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Abstract

Snow cover is an important environmental variable influencing alpine marmots’ physiology and
vital rates. During hibernation, early snowfall ensures insulation of the burrow, which increases
winter survival. But snow prolonging into spring delays vegetation growth, whereby less time
remains for marmots to replenish their fat storages. Even though the effects of snow cover on vital
rates are well known, its effect on the spatial pattern of abundance is not well understood. In this
study I developed a hierarchical distance sampling model to investigate the environmental effects
on the spatial variation in marmot abundance in the Swiss National Park while accounting for
time-varying availability and imperfect detection. I found that in regions with delayed snowfall
marmot abundance was lower, while snow prolonging into spring had no effect. The main drivers
of the spatial variation in abundance were amount of meadows, maximum summer temperatures,
and slope steepness. Abundance increased with the amount of meadow and decreased with
steepness and extreme summer temperatures. These results indicate that shorter snow cover as
a consequence of climate change may affect marmots negatively by reduced burrow insulation.
However, the importance of the other environmental factors indicates that marmots may not be
able to buffer the effects of altered snow conditions by quickly migrating to higher altitudes. This
study gives new insights into drivers of spatial variation in marmot abundance and highlights
the importance of the dynamic environment when investigating the effect of climate change on
a species.
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1 Introduction

Mountains belong to the habitats most affected by climate change [1]. Temperatures have
risen faster compared to other habitats, and the same is predicted to continue in the future
[2]. Precipitation patterns and their variance will change, increasing the frequency of extreme
droughts and intense rainfalls [3]. Changes in temperature and precipitation translate to other
processes, inducing changes in vegetation [4], snow conditions [5], and disturbance regimes [6].

Species react in various ways to the changing climate. Some species adjust their phenology,
as for example birds in the UK. Advanced flowering resulted in an earlier peak in arthropods
abundance, whereupon the birds laid their first eggs earlier in the season [7]. Climate change
alters demographic rates such as survival or reproduction, which influence population dynamics.
The effects on demographic rates are manifold and vary substantially among species [8]. Climate
change can also indirectly affect species by modifying habitat quality and species interactions.
For polar bears, the melting sea ice fragments their habitat and hampers their ability to feed,
breed, and move [9]. Warmer temperatures facilitate the spreading of existing diseases or the
emergence of new ones [10]. For example, higher temperatures increased the risk of tuberculosis
outbreaks for meerkat populations [11]. The effects of climate change on individual species
accumulate on the scale of the ecosystem, where they might get amplified or buffered by changes
in community composition, material flow, and biogeochemical cycles [12].

Mountain-adapted species may cope with new conditions by shifting their distribution to
higher altitudes [13–15]. However, the carrying capacity in high elevations is lower because the
area with suitable habitat is reduced. Populations migrating upslope will become smaller and
therefore face an increased extinction risk [16, 17]. For example, in a Peruvian bird community,
abundance of species living at high elevations has declined, and some species living on the sum-
mits went extinct [18]. Additionally, upslope range shift may isolate populations genetically.
For the American marten, gene flow between populations was substantially reduced under fu-
ture climatic scenarios [19, 20]. Immigration of related species can cause silent extinctions by
hybridization, as shown for example in plants [21].

One species especially sensitive to environmental conditions is the alpine marmot (Marmota
marmota). The first marmot species arose in the cold environment of the Pleistocene [22]. Since
then, climate was an important driver of their evolution [23]. This sensitivity to environmental
conditions is enforced by the sessile lifestyle. While other species may buffer harsh conditions
by temporal migration, marmots are locally bounded by their burrow system. To escape the
harsh winter conditions, marmots evolved social hibernation to reduce energy expenditure [24].
In late September, alpine marmots convene in a chamber of the burrow, the hibernaculum.
They reduce their metabolism to a fraction of the summer level [25]. By keeping their body
temperature between 3 and 6°C, they reduce substantially the energy required to survive the
winter [26]. As the family emerges in April from hibernation, the dominant pair starts mating.
After five weeks, the pups are born and in July they leave the burrow for the first time. During
the remaining summer, the marmots, and especially the pups, must replenish their fat storages
to prepare for the next winter [27].

To elucidate how marmots may react to climate change, for example, by a shift in distribution,
it is crucial to learn about their environmental and climatic requirements. Alpine marmots
mainly live on alpine meadows [28–31] between 1800 and 2500 m.a.s.l. [29, 32]. They mainly feed
on leaves of dicotyledonous herbs and if available, on flowers and seeds [33]. These plants contain
essential linoleic acids, which, stored in the white fat tissue, help marmots to withstand lower
temperatures during hibernation [34–36]. Besides herbal vegetation, some studies found that
marmot habitats contain some amounts of scree [28, 30], as boulders provide hiding opportunities
and rocks in the soil stabilize the tunnel systems [32].
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Marmot occurrence is associated with intermediate slope steepness [28, 37], on which the
danger of burrow floodings is minimized. Marmots occur less on slopes with northern exposures
[29, 38]. One study reported that colonies on north-facing slopes had higher mass gains during
summer but also lost more weight during winter than marmots on south-facing slopes [39].
Marmots prefer intermediate values of solar radiation [29, 37], which depends on the local
topography and the surrounding mountain silhouette.

While the static environment, such as topography and ground cover, are important habitat
characteristics, marmots are also sensitive to dynamic environmental conditions. Because mar-
mots have few sweat glands [40], they cope poorly with heat. A study investigating behavioural
responses to environmental temperatures found that above 25°C, marmots decreased their activ-
ity with increasing temperatures [41]. On hot days, marmots therefore show a diurnal activity
pattern with two peaks in the morning and the afternoon [32, 42]. Because of the sensitivity to
temperatures, it was proposed that high summer temperatures may determine the lower limit
of alpine marmot’s altitudinal distribution [41].

Marmots are also affected by snow cover conditions, even though they hibernate during winter.
Adequate snow depth in winter ensures insulation of the burrow [27]. If the temperature in the
hibernaculum falls below 5° C, marmots must increase their metabolism to keep their body
temperature [25]. The increased energy expenditure has detrimental effects on winter survival
and reproduction. Litter size in alpine marmots is associated positively with snow depth [43],
indicating that after a hard winter, little energy is left for reproduction. Another study found
that with more hard frost days in autumn, adult and pup survival decreased [44]. Pups were
less likely to survive their first hibernation period in winters with thin snow cover, both in
alpine [45] and in hoary marmots (Marmota caligata) [46]. In yellow-bellied marmots (Marmota
flaviventris), litter size was higher in winters with more frost days and adult survival was higher
in longer winters [47]. In alpine marmots, harsh winters in one year also decreased pup survival
two years later [45], because the pups that died cannont support the future generations in
warming during hibernation [25].

While adequate snow cover in winter is required, snow cover delaying into spring affects mar-
mots negatively [27]. Delayed snow melt prevents vegetation green-up, which further shortens
the already short vegetative period. In alpine marmot families with pups, winter mass loss in-
creased with later snow thawing [48] and later snow melt correlated with lower juvenile survival
[24]. Indirectly, this effect was also observed as the number of neighbouring families decreased
with later snow melt [48]. In yellow-bellied marmots, female reproduction was limited by food
availability [49] and earlier emergence from hibernation and earlier breeding allowed the animals
to gain more weight during summer [50]. However, some studies found no association between
spring snow and survival [44] or even the opposite pattern [46, 47]. In winters with thick snow-
packs, snow melt also occurs later. This led to the hypothesis that the effect of insulation might
be stronger than the effect of delayed vegetation greening [46].

While the effects of environmental conditions on marmots’ physiology and vital rates have
been addressed in various studies on several marmot species, their effects on the spatial variation
of abundance are poorly understood.

In this study I aimed to answer the following questions: 1) How do environmental conditions,
in particular snow cover conditions, influence the spatial pattern of alpine marmot abundance?
Based on the effects of snow cover on vital rates, I hypothesized higher abundance where snow
melts earlier and lower abundance where start of winter is delayed. 2) How do environmental
factors influence the detection probability? 3) Are estimates for abundance, detectability, and
environmental effects unbiased and if not, are there alternative modelling choices to minimize
the bias? And 4) are the abundance estimates in line with estimates from a classical distance
sampling analysis?
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I analysed data from a marmot census in the Swiss National Park with a Bayesian hierarchical
distance sampling model, which models marmot abundance as a function of the environment,
while accounting for marmot availability and imperfect detection. I run simulations to inves-
tigate the model’s performance under different conditions. Furthermore, I estimated marmot
abundance following a classical distance sampling analysis to validate the abundance estimates.

Quantifying the relationship between snow conditions and abundance gives insights into how
marmot populations may react to climate change. If marmot abundance is sensitive to the snow
onset day, climate change may reduce marmot abundance. However, if marmot abundance is
higher when snow melts earlier, climate change may affect marmots positively by advancing
vegetation growth. Investigating the effects of other environmental variables may reveal other
determinants of marmots’ ability to shift their distributions as a response to climate change.
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2 Methods

This study was divided into three parts: fieldwork, deriving environmental metrics, and sta-
tistical analysis. From July to September 2021, I censused the marmots in the region of the
Swiss National Park. Next, I derived environmental covariates relevant for alpine marmots from
remote sensing products. The statistical analysis included a classical distance sampling anal-
ysis to investigate the effect of covariates on the form of the detection function, a hierarchical
distance sampling analysis to study the effect of the environment on marmot abundance, and a
simulation study.

2.1 Study Area

I conducted this study in the region of the Swiss National Park near Zernez in the Canton of
Grisons (Figure 1). The border of the study area is given by the HABITALP data (see Section
2.4.1), except for the southeast corner, where the border is defined by a rectangle surrounding
the area of interest. The study area ranges from 1470 to 3170 m.a.s.l. and spans an area of
420 km2. Because of the inner Alpine location, the climate is shaped continentally with large
temperature fluctuations and arid conditions. Average annual rainfall is 800 mm and average
temperatures at the weather station Buffalora (1968 m.a.s.l.) range from -10°C in January to
10°C in June [51]. Habitats at lower elevations are dominated by coniferous forests, which are
replaced by alpine meadows and finally by scree and rock at higher altitudes. The park is strictly
protected from anthropogenic influence and can only be accessed on the various hiking paths.
All agricultural and hunting activity is prohibited. Open areas outside the park are used for
extensive grazing. Marmots occur mainly above the treeline on alpine meadows, but few colonies
are also found in scree fields and clearings below the treeline.

46.60°N
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46.70°N

46.75°N

46.80°N

10.0°E 10.1°E 10.2°E 10.3°E

a b

c

Figure 1: a) Transects (red) follow the main hiking paths in the study area (blue) around the
Swiss National Park (light brown). ▼: location of alp Grimmels, where the availability data was
collected. b) Location of the study area (blue) in Switzerland. c) Along the purple transect in
a), observation sites were placed every 330 m.
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2.2 Fieldwork

Between July 29 and September 23, 2021, I censused the marmot populations in the region of the
Swiss National Park following a point distance sampling approach [52]. I placed transects along
the main hiking paths in and around the Swiss National Park (Figure 1a), with observation sites
at 330 m intervals along these transects (n = 432).

At each observation site I counted marmots for 10 minutes with binoculars, a thermal camera,
and by eye. Until the end of August, I used a PULSAR CORE FXQ50 BW thermal scope and
from September on a PULSAR Helion 2 XP50 Pro. I developed a custom app in the Field
Maps app platform (ESRI) to facilitate the collection of locations and attributes of the animals
surveyed. I distinguished between animals spotted by eye or with binoculars, and those spotted
using the thermal camera. Former, I directly recorded in the app. As warm rocks also generate a
thermal signature similar to marmots, I only recorded marmots seen using the thermal camera,
if I saw them with binoculars as well. This also reduced any bias arising from the different
sensitivities between the two thermal camera models. When the ground became too warm to
spot marmots in the thermal camera, I ended the field day.

Some observation sites were unfortunately placed with little chance to spot marmots, because
the habitat was not suitable for marmots (e.g., in forests or high altitudes), or the viewing range
was restricted by topography or vegetation. If there was a better observation spot within 50
m, I surveyed from there and corrected the coordinates. Otherwise, I recorded that no survey
would be carried out (Table 1). If I surveyed at an observation site, I noted the start and end
times of the observation period. I remarked when I had no thermal camera with me, which was
the case at three field days. Furthermore, I recorded the weather, temperature and the number
of tourists within sight range during the observation period.

Table 1: Attributes for observation sites and values to select from.

Attribute Values

Sampled Yes, No
Time Start, End
Gadget ThermalCam, Binoculars
Disturbance 0, 1-3, 4-10, >10
Weather sunny, cloudy, drizzle, fog, changeable
Temperature cold (need for a jacket), chilly (need for a sleeve), warm

At each observation site, I recorded for 10 minutes the locations of marmots and their at-
tributes (Table 2). Marmots that were separated by no more than 20 m as I considered as one
group, for which I recorded the centre of the group with corresponding numbers of adults and
pups. If individuals moved during the 10 minutes, I recorded their initial location. If it was not
possible to record all groups during the 10 minutes, I spent additional time after the observation
period to properly record the data. Any newly emerging marmots were not recorded.

I followed several rules to minimize the influence of observer and tourists along the hiking
paths on the number of counted marmots and their radial distance. On each field day I visited
the first observation site between 7 and 8 am, providing enough time before the first tourists
arrived. Once there were too many tourists in the area, I ended the field day. I approached each
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Table 2: Attributes for observed marmots and values to select from.

Attribute Values

ID unique ID of the observation site
Habitat AlpineMeadow, AlpineMeadow Stones, Pasture, Forest, For-

est sparse, Forest young, DwarfMountainPine, Scree, Rock, other
NoAdult number
NoJuvenile number

observation site calmly and slowly to not disturb the animals. I recorded marmots which fled
during approach, if their initial location was visible from the next observation site.

2.3 Data cleaning and processing

I excluded observation sites and their corresponding marmot detections from further analysis, if
they belonged to one of five categories: 1) The observation site was located outside the extent
of the HABITALP data, 2) vegetation limited the sight range at the observation site, 3) the
habitat in the surrounding of the observation site was unsuitable for marmots, 4) the observation
site was in close proximity of another observation site and 5) I visited the observation site when
some colonies already started hibernating.

Observation sites falling into category 2) and 3) often had the attribute Sampled set to No.
I excluded few other sites based on remarks on the sight range taken during fieldwork. For
case 4) I filtered observation sites closer together than 140 m. Out of two sites in proximity, I
selected the site with the larger sight range. Observation sites further apart were often located
in different terrain chambers, whereby the overlap between observed areas remained minimal.
Case 5) applied to the last field day on the 29.9.2021, where I saw winter burrows with clogged
entrances, indicating that the colony had started hibernating.

I performed all analysis in R 4.2.0 [53] on a Windows 10 x64 machine. I run time consuming
calculations and Bayesian models on a Linux server running Ubuntu 20.04.4 LTS and R 4.1.3.

2.4 Deriving environmental metrics

I reviewed the literature on habitat characteristics of alpine marmots to find candidate covariates.
The variable selection process is described in Appendix A.2. I derived ground cover, slope, solar
radiation, temperature, and snow cover metrics. Variables from existing datasets were used
where available, otherwise I derived variables from remote sensing products.

The year of a marmot is divided into hibernation and active period, and different environ-
mental processes may play a role in each. I therefore estimated the mean emergence date and
the mean hibernation date from marmot phenology data for the years 2003 to 2020 (Swiss Na-
tional Park, unpublished data). The average emergence date was 18.4., the average hibernation
date was 29.9. Solar radiation, temperature, and spring snow cover are environmental variables
relevant during the active season. I derived these parameters between 18.4 and 28.9. To this
time frame I refer to as “summer period”. Burrow insulation by snow is only relevant during
hibernation, which is why I derived a metric for snow cover between 29.9. and 17.4. (“winter
period”).

Dynamic environmental covariates such as snow cover or temperature underlie large year-
to-year variations. Additionally, remote sensed indexes may show spatial artefacts due to the

8



flight pattern of the satellite. To average out these effects, I calculated dynamic environmental
metrics for four years (preferably 2018 to 2021, the four years for which the snow cover product
is available) and averaged the metrics across the four years. Averaging indices across years
might also better explain marmot abundance, as winter conditions also influence vital rates over
several years [45].

In ecological models, different pixel resolutions lead to different conclusions about the effect
of environmental variables [54]. A fine resolution describes behavioural processes (e.g., feeding
behaviour), whereas resolutions at home range scale describe how a colony chooses its territory.
In this study, I aim to describe the latter. However, mountains are heterogeneous environments.
The finer the resolution, the better the heterogeneity is captured by the data. I therefore
resampled all environmental variables to 100×100 m, which is on the lower end of a typical
home range size of an alpine marmot family [55].

2.4.1 Topography, radiation, habitat, and temperature

Topographical variables are often included in species distribution and abundance models because
they combine effects of many environmental variables into a single parameter. I derived slope
steepness from the digital terrain model (DTM) product SwissAlti3D from swisstopo [56] at a
resolution of 10×10 m.

From the same DTM resampled to 20×20 m I derived a radiation map using the Solar Radi-
ation Tool from ArcGIS Pro (ESRI). For each pixel I extracted the cumulative radiation over
the summer period for the year 2021. As sky size I chose 200 cells, which is sufficient for time
periods >14 days [57]. For the remaining parameters, I chose the default settings, because I am
not interested in precise radiation estimates but in relative differences across the landscape.

Table 3: Several habitat types were combined into the three categories meadow, scree, and
unavailable. Habitat types are translated from German.

Category Habitat Type ID Remark

Meadow meadow 4200
resting spot 9392 in study area: always on meadows
ruin 9160 in study area: overgrown by meadows

Scree bare ground 5400
anthropogenic cairn 5520
snow through 5620
scree, boulders 5700
snow 5900 in study area: below is always scree

Unavailable water 2000
bog 3000
agriculture 4000
cave 5100
retaining wall 5540
trees, bushes 6000
forest 7000
disturbed sites 8000
settlement, traffic, recreation 9000 without HT 9392 and HT 9160
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To characterize ground cover, I calculated proportion of meadow, proportion of scree, and
proportion of habitat unavailable for marmots per pixel from the HABITALP data set [58], a
ground cover and vegetation data set from the Swiss National Park. As there are no distinct
HABITALP categories for meadow, scree, and unavailable, I combined several habitat types
(Table 3). For each 100×100 m pixel I calculated the proportion of each category covering the
pixel area. I calculated the proportion of meadow and scree relative to the available area in the
pixel. Pixels overlapping with the border of the HABITALP data were excluded from further
analysis.

The category “unavailable” combines habitat types with two characteristics. First, marmots
cannot occur in certain habitats (e.g., water, villages). Second, the snow and plant phenology
metrics are only valid in open areas. Therefore, even though in rare cases marmots may occur
in loose forests, I defined these habitat types as unsuitable for marmots.

As high summer temperatures may define the lower limit of marmot distribution [41], I derived
temperature metrics for each pixel from downscaled Daymet data [59] at a resolution of 100×100
m. At the time I acquired the data, the DaymetCH data for the year 2021 was not yet processed.
Therefore, I used daily temperatures of the summer periods of the years 2017 to 2020. For each
year and pixel, I calculated the median of the daily maximum temperatures and averaged over
the four years.

2.4.2 Snow cover

Snow is hypothesized to have opposing effects on marmot abundance depending on the sea-
son. During the winter period, snow insulates the burrow, reducing energy expenditure of the
hibernating marmots. In spring, delayed snow melt shortens the vegetation period.

I aimed to derive snow phenology metrics describing the insulating effect of snow in winter and
the delaying effect of snow in spring. For the former, snow depth would be a convenient snow
property. However, remote sensed snow depth measurements are not freely available. Instead,
I used the Theia Snow Collection [60], a binary snow cover mask derived from Sentinel-2 and
Landsat-8 images at a 20×20 m resolution, making the assumption that if snow is present, the
ground is insulated. For snow melt, a binary snow cover is suitable, because vegetation starts
growing two weeks after all snow has melted [61].

I downloaded level 2B snow masks with an average temporal resolution of 5-days for the
period between 30.9.2017 and 29.9.2021 with the package theiaR [62]. I defined a hydrological
year relevant for marmots starting from 29.9. until 28.9. of the following year. I derived all
snow phenology metrics within one hydrological year and averaged across the four years.

For each pixel and year, I interpolated the binary snow/no snow values with a temporal
nearest neighbour algorithm, where to each missing value in a pixel time series the value of the
nearest measurement is assigned (Figure 2a). From the interpolated time series, I calculated
two snow phenology metrics Snow Delay (SD) and Snow Prolongation (SP). SD is defined as
the number of snow free days between 29.9. and the longest snow-covered period. Snow-free
days beyond the longest period are not included in SD, because in spring the sun warms the
burrow as soon as the ground is snow-free [24]. SP is the number of days snow prolongs beyond
the emergence date on 18.4. until the longest snow-free period. Occasional snow-covered days
in autumn are not included in SP, because they occur too late to affect vegetation growth.

The binary snow maps are only valid in open areas. In forest, the snow masks describe the
state of the canopy rather than of the ground. I therefore masked out all 20×20 m pixels
overlapping with unavailable habitat (section 2.4.1) before resampling to 100×100 m.
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2.5 Statistical Analysis

Distance Sampling is a censusing method to estimate animal abundance by estimating a detec-
tion probability based on the distance of the animal [52]. The further away an animal is, the
less likely it is spotted by an observer. To each animal spotted, the distance to the observer
is recorded. To these distance measurements, a monotonically decreasing detection function is
fitted, which is used to estimate a detection probability. However, distance sampling assumes
that abundance is unknown, but constant across the study area [63]. Only if the study design is
random with respect to animal abundance, one can extrapolate abundance to unobserved areas
(“design-based abundance estimate”).

Recent efforts have been made to incorporate abundance effects into a distance sampling
framework (“model-based abundance estimate”). Such approaches can be divided in two con-
ceptional groups: two-stage and one-stage approaches [64]. Two-stage approaches are based on
the count model of Hedley & Buckland (2004) [65]. First, the distance data informs a detection
function, from which a detection probability is derived. Then, the individual observations are
pooled to animal counts per transect segment or observation site. The pooled counts are mod-
elled as a function of the environment, often by fitting generalized additive models (GAMs).
One-stage approaches estimate parameters for the detection function and abundance jointly [66,
67].

However, both approaches only model changes in abundance at the level of the observation
unit (observation site or transect segment). For mountain environments, this resolution is too
coarse, as with a thermal camera marmots can be spotted beyond 300 m. The environmental
variation within this radius is too large to yield useful models. Recently, Marc Kéry and Andrew
Royle [68] proposed a Bayesian hierarchical model, which models abundance effects on a pixel
unit smaller than the observation unit.

First, I analysed the data using a design-based analysis, to which I refer to as classical dis-
tance sampling (Section 2.5.1). To investigate the effect of environmental covariates on marmot
abundance, I extended the Bayesian hierarchical model to account for time-varying availability
(Section 2.5.2). I refer to this as the hierarchical distance sampling model. Furthermore, I
conducted a simulation study using a simplified version of the hierarchical model to investigate
its behaviour in different conditions (Section 2.5.3).

I wrote all Bayesian models in JAGS 4.3.1 [69] with the R interface jagsUI [70].

2.5.1 Classical distance sampling

I conducted a classical distance sampling analysis using the R package Distance [71]. I aimed
to get estimates for average density, abundance, and for parameters describing the detection
function. Furthermore, I wanted to explore the effect of covariates on the shape of the detection
function.

To allow for comparisons with abundance estimates from the spatial distance sampling model,
I set the area of the study area to the area of pixels used for the hierarchical model (section
2.5.2).

Large distances contribute little to the estimation of the detection function g(x) but may lead
to high variance. It is recommended to exclude 10% of the detections [52], which corresponds
to a truncation distance of 388.5 m for my data. However, goodness of fit assessments showed
poor fit for large distances. I therefore truncated my data at 300 m.

I selected the most parsimonious model with a threshold of ∆AIC > 2. AIC, however, tends
to select overly complex models if the distance data is overdispersed [72], i.e., if there is higher
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variability in the distance data than expected based on the model. In distance sampling, this
arises if distance measurements are not independent, which is the case for marmots. Since
marmots live in social groups, several individuals have similar distances. Therefore, I analysed
the animals as spatial groups with a given size, which reduced overdispersion substantially.
To convert the group abundance to individual abundance, the group size is regressed against
distance. The group abundance is then multiplied by the average group size at distance 0,
yielding the abundance of individual marmots. However, the marmot groups were still not
completely independent, because one family may be split in several spatial groups.

I compared a model with a half-normal detection function (equation 1) against a model
with a hazard-rate (equation 2). While AIC would have selected for the hazard-rate model,
I proceeded with the half-normal model to keep the comparability to the hierarchical model.
I iteratively added covariates to the previous best model (forward selection). The covariate
vector z influences the detection function by altering σ (half-normal: sigma, hazard-rate: scale,
equation 3), which are the inflection points in both detection functions.

g(x) = exp

(
− x2

2σ2

)
half-normal (1)

g(x) = 1− exp

(
−
(x
σ

)−b
)

hazard-rate (2)

σ(z) = exp
(
β0 + z⊤β

)
covariate effect (3)

I investigated the effect of habitat, weather, temperature, disturbance, time of day, and time
of year on the shape of the detection function. To avoid overparameterization, I merged several
factor levels of the categorical covariates. For habitat, I added Pasture to AlpineMeadow, and
merged Forest sparse, Forest young, Rock, and Scree into the category Other. For weather,
I merged the levels changeable, Fog, and cloudy into cloudy. I converted disturbance into
a binary category (yes, no). Even though I would have expected an influence of Gadget, I
only visited few observations sites without a thermal camera, so I did not test for an effect. I
scaled the continuous variables DayTime and YDay to improve model fitting behaviour. I did
not include any interactions, because for many factor combinations, there was no data. Since I
included covariate effects, I did not add adjustment terms to the detection functions.

2.5.2 Hierarchical distance sampling

Covariates in classical distance sampling models only influence the shape of the detection func-
tion. Hierarchical distance sampling models contain an additional model component describing
the abundance as a function of environmental covariates [64]. One attempt in a Bayesian frame-
work, which models abundance on a pixel unit, was made by Marc Kéry and J. Andrew Royle in
Applied Hierarchical Modeling in Ecology [68, 73]. I used their spatial model on pixel frequencies
[73] as a basis and expanded the model to correct for time-varying availability of marmots.

The model corrects the marmot counts by accounting for three processes. The first process
describes the abundance of marmots on a pixel (environmental process). The second process
describes the availability of the marmots depending on the time of day (behavioural process), and
the third process corrects for imperfect detection by filtering the number of available marmots
depending on the distance (detection process).

In the environmental process, I modelled the number of marmots N on a pixel g following a
Poisson distribution with intensity function λg, which is linked to the habitat covariates xg by
an intercept β0 and a parameter vector β. The priors on the β’s were weak normal distributions
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with mean µ = 0 and variance σ2 = 100. Since not all the pixel area is suitable for marmots, I
added an offset to the intensity function with the proportion of the pixel available for marmots
A.

βi
iid∼ N (0, 100)

λg = exp
(
β0 + x⊤

g β + log(A)
)

Ng ∼ P(λg)

I modelled the effect of seven environmental covariates: proportion of meadow, proportion of
scree, slope, snow prolongation (SP), snow delay (SD), radiation, and the median of the daily
maximum temperatures (Tmax). For the last I included a quadratic effect, as I expect that
marmots may prefer an optimum temperature. I standardized all covariates to improve run
time and mixing of the models.

The number of marmots available depends on the time of day, as marmots show a diurnal
availability pattern with two maxima [32]. Since I always started sampling in the valley bottom,
the time of sampling is correlated with almost all environmental variables. By ignoring this
effect, the model cannot disentangle if the observed abundance is a pattern in abundance or
in availability. To incorporate information in availability, I used existing data from a study
carried out in 2009 in the national park [74]. On Alp Grimmels (Figure 1a), the number of
animals outside the burrow were counted every 10 minutes. I fitted a Bayesian spline with
9 knots to the available proportion of the marmot family (Figure 2b). For each observation
site, I predicted the mean availability probability µg and the corresponding standard deviation
sdg. In the behavioural process of the model, the number of available marmots Mp on a pixel
follows a binomial distribution, where n = Ng and p follows a normal distribution with mean
and standard deviation estimated from the spline for the nearest observation site.

pg ∼ N (µg, sd
2
g)

Mg ∼ B(Ng, pg)

In the detection process of the model, I modelled imperfect detection with a half-normal
detection model, where the detection probability qg decreases with distance dg between the ob-
servation site and the pixel. Rather than using the distance to the pixel centre as proposed
in [73], I used the expected distance of a pixel to the observation site (see Section 2.5.3). The
parameter σ should be in R+, therefore I set the prior of σ to a wide, positive, uniform distri-
bution. The number of animals detected on a pixel Lg then follows a binomial distribution with
n = Mg and p = qg.

σ ∼ U(0, 20)

qg = exp

(
−

d2g
2σ2

)
Lg ∼ B(Mg, qg)

While Mg and Ng are unknown properties which must be estimated, Lg is provided as data.
Lg was calculated as the number of marmots on a pixel g seen from the nearest observation site
during fieldwork. From these pixel-based metrics I derived total abundance and average density
defined as

Ntot =

G∑
g=1

Ng

D =
Ntot

G
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Similar to truncation in classical distance sampling, I only included pixels in the analysis that
intersected with a buffer of 350 m around the observation sites. Additionally, I excluded pixels
with missing environmental covariates. These were pixels mainly covered by unavailable habitat,
for which the resampling had no values to average over. Marmots on such pixels were excluded
as well, reducing the number of marmots from 571 to 550.

My data contains repeated observations of marmots, i.e., where I saw the same marmots from
several observation sites. However, I did not allow the model to detect marmots from more than
one observation site, but only evaluated each pixel with respect to the nearest observation site.
This reduced the number of marmots for the analysis from 550 to 342 marmots on 170 pixels,
on which abundance was bigger than 0.

2.5.3 Simulation Study

Before applying the model to my data, I tested the model on simulated data with the aim
to compare the performance of different parametrizations and to investigate sources of bias. I
simulated an imaginary marmot species Marmota commenticius on a virtual habitat. To analyse
the simulated data I used a simplified version of the model described in sSection 2.5.2 without
the behavioural process.

The simulated data is built in several steps with code modified from Applied Hierarchical
Modeling in Ecology [68]. First, a plain is divided into pixels. To each pixel g, a spatially
correlated habitat value xg is assigned. Based on this habitat value, each pixel gets a proba-
bility to contain a marmot pg = exp(βxg)/

∑
g exp(βxg), where β describes the strength of the

association between marmots and the habitat. Then, N marmots are distributed to the pixels
following a categorical distribution with probability vector p. Within a pixel, the coordinates
of the marmots are uniformly distributed. Finally, each marmot is detected or not by a detec-
tion model (either half-normal or hazard-rate) depending on the distance between marmot and
observation site. An example of a simulated data set is shown in Figure 2d).

There is a discrepancy between the simulated data and the model. In the simulated data,
the marmots on a pixel are described by a Binomial point process (BPP), while the model
describes them as a Poisson point process (PPP). Using a BPP in the simulations allows to
fix the abundance, therefore making the estimates comparable to the true value. Using a BPP
in the model would require augmenting the data, which will decrease the speed of the model
drastically. While there are theoretical differences between BPP and PPP, in practice the two
are indistinguishable with the exception that in the BPP the variances of the estimates will be
slightly smaller [75].

I run four simulations to investigate the effect of four potential issues. In simulation 1 (SIM1)
I compared a half-normal against a hazard-rate parametrization of the detection function. In
simulation 2 (SIM2) I investigated the effect of spatial overlap between observation sites. In
simulation 3 (SIM3) I examined the influence of pixel resolution on the estimates. And in
simulation 4 (SIM4) I compared two distance measures for the distance between marmots and
observation sites. If not stated otherwise, I set the true parameters to β = 1.2, abundance
N = 400, σ = 0.1 for the half-normal model, pixel resolution = 0.1 × 0.1 km2, number of
observation sites = 10, and distance between observation sites = 0.3 km.

In SIM1, I compared two parametrizations for the detection function, the half-normal model
(HN, equation 1) and the hazard-rate model (HR, equation 2). In the classical distance sampling
analysis, AIC selected for the hazard-rate detection model. However, previous runs of the
hierarchical model with a hazard-rate detection model led to models where either the scale
or shape parameter showed bad mixing behaviour (chains hitting against lower boundary of
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parameter). To assess any differences between the two parametrizations, I simulated 100 data
sets, 50 with a half-normal and 50 with a hazard-rate detection model, and analysed each data
set with a model with the corresponding detection function.

Next, I investigated implications of the spatial overlap between observation sites. Each pixel
is only evaluated with respect to the nearest observation site. As observation sites are closer
together, the number of far pixel decreases. I therefore expected the detection function to
decrease quicker when the observation sites are closer together. I simulated 50 data sets for each
of seven distances between observation sites (0.1-0.7 km in 0.1 km steps) and analysed them
with a half-normal model.

Furthermore, I wanted to investigate effects of the choice of pixel resolution. Distance models
use continuous distance measures, whereas I used the distance to the pixel centre. The finer the
grid, the better the approximation of the continuous space by the discrete raster. I simulated
50 data sets for each of 6 different pixel sizes (0.2, 0.15, 0.1, 0.08, 0.06, 0.04 km edge length)
and run a half-normal model on each data set.

As a way to counteract the bias I found in the parameter estimates, I compared two different
distance measures between pixel and observation site. The first is the Euclidean distance between
site and pixel centre. The second is the expected distance between site and pixel. If the
observation site is located on a pixel centre, the Euclidean distance is 0. However, the average
distance of many uniformly distributed points on the pixel to the observation site will be > 0
(Figure 2c). The expected distance accounts for this discrepancy. If a point within a pixel with
edge length r is uniformly distributed

X ∼ U(−r/2, r/2)

Y ∼ U(−r/2, r/2)

the distance between the point on the pixel with coordinates (x1, y1) and the observation site
with coordinates (x0, y0) is

d =
√

(x1 +X − x0)2 + (y1 + Y − y0)2.

The expected distance of the focal pixel is then

E[d] =
1

r2

∫ r/2

−r/2

∫ r/2

−r/2

√
(x1 +X − x0)2 + (y1 + Y − y0)2dXdY.

I simulated 50 data sets and analysed each twice with the two distance measurements.
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Figure 2: a) Illustration of the two snow cover metrics snow delay (SD) and snow prolongation
(SP). The black line shows the interpolation from the theia snow cover product (blue points)
for a random pixel. The vertical black line show the mean emergence date on 18.4. b) Bayesian
spline fitted to the availability data of marmots on Alp Grimmels in the Swiss National Park
with 95% credible interval. The red points are the mean predicted availability probabilities µg

for all observation sites. c) If the observation site (cross) is in the centre of a pixel, the distance
to the pixel centre is zero, but the average distance of many uniformly distributed points is
larger than zero (red circle). The expected distance accounts for this discrepancy. d) Example
of a simulated data set. Crosses show the observation sites, black points the 400 marmots, and
red points the marmots that were detected based on the detection model.
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3 Results

3.1 Classical distance sampling

From the two null models, the hazard-rate detection model had a lower AIC than the half-normal
model (Table 4). However, since the hazard-rate detection function in the hierarchical model
mixed poorly, I continued with the half-normal model to ensure comparability. The two best
performing models were the ones with covariates Temperature + Weather and Temperature +
Weather + YDay. Since the marmot observations are not independent, AIC tends to select
overly complex models. Therefore, the model with fewer parameters should be preferred as
the final model. While the detection probability Pa was in the same range for all half-normal
models, it was considerably lower for the hazard-rate model.

Table 4: Results of the model selection process for the influence of covariates on the detection
function. Key shows the family of the detection function (HN or hazard-rate), Formula shows
the covariates in each model, Pa and se(Pa) is the detection probability and the corresponding
standard deviation, and ∆AIC is the difference in AIC to the best performing model.

Key Formula Pa sd(Pa) ∆AIC

HN Temperature + Weather 0.396 0.033 0
HN Temperature + Weather + YDay 0.396 0.033 1.935
HN Temperature + YDay 0.411 0.033 6.653
HN Temperature 0.414 0.033 6.912
HN YDay 0.421 0.033 10.788
HN Weather 0.421 0.035 15.074
HR 1 0.243 0.075 16.675
HN 1 0.435 0.033 20.329
HN Habitat 0.43 0.033 20.538
HN DayTime 0.435 0.034 22.248
HN Disturbance 0.435 0.033 22.286

The unweighted Cramer-von Mises goodness-of-fit test for the final model indicated sufficient
model fit for the final model (p = 0.2409, where a significant p-value would indicate that the data
origins from another model). However, for small distances, the observed distances were larger
than the fitted distance, while the opposite was true for large distances (also seen in Figure 3).

The half-normal model without covariates (Null) and the half-normal model with Tempera-
ture and Weather (Final) had similar abundance estimates (Table 5) and the uncertainties in
abundance were considerably bigger than the difference between the models. The same was
true for the density estimate D and its uncertainty. The distance to the inflection point of the
detection function σ was 150.6 m for the null model. This was greater than σ in the final model
(126.3 m) seen as the average across all factor level combinations.

Detection probability was lowest in warm temperatures and increased with cold and chilly
temperatures (Figure 3a) for constant weather. The detection probability was lowest during
drizzle, increased with cloudy weather and was highest for sunny weather (Figure 3b) for constant
temperature. However, the category Drizzle had few samples and therefore, the decrease in Pa

for this covariate level was not as robust as for the others.
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Table 5: Comparison of the null model and the final model with temperature and weather
effects. D and sd(D) are the density estimates and the standard deviations. N and sd(N) are
the abundance estimates and their standard errors. σ is the distance in meters to the inflection
point in the half-normal detection model.

Model D sd(D) N sd(N) σ

Null 0.139 0.018 722.8 94.9 150.6
Final 0.143 0.021 743.7 107.8 127.3

a

b

Figure 3: Result of the final model from the distance sampling analysis. Bars show the observed
distances corrected for the increasing area observed with distance from the observation site.
The lines show the predicted detection probabilities for a) the influence of temperature on the
detection function (with weather being sunny) and b) the influence of weather on the detection
function (with temperature being warm).
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3.2 Simulation

I ran simulations to investigate the effects of a half-normal versus a hazard-rate parametrization
of the detection function (SIM 1), biases arising from spatial overlap between observation sites
(SIM 2), bias arising from the spatial resolution (SIM 3), and potential fixes for the bias (SIM
4). I estimated form parameters of the detection functions (sigma, scale, shape), the association
with the environment (beta), and abundance (N) and compared them to the true simulated
value.

Both the half-normal and hazard-rate detection model performed similarly (Figure 4, top row).
However, all three form parameters for the detection functions were biased high, which lead to
an overestimation of the detection probability. The bias in detection probability propagated to
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Figure 4: Estimated parameters for the four simulation runs (rows). Sigma, scale and shape
define the form of the detection function. Beta is the association of M. commenticius with the
environment. N is the abundance across all pixels and red lines show the true simulated values.
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the abundance estimates, which were biased low. The beta parameters, however, were unbiased.

The biases in the detection function parameters were constant across varying distances be-
tween observation sites (Figure 4, second row). For all simulated distances, sigma estimates were
biased high and abundance estimates were biased low. The beta parameters remained unbiased.

SIM 3 indicated that the bias arose from the decision on the spatial resolution of the environ-
ment. The finer the resolution, the smaller the bias in sigma (Figure 4, third row). The biases in
the detection functions propagated into the abundance estimates, which were lower for coarser
resolution. However, the beta parameters were not affected.

I expected the biases to arise from the difference between the distance to the pixel centre and
the expected distance. However, both distance measures showed the same amount of bias in
sigma and abundance estimate (Figure 4, bottom row).

3.3 Hierarchical Distance Sampling

I investigated the influence of environmental factors on marmot abundance with a Bayesian
hierarchical distance sampling model correcting marmot count data for time-varying availability
and incomplete detection.

The four MCMC chains converged successfully (visually and all Rhat values smaller than
1.003). Visual inspection of the chains showed that burn-in was sufficient. With 80’000 samples
from the posterior distributions, the lowest effective sample size was 1003 for radiation. Some
samples from the posterior distributions of the environmental parameters were unreasonably
high. In combination with the exponential function in the environmental process, expected
abundance estimates rocketed up, especially if the covariates were at their extreme values as
well. To ensure robustness against these outliers, I calculated median estimates instead of mean
estimates.

The effect size of the environmental covariates was largest for meadow, followed by Tmax2,
slope, and SD (Table 6, Figure 5). For meadow, slope, and Tmax2, the 95% credible intervals
(CI) did not overlap with zero, indicating a low probability for no effect. The CI for SD just

Table 6: Median of the samples of the posterior distribution of the parameter (Estimates),
the standard deviation, and the corresponding 95% credible intervals (CI). The CI of bold
environmental parameters do not overlap 0.

Parameter Estimate StDev CI

Intercept -1.402 0.118 [-1.63, -1.17]
Meadow 0.711 0.25 [0.25, 1.23]
Scree -0.073 0.24 [-0.52, 0.42]
Slope -0.222 0.088 [-0.39, -0.05]
SD -0.103 0.056 [-0.21, 0.01]
SP 0.032 0.144 [-0.25, 0.31]
Radiation 0.026 0.096 [-0.16, 0.21]
Tmax -0.012 0.13 [-0.26, 0.24]
Tmax2 -0.328 0.117 [-0.56, -0.1]
σ 0.183 0.01 [0.17, 0.2]
N 1142 73.87 [1007, 1296]
D 0.22 0.014 [0.19, 0.25]
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barely overlapped with zero, while the rest of the parameters did not differ from zero (Figure
5).

The exponentiated intercept can be interpreted as the expected marmot abundance on a
pixel in absence of habitat effects, which was 0.246 marmots per ha. With habitat effects,
the median abundance was 1142 marmots across all pixels used for model fitting and with an
average density of 0.22 marmots per ha. The classical analysis would have proposed a hazard-
rate parametrization, which would have resulted in a lower detection probability. Therefore, the
abundance estimate of the hierarchical model should be interpreted as a lower boundary rather
than a precise estimate.

The median σ parameter of the half-normal detection function was with 0.183 km higher than
the estimate from the regular distance sampling model (150.6 m) without covariates.

A model run without the behaviour model component showed similar environmental effect
sizes. The median abundance of this model was 716 marmots, which was close to the estimate
from the spatially-implicit distance sampling model without covariates (722.8).

Goodness-of-fit tests and investigating the residuals showed that the model overestimated
abundance on pixels where no marmots were seen and underestimated abundance on pixels with
high abundances (Appendix A.3). Two Bayesian p-values, computed with Pearson and Freeman-
Tukey residuals respectively, indicated poor model fit (both p = 1). A well-fitting model should
simulate data similar to the observed data, which would be indicated by a Bayesian p-value of
p = 0.5.

Based on the posterior samples I extrapolated median expected abundance with standard
deviation to the whole study area (Figure 6). In the eastern part of the study area, the observed
marmots were located where expected abundance was high as well. In the west, the observed
marmots followed less the pattern in expected abundance. The standard deviation of expected
abundance is influenced by two processes. Because of the Poisson model, the standard deviation
is high in regions of high marmot abundance. Additionally, standard deviation is increased in
parts of the study area which were not censused properly, for example, the low elevations in the
west of the study area.
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Figure 5: a) Half-normal detection function proposed by the model. b-h) Effect plots of the
environmental covariates on the expected abundance per pixel. For each covariate x, the effect
plot shows exp(β0+βx ·x). The rest of the covariates are kept constant at their mean value (0).
The dark line shows the median expected abundance surrounded by a 95% credible interval. i)
Median of the samples of the posterior distribution for each environmental parameter with 95%
credible intervals.
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4 Discussion

In this study I analysed the effect of environmental conditions on the spatial pattern of mar-
mot abundance with a focus on snow cover conditions. In summer 2021 I collected marmot
abundance data in the Swiss National Park. I developed a Bayesian hierarchical model to study
environmental effects on marmot abundance while accounting for imperfect detection and time-
varying availability. I tested different model in simulations to investigate its performance under
several parametrizations and technical variations. Additionally, I compared the results of the
hierarchical model to abundance estimates from a classical distance sampling analysis.

Model selection between different distance sampling models revealed an effect of temperature
and weather on the detection probability. For warm temperatures, warmed rocks appeared in
thermal camera. Marmots, especially at large distances, became harder to detect, which is rep-
resented in the faster drop of the detection function for warm temperatures. In chilly and cold
temperatures, the thermal cameras did unfold their full potential. Out of the different weather
conditions, detection probability was lowest for drizzle, because water in the atmosphere ab-
sorbed the thermal signals of distant marmots. However, the sample size in this category was
low, which weakens the strength of this finding. In the hierarchical model, I ignored environmen-
tal effects on the form of the detection function to keep the model simple. Ignoring temperature
and weather effects biases abundance estimates in some regions. But across the whole study
area, distance sampling models are pooling robust [76], meaning that even though there are fac-
tors influencing detection probability, analysis of the pooled data across all factors still produce
reliable abundance estimates.

Simulations showed that abundance estimates from the hierarchical model are biased low
because of the spatial resolution of the environmental variables. The finer the resolution, the
better the approximation of continuous space. This discrepancy might be responsible for the
higher σ estimates from the hierarchical model compared to the one from the classical model.
However, choosing a finer resolution would change the interpretation of the environmental effect.
Coarse resolutions reflect how marmots choose their home range, while fine resolutions would
mirror behavioural processes [54]. Nevertheless, the simulations showed that the association
with the environment, the main objective of this study, is unbiased. The bias in abundance can
therefore be accepted if abundance estimates are only interpreted as a lower boundary. Two
ideas to reduce the bias are discussed in Appendix A.5.

In line with many studies on habitat characteristics of marmots, proportion of meadow was the
strongest predictor for abundance in the hierarchical model [28–31]. Meadows provide several
benefits for marmots. Dicotyledonous herbs contain essential linoleic acids, which were shown to
improve survival during hibernation [34–36]. Additionally, the shallow vegetation allows vigilant
marmots to spot predators earlier than in shrubs or forests. Proportion of scree had no effect on
abundance, even though some colonies in the study area had their main burrows in scree fields
(personal observation). This might be reflected in the large uncertainties in the effect of scree
amount, as some scree fields may support large colonies while others do not. Steep slopes had a
negative effect on abundance. Steep slopes occur mainly in high altitudes, which are unsuitable
due to lack of vegetation, low temperature, or long snow cover. Previous studies showed that
armots select intermediate slopes to prevent burrow floodings [28, 37]. However, the exact
burrow locations is influenced by micro-topographical characteristics not captured by the coarse
resolution of 100×100 m. Radiation had no effect in contrast to two studies [29, 37]. Both studies
do not provide biological explanations why radiation should be important. I used radiation to
replace aspect because it captures sun exposure effects more realistically. However, radiation
effects change considerably across the landscape and may only play a role on smaller scales
than 100×100 m. Abundance was highest for intermediate maximum temperatures. DamyetCH
temperatures are interpolated between weather stations using a digital elevation model [59].
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Therefore, microclimatic effects, which are known to influence marmot physiology [25], are not
captured. The effect of temperature should therefore be interpreted with care, as it is mainly
an effect of elevation, with which many other processes are correlated. For future applications,
one might consider remote-sensed surface temperatures or microclimatic models [77].

Abundance decreased with longer snow delay (SD), as proposed by studies showing a negative
effect of late autumn snow fall on survival and reproduction [25, 27, 43–46]. SD is derived from
binary snow cover maps, but to describe burrow insulation snow depth would be better suited.
Since SD had a small, but clear negative effect on abundance, snow depth is expected to influence
abundance even more. Snow prolongation (SP) had no effect on abundance, contradicting other
studies [24, 27, 48]. However, also other studies, which tested explicitly for an effect of prolonged
snow cover, found no or opposite effects [44, 46]. Marmots keep their body mass constant after
emergence until snow melts, rather than losing more weight [32]. This may suggest that marmots
can buffer the negative effects of prolonged snow cover. Moreover, snow melt in mountains is
a heterogeneous process. Directly after emerging from hibernation, marmots feed on the few
snow-free patches in their territory (Domenic Godly, personal comment). Therefore, rather than
averaging SP values within a 100×100 m pixel, the minimum SP value per pixel might be more
important for marmots.

I derived snow cover metrics relevant to the life cycle of marmots. The metrics could be
improved by a more sophisticated interpolation algorithm. Gapfill [78] interpolates missing
pixel values both spatially and temporally, but it is not straight forward to apply for binary
data. Additionally, it should be checked that SD and SP indeed reflect the two processes of
interest: burrow insulation and delay of vegetation greening. To dilute remote sensing artefacts
from the flight pattern of the satellite, I averaged all dynamic environmental metrics over four
years. But even though environmental effects may propagate over several years, the effect of the
current year on marmot abundance is expected to be stronger [45].

The hierarchical model was not flexible enough to model the many pixels with zero marmot
abundance. Zero-inflation is a well-known problem in quantitative ecology and a biological
understanding of the source of zeros is required [79, 80]. Imperfect detection is one process
inflating the number of false zeros. The detection model component of the hierarchical model
assumes that each pixel was perfectly visible from the observation site. However, some pixels
were hidden because topography or vegetation limited the visibility. Excluding such pixels would
improve the model, but automation of this process is challenging. Zero-inflation can also arise if
important environmental covariates were missed in the model. For example, marmot abundance
may be influenced by geology, vegetation quality, or the presence of key plant species. Also,
marmot distribution and abundance may underlie different processes. While the distribution of
dominant pairs may be explained by static environmental factors, abundance of a colony with
sub-adults and pups might be largely influenced by the dynamic environment. A zero-inflated
Poisson model would allow to disentangle the two processes.

The model developed in this study only accounts for environmental effects on abundance.
While the environment does influences abundance, so do dispersal, predation, density depen-
dence, and spatial structure. Sub-adult alpine marmots disperse between the age of two and
four [48]. Limited dispersal is one reason why some suitable pixels may not be inhabited by mar-
mots. Predation pressure for marmots mainly origins from the golden eagle and the fox, though
the later only preys on pups. But considering the large home ranges of both predators, the
mortality by predation is negligible compared to winter mortality [32]. Density dependence in
alpine marmots exhibits different effect directions within and between colonies. Within a colony,
larger families have higher survival during winter [25]. But the pattern between colonies is less
clear. A recent study found that juvenile survival and reproduction decreased with number of
families in the surrounding [81], while another study found that recruitment rate was higher for
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Figure 7: Change in a) Snow Prolongation and b) Snow Delay between 1964 and 2020 at the
weather station Buffalora (1958 m.a.s.l.).

well-connected colonies [82].

While the environment may not explain all the variance in abundance, an environment-only
model can be interpreted with respect to climate change under the assumption that other non-
environmental drivers of abundance will remain constant. The weather station in Buffalora
(1968 m.a.s.l) measures snow depths since 1963 with a break from winter 1998/1999 until winter
2012/2013 (Figure 7). Average snow prolongation decreased from 32 to 13 days, while the
average snow delay increased from 30 to 48 days. With high certainty, this pattern will also
continue in the future. A study investigated the effects of climate change on the snow conditions
in Grisons (Switzerland) under the IPCC A1B emission scenario. For the years 2070-2095,
the snow season is expected to shorten by five to nine weeks compared to 2000-2010, which
corresponds to an elevational shift of 400-800 m [83]. Two other studies modelling snow cover
changes in Alpine catchments in Grisons suggested 900 m and 700-1000 m elevational shift
respectively over the same time period [84, 85]. A study investigating snow cover changes for
Switzerland found that already in near future, elevations between 1000-1700 m.a.s.l. will show
the greatest reduction in snow depth [86].

Even though snow conditions may indicate an elevational shift by several hundred meters,
marmots will certainly not follow this shift at the same speed. This is indicated by the strong
association with meadow and slope. The upper limit of vegetation shifts by 17 to 40 m per decade
[87], at a slower pace than the one for snow conditions change. Additionally, the plant species
marmots rely most on may not follow the migration to higher altitudes. Altered interactions in
the plant community can lead to local and even global extinctions [88, 89], making the future
plant community difficult to predict. Because meadow is such a strong driver of abundance,
climate-induced changes in vegetation must be considered for future climate change assessments
for marmots.

My study, however, does not elucidate if and how marmots will adapt to climate change,
because it does not account for buffering of changing environmental conditions. For example,
marmots may buffer high summer temperatures by adjusting the daily activity pattern [32].
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Snow cover effects may be buffered by altering hibernation phenology, a topic not yet stud-
ied for alpine marmots. Harsher snow conditions may be compensated for by warmer winter
temperatures or higher vegetation quality. These limitations show the importance of temporal
studies, which can account for many of these effects.

I demonstrated how a spatially explicit distance model can elucidate environmental effects
on the spatial variation in abundance. For marmots, previous distance sampling attempts often
were limited by the availability problem [90, 91]. If the model accounts for availability, distance
sampling provides a cheap and effective way to census marmot populations. It neither requires
expensive gear such as traps or tags nor legal approval and it can be conducted by few trained
field assistants. Spatial distance sampling models can be extended to model individual based
covariates, such as sex or stage [68]. A logical development is to allow abundance to vary over
time. Such an approach would combine the best of two worlds: the precision of spatial models
and the valuable information from long-term time series.
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[68] Marc Kéry and J. Andrew Royle. Applied Hierarchical Modeling in Ecology: Analysis of
distribution, abundance and species richness in R and BUGS. Vol. 1. Elsevier, 2021, pp. 1–
783. isbn: 9780128237687. doi: 10.1016/C2015-0-04070-9. url: https://linkinghub.
elsevier.com/retrieve/pii/C20150040709.

[69] Martyn Plummer. JAGS: Just Another Gibbs Sampler. 2007. url: https://sourceforge.
net/p/mcmc-jags/code-0/ci/default/tree/.

[70] Ken Kellner. jagsUI: A Wrapper Around ’rjags’ to Streamline ’JAGS’ Analyses. R package
version 1.5.2. 2021. url: https://CRAN.R-project.org/package=jagsUI.

[71] David L. Miller et al. “Distance Sampling in R”. In: Journal of Statistical Software 89.1
(2019), pp. 1–28. doi: 10.18637/jss.v089.i01.

[72] Eric J. Howe et al. “Model selection with overdispersed distance sampling data”. In: Meth-
ods in Ecology and Evolution 10.1 (2019), pp. 38–47. issn: 2041210X. doi: 10.1111/2041-
210X.13082.
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A Appendix

A.1 Discriminating between active and inactive burrows

Marmots use three different types of burrows. The largest ones are winter burrows, consisting of
a labyrinth of tunnels and cavities in which the colony hibernates. In front of the main entrance
is a large ejection mound. Smaller, but often with an equally large mound are summer burrows,
which are used by parts of the colony during nights. The third category are escape burrows;
short tunnels between 50 cm and a few meters that are used to protect marmots from acute
danger.

From distance, only summer and winter burrows are visible because of the large mound and
the altered vegetation (Figure 8c). A burrow in the data always referred to a summer or a winter
burrow, whereas the discrimination between the two is not possible from the distance and even
challenging from up close.

Burrows remain visible beyond a local colony extinction and might later be recolonized by
dispersing animals. I used several rules to decide if a burrow was occupied during summer
2021. Some hints were visible from distance, for others I had to inspect the burrow up close. I
considered a burrow as active, if at least one of the following signs was seen:

� A marmot was seen near the burrow at any time during fieldwork (not only during the 10
min observation period)

a b

c d

Figure 8: a) Fresh faeces next to a marmot burrow. b) Den grass in front of the main burrow
entrance. c) Changed vegetation structure around the marmot burrow. d) Marmot “highways”
connecting burrow entrances.
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� In front of the burrow lied freshly digged soil.
� The entrance tunnel was plant free (not used as the only criteria)
� Rocks in the burrow entrance were small and the soil was loose (vs. big rocks and consol-
idated soil). Attention: rain consolidates the soil too.

� Fresh faeces (Figure 8a).
� Den grass in front of the burrow entrance (Figure 8b).
� Vegetation in front of the entrance was squashed (not used as the only sign).
� Entrance holes were connected by traces (“highways”) in the vegetation (Figure 8d).
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A.2 Deriving and selection of environmental variables

Based on a literature review on habitat characteristic of alpine marmots, I derived environ-
mental metrics for ground cover, topographical variables (altitude, slope, aspect), temperature,
radiation, snow cover, and plant phenology metrics. Here, I describe the metrics which I did
not use in the final analysis and the covariate selection process.

A.2.1 Snow cover metrics

After interpolation of the Theia snow cover maps (Section 2.4.2), I derived 7 snow phenology
metrics relevant for the winter period and 6 metrics relevant for the summer period (Table 7
and Figure 10b).

The metrics for the summer period were all correlated (Figure 9), indicating that using one
metric for spring snow cover is sufficient. I selected Snow Prolongation (SP) because of two
considerations. First, the metric should not be strongly influenced by few snow free days in
spring, which is the case for SMD, SPC, and LSD. Furthermore, it should not count snow-
covered days in autumn, as these do not affect vegetation green-up. This would be the case for
all remaining metrics except for Snow Prolongation (SP).

The metric for the winter period should only account for snow-free days in early winter, since
towards spring, the sun warms the burrow as soon as the ground is snow free [24]. This is not
the case for WiD, SCD, and SCDW. Additionally, it should account for snow-rethaw cycles.
FSD would ignore long snow-free periods, and SOD would be strongly influenced by long snow-
covered periods interrupted by short snow-free periods. Snow Delay (SD) is the metric which
satisfies these requirements best. Other metrics were uncorrelated with SD (e.g., SCD), however,
these metrics were strongly correlated with SP (only indirectly shown via strong correlation with
SCD in both plots of Figure 9).

A.2.2 Vegetation Phenology metric

Another way to measure the delaying effect of prolonging snow is to extract start of growing
season from satellite-based NDVI measurements. In seasonal environments NDVI follows a
cyclic pattern over a year (Figure 10c). As snow melts and vegetation grows, NDVI increases,
reaches a plateau during summer, and decreases in autumn as vegetation becomes brown. The
double-logistic function in equation 4 models this behaviour [92]. mn is the NDVI value during
winter (minimum NDVI), mx is the NDVI during summer (maximum NDVI), sos is the first
inflection point (start of season) with the corresponding slope s1, and eos is the second inflection
point (end of season) with slope s2.

NDV I(t) = mn+ (mx−mn) ·
(

1

1 + exp(−s1 · (t− sos))
+

1

1 + exp(s2 · (t− eos))
− 1

)
(4)

In Google Earth Engine, I used the 5-day composite tiles of Sentinel-2 for the year 2018 to
2021. By masking the tiles with the quality band, I removed pixels covered by clouds and cirrus.
Then, I calculated NDVI as the normalized difference between Band 8 (NIR) and Band 5 (red).
For the remaining calculations, I exported the raster tiles to proceed with R.

As negative NDVI values reduce the fit of the double-logistic curve, Beck et al. (2006) proposed
to reclassify them to the minimal NDVI value in absence of snow cover [92]. Since I was not
able to estimate such a threshold, I set all negative NDVI values to 0. In Figure 10c), the empty
circles are values that were reclassified to 0.
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Table 7: Snow phenology metrics derived from the Theia Snow Collection. The top 7 metrics
describe processes during hibernation, the lower 6 metrics describe processes after end of hiber-
nation.

Metric Full Name Description

FSD First Snow Day First snow-covered day after 29.9.
SOD Snow Onset Day First day of the longest snow-covered period.
SD Snow Delay Number of snow-free days between 29.9. and

SOD.
SDC Snow Delay Cycles Number of snow-thaw cycles between 29.9. and

SOD.
WiD Winter Duration Duration of the longest snow-covered period.
SCD Snow Cover Duration Total number of snow-covered days in the year.
SCDW Snow Cover Duration Winter Total number of snow-covered days between

29.9. and 18.4.

SMD Snow Melt Day Last Day of longest snow-covered period.
LSD Last Snow Day Last snow-covered day of the year.
SP Snow Prolongation Number of snow-covered days after 18.4 and

longest snow-free period.
SPC Snow Prolongation Cycles Number of thaw-snow cycles between 18.4. and

the longest snow-free period.
SuD Summer Duration Duration of the longest snow-free period.
SCDS Snow Cover Duration Summer Snow-covered days after 18.4.

Figure 9: Correlations between the derived snow phenology metrics for the winter period (left)
and the summer period (right).
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Figure 10: a) Nearest neighbour interpolation of the Theia Snow Collection L2B tiles for one
pixel and one year. Blue points are measured snow cover conditions, the black line shows the
interpolated values. b) Snow metrics for an artificial snow cover interpolation showing the 13
snow phenology metrics (Table 7). The black line shows the mean end of hibernation on 18.4.
c) Artificial data showing the cyclic behaviour of the NDVI over a year. The red curve shows
the fitted double-logistic curve with the two inflection points SOS and EOS.

To fit the double-logistic curve from equation 4 to the processed NDVI values I used the R
package phenofit [93]. For each pixel and year, I saved the value of the inflection point sos. This
resulted in four maps for the years 2018 to 2021 with start of season (SOS) in Julian days. I
then averaged SOS across the four years.

A.2.3 Variable selection

SOS describes the same process as SP, and indeed the two metrics were correlated (r = 0.63,
p < 0.001). However, SOS is only valid for habitats with a certain amount of green vegetation. If,
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because of low vegetation cover, the maximum NDVI (mx) is low, uncertainty in SOS increases.
I therefore believe that SP describes the process of vegetation delay better, because it is also
informative for marmot populations living in habitats dominated by scree fields.

Median maximum summer temperature was very strongly correlated with altitude (r = −0.99,
p < 0.001), as the temperature was interpolated using a DTM. Since I was more interested in
the mechanistical relationships, I excluded altitude as a covariate, aware of the strong influence
of altitude on the metric.

Both radiation and aspect describe the process sun exposure. Since aspect is a circular vari-
able, it has to be transformed to the continuous scale to be included in a model. Cosine of
aspect would describe the “northerness” of the pixel, sine of aspect the “easterness”. For sun
exposure, northerness is the more important variable and indeed, the cosine of aspect was cor-
related with radiation (r = −0.5817, p < 0.001). However, aspect contains way less information
on sun exposure than radiation. As some south exposed slopes may barely get sun because of
the topography. Therefore, I used radiation instead of aspect, because it describes the process
of interest more directly.

Because of these considerations, the remaining environmental covariates for the spatially ex-
plicit model were ground cover (proportion of meadow, scree, and unavailable), slope, snow
prolongation, snow delay, radiation, and median maximum summer temperature.

41



A.2.4 Qualitative validation of phenology metrics

I compared the snow and plant phenology metrics qualitatively with two other data sources:
snow water equivalent (SWE) maps, and soil temperatures from the national park.

DaymetCH [59] provides daily interpolated maps of SWE. SWE describes the amount of
liquid water stored within the snowpack. It uses empirical relationships between temperature
and precipitation to determine if precipitation falls as snow and to model snow melt rates [94]. I
defined SWE > 0 as snow covered and SWE = 0 as snow free. I compared the Theia interpolation
and SWE time series for 25 random points in the study area of 5 habitat types (forest, scree,
rock, water, meadow). Two plots for points on alpine meadows are shown in Figure 11d) and
e). Often, the snow fall for SWE was later than the snow fall for Theia. It is expected that the
empirical association for snow fall predicts the snow fall better than the linearly interpolated
Theia data. However, for snow thaw, SWE often overestimated the thaw date drastically, even
thought several satellite images without snow were recorded. This shows the limitation of the
empirical snow melt rules to model small scaled topographical effects influencing snow melt.
Additionally, SWE does not show small snow spikes or short snow free cycles. However, it
remains unclear if these spices and dips are not only artefacts because of how Theia determines
if a pixel is snow covered.

I compared the Theia interpolation with soil temperature data from the park during winter
2020/21 (unpublished data, TMS-4 Standard loggers). The temperature at -6 cm is always
around 0°C if covered by snow. Because the creeping snowpack destroyed many loggers, only
two were available in open terrain. In Figure 11a), Theia predicted the snow fall in November
too early. In the snow free period after the first snow fall, the temperature decreases below
0°C as the insulating snow is missing. Snow thaw is quite adequately predicted by the Theia
interpolation. In Figure 11b), the first snow peak aligns precisely with the dip in temperature.
However, the snow melt during the long period without satellite data is predicted half a month
too early. If interpreting these plots, one should consider that the temperature at −6 cm shows
the snow cover status and not temperatures within a hibernaculum (compare to Appendix D in
Tafani et al. (2013) [43]).

I compared the correlation between SOS and time of full bloom for four plant species. For
the years 2018 to 2021 I plotted the day of full bloom against the corresponding SOS value.
The full bloom was almost always after SOS, because flowers bloom after the main vegetative
burst. Additionally, years and locations within one plant species with later full bloom also had
a higher SOS, indicating that SOS indeed captures delays in vegetation phenology.
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Figure 11: a, b) Theia snow cover interpolation (blue) plotted against two soil temperature
measurements on alpine meadows in the Swiss National Park (red). c) Correlation between the
NDVI derived start of season SOS and plant phenology data of the Swiss National Park. d,
e) Theia snow cover interpolation (blue) plotted against snow water equivalent (SWE) metrics
from DaymetCH interpolations for two random points on alpine meadows.
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A.3 Goodness of Fit assessment and residual checks of hierarchical model

Based on the fitted model parameters, one would expect to observe the following number of
marmots on a pixel g:

L.expg = λg · pg · qg

With e = 0.0001 to avoid dividing by zero, the Pearson residual for pixel g between observed
marmots Lg and expected marmots is then

rg =
(Lg − L.expg)√

L.expg + e

Considering the estimated parameters, a realisation of observed marmots on pixel g is

N.newg ∼ P(λg)

L.newg ∼ B(N.newg, qg · pg)

The two fit statistics for observed and expected (simulated) number of marmots based on the
Pearson residuals are

T.exp =
∑
g

(L.newg − L.expg)
2

L.expg + e

T.obs =
∑
g

(Lg − L.expg)
2

L.expg + e

For Freeman-Tukey residuals, the two test statistics are

D.exp =
∑
g

(√
L.newg −

√
L.expg

)2
D.obs =

∑
g

(√
Lg −

√
L.expg

)2
The Bayesian p-value is then the posterior probability P(T.obs > T.exp) for the Pearson fit

statistic and P [D.obs > D.exp] for the Freeman-Tukey fit statistic respectively.

The residuals are not uniformly distributed around zero (Figure 12a,b). Most residuals are
below zero. These residuals stand for pixels, in which no marmots were observed, but where the
model would have expected some to be observed. Above zero are residuals for pixels on which
more marmots were seen than expected by the model. Neither the spatial arrangement (Figure
12c) nor the expected abundance (Figure 12d) explain patterns in the residuals.

The Bayesian p-value is one for both the Pearson and the Freeman-Tukey fit statistic (Figure
12e,f). The point cloud does not intersect the diagonal line, which would indicate that the
observed and expected fit statistics are equal.
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Figure 12: a) Distribution of the Pearson residuals between observed and expected number of
marmot. b) Distribution of the Pearson residuals lower than 1, by which the pattern for the
negative residuals is better visible. c) Pearson residuals against pixel index. d) Expected abun-
dance against Pearson residuals. e) Posterior distribution of T.obs against posterior distribution
of T.exp. f) Posterior distribution of D.obs against posterior distribution of D.exp. The red
line is where the expected equals the observed fit statistic.
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A.4 Discussion of Distance Sampling Assumptions

In distance sampling literature, four assumptions are discussed [52]. 1) Animals are indepen-
dently distributed of the observation sites and do not respond to the observer, 2) detection
probability at distance zero is one, 3) distance measurements are exact, and 4) detections are
independent.

If animals are not independently distributed from the observation site, several issues may arise.
In ordinary distance sampling, extrapolation of abundance to the rest of the study area is not
valid. For spatial approaches, this effect problem is solved by model-based abundance estimates.
In this study, observation sites were placed on hiking paths. Marmots may show responsive
movement to tourists and the observer, which skews distance measurements. However, marmots
living near hiking paths are habituated to humans, which reduces their fleeing distance [95].
To reduce bias in the distance measurements, I avoided times with many tourists, approached
observation sites calmly and recorded fleeing animals if they would have been spotted from the
next observation site. A design independent from hiking paths would have not been possible, as
researchers leaving trails in the Swiss National Park must minimize disturbance of ungulates. A
study with many observation sites as this would have caused inadmissible disturbance.

Distance sampling requires perfect detection at distance zero. For marmots, two processes
may violate this assumption. The first is responsive movement, which is discussed in the previous
paragraph. The second are marmots in burrows, which are not available for detection. Ignoring
this effect would bias abundance estimates low and if availability is correlated with environmental
variables, bias inference about environmental effects. I estimated availability probabilities and
uncertainties from availability data from a marmot colony on Alp Grimmels. Doing so assumes
that the behaviour expressed on Alp Grimmels is representative for other populations as well.
The dip in activity around noon was mainly due to disturbance by tourists and hot temperatures.
It is expected that other censused colonies show similar activity patterns due to tourists, as they
were censused next to hiking paths. However, activity dips are not as pronounced on cold days
[32]. In this respect, the availability model component is too simplistic, but the data from
Alp Grimmels does not allow to account for weather and temperature effects. Availability of
marmots also changes across the year, with little activity at the beginning and end of season
(Peter Lattmann, unpublished data). However, availability over the year is not correlated with
environmental effects and therefore do not bias the habitat parameters.

In distance sampling, rounding of angles or distances may lead to biased detection probabil-
ities. Since I recorded marmot locations in a mobile GIS application, rounding of distances is
not an issue. Even though the recorded locations were never correct, the error was equal in all
direction, which does not affect the form of the detection function.

Finally, distance sampling requires independent detections. In the hierarchical model, marmot
observations are aggregated per pixel, ignoring the exact spatial locations of the marmots.
Therefore, independence is not an issue. In ordinary distance sampling, violation of independence
(overdispersion) has little effects on abundance estimates, but AIC tends to select overly complex
distance functions. I analysed marmots as the spatial groups they were recorded in, which
reduced the issue of overdispersion considerably, but not fully. Therefore, I selected the less
complex model out of the two competing models based on AIC.
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A.5 Accounting for abundance bias in the hierarchical distance sampling
model

Simulations indicated that abundance estimates are biased because the pixel resolution of
100×100 m is too coarse to approximate continuous space. Here I present two ideas on how to
account for this bias.

In this study, I used the spatial distance sampling model based on pixels frequencies [68].
Kéry and Royle also present a model using data augmentation. In short, for each observation
site s a fixed number of marmots are distributed across the adjacent pixels. A model, where the
location of a marmot i was uniformly distributed within a pixel did not exhibit the bias in σ
and abundance N . However, the model run too slow and mixed poorly, why the model was not
useful for the analysis data.

Using the presented model on pixel frequencies, on could model individual distances for each
individual from Mg. However, in combination with the Poisson model, the parameter space
would not be closed anymore. Therefore, one should consider letting Ng follow a binomial
distribution. n, the maximum number of marmots per pixel, should be chosen large enough.
The probability in the binomial distribution would be defined as ϕg = λg/n. This is also a form
of data augmentation, but in contrast to the model discussed in the previous paragraph, at the
pixel level rather than at the level of the observation site. The advantage is that to calculate ϕg,
the model would not have to consider all pixels belonging to the same observation site. However,
the model behaviour should be tested in simulations, as mixing or run time issues may arise.
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• Marmot abundance per ha was mainly explained by the 

amount of meadow, slope, and max. summer temperature.

• Snow delay had a small but clear negative effect.

• Snow prolongation and radiation had no effect on 

abundance.

Snow cover is an important environmental variable in the life of alpine marmots.

• A thick snowpack in winter ensures insulation of the burrow during hibernation.

• Snow cover in spring delays vegetation growth, leaving less time for marmots to fill their fat storages.

Under climate change, winters will become drastically shorter. Studying the effect of snow on marmot abundance will give 

insights into how marmots may respond to climate change. 

Background

• How does delayed snowfall (SD) in winter affect the spatial pattern in marmot abundance?

• How does snow prolongation (SP) in spring affect the spatial pattern in marmot abundance? 

• How do other environmental variables influence the spatial pattern in abundance? 

(ground cover, temperature, topography)

Question

Influence of snow cover on the spatial variation in 

abundance of alpine marmots in the 
Swiss National Park

Counting marmots provides special challenges:

• Availability: From all marmots present in the study area 

(abundance), only a part is outside of the burrow. 

• Detection: From the available marmots, some will be 

missed .

While modelling abundance with respect to the environment, 

one must correct marmot counts for time-varying availability 

and incomplete detection.

Methods

Discrete Poisson Point Process

𝜆 = 𝑒𝑥𝑝 𝛽0 + 𝒙⊤𝜷+ log(𝐴)

𝑁 ∼ 𝑃(𝜆)

Spline

𝑝 𝑡 = 𝑠 𝑡

M ∼ 𝐵𝑖𝑛 𝑁, 𝑝 𝑡

Distance Sampling

𝑔 𝑑 = 1 − exp Τ−𝑑2 𝜎2

𝐿 ∼ 𝐵𝑖𝑛(𝑀, 𝑔 𝑑 )
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• The negative effect of delayed snowfall on abundance highlights the 

importance of burrow insolation.

• Prolonging snow in spring had no effect on the spatial pattern of 

abundance, indicating that delayed vegetation green-up is of little 

importance or can be buffered by marmots.

• Under climate change, snow cover will close later and melt earlier. For 

marmots, snow conditions in higher altitudes will become more suitable.

• However, the strong association with meadow and slope questions 

the ability of marmots to follow this rapid change in snow conditions.

Conclusion

Results
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