteenth century to 1914)30,38

and is dominated by lawn grass species such as Festuca rubra L., Briza media L. and
Agrostis capillaris L.30,38. Today, this vegetation type is intensively grazed by
diverse vertebrate and invertebrate communities that inhabit the park and consume
up to 60% of the available biomass24. Tall-grass vegetation developed where cattle
formerly grazed, but did not rest, and is dominated by rather nutrient-poor tus-
socks of Carex sempervirens Vill. and Nardus stricta L.30,38. This vegetation type
receives considerably less grazing, with only roughly 20% of the biomass con-
sumed24. Consequently, the two vegetation types together represent a long-term
trajectory of changes in grazing regimes. Underlying bedrock of all grasslands is
dolomite, which renders these grasslands rather poor in nutrients regardless of
former and current land-use regimes.

Experimental design. To progressively exclude aboveground vertebrate and
invertebrate animals, we established 18 size-selective exclosure setups (nine in
short-grass, nine in tall-grass vegetation) distributed over six subalpine grasslands
across the SNP24,25 (Fig. 1). Elevation differences of exclosure locations did not
exceed 350 m (between 1975 and 2300 m a.s.l.). The exclosures were established
immediately after snowmelt in spring 2009 and were left in place for five con-
secutive growing seasons (until end of 2013). They were, however, temporarily
dismantled every fall (late October after first snowfall) to protect them from ava-
lanches. They were re-established in the same location every spring immediately
after snowmelt. Each size-selective exclosure setup consisted of five plots (2 × 3 m)
that progressively excluded aboveground vertebrates and invertebrates from large
to small (Fig. 1 and Supplementary Table 1). The plots are labelled according to the
guilds that had access to them ‘L/M/S/I’, ‘M/S/I’, ‘S/I’, ‘I’, ‘None’; L= large
mammals, M=medium mammals, S= small mammals, I= invertebrates, None
= no animals had access; Fig. 1, see also Supplementary Table 1). As we only had
permission to have the experimental setup in place for five consecutive growing
seasons, the experiment had to be completely dismantled in the late fall of 2013 and
all material removed from the SNP.

Our exclosure design was aimed at excluding mammalian herbivores, but
naturally also excluded the few medium and small mammalian predators, as well as
the entire aboveground invertebrate food web (Supplementary Table 1). A total of
26 large to small mammal species can be found in the SNP, but large apex
predators are missing (wolf, bear and lynx; Supplementary Table 1). Reptiles,
amphibians and birds are scarce to absent in the subalpine grasslands under study.
Only two reptile species occur in the park and they are confined to rocky areas that
warm up enough for them to survive. One frog species spawns in an isolated pond
far from our grasslands. Only three bird species occasionally feed on the subalpine
grasslands. Using game cameras (Moultrie 6MP Game Spy I-60 Infra-red Digital
Game Camera, Moultrie Feeders, Alabaster, AL, USA), we did observe that the
medium- and small-sized mammals (marmot/hares and mice) were not afraid to
enter the fences and feed on their designated plots. We never spotted reptiles,
amphibians or birds on camera. We distinguished between 59 higher aboveground-
dwelling invertebrate taxa that our size-selective exclosures excluded
(Supplementary Table 1; see also 'Methods' for aboveground-dwelling invertebrate
sampling below).

The ‘L/M/S/I’ plot (not fenced) was located at least 5 m from the 2.1 m tall and
7 × 9 m large main electrical fence that enclosed the other four plots (Fig. 1). The
bottom wire of this fence was mounted at 0.5 m height and was not electrified to
enable safe access for medium and small mammals, while fencing out the large
ones. Within each main fence, we randomly established four 2 × 3 m plots
separated by 1-m-wide walkways from one another and from the main fence line:
(1) the ‘M/S/I’ plots were unfenced, allowing access to all but the large mammals;
(2) the ‘S/I’ plots (10 × 10 cm electrical mesh fence) excluded all medium-sized
mammals. Note that the bottom 10 cm of this fence remained non-electrified to
enable safe access for small mammals; (3) the ‘I’ plots (2 × 2 cm metal mesh fence)
excluded all mammals. We double-folded the mesh at the bottom 50 cm to reduce
the mesh size to smaller than 1 × 1 cm openings; and (4) the ‘None’ plots were
surrounded by a 1 m tall mosquito net (1.5 × 2 mm) to exclude all animals. The top
of the plot was covered with a mosquito-meshed wooden frame mounted to the
corner posts (roof). We treated these plots a few times with biocompatible
insecticide (Clean kill original, Eco Belle GmbH, Waldshut-Tiengen, Germany) to
remove insects that might have entered during data collection or that hatched from
the soil, but amounts were negligible and did not impact soil moisture conditions
within these plots.

To assess whether the design of the ‘None’ exclosure (mesh and roof) affected
the response variables within the plots and, therefore, influenced the results, we
established an additional six ‘micro-climate control’ exclosures (one in each of the
six grasslands)24,25. These exclosures were built as the ‘None’ exclosures but were
open at the bottom (20 cm) of the 3-m side of the fence facing away from the
prevailing wind direction to allow invertebrates to enter. A 20-cm high and 3-m
long strip of metal mesh was used to block access to small mammals. Thus, this
construction allowed a comparable micro-climate to the ‘None’ plots, but also a
comparable feeding pressure by invertebrates to the ‘I’ plots. We compared various
properties within these exclosures against one another to assess if our construction
altered the conditions in the ‘None’ plots (Supplementary Table 6). We showed
that differences in plant (e.g., vegetation height and aboveground biomass) and soil
properties (e.g., soil temperature and moisture) found between the ‘I’ and the
‘None’ treatments were not due to the construction of the ‘None’ exclosure, but a
function of animal exclusions, although the amount of UV light reaching the plant
canopy was significantly reduced24 (Supplementary Table 6).

Aboveground invertebrate sampling. Aboveground invertebrates were sampled
with two different methods to capture both ground- and plant-dwelling organisms:
(1) we randomly placed two pitfall traps (67 mm in diameter, covered with a roof)
filled with 20% propylene glycol in one 1 × 1m subplot of the 2 × 3 m treatment
plots in spring 2013 (May) and emptied them every 2 weeks until late September
201340,52. A pitfall trap consisted of a plastic cylinder (13 cm depth, 6.75 cm dia-
meter). Within each cylinder we placed a 100 ml plastic vial with outer diameter
6.70 cm and on top of the cylinder we placed a plastic funnel to guide the inver-
tebrates into the vials. Each trap was covered with a cone-shaped and transparent
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plastic roof to protect the trap from rain40,52. Note that in the ‘None’ plots only one
trap was placed as control to check for effectiveness of the exclosure. (2) We
vacuumed all invertebrates from a 60 × 60 cm area on another 1 × 1 m subplot with
a suction sampler (Vortis, Burkhard manufacturing CO, Ltd., Rickmansworth,
Hertfordshire, UK) every month from June to September 201340,52. For this pur-
pose, we quickly placed a square plastic frame (60 × 60 × 40 cm) with a closable
mosquito mesh sleeve attached to the top edge of the box into the plot from the
outside. The suction sampler was then inserted into through the sleeve and
operated for 45 s to collect the invertebrates40,52.

We sorted the ≈100,000 individuals collected with both methods by hand and
identified each individual morphologically to the lowest taxonomic-level feasible
(59 taxa, including orders, suborders, subfamilies, families; phylum for Mollusca).
These taxa belonged to the following feeding types: 19 herbivores, 16 detritivores, 9
predators, 8 mixed feeders, 5 omnivores and 2 non-classified feeders (or not
feeding as adults)52. We summed the numbers from the two pitfall traps and the
suction sampling over the course of the 2013 season to represent the aboveground
invertebrate abundance and community composition of a plot. Note: we did not
specifically attempt to catch flying invertebrates with, e.g., sticky traps, thus a few
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Fig. 5 Ecosystem coupling–multifunctionality relationship with progressive animal exclusions. Ecosystem coupling was calculated for above–belowground
interactions (a–f) and belowground interactions (g–l). Ecosystem multifunctionality (MF) was calculated using the multiple threshold approach for
thresholds between 10 and 99% (a–c, g–i) and for the average of all thresholds intervals (multifunctionality; d–f, j–l). The ecosystem
coupling–multifunctionality relationship is shown for a–d all interactions, b–e biotic–biotic interactions, c–f abiotic–biotic interactions involving above- and
belowground constituents, and g, j all interactions, h–k biotic–biotic interactions, and i–l abiotic–biotic interactions involving belowground constituents only.
Bars in d–f and j–l represent the standard error of the mean of coupling and multifunctionality within each combination of experimental treatment and
vegetation type. n= 10. See Supplementary Table 4 for correlations between ecosystem coupling and individual ecosystem functions
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flying insects may have been missed with our vacuum sampling
approach.

Sampling of plant properties. The vascular plant species composition was
assessed at peak biomass every summer (July) by estimating the frequency of
occurrence of each species with the pin count method in each plot53. A total of 172
taxa occurred within our 90 plots and we calculated plant species richness for each
plot separately. We used the 2013 data in this study. Plant quality was assessed
every year in July and September; here we use plant quality at the end of the
experiment (September 2013). Two 10 × 100-cm-wide strips of vegetation per plot
were clipped, combined, dried at 65 °C and ground (Pulverisette 16, Fritsch, Idar-
Oberstein, Germany) to pass through a 0.5 mm sieve. Twenty randomly selected
samples across all treatments were analysed for N (Leco TruSpec Analyser, Leco, St.
Joseph, Michigan, USA)54. Nitrogen concentrations of the other samples were then
estimated from models established for the experiment and the entire SNP relating
Fourier transform-near infra-red reflectance (FT-NIR) spectra to the measured
values of N using a multi-purpose FT-NIR spectrometer (Bruker Optics, Fällanden,
Switzerland)54. Root biomass was sampled every fall by collecting five 2.2 cm
diameter × 10 cm deep soil samples (Giddings Machine Company, Windsor, CO,
USA) per plot (450 samples per year). The samples were dried at 30 °C and roots
were sorted from the sample by hand. We sorted each sample for 1 h, which
allowed to retrieve over 90% of all roots present in the samples24. The roots were
then dried at 65 °C for 48 and weighed to the nearest mg. We averaged the values
per plot and used the 2013 data only in this study.

Sampling of edaphic communities. In 2009, 2010 and 2011, we collected three
composited soil samples (5 cm diameter × 10 cm depth; AMS Samplers, American
Falls, ID, USA) and assessed bacterial community structure using T-RFLP profil-
ing55–57. We detected a total of 89 operational taxonomic units (OTUs). These
values are in accordance with other studies that report OTU richness58–60 using T-
RFLP profiling, a method that detects the most abundant, and thus likely, the most
relevant, taxa. We averaged the data over the 3 years of collections for our cal-
culations. Microbial biomass carbon (MBC) was determined with the substrate-
induced method61 every fall (September) between 2009 and 2013 by collecting
three mineral soil samples (5 cm diameter × 10 cm mineral soil core, AMS Sam-
plers, American Falls, ID, USA). The three samples were combined (90 samples for
each sampling year), immediately put on ice, taken to the laboratory, passed
through a 2-mm sieve and stored at 4 °C. Again, we only used the 2013 data in this
study.

Soil samples (5 cm diameter × 10 cm depth) to extract soil arthropods were
collected in June, July and August 2011 with a soil corer lined with a plastic sleeve
to ensure an undisturbed sample (total of 270 samples). The plastic lined core was
immediately sealed on both ends using cling film and put into a cooler. All plots
were sampled within 3 days and the extraction of arthropods started the evening of
the sampling day using a high-gradient Tullgren funnel apparatus54,62. Samples
were kept in the extractor for 4 days and the soil arthropods were collected in 95%
ethanol. All individuals were counted and each individual was identified
morphologically to the lowest-level feasible [76 taxa, including orders, suborders,
subfamilies, families (Protura, Thysanoptera, Aphidina, Psylina, Coleoptera,
Brachycera, Nematocera, Auchenorryncha, Heteroptera, Formicidae); sub-phylum
for Myriapoda, for Acari and Collembola we also included morpho-species]. We
also included larval stages (nine of the 76 taxa)54. All data were summed over the
season. A detailed species list for mites and collembolans is published54.
Earthworms are rare in the SNP and therefore were not included. We collected
eight random 2.2 cm diameter × 10 cm deep soil cores from each plot in September
2013 to assess the soil nematode community composition. The samples were mixed
and the nematodes were extracted from 100 ml of fresh soil using Oostenbrink
elutriators63. All nematodes in a 1 ml of the 10 ml extract were counted, a
minimum of 150 individuals per sample were identified to genus or family level
using ref. 64. The numbers of all nematodes were extrapolated to the entire sample
and expressed for a 100-g dry sample. In total, we identified 63 genus or family
levels54. A list of all the nematode taxa identified is published39 (http://www.
oikosjournal.org/appendix/oik-03341).

We are aware that sampling soil microbes from 2009 to 2011 and soil
arthropods in 2011 was not ideal, but we are positive that this does not bias the
results. Most of the parameters measured in our experiment either already showed
a treatment response after the first growing season (e.g., plant biomass) or did not
respond over the entire time experiment (e.g., microbial biomass C; Supplementary
Fig 2). The microbial community composition (2009–2011) was highly influenced
by inter-annual differences in temperature and precipitation, but did not differ
between treatments or vegetation types55. We therefore felt comfortable using the
2009 through 2011 data for describing the soil microbial community in our
experimental treatments. Similarly, we are positive that our soil arthropod data are
representative. We did assess soil arthropods in August 2012 and found no
differences to the August 2011 data. However, we did not feel comfortable
combining the 2011 June, July and August data with only August data for 2012 for
our analyses.

Sampling of soil properties. We collected three soil samples (5 cm diameter × 10
cm depth) in each plot in September 2013 after removing the vegetation. First, we

collected the typically 1–3 cm in deep top layer of mineral soil rich in organic
matter (i.e., surface organic layer or rhizosphere) with a soil corer (AMS Samples,
American Falls, ID, USA). Second, we collected a 10 cm mineral soil core beneath
this surface layer. The cores for each layer were composited, dried at 65 °C for 48 h
and fine-ground to pass a 0.5 mm screen. We then analysed all samples for total C
using a Leco TruSpec Analyser (Leco, St. Joseph, MI, USA). Mineral soil pH was
measured potentiometrically in 1:2 soil:CaCl2 solution with an equilibration time of
30 min.

Soil net N mineralisation was assessed during the 2013 growing season25. For
this purpose, we randomly collected a 5 cm diameter × 10 cm deep soil sample with
a soil corer (AMS Samples, American Falls, ID, USA) after clipping the vegetation
in June 2013. After weighing and sieving (4 mm mesh) the soil, we extracted a 20 g
subsample in 1 mol l−1 KCl for 1.5 h on an end-over-end shaker and thereafter
filtered it through ashless-folded filter paper (DF 5895 150, ALBET LabScience,
Hahnenmühle FineArt GmbH, Dassel, Germany). From these filtrates, NO3

−

concentrations were measured colorimetrically65 and NH4
+ with flow injection

analysis (FIAS 300, PerkinElmer, Waltham, MA, USA)25. We dried the rest of the
sample 105 °C to constant mass to determine fine-fraction bulk density. A second
soil sample was collected within each plot in June 2013 with a corer lined with a
5 × 13 cm aluminium cylinder. The corer was driven 11.5 cm deep into the soil so
that the top 1.5 cm of the cylinder remained empty. Into this space we placed a
polyester bag (250 µm) filled an ion-exchanger resin to capture the incoming N.
The bag was filled with a 1:1 mixture of acidic and alkaline exchanger resin (ion-
exchanger I KA/ion exchanger IIIAA, Merck AG, Darmstadt, Germany). We then
removed 1.5 cm soil at the bottom of the cylinder and placed a second resin
exchanger bag into this space to capture the N leached from the soil column. To
assure that the exchange resin was saturated with H+ and Cl− prior to filling the
bags, the mixture was stirred with 1.2 ml l−1 HCl for 1 h and then rinsed with
demineralised water until the electrical conductivity of the water reached 5 µm cm
−1. The cylinder with the resin bags in place was reinserted into the soil with the
top flush to the soil surface and incubated for 3 months. We recollected the
cylinders in September 2013. Each resin bag and 20 g of sieved soil (4 mm mesh)
from each cylinder were separately extracted with KCl and NO3

− and NH4
+

concentrations were measured. Nitrate and NH4
+ concentrations of all samples

were then converted to a content basis by multiplying their values with fine-
fraction bulk density. Net N mineralisation was thereafter calculated as the
difference between the N content of the samples collected at the end of the 3-
month incubation (including the N extracted from the bottom resin bag) and the N
content at the beginning of the incubation25.

Soil CO2 emissions were measured every 2 weeks between 0900 and 1700 h
from early May through late September 2013 with a PP-Systems SRC-1 soil
respiration chamber (15 cm high, 10 cm diameter; closed circuit) attached to a PP-
Systems EGM-4 infra-red gas analyser (PP-Systems, Amesbury, MA, USA) on two
locations per plot24. The chamber was placed on randomly placed, permanently
installed PVC collars (10 cm diameter) driven 5 cm into the soil at the beginning of
the study24. Freshly germinated plants growing within the collars were removed
prior to each measurement to avoid measuring plant respiration or photosynthesis.
The two measurements collected per plot and sampling date were averaged.

Soil moisture (with time domain reflectometry; Field-Scout TDR-100, Spectrum
Technologies, Plainfield, IL, USA) and temperature (with a waterproof digital
pocket thermometer; Barnstead International, Dubuque, IA, USA) were measured
at five random locations per plot every 2 weeks during the growing seasons during
the experiment for the 0–10 cm depth24,25. As soil moisture and soil temperature
were highly negatively correlated24, we only used soil moisture for this study. We
used plot-level averages of all values available to capture soil moisture variability
during the 5 years of the experiment. The results remained unchanged when we
only used soil moisture from the 2013 growing season.

Numeral calculations and statistical analyses. We conducted principal com-
ponent analyses (PCAs; unscaled) at the complete data set level using the abun-
dances of each taxonomical entity to describe each of the five different
communities used in this study: aboveground-dwelling invertebrates, vascular
plants, soil microorganisms, soil arthropods and soil nematodes. We retained the
first two components (PCA axis 1 and PCA axis 2) of each analysis as we found
them to adequately represent the temporal and spatial variability of our 90-
treatment plots in previous studies55,66,67. Together, the two components explained
a total of 71.70% of the variation for aboveground invertebrates, 44.36% for plants,
44.85% for soil microorganisms, 61.85% for soil arthropods and 77.19% for soil
nematodes. In addition, we used soil pH and soil organic C content as a proxy for
soil chemical properties, soil bulk density as a proxy for soil physical properties and
soil moisture (negatively correlated with soil temperature) as a proxy for soil
micro-climatic conditions for an overall total of 14 constituents.

We calculated ecosystem coupling9 for each exclosure treatment within each
vegetation type (i.e., 2 × 5 treatment combinations in total) as an integrated
measure of pairwise ecological interactions between ecosystem constituents
representing ecological communities and the soil abiotic environment. These
ecological interactions are defined by non-parametric Spearman rank correlation
analyses between two constituents, excluding interactions involving two abiotic
constituents (e.g., soil pH vs. soil moisture) and interactions between the first (PC1)
and second (PC2) component of each community type, as these are orthogonal by
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definition. Interactions between abiotic constituents were excluded from the
analyses because the focus of our study was on communities and how they interact
with one another and their surrounding environment; therefore, including
abiotic–abiotic interactions was not of interest here. Given that the effectiveness of
our experimental design resulted in that no community composition data of
aboveground-dwelling invertebrates was available for the ‘None’ plots (all animals
excluded), only 13 instead of 14 constituents were included in the ecosystem
coupling calculations for this treatment. The complete absence of aboveground
invertebrates represents the most extreme case of disturbance between
aboveground animal communities and the rest of the ecosystem constituents. This
may have resulted in a slight overestimation of ecosystem coupling for these plots.

Coupling was calculated for each treatment within each vegetation type (i.e.,
based on nine replicates each), considering a total of 80 interactions (56 in the case
of the ‘None’ treatment) per vegetation type. We considered a total of 40
biotic–biotic interactions (i.e., concerning two community-level principal
components such as plants and microbes; 24 in the case of the ‘None’ treatment)
and 40 abiotic–biotic (i.e., concerning one community-level principal component
and one abiotic factor, e.g., plant community and soil properties; 32 in the case of
the ‘None’ treatment). To establish whether constituents were significantly and
positively coupled within treatments (i.e., the average of their correlation
coefficients were greater than in a null model where correlation only happens by
chance), we calculated one-tailed p values based on permutation tests with 999
permutations.

We considered six ecosystem functions and process rates commonly used to
assess ecosystem functioning36,68. Plant N content represents a measure of forage
quality, while plant richness has been shown to stabilise biomass production, thus
allowing the system to respond to changes in herbivory. Soil net N mineralisation,
soil respiration, root biomass and microbial biomass represent fluxes or stocks of
energy. For all functions and processes, higher values represent higher
functioning36. All these variables were measured in the last year of the experiment
(2013). We then quantified ecosystem multifunctionality using the multiple
threshold approach36,37, which considers the number of functions that are above a
certain threshold, over a series of threshold values (typically 10–99%) that are
defined based on the maximum value of each function. We weighted all our
functions equally for these calculations36. The number of functions in a plot with
values higher than a given threshold value for the respective function is summed
up. The sum represents ecosystem multifunctionality for that plot. Given that
choosing any particular threshold as a measure of ecosystem multifunctionality is
arbitrary, we calculated the average of thresholds from 10 to 90% (in 10% intervals)
as a more integrated representation of ecosystem multifunctionality.

We used Pearson correlations to explore the relationships between ecosystem
coupling (all interactions, biotic–biotic interactions, abiotic–biotic interactions
involving above- and belowground constituents, and all interactions, biotic–biotic
interactions, abiotic–biotic interactions involving belowground constituents only)
and ecosystem multifunctionality by calculating the slopes of all relationships
between ecosystem coupling and multifunctionality for all thresholds between 10
and 99%. We also related ecosystem coupling with the average of
multifunctionality at thresholds between 30 and 80% and considered this
correlation as a robust indication of the type of association between these two
variables. In addition, we explored the relationships between ecosystem coupling
(all interactions, biotic–biotic interactions, abiotic–biotic interactions involving
above- and belowground constituents, and all interactions, biotic–biotic
interactions, abiotic–biotic interactions involving belowground constituents only)
and individual ecosystem functions. All relationships (n= 10) between correlation
coefficients (based on nine replicates each) of two individual constituents and
ecosystem functions/multifunctionality are shown in Supplementary Tables 4
and 5. The effects of exclosures and vegetation type on individual functions and
multifunctionality were evaluated using linear mixed-effects models (‘lme’ function
of the nlme package), with exclosure and vegetation type as fixed effects and fence
as a random factor (Fig. 4). All statistical analyses and numerical calculations were
done in R version 3.4.069.

Data availability
The data set generated during and/or analysed by the current study will be made
available upon acceptance of the paper at the environmental data portal EnviDat (DOI:
10.16904/envidat.44).
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