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Abstract

Increasing evidence suggests that remotely sensed spectral diversity is linked to

plant species richness. However, a conflicting spectral diversity–biodiversity
relationship in grasslands has been found in previous studies. In particular, it

remains unclear how well the spectral diversity–biodiversity relationship holds

in naturally assembled species-rich grasslands. To address the linkage between

spectral diversity and plant species richness in a species-rich alpine grassland

ecosystem, we investigated (i) the trade-off between spectral and spatial resolu-

tion in remote sensing data; (ii) the suitability of three different spectral metrics

to describe spectral diversity (coefficient of variation, convex hull volume and

spectral species richness) and (iii) the importance of confounding effects of live

plant biomass, dead plant biomass and plant life forms on the spectral diver-

sity–biodiversity relationship. We addressed these questions using remote sens-

ing data collected with consumer-grade cameras with four spectral bands and

10 cm spatial resolution on an unmanned aerial vehicle (UAV), airborne imag-

ing spectrometer data (AVIRIS-NG) with 372 bands and 2.5 m spatial resolu-

tion, and a fused data product of both datasets. Our findings suggest that a

fused dataset can cope with the requirement of both high spatial- and spectral

resolution to remotely measure biodiversity. However, in contrast to several

previous studies, we found a negative correlation between plant species richness

and spectral metrics based on the spectral information content (i.e. spectral

complexity). The spectral diversity calculated based on the spectral complexity

was sensitive to live and dead plant biomass. Overall, our results suggest that

remote sensing of plant species diversity requires a high spatial resolution, the

use of classification-based spectral metrics, such as spectral species richness, and

awareness of confounding factors (e.g. plant biomass), which may be ecosystem

specific.

Introduction

Biodiversity is declining globally at rates unprecedented in

human history (IPBES, 2019). In particular, grassland

biodiversity is threatened by destruction, degradation and

fragmentation due to urban development, agricultural

land use such as grassland transformation into monocul-

tures, eutrophication, overgrazing and climate change

(Clark & Tilman, 2008; Harrison et al., 2015; Hautier

et al., 2014; Mooney et al., 2009). Grassland biodiversity

provides a large range of ecosystem services (Hein et al.,

2006; Lamarque et al., 2011) essential for the survival of

plant and animal species (Dinnage et al., 2012) and vital

in sustaining human life. Lower grassland biodiversity

leads to lower stability in plant productivity over time

(Hautier et al., 2014), limited carbon storage (Ward et al.,
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2016) and reduced pollinator abundance (Bat�ary et al.,

2010). Therefore, with the worldwide loss of grassland

biodiversity and the associated decline of ecosystem ser-

vices, comprehensive monitoring of grasslands remains a

priority (Suding, 2011).

However, assessing grassland biodiversity based on field

inventories is highly time-consuming, expensive and sub-

jective (Bonar et al., 2011; L~ohmus et al., 2018). In con-

trast, technological developments in passive remote

sensing approaches, which measure the sunlight reflected

by an object at a specific wavelength, allow for an efficient

and relatively inexpensive collection of baseline data

related to biodiversity (Cavender-Bares et al., 2017; Frye

et al., 2021; Rocchini et al., 2018; Schweiger et al., 2018)

across various spatial and temporal scales (Gholizadeh

et al., 2020; Jetz et al., 2016; Pettorelli et al., 2018; Rossi

et al., 2021). In particular, the approach known as the

spectral variation hypothesis (Palmer et al., 2002) assumes

that the remotely measured variation in spectral patterns,

that is, spectral diversity, is related to biodiversity (i.e.

plant species richness; Cavender-Bares et al., 2017; Dahlin,

2016; Oldeland et al., 2010; Rocchini et al., 2010). Spec-

tral diversity represents a set of pixels recorded by remote

sensing corresponding to the spatial heterogeneity of the

environment, for example, vegetation, soil or topography.

Vegetation spectral diversity may be based on specific

spatial patterns in reflectance (hereinafter spectral met-

rics) of known vegetation indices (Rocchini et al., 2018),

principal components (Rocchini et al., 2004) or the clus-

tering and classification of reflectance spectra (F�eret &

Asner, 2014; Sch€afer et al., 2016). The measured spectral

diversity of vegetated areas is assumed to be shaped by

morphological, physiological or phenological features that

manifest the life history of a species, like plant leaf traits

(e.g. pigments, leaf water content, leaf area and dry mat-

ter content), canopy structure, plant functional types and

plant phenological state (Asner & Martin, 2008; Asner

et al., 2011; Ollinger, 2011; Schweiger et al., 2017; Ustin

& Gamon, 2010; Ustin et al., 2009; Wang et al., 2019).

Some of these features represent different environmental

adaptations or resource use strategies (D�ıaz et al., 2016).

Therefore, variations in these features indicate the pres-

ence of different plant species and hence characterize

plant species richness (Pavoine & Bonsall, 2011).

Nevertheless, using remote sensing techniques to esti-

mate plant species richness in grasslands is more challeng-

ing than it appears to be (Gholizadeh et al., 2019; Rossi

et al., 2020; Schmidtlein & Fassnacht, 2017; Wang,

Gamon, Cavender-Bares, et al., 2018). In general, grass-

land plants are much smaller than the pixel sizes of remo-

tely sensed data. Several studies estimated grassland

species diversities from spaceborne and airborne remote

sensing data and spatial resolutions of several meters

(Gholizadeh et al., 2019; Lopes et al., 2017; M€ockel et al.,

2016; Rocchini et al., 2004). Such unfavourable spatial

resolutions of the sensors may lead to pixels containing

many individual plants, as well as many plant species.

Therefore, it is likely that spectral diversity based on such

an approach may only accurately reflect biodiversity at a

regional level and between plant communities (Polley

et al., 2019; Rossi et al., 2020), but not at a local level in

an individual plant community (Lopatin et al., 2017) or

an individual plot of an ecological experiment (Wang,

Gamon, Cavender-Bares, et al., 2018).

Furthermore, a range of factors may confound the

spectral diversity–biodiversity relationship. For instance,

the fraction of bare soil (Gholizadeh et al., 2018), dead

biomass (Schweiger et al., 2015), the size of plants (Conti

et al., 2021), phenology, flowering patterns, short-term

weather conditions and management (Gholizadeh et al.,

2020; Rossi et al., 2021), as well as the amount of biomass

(Villoslada et al., 2020) and the composition of the plant

community (different life forms such as graminoids, forbs

and legumes, Wang, Gamon, Schweiger, et al., 2018)

affect spectral diversity and, thus, interfere with the esti-

mation of plant species richness. Such confounding fac-

tors may in part be mitigated with an extensive use of

spectral information. Using only limited spectral informa-

tion, for example, only the Normalized Difference

Vegetation Index (NDVI), can weaken the spectral diver-

sity–biodiversity relationship or even result in a negative

relationship between the two, due to strong correlations

of NDVI with, for example, biomass (Goswami et al.,

2015; Villoslada et al., 2020; Wang et al., 2016). In con-

trast, using imaging spectroscopy data (i.e. hundreds of

spectral bands with a wavelength sensitivity in the range

of a few nanometers) with a spatial resolution matching

the object of investigation was found to result in a posi-

tive spectral diversity–biodiversity relationship (Wang,

Gamon, Cavender-Bares, et al., 2018; Wang, Gamon, Sch-

weiger, et al., 2018). Finally, to date, there is no consensus

on the best spectral metrics to be used to quantify plant

species richness in grasslands. Spectral metrics based on

the information content in the spectral data (spectral

complexity) heavily depend on the variance of spectral

information, that is, extreme values that can confound

the spectral diversity–biodiversity relationship (Lucas &

Carter, 2008). Accordingly, spectral metrics based on clas-

sification algorithms (F�eret & Asner, 2014) may be better

suited to assess the high small-scale heterogeneity of

grasslands. Whether the spectral variation hypothesis

works for mapping plant species richness at small spatial

scales is, therefore, likely to depend on (i) appropriate

spatial and spectral resolution; (ii) the chosen spectral

metrics and (iii) confounding factors such as bare soil,

dead and live biomass.
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Previous studies have been performed either in experi-

mental grasslands like Cedar Creek (Gholizadeh et al.,

2018; Wang, Gamon, Cavender-Bares, et al., 2018; Wang,

Gamon, Schweiger, et al., 2018) with communities artifi-

cially composed of a limited species pool (i.e. 1, 2, 4, 8,

or 16 species per plot) or in naturally assembled grass-

lands with spectrally (Villoslada et al., 2020) or spatially

limited datasets (M€ockel et al., 2016). Thus, the interde-

pendencies of the relationship between spectral diversity

and biodiversity, as well as possible trade-offs in natural

settings still need to be explored. Hence, it is unclear

whether the contradicting spectral diversity–biodiversity
relationships reported between naturally and experimen-

tally assembled grassland ecosystems result from differ-

ences in the spectral information used, or are instead

driven more by confounding factors such as, for instance,

biomass.

Due to technical constraints, remote sensing devices are

usually designed as a trade-off between spatial and spec-

tral resolution (Aiazzi et al., 2012). Unmanned aerial

vehicles (UAVs) are remote sensing platforms that can

provide imagery with high spatial resolution. Yet, UAVs

are primarily used in combination with standard digital

cameras providing low spectral resolution (Lu & He,

2017); and UAVs mounted imaging spectrometers of high

spectral resolution are still rare, expensive and complex.

Furthermore, they are frequently prone to radiometric

noise and generally subject to lower spatial resolution in

comparison to multispectral cameras with a limited num-

ber of wavelength bands (Aasen et al., 2018; Ad~ao et al.,

2017). In contrast, space- or airborne imaging spectrome-

ters combine reduced spatial with high spectral resolu-

tion.

Here, we studied the controversial spectral diversity–
biodiversity relationship in a naturally assembled grass-

land ecosystem above the timberline with high small-scale

species richness of up to 35 plant species per square

metre. We used plots from a long-term experiment

(Nutrient Network; https://nutnet.org), in which small-

scale plant species richness was manipulated by the

application of fertilizers and the exclusion of plant-

feeding animals (see e.g. Borer, Harpole, et al., 2014).

Our objectives were to:

ievaluate the trade-off between high spectral and high

spatial resolution when estimating small-scale plant spe-

cies richness using spectral diversity, in particular by test-

ing image fusion methods (Zhang, 2004),

iicompare three different spectral diversity metrics that

have different sensitivities towards extreme values which

potentially confound the spectral diversity–biodiversity
relationship. Two of these three metrics are based on

spectral complexity (convex hull volume and coefficient

of variation), and one on a clustering algorithm (spectral

species richness)

iiitest how far confounding factors such as dead biomass,

total biomass or plant life forms may influence the esti-

mation of plant species richness from spectral diversity.

Materials and Methods

Study area

We collected our data in Val Mustair in south-eastern

Switzerland in a naturally assembled grassland area above

the timberline (2320 m above sea level, latitude 46°3705500

to 46°3705000 N, longitude 10°2202900 to 10°2201800 E,

Fig. 1). Such alpine grasslands are characterized by high

small-scale variability in topography and thus in edaphic

conditions. This, in combination with generally nutrient-

poor conditions due to low fine earth fractions in the soil,

results in high small-scale plant species richness of up to

35 species per square metre on our control plots. The

mean annual temperature is 0.3°C, and the mean annual

precipitation amounts to 1098 mm. The parent material

underlying the site is a mixture of dolomite and volcanic

conglomerates. Soil organic carbon (C) concentration is

roughly 4.5%, total soil nitrogen (N) is 0.3%; and the soil

C:N ratio is 13.3 (Risch et al., 2019). Soil pH is around 5.

The site is part of the globally distributed Nutrient Net-

work (NutNet; Borer, Harpole, et al., 2014). The network

aims to analyse global change effects such as fertilization

and altered herbivore community composition on grass-

land productivity and biodiversity in a randomized-block

design. Three replicate blocks with 10 treatment plots

each were established. The 10 plots were randomly

assigned to nutrient (seven plots) and fencing (two plots)

treatments and control (one plot) without any experi-

mental treatment. All plots are 5 9 5 m in size. Nutrient

additions and herbivore removal treatments started in

2009, hence, were in place for nine years at the time of

data sampling in 2018. For the nutrient additions,

10 g N m�2 yr�1 as time-release urea; 10 g P m�2 yr�1

as triple-super phosphate and 10 g K m�2 yr�1 as potas-

sium sulphate are applied separately, as well as in all pos-

sible combinations in each block every year. The

vertebrate herbivore removal treatments (fence) were

established by fencing two plots, one with full fertilizer

application (NPK) and one without fertilizer application.

The fences were designed to effectively exclude above-

ground mammalian herbivores with a body mass of over

50 g (i.e. ibex, chamois, red deer, marmots and snow

hares, Borer, Harpole, et al., 2014). The fences at the Val

Mustair site are 200 cm high and are covered with a 5-

cm square mesh with extra cabling support to prevent
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Figure 1. (A) Study area with location of field plots subdivided into blocks. (B) Photo of the study area. (C) Location of the study area in Val

Mustair in south-eastern Switzerland.
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snow damage. The treatments have, by now, resulted in

significant differences in plant species richness and plant

biomass. Thus, this experimental setup is well-suited for

testing the spectral diversity–biodiversity relationship and

possible confounding effects in a natural but still con-

trolled setting.

Vegetation data

Plant species richness was assessed in early July 2018. For

this purpose, all plant species within a permanently

assigned 1 9 1 m square located within each 5 9 5 m

plot were identified. Biomass was assessed by clipping two

0.1 9 1 m strips from a 1 9 1 m plot adjacent to each

survey square. For each plot, the collected biomass was

sorted into three life forms (graminoids, forbs and

legumes) and dead biomass, afterwards oven-dried at

60°C and weighed.

Remote sensing data

UAV system, flight mission and image processing

We used a Falcon 8 octocopter (UAV; Ascending Tech-

nologies, Krailling, Germany) equipped with a Sony

NEX-7 camera (total weigh 2.3 kg). Onboard navigation

sensors (Global Navigation Satellite System GNSS, Inertial

Measurement Unit, barometer, compass) and an adaptive

control unit permitted high positional accuracy and stable

flight characteristics. A laptop installed with a flight con-

trol system (AscTec Navigator Flight Planning Software

v3.4.4) acted as the ground station to control the flight in

real-time using communication devices.

We used two different Sony NEX-7 cameras, both with

a 24 mega pixel complementary metal-oxide sensor and a

small, lightweight Sony NEX 20 mm F/2.8 optical lens.

One camera recorded red–green–blue (RGB) imagery, the

other one had the internal NIR-blocking filter replaced

with an 830-nm long-pass filter to record the NIR signal

(B€uhler et al., 2017; Holman et al., 2019; Lu & He, 2017).

The cameras were connected to the Falcon 8 by a gimbal

with active stabilization and vibration damping. Two

flights were made over the study area, each collecting 98

images using either the RGB or NIR camera. Both flights

were made between 11:03 and 11:33 local time on July

11, 2018 under stable light conditions, that is, sunny with

no clouds and fixed camera settings. The UAV was oper-

ated at an altitude of approximately 40 m above ground

and at a speed of about 4 m per second. The images had

a spatial resolution of about 1.25 cm, an approximate

85% forward overlap and 60% side overlap. Twelve

ground control points (GCPs, 15 9 15 cm in size) were

evenly distributed over the entire test site for subsequent

georeferencing of the imagery. The locations of the GCPs

were measured with a Trimble GeoXR real-time kine-

matic GNSS with an expected accuracy of <0.10 m.

Two of 98 images taken during each flight were elimi-

nated manually due to blurring. The remaining images,

that is, 96 RGB and 96 NIR images, were processed to

remove Gaussian noise and optical vignetting by applying

a linear filter (Wiener filter) and a flat-field correction,

which uses Gaussian smoothing (Matlab vR2020a Image

Processing Toolbox). The denoised images were subse-

quently processed in Pix4DMapper (Pix4D v4.5.6), which

uses structure from motion techniques to generate a

dense point cloud, a digital surface model and a

mosaicked and rectified reflectance dataset. Detailed

radiometric calibration procedures for the UAV data are

provided in Appendix S1. During processing in Pix4D,

the 12 GCPs were added for improved geo-rectification of

the imagery (root mean square error of GCP localization

around 2 cm). The resulting RGB mosaic and the blue

band from the modified camera containing the NIR signal

(Holman et al., 2019) were stacked together and resam-

pled bilinearly, resulting in a reflectance dataset consisting

of four bands and 10 cm spatial resolution. We chose to

resample the original 1.25 cm resolution to 10 cm

because of computational constraints and to better reflect

an achievable resolution of UAV mounted hyperspectral

sensors (Aasen et al., 2018).

Airborne imaging data

We used airborne imaging spectroscopy data that was

acquired with the next generation airborne visible/infrared

imaging spectrometer (AVIRIS-NG; Hamlin et al., 2011)

on July 08, 2018 (11:3–1:36 local time). The AVIRIS-NG

sensor collected reflected radiance at 5-nm intervals cov-

ering the spectral range from 380 to 2500 nm. The

geometrically- and atmospherically corrected datasets are

openly available via the AVIRIS-NG Data Portal 2014–
2019 (Gao et al., 1993; Thompson et al., 2015). We used

the mean reflectance values of two overlapping flight lines

(CHNP 25 and CHNP 26) to reduce potential directional

effects emerging from a different sun-target-sensor geom-

etry. Due to inaccuracies in georeferencing according to

standard data processing, we manually georeferenced the

respective datasets using specific objects (e.g. avalanche

protection structures) with known coordinates (ArcMap

v10.7.1 Georeferencing toolbar). Subsequently, we bilin-

early resampled the data from 2.7 to 2.5 m spatial resolu-

tion and applied a mask to match the extent of the UAV

data. We used 372 of the 425 AVIRIS-NG bands after

removing bands showing low signal-to-noise ratios or

strong water absorption (Appendix Fig S2.1).
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Data fusion

The data fusion step combined the available high spatial

resolution UAV data with the high spectral resolution air-

borne data. Since several data fusion techniques have been

published that differ significantly in method and perfor-

mance (Mookambiga & Gomathi, 2016; Yokoya et al.,

2017), we tested seven different state-of-the-art fusion

methods (Table 1). The goal was to find the best method

for our application rather than making a general compar-

ison of fusion methods. For a detailed description of the

algorithms of the different methods and their code, we

refer to Yokoya et al. (2017) and Appendix S4. The

results of the seven different fusion approaches were com-

pared (i) visually, (ii) using image entropies and (iii)

using image standard deviations (Jagalingam & Hegde,

2015). A high standard deviation indicates high contrast.

Similarly, high entropy represents high spectral informa-

tion content. Furthermore, we assessed how the different

methods were able to quantify plant species richness.

Consequently, the best fused dataset was selected based

on the highest standard deviation, the highest entropy

and the strongest relationship with plant species richness.

Spectral diversity metrics

We calculated three different spectral diversity metrics for

our datasets, namely for the UAV, airborne and the seven

fused datasets for each plot (Table 2, Fig. 2). We chose

three of the most commonly used diversity measures in

current spectral diversity research (Gholizadeh et al.,

2018; Wang, Gamon, Schweiger, et al., 2018), each with

different sensitivities to extreme values. The convex hull

volume (CHV) was derived from the first three principal

components of the reflectance values (Fig. 2). CHV was

standardized by subtracting the standard deviation for

each dataset across all plots. The coefficient of variation

(CV) was calculated as the ratio between the standard

deviation and the mean of the reflectance value at a speci-

fic wavelength for each plot and was then averaged over

all wavelengths. We quantified spectral species richness

for the UAV and fused datasets, but not for the airborne

dataset due to the limited number of pixels (four) per

plot. The spectral species richness approach assumes that

the spectral signature of one or several similar species is

unique. Spectral species were defined based on the K-

means clustering method of a random subset (2500 pixels,

with NDVI values > 0.4 and 10 random starts) of the first

four principal components of the reflectance image (i.e.

UAV or fused dataset) collected across the entire scene

(1.7 ha; package randomForest v4.6-14 and cluster v2.1.0

in R). The number of clusters was set to 50, which corre-

sponds approximately to the number of plant species

recorded in the area. To cluster the 2500 pixels, we used

the K-means algorithm on the proximity matrix generated

from Random Forest (RF) model (number of trees to

grow = 500) applied on the first four principal compo-

nents values of the 2500 pixels. The clusters obtained

were used to train a subsequent RF model for spectral

species classification. In other words, once the 50 spectral

Table 1. List of methods used for fusion of multispectral UAV data and AVIRIS-NG data.

Method Category Theory References

Gram Schmidt adaptive algorithm (GSA) Pansharpening-based methods Component substitution Aiazzi et al. (2007)

Generalized Laplacian pyramid (GLP) Pansharpening-based methods Multiresolution analysis Aiazzi et al. (2006)

Smoothing filter-based intensity modulation (SFIM) Pansharpening-based methods Multiresolution analysis Liu (2000)

Coupled non-negative matrix factorization (CNMF) Subspace methods Unmixing Yokoya et al. (2011)

Maximum a posteriori with stochastic mixing model

(MAP-SMM)

Subspace methods Bayesian Eismann & Hardie (2004)

Fast fusion based on Sylvester equation (FUSE) Subspace methods Bayesian Wei et al. (2016)

Hyperspectral Superresolution (HySure) Subspace methods Bayesian and unmixing Simoes et al. (2015)

Table 2. Description of the three different spectral diversity metrics

used in this study.

Spectral

diversity

metric Description References

Convex hull

volume

(CHV)

CHV calculates the volume of

pixels forming a convex hull,

using the first three principal

components of the reflectance

data.

Dahlin (2016)

Coefficient

of variation

(CV)

CV calculates the ratio between

the standard deviation and the

mean of the reflectance value

at a specific wavelength,

averaged over all wavelengths.

Wang, Gamon,

Cavender-Bares,

et al. (2018)

Spectral

species

richness

Defines the number of spectral

species based on clustering of

the reflectance signal.

F�eret and Asner

(2014)
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species were defined through clustering, each pixel con-

tained in a plot was assigned to one of these spectral spe-

cies with the trained RF classifier. Due to the random

nature of clustering approaches, we repeated this process

20 times for each dataset and averaged the number of

spectral species, that is, spectral species richness.

To consider only vegetated pixels, pixels with NDVI

values <0.4, which were assumed to represent bare soil,

were excluded from the UAV and fused imagery analysis

for all three spectral diversity metrics. After excluding

bare soil, we took a random subsample of 1000 pixels

from the centre of each plot to avoid edge effects when

calculating the metrics for the UAV and fused datasets.

Statistical analysis of spectral diversity and
plant species richness

First, we assessed the relationship between spectral diver-

sity (i.e. spectral metrics), and in situ plant species rich-

ness for each experimental plot for each fused, UAV and

airborne dataset using bivariate Spearman correlations

(q). In addition, we calculated the root mean square error

(RMSE) between spectral species richness and plant spe-

cies richness for each fused (Appendix S4) and UAV data-

set. To further investigate differences between the datasets

in estimating plant species richness, we used an analysis

of covariance (ANCOVA). An ANCOVA allows testing
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Figure 2. Overview of the workflow to calculate three spectral diversity metrics (coefficient of variation, convex hull volume and spectral species

richness). Spectral diversity metrics were calculated from airborne imaging spectroscopy (AVIRIS-NG), UAV and fused datasets. We masked all

pixels with NDVI values <0.4. Convex hull volume was derived from the first three components of a principal component analysis (PCA). The first
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of AVIRIS-NG, UAV and fused approach are indicated.
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for differences in slopes and intercepts between different

regression lines. We compared those linear regressions

between plant species richness and spectral diversity

derived for the different datasets and spectral metrics that

showed a significant relationship.

Second, we modelled the plot wise relationship between

spectral diversity and possible confounding factors of the

spectral diversity–biodiversity relationship using linear

models without interactions (package stats in R 4.0.2).

Each spectral diversity metric derived from the three data-

sets (i.e. UAV, airborne only CHV and CV, fusion) served

as a response variable (i.e. eight linear models). The

response variables were log-transformed to improve nor-

mality of the residuals. The explanatory variables were (i)

total biomass (live plus dead), (ii) the ratio of dead bio-

mass to total biomass and (iii) the ratio of different life

forms (grass, forb and legume) to live biomass. We

assessed the independence of the explanatory variables,

that is, multicollinearity, by computing the variance infla-

tion factor (R package car v3.0-10). For each model,

residuals were inspected visually for their randomness and

normal distribution. Note that two plots in block 2 (see

Fig. 1A) had to be removed from the datasets due to

blurred UAV images, resulting in 28 of 30 experimental

plots.

Results

HySure was found to be the best performing fusion algo-

rithm in terms of standard deviation and entropy

(Appendix S4). It led to the visually most convincing

results when inspecting the colour composite images

(Fig. 3). HySure also showed significant correlations

between spectral diversity and plant species richness

(Appendix Figure S4.1), together with one of the lowest

RMSE between the number of spectral species and plant

species.

Spectral diversity versus plant species
richness

Comparing our three spectral diversity metrics calculated

for the different datasets with plant species richness, we

found a wide range of relationships. Overall, no

50 m

HySure He=5.5  σ=0.064 

GSA He=5.18  σ=0.053 

GLP He=5.04  σ=0.046 

MAPSMM He=4.97  σ=0.043 

SFIM He=5.01  σ=0.046 

CNMF He=4.63  σ=0.035 

FUSE He=4.32  σ=0.024 

UAV He=4.79  σ=0.042 AVIRIS-NG He=4.66  σ=0.034 

Figure 3. True colour composites of the study area acquired by the UAV camera, the AVIRIS-NG sensor, and processed from fused datasets with

seven different fusion methods (HySure, GSA, GLP, SFIM, MAP-SSM, CNMF and Fuse). High entropy (He) values indicate rich information content

in the image. High standard deviation (r) indicates high image contrast.
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correlations (p > 0.05) were found for the three metrics

when using airborne AVIRIS-NG data, indicating an

inappropriate spatial resolution for this dataset (Fig. 4).

Both UAV and fused datasets did not allow the prediction

of plant species richness based on CHV either (Fig. 4A).

However, for CV, we found a significant negative rela-

tionship with plant species richness for both the UAV

and fused datasets (Fig. 4B). The high values of spectral

information content in plots with low species richness

suggested that other factors like biomass or intraspecific

spectral variability may affect spectral diversity. The spec-

tral species richness derived from the UAV dataset and

the fused data product (Appendix Fig S5.1) showed, in

contrast, significant positive relationships with plant spe-

cies richness (Fig. 4C).

Using the fused product instead of the UAV dataset,

the relationship between spectral species richness and

plant species richness improved in terms of q, and the

number of spectral species was closer to the number of

observed plant species (RMSE = 8.47 against 12.37,

Fig. 4C). The result of the ANCOVA, however, suggested

that the slopes of the regressions between both CV or

spectral species richness and plant species richness did

not differ between the UAV and the fused dataset

(F1,52 = 0.40/0.57, p = 0.53/0.45, CV/spectral species rich-

ness). Similarly, the intercepts did not statistically differ

between the two approaches (F1,53 = 1.14/3.676, p = 0.29/

0.065).

Confounding effects of the spectral
diversity–biodiversity relationship

To study confounding effects of the spectral diversity–bio-
diversity relationship, we used linear models to examine

the relationship between spectral diversity and (i) total

biomass, (ii) the ratio of dead to total biomass and (iii)

the ratio of life forms (i.e. graminoids, forbs and legumes)

to live biomass. In these models, the explanatory vari-

ables, represented by the different biomass metrics, were

independent (i.e. no multicollinearity, variance inflation

factor <3.5).
As for the previous analysis, we found no significant

relationship between the spectral diversity and biomass

metrics when using airborne AVIRIS-NG data

(Appendix Table S3.1). The relationships between spectral

diversity and biomass metrics were, in contrast, significant

and very similar for the UAV and the fused dataset

(Appendix Table S3.1). We, therefore, show the results

for the fused dataset only (Fig. 5): Total biomass was

found to have a significant positive relationship with CV

(slope = 0.001, CI (0, 0.002)) and seemed to be the most

confounding factor of the spectral diversity–biodiversity
relationship. This result may be explained by a significant

negative correlation between total biomass and species

richness in the study area (q = �0.40, p = 0.035), where

nutrient additions lead to more biomass but a decrease in

species richness. Furthermore, plots with high total bio-

mass displayed a high percentage of accumulated dead

biomass (q = 0.73, p < 0.001).

However, we found a negative relationship between CV

and dead:total biomass (slope = �1.42, CI (�2.56,

�0.283)). These results suggest that dead biomass played

a crucial role in shaping the spectral information content

only in the presence of low to intermediate total biomass.

Therefore, there must be other factors influencing the

spectral information content in high biomass plots. Con-

trary to the findings obtained for CV, we found no signif-

icant relationship between CHV and any of our biomass

(A) (B) (C)

Figure 4. Spectral diversity metrics (A–C) derived from AVIRIS-NG, UAV and the HySure fused dataset versus in situ plant species richness.

q = Spearman correlation. Linear regression lines were plotted only for significant relationships (p < 0.05).
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metrics. The main reason might be that the CHV metric

is highly susceptible to extreme values, which do not

reflect the overall characteristics of a community.

We found a negative relationship between spectral spe-

cies richness and the ratio of graminoids to live biomass

(slope = �1.04, CI (�1.68, �0.41)). Most plots with a

high percentage of graminoids, mainly Festuca rubra, dis-

played low plant species richness due to the individual

plants growing in clumps occupying a relatively large

area. Similarly, the ratio of legumes to live biomass dis-

played a negative relationship with spectral species rich-

ness (slope = �3.62, CI (�5.90, �1.34)). In plots with

high nutrient addition, legumes were suppressed, promot-

ing the dominance of graminoids and a reduced plant

species richness.

Discussion

The results obtained from UAV or fusing UAV data with

airborne imaging spectroscopy data proved to be useful

for quantifying plant species richness. In addition, we

showed that a fused dataset can cope with the require-

ment of both high spatial and spectral resolution to

remotely measure biodiversity (Wang, Gamon, Cavender-

Bares, et al., 2018), a prerequisite, which is still challeng-

ing to obtain from a single sensor. Nevertheless, the

results of this study confirm that remote sensing of plant

species diversity remains challenging and that spatial reso-

lution, choice of appropriate spectral metrics and aware-

ness of confounding factors – which might be ecosystem

specific – are essential when leveraging the spectral diver-

sity–biodiversity relationship in species-rich grassland

ecosystems.

Trade-off between spectral and spatial
resolution

Due to technical constraints, a trade-off between spatial

and spectral resolution determines sensor design. Our

results underpin the overwhelming importance of the spa-

tial resolution in estimating plant species richness in

grasslands. Grassland plants are relatively small compared

to the grain size of remotely sensed data, decreasing our

ability to quantify diversity. As previous studies in experi-

mental settings demonstrated, a decreasing spatial resolu-

tion weakened the spectral diversity–biodiversity
relationship (Gholizadeh et al., 2019; Wang, Gamon,

Cavender-Bares, et al., 2018). At coarse spatial resolution,

such as in our airborne data where the number of pixels

per plot or community was limited, it becomes difficult

to establish any relationship between spectral and plant

diversity. In addition, the difference in size and life forms

Legume:live biomass

Graminoid:live biomass

Forb:live biomass

Dead:total biomass

Total biomass

−0.4 0.0 0.4

Standardized slope

Convex hull volume (CHV)

Coefficient of variation (CV)

Spectral Species Richness

*

*

*

*

Figure 5. Standardized slope with 95% confidence intervals of the linear regression models between the three spectral metrics convex hull

volume (CHV), coefficient of variation (CV) and spectral species richness and total biomass, the ratio of dead biomass to the total biomass and life

forms (i.e. graminoids, forbs and legumes) to live biomass. Spectral metrics are calculated from the best fused product, that is, obtained from

UAV and airborne data applying the HySure fusion method. *Significant relationships.
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between plant species in grasslands presents a challenge.

The optimal spatial resolution may be very specific for a

species and is often unknown a priori. Even with spatial

resolutions of less than one centimetre, the detection of

individual plants may only be possible under favourable

conditions such as low structural complexity, low spatial

overlap and a low number of species (Lopatin et al.,

2017). Very high spatial resolution may, on the other

hand, enhance within-species variation and increase noise,

that is, mutual shading, making it difficult to establish a

significant spectral diversity–biodiversity relationship.

While the choice of spatial resolution is key to estab-

lishing a significant spectral diversity–biodiversity rela-

tionship, the same cannot be said for spectral resolution

in our study. Although spectral resolution is known to

affect the spectral diversity–biodiversity relationship (Roc-

chini, 2007; Wang, Gamon, Schweiger, et al., 2018), it

could not replace a high spatial resolution and was

weaker than expected from other studies (Ollinger, 2011;

Ustin & Gamon, 2010). We are aware that our fused pro-

duct cannot replace an imaging spectrometer with high

spatial resolution since it is synthetic. Nevertheless, our

findings partly correspond with findings in other studies:

Gholizadeh et al. (2019) showed, for example, that the

standard deviation of NDVI performs well among other

spectral diversity metrics. Wang, Gamon, Schweiger, et al.

(2018) found no additional benefit of using full-range

spectrometer data in quantifying plant diversity. Spatial

resolution was the limiting factor in both studies.

We suggest two major reasons for the subordinate

importance of high spectral resolution in comparison to

high spatial resolution:

1 The combined effect of correlated bands and how spec-

tral metrics condense the spectral information make

the full information highly redundant and biased

towards some spectral features (Rocchini, 2007). A bias

is generated because the numbers of bands that capture

different spectral features are not equal and some bands

provide more information than others. For instance, if

several bands capture the same spectral feature, that is,

if they are correlated, the contribution of this feature

to the spectral diversity will be misleadingly high. In

contrast, the contribution of single bands that capture

a distinct spectral feature will contribute insufficiently

to spectral diversity. Using principal component analy-

sis (PCA) to reduce data dimensionality may not

resolve this issue since the first PCA axes will reflect

the set of the most correlated bands among those with

a larger contribution. Some specific spectral bands cap-

ture the relevant species information that is necessary

to successfully apply the spectral variation hypothesis.

For example, Schweiger et al. (2018) showed that only

the local maxima of the coefficient of variation that

corresponded to known absorption features of plant

pigments, water content and carbon-based leaf con-

stituents were required to estimate plant diversity. Nev-

ertheless, the choice of spectral features to best

represent plant species richness remains an issue of

future research. In particular, different spectral regions

display contrasting responses to plant species richness.

M€ockel et al. (2016), for example, reported positive

correlations between reflectance and plant diversity for

chlorophyll absorption bands, and a negative one for

the NIR region of the electromagnetic spectrum.

2 The spectral diversity approach does not decouple leaf-

from canopy effects. The measured reflectance may

include canopy structure as well as different leaf traits

and their interactions. Canopy structure, rather than

leaf traits, may thus drive the majority of the reflec-

tance signal (Kattenborn, Fassnacht, et al., 2019; Yao

et al., 2015). Grassland canopy variables, such as total

biomass, are highly related to the VIS and NIR region

of the electromagnetic spectrum (Tucker, 1977). Thus,

the reflectance of a few bands in the VIS and NIR

region of the spectrum may capture most of the remo-

tely sensed variance between plants. In general, the

spectral diversity–biodiversity relationship studied at

leaf level (Frye et al., 2021; Schweiger et al., 2018) can-

not be easily upscaled to the plant or community level.

Thus, it is crucial to understand the effect of canopy

structure on spectral diversity and its impact on the

relationship between spectral diversity and plant species

richness. In this light, it is surprising that spectral met-

rics from UAV data are rarely used (Conti et al., 2021;

Villoslada et al., 2020), despite increasing data availabil-

ity, high spatial resolution and the potential of the

onboard sensors to quantify the VIS and NIR part of

the spectrum. Despite the relatively small areas covered,

UAVs are very beneficial for studying the spectral

diversity–biodiversity relationship and assessing the

capabilities of other platforms. Moreover, the results of

this study encourage the use of UAVs to operationally

estimate plot-scale plant diversity. As such, our study

can be considered a valuable contribution to monitor-

ing and conservation/protection efforts at small to

medium spatial scales. Taking into account that com-

mercially available spaceborne data at 30 cm spatial

resolution already exist today (e.g. WorldView-3) and

an increasing number of commercial companies have

started to operate in the sector of readily available, very

high spatial resolution multispectral datasets, it is likely

that operational monitoring of biodiversity should also

be possible at larger scales. However, it remains to be

investigated what the impact of a reduction of spatial
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resolution from 10 cm (UAV data in this study) to, for

example, 30 cm would be on the performance of our

proposed method to monitor grassland biodiversity.

Selection of the spectral diversity metrics

Our results also suggest that selecting appropriate spectral

metrics plays an important role in quantifying plant spe-

cies richness and may not be compensated by using addi-

tional spectral information. A successful spectral metric

reflects species richness rather than extreme values in the

spectral data that originate from different sources, which

do not reflect the overall characteristics of the commu-

nity. These extreme values may represent spectral noise,

bare ground reflectance (Gholizadeh et al., 2018), illumi-

nation geometry (Weyermann et al., 2014) or dead bio-

mass. Metrics that are heavily influenced by extreme

values, that is, CHV and CV should, therefore, be used

with care (Gholizadeh et al., 2018). In our case, the pres-

ence of dead biomass and its spectral contrast to live bio-

mass (Beeri et al., 2007; Numata et al., 2007; Schweiger

et al., 2015) was partially responsible for the high spectral

diversity calculated by the CHV and CV metrics. Remov-

ing the spectral signal for dead biomass from the data

would theoretically be possible by using spectral unmixing

techniques. However, this requires an additional process-

ing step. It might be easier to tackle this problem by

using metrics such as spectral species richness, which are

less sensitive to extreme values (Rocchini et al., 2016).

Such a classification-based approach can be less sensitive

to pixels corresponding to dead biomass. In particular,

dead biomass may be classified as a distinct spectral spe-

cies, minimizing its effect upon spectral diversity. Yet, this

metric is only suitable if the spectral differences between

plant species are large enough to identify single species

(Wang, Gamon, Schweiger, et al., 2018) or at least differ-

ent plant life forms (Polley et al., 2019; Schweiger et al.,

2017). The good performance of the spectral species rich-

ness metric in our study is in line with similar plant life

form or plant community type classifications used in pre-

vious studies with UAV data (Fraser et al., 2016; Katten-

born, Eichel, et al., 2019; Lu & He, 2018; Villoslada et al.,

2020). The better performance of the spectral species rich-

ness metric has also been found in large-scale satellite

applications (Schmidtlein & Fassnacht, 2017).

In addition to the selection of the spectral metric, also

the way in which plant diversity was measured may affect

the spectral diversity–biodiversity relationship. We used

the number of plant species (richness) as a measure of

plant diversity. However, Wang, Gamon, Schweiger, et al.

(2018) found an improved relationship between spectral

diversity and plant diversity in experimental grasslands

when adding species evenness to species richness. In

particular, species evenness combined with species traits

may better represent the complexity of the canopy struc-

ture (Rossi et al., 2020), which can drive spectral diver-

sity. Overall, to maximize the spectral diversity–
biodiversity relationship, we suggest testing and compar-

ing various plant diversity indices that incorporate both

the relative abundances of species and a measure of dif-

ferences (e.g. in traits or phylogeny) between them.

Confounding effects of biomass in the
spectral diversity–biodiversity relationship

In contrast to the studies of Gholizadeh et al. (2018,

2019), Schweiger et al. (2018), Wang, Gamon, Cavender-

Bares, et al. (2018) and Wang, Gamon, Schweiger, et al.

(2018), spectral information (i.e. spectral complexity) was

negatively correlated with plant diversity in our study,

independent of the number of spectral bands considered.

We hypothesize that plant biomass was the strongest con-

founding factor since increasing biomass is assumed to

cause higher canopy structure complexity and conse-

quently higher spectral complexity. Our hypothesis partly

reflects the spectral diversity–biodiversity relationship

found by Villoslada et al. (2020), which turned negative

in communities with high plant biomass. In our grassland

ecosystems, fertilized plots produced high amounts of

plant biomass, which in turn led to a steep decrease in

plant species richness (Borer, Seabloom, et al., 2014). In

contrast, in the grasslands artificially composed of a lim-

ited species pool studied by Gholizadeh et al. (2018), Sch-

weiger et al. (2018), Wang, Gamon, Cavender-Bares, et al.

(2018) and Wang, Gamon, Schweiger, et al. (2018), plant

biomass was positively correlated with species richness

(Wang et al., 2016). Overall, a positive relationship

between biomass and plant species richness reported from

experimental grasslands (Tilman et al., 1996), does not

necessarily hold for naturally assembled or fertilized grass-

lands (Borer, Seabloom, et al., 2014; Fraser et al., 2015)

with major consequences for deriving plant species rich-

ness from spectral diversity.

A first possible explanation for the positive spectral

diversity–biomass relationship in high biomass communi-

ties is the presence of large amounts of dead biomass

(Gavazov, 2010). However, the spectral response of dead

biomass is relatively homogeneous. Therefore, in commu-

nities where dead biomass is more abundant than live

biomass, the homogeneity of dead biomass could lead to

a decrease in the spectral information content. High bio-

mass can also lead to high canopy complexity and a

diverse spectral response (Zhang et al., 2015), for exam-

ple, due to shadowing. Hence, in high biomass plots with

only a few plant species, these species may cause hetero-

geneous patterns of light extinction and scattering of
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radiant flux as described by canopy reflectance models

(Verhoef, 1985), which can lead to high spectral informa-

tion despite low plant species richness. Similarly, varying

observation geometries between the sun, target pixel and

sensor, the so-called bidirectional reflectance distribution

function (BRDF), can heavily affect the measured spectral

information (M€uller et al., 1998; Schaepman-Strub et al.,

2006), which can result in a few species causing high

spectral diversity. We tried to reduce BRDF effects by

using a high amount of image overlap, which produces

near-nadir view geometries (Assmann et al., 2019) but

did not further minimize BRDF effects (Li et al., 2012;

V€ogtli et al., 2021; Wierzbicki et al., 2018). Yet, we think

that it may be valuable to address these issues in future

studies. For example, the local illumination and observa-

tion geometry for each pixel could be calculated based on

the characteristics of the sensor, the solar angle and the

local orientation of the canopy (Jia et al., 2020). In partic-

ular, canopy orientation information could be obtained

from a digital surface model generated through pho-

togrammetry from the UAV imagery. Sensor view zenith

and azimuth angles may be calculated using the projec-

tion vectors from the camera to each pixel (Tu et al.,

2018). Alternatively, a recent study (Arroyo-Mora et al.,

2021) showed that BRDF effects of vegetation could be

mitigated under diffuse light conditions (i.e. clouds).

Obtaining spectral data under different light conditions is

possible with UAVs and should therefore be used to fur-

ther investigate the impact of diffuse light conditions on

spectral diversity measurements. Confounding effects on

the spectral diversity–biodiversity relationship not consid-

ered in this study are, for example, the temporal variabil-

ity of spectral diversity due to phenology, management

and weather conditions (Gholizadeh et al., 2020; Rossi

et al., 2021; Schmidtlein & Fassnacht, 2017). Furthermore,

bare soil removed from our analysis could also be a good

proxy for species richness, either because it indicates spar-

sely vegetated areas with many unique species or areas

with generally low species numbers. Therefore, investigat-

ing the spectral diversity–biodiversity relationship at mul-

tiple temporal stages and in different ecosystems exhibits

a valid direction for future research suitable for UAV

applications.

Conclusions

Spectral diversity–biodiversity relationships depend on the

grassland ecosystems studied. The correlation between

plant biomass and plant species richness, which can be

positive or negative, can confound this relationship. We

found that spectral metrics that rely on spectral complexity

are much more strongly influenced by the correlation

between species richness and plant biomass than

classification-based spectral metrics. Classification-based

spectral metrics, such as spectral species richness, can miti-

gate confounding effects and lead to satisfactory results in

species-rich grasslands, that is, a positive correlation

between plant species richness and spectral diversity. In

addition, we were able to show that fusion techniques that

combine the high spatial resolution of UAV-mounted cam-

eras with the high spectral resolution of airborne imaging

spectroscopy improved the small-scale estimation of plant

species richness in grasslands. Hence, data fusion repre-

sents a powerful way to achieve adequate spatial and spec-

tral resolution for quantifying biodiversity using remote

sensing techniques. Nevertheless, a high spatial resolution

from UAV data proved to be more important than high

spectral resolution from airborne imaging spectroscopy.

Our results suggest that spatial resolution should be

prioritized in future satellite missions aiming to quantify

species richness in grasslands. We are aware that obtain-

ing spatial resolutions in which an individual plant corre-

sponds to a pixel will not be feasible. Therefore,

investigations to compensate spatial resolution by spectral

or even temporal resolution should be a future goal. To

our knowledge, no study has simultaneously analysed the

trade-offs between the spatial, spectral and temporal

dimensions of remote sensing data for quantifying biodi-

versity to date.
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