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Globally consistent response of plant
microbiome diversity across hosts and
continents to soil nutrients and herbivores
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All multicellular organisms host a diverse microbiome composed of microbial
pathogens, mutualists, and commensals, and changes inmicrobiome diversity
or composition can alter host fitness and function. Nonetheless, we lack a
general understanding of the drivers of microbiome diversity, in part because
it is regulated by concurrent processes spanning scales from global to local.
Global-scale environmental gradients can determine variation in microbiome
diversity among sites, however an individual host’s microbiome also may
reflect its local micro-environment. We fill this knowledge gap by experi-
mentally manipulating two potential mediators of plant microbiome diversity
(soil nutrient supply and herbivore density) at 23 grassland sites spanning
global-scale gradients in soil nutrients, climate, and plant biomass. Here we
show that leaf-scale microbiome diversity in unmanipulated plots depended
on the total microbiome diversity at each site, which was highest at sites with
high soil nutrients and plant biomass. We also found that experimentally
adding soil nutrients and excluding herbivores produced concordant results
across sites, increasing microbiome diversity by increasing plant biomass,
which created a shaded microclimate. This demonstration of consistent
responses of microbiome diversity across a wide range of host species and
environmental conditions suggests the possibility of a general, predictive
understanding of microbiome diversity.

The pathogens, mutualists, and commensals that comprise the
microbiome of all free-living organisms form someof themost diverse
communities known1–6, and the composition and diversity of each
host’s microbiome can affect host fitness and interactions with the
biotic and abiotic environment3,7–13. Despite the importance of the
microbiome to the fitness of all organisms, we lack a general under-
standing of the factors determining microbiome diversity or even if
general principles exist. Ecological theory (i.e., Island Biogeography

and Metacommunity Theory), largely developed for free-living
organisms, suggests that the diversity of a community will reflect
both local-scale interactions (e.g., competition for limiting resources
or consumption by enemies) and larger-scale conditions that deter-
mine the diversity of the pool of species available to colonize the local
community (i.e., the metacommunity)14–17. However, measuring the
factors affecting microbiome diversity presents significant scientific
challenges, because the diversity within an individual host depends on
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both its local and biogeographic context18–20. While observational
studies can identify potential predictors of microbiome diversity
across large, biogeographic gradients, these predictors often covary
(e.g., climate, host resource supply, herbivory rates, or host abun-
dance), obscuring mechanistic, causal relationships. Experimental
manipulations of these potential drivers may reveal causal relation-
ships at local scales21–23, but experiments are rarely replicated across
globally relevant environmental gradients. Thus, insights from pat-
terns observed across larger-scale gradients remain disconnected
from experimental studies at single sites or in the laboratory.

Studies of plant endophytes and pathogens, critical microbiome
constituents that affect plant health and production, are broadly
concordant with theoretical predictions; microbial taxa are regulated
by interactions of both large-scale and local factors. At large scales, the
diversity of plant pathogens and commensal endophytes has been
documented to vary along regional or continental scale environmental
gradients in climate and host nutrient supply6,12,24–28, and the diversity
of microbes at these large spatial scales often can predict microbiome
diversity within a single host29,30 (but see ref. 24). At more local scales
(e.g., within individual hosts or leaves), micro-environmental condi-
tions can alter pathogenic and other microbial plant symbionts. For
example, the abundance and diversity of fungal plant symbionts is
often higher in shaded conditions31–35, perhaps because light limitation
reduces plant defenses31,36–38, increases tissue nitrogen (N)39,40, or
increases moisture and humidity41. Analogous to the observed large-
scale gradients, variation in local conditions may control fine-scale
variation in microbial colonization, survival, proliferation, and ulti-
mately microbiome diversity22,31–35,42.

The importance of nutrient supply and microclimate on plant
microbiomes demonstrates the need for a multi-scale approach to
understanding the microbiome while also suggesting the possibility
that human activities might alter microbiome diversity by increasing
supplies of biologically limiting nutrients or altering herbivore
density43–45. For example, fossil fuel combustion and agricultural fer-
tilizer use have increased supplies of biologically limiting nutrients to
Earth’s ecosystems44,46,47. Humans have concurrently altered the den-
sity and types of herbivores through hunting and domestic
grazing43–45. These global-scale alterations of nutrient supplies and
herbivore density changes have the potential to alter plant micro-
biome diversity, because increased soil nutrient supplies and reduced
herbivore density can increase shading due to increased plant
biomass48, which may increase microbiome diversity. Herbivores also
may changemicrobiomediversity by creatingwounds, directly serving
as vectors49, or up- or down-regulating plant immune systems50.
Increased nutrient supplies also may increase plant tissue nutrient
concentrations51, which can alter the diversity or composition of plant
microbiomes27,52. Increased nutrient supplies also may act on plant
microbiomes by altering the plant community. For example, increased
nutrient supplies often reduce plant diversity in grasslands48,53, which
may reduce microbiome diversity if a less diverse plant community
reduces the diversity of potential microbial colonists (i.e., mass effects
in metacommunity models)18,19. Conversely, plant diversity loss may
increase the abundance of generalist microbes by increasing relative
host frequency (i.e., the dilution effect)32,54–57. Taken together, these
results suggest that ongoing anthropogenic alteration of nutrient
supplies and herbivore density may have complex, multi-scale effects
on plant microbiome diversity that are mediated through changes in
plant biomass, shading and microclimate, plant diversity, and host
abundance.

Here, we determine the factors affecting prokaryotic (bacterial
and archaeal) and fungal microbiome diversity, from global to micro-
environmental scales, in the dominant grass hosts at 23 grassland sites
in seven countries on four continents. This approach provides unique
insights into the general principles operating across a wide range of
environmental conditions and host species.We start by examining the

environmental covariates associated with microbiome diversity esti-
mated at two scales: (1) diversity within a single leaf (leaf-scale) and (2)
total diversity summed across all samples collected in the focal host
species at a site (host-population scale).We thenquantify the effects of
two potential mediators of plant microbiome diversity, soil nutrients
and herbivory, on leaf-scale microbiome diversity by replicating an
experimental manipulation of host nutrient supply (i.e., fertilization)
and herbivore density (i.e., fencing) at each site, as part of the Nutrient
Network (NutNet) global experiment (Table S1)58,59.

Previous work within the NutNet experiment has demonstrated
that the nutrient treatments increasebiomass48,60, shading48, leaf tissue
nutrients51, fungal pathogen damage61, and soil pathogens62, while also
reducing plant diversity48. The nutrient addition treatment also has
been shown to increase the abundance of grasses63,64, the taxonomic
family of our focal hosts. The fencing treatment has been found to
increase plant biomass and shading48,60, and to mediate the effects of
nutrient supply on foliar nutrients and plant diversity48,65. These find-
ings suggest that the nutrient and fencing treatments are likely to alter
important ecological drivers of plant microbiomes including plant
biomass, plant diversity, grass host abundance, shading, and plant
tissue nutrient levels.

Results and discussion
The sites in this study include a wide range of communities dominated
by herbaceous or low-statured vegetation (e.g., alpine tundra, annual
grasslands, mesic grasslands, pastures, old fields, savannas), which we
hereafter refer to as grasslands. Collectively, these sites span globally
relevant gradients in elevation (15–2320m), latitude (37° S–54° N),
mean annual precipitation (MAP: 246–1877 mm yr−1), mean annual
temperature (MAT: 0–18 °C), soil nutrients (0.03–1.3% nitrogen, N,
13–234 ppm phosphorus, P), aboveground live biomass
(117–813 gm−2), and plant richness (3–22 species m−2, 11–86 species
site−1). At each site, we collected leaves from the most abundant grass
species in control plots, fertilized plots (increased nutrient supply),
fenced plots (reduced herbivory), and fenced and fertilized plots. This
sampling included data from 18 different grass species spanning 15
genera (Table S1). We surface sterilized each leaf, then determined the
diversity ofmicrobeswithin the leaf using amplicon sequencing for the
16S rRNA and ITS-1 regions using 2 × 250 paired ends on an Illumina
MiSeq platform. Further details are presented in “Methods”.

In total, we acquired microbial DNA sequence data from 732 leaf
samples (Table S1). Across all samples, we detected a total of 16,924
unique fungal exact sequence variants66 (ESVs; i.e., groups of identical
sequences) and 49,905 unique prokaryotic (bacterial or archaeal) ESVs.
We used these sequence data to calculate diversity at two scales: leaf
scale (diversity within a single leaf sample) and host-population scale
(the cumulative diversity summed across all samples of a host species
collected at a site). At both scales, we measured diversity using the
Effective Number of Species based on the Probability of Interspecific
Encounter (ENSPIE) (Fig. 1). ENSPIE is the estimated number of equally
abundant taxa and is robust to the presence of rare species and
unequal sampling intensity that typify these types of sequence data67,68.

Microbiome diversity under control conditions
Sites varied widely in population-scale fungal (mean = 14.1, range =
2.6–63.2) and prokaryotic (mean = 5.9, range = 1.3–35.8) diversity in
unmanipulatedplots. Leaf-scale fungal (mean = 7.4, range= 2–15.7) and
prokaryotic (mean= 4.7, range=1.6–25.6) diversity were similarly vari-
able among sites (Fig. 2). Because diversity (i.e., ENSPIE) combines both
the number and evenness of the taxa in the community, it is much
lower than the raw richness, the number of ESVs, inmicrobial sequence
samples, so comparison to other studies requires care. In samples
taken from unmanipulated control plots, mean leaf-scale fungal rich-
nesswas 124.6 (range = 22.7–235.9), and prokaryotic richnesswas 517.1
(range = 229.8–1081.6).
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As predicted by community theory and observations from free-
living taxa14,15,17,19,69, fungal (r =0.95, d.f. = 21,p < 0.001) andprokaryotic
(r =0.93, d.f. = 21, p < 0.001) microbiome diversity at the leaf and host-
population scale were highly correlated (Fig. 2). Leaf-scale fungal
diversity was less than host-population scale diversity in most cases
(Fig. 2), ashas been found at larger scales in biogeographical surveys of
free-living plants and animals17,69. In contrast, prokaryotic diversity was
often similar at the host-population and leaf-scales, suggesting that
prokaryotic communities may be more controlled by supply of
microbial colonists from larger scales (i.e., mass effects in meta-
communitymodels) than by local competitive interactions15–17,19,69. The
strong dependence of leaf-scale microbiome diversity on the larger
spatial context (Fig. 2) highlights the relevance of a range of existing
community theory to research on microbiomes17,19, and suggests
fruitful avenues for theoretical and empirical investigation at the nexus
of biogeography and microbial ecology.

Fungal and prokaryotic diversity were highly correlated at the
leaf-scale across sites (r =0.88, d.f. = 21, p <0.001) suggesting that the
same processes determine the diversity of these disparate taxonomic
groups across a wide range of biotic and abiotic environments and a
variety of host species.We examined the effects of potential drivers of
microbiome diversity including climate (MAP, MAT, and MAP divided
by potential evapotranspiration), aboveground plant biomass, plant
diversity, shading, and soil chemistry (soil N, P, C:N, and pH) (Tables S2
and S3). Host-population scale fungal diversitywas highest at siteswith
abundant live plant biomass, but did not vary consistentlywith soil C:N

(Fig. 1; Table S2). Population-scaleprokaryotic diversity showed aweak
positive relationship with live biomass and also declined with ambient
soil C:N suggesting that soil nutrients may limit prokaryote micro-
biome diversity (Fig. 1). At the leaf-scale, prokaryotic diversity was
positively correlated with live plant biomass and negatively correlated
with host abundance (Table S3). Taken together these results
demonstrate that fungal and prokaryotic microbiome diversity is
generally highest at sites with high biomass, and that prokaryotic
diversity is higher at sites with higher soil N availability (low C:N) and
low focal host abundance.

Effects of nutrient addition and herbivore reduction on micro-
biome diversity
Given the importance of soil nutrients and plant biomass as predictors
of microbiome diversity in our observational (Control Plot) data, we
analyzed the effects of an experimental manipulation of soil nutrient
supply and herbivore abundance replicated at all sites in the study. In
addition to the direct effect on soil nutrient supply, nutrient addition
and herbivore reduction treatments are important global drivers of
plant host biomass48,60 and community composition48,65. Across sites,
experimental nutrient addition increased fungal and prokaryotic
diversity and herbivore reduction increased fungal diversity (Fig. 3;
Table S4).Manipulation of nutrients and herbivore density also altered
the local conditions experienced by the host plants (Fig. 4; Table S5),
including those that were consistently important in the analysis of the
observational data (e.g., plant biomass and host plant abundance).
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Fig. 1 | Population- and leaf-scale fungal and prokaryotic diversity are posi-
tively correlated with plant biomass (n = 22) and prokaryotic diversity is
negatively correlated with soil carbon:nitrogen ratio (n = 18) based on multi-

model inference froma suite ofmixed effectsmodels. Leaf-scale diversity is only
from control plots. All tests are two-tailed.
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Fertilized plots were shadier and had more live biomass than unferti-
lized plots, and fertilization reduced plant diversity and focal host
abundance. Plant diversity was reduced in fenced plots, and plots that
were both fenced and fertilized were the shadiest (Fig. 4). These
experimental results are consistent with the among-site relationships
in the observational data; fungal diversity was high where plant bio-
mass and shading were high under both observational and experi-
mental conditions. In both the observational and experimental data,
the link between prokaryotic diversity and plant biomass and shading
was weaker but concordant with fungal diversity effects.

Motivated by these univariate analyses, we used structural equa-
tion models (SEMs) to investigate the specific pathways by which
increased nutrient supply or reduced herbivory altered leaf-scale
fungal and prokaryotic microbiome diversity. We started with a full

model that included direct effects of the nutrient addition and fencing
treatments on leaf-scale microbiome diversity and indirect effects of
the treatments mediated by changes in the local conditions that were
likely to impact microbiome diversity based on existing studies and
our univariate analyses: plant diversity18, 19,32,54–57, host abundance18,19,54,
plant biomass23, and shading31–34. We compared this full model
(Model 1; Figure S1, S2, Table S4) to two nested models that tested
whether all treatment effects are mediated through changes in the
plant community (plant diversity, host abundance, plant biomass, and
shading) (Model 2, Figure S3; Table S4) and the most parsimonious
model in which all nutrient and herbivore effects are mediated by
the plant community’s impacts on ground-level light availability
(i.e., shading; Model 3; Fig. 5; Table S4). The fit of thesemodels did not
differ based on likelihood ratio tests, and the most parsimonious
model (Model 3) had the lowest AIC (Table S4), suggesting that a
model in which all the effects of reduced herbivory and increased
nutrients on microbiome diversity were mediated by changes in
shading was consistent with the data (Fig. 5).

The most parsimonious model (Model 3) accounted for a large
proportion of the variance in leaf-scale fungal diversity (conditional
r2 = 0.49; marginal r2 = 0.12) leaf-scale prokaryotic diversity (condi-
tional r2 = 0.57; marginal r2 = 0.01), plant biomass (conditional r2 = 0.51;
marginal r2 = 0.09), shading (conditional r2 = 0.68; marginal r2 = 0.21),
plant diversity (conditional r2 = 0.66; marginal r2 = 0.02), and host
abundance (conditional r2 = 0.37; marginal r2 = 0.02). These structural
equation models revealed that the increase in microbiome diversity
was associated with increased shading that arose from the nutrient
addition and fencing treatments, suggesting an important role of
microclimate in shaping a host’s microbiome (Fig. 5). Although we
present the most parsimonious model here, details on all models are
presented in Table S6.

Conclusions
The positive relationships between microbiome diversity and shading
are consistent for both fungi andbacteria and remain consistent across
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a wide range of host species growing under very different site con-
ditions, suggesting that shading is a general predictor of plant
microbiome diversity. These findings align with observational stu-
dies showing the importance of microclimate and shading in fores-
ted systems. For example, foliar pathogen abundance on tree
seedlings has been found to be higher in low-light and high nutrient
conditions31, and fungal endophytes in trees are more abundant and
diverse in shaded parts of the canopy32, 33. In addition, shading and
the associated increases in humidity have been shown to affect host-
pathogen interactions; many pathogens are more abundant in sha-
ded ormoist conditions34,35,41. These effectsmay reflect reduced plant
defenses found in low light conditions31,36–38. Low light conditions
also can lead to increased tissue nitrogen39, a potential limiting
nutrient for microbiome communities27,31,40. These effects also may
arise from higher leaf wetness in shaded conditions41. While we are
not yet able to resolve these more proximal effects of shading, pre-
vious work within this experimental network has shown that the
nutrient addition treatments can increase the plant tissue nutrient
concentrations and prevalence of fungal pathogens, but nutrients do
not consistently modify foliar thickness (specific leaf area)51,61. These
results suggest that altered tissue chemistry may influence micro-
biome diversity; however, the inconsistent effects of nutrients (i.e.,
soil C:N vs nutrient addition) and the consistent effects of plant
biomass suggest that biomass and shading will remain important
determinants of the microbiome.

While the SEM model in which all effects of nutrients and herbi-
vores on microbiome diversity are mediated by changes in shading
(Model 3) was comparable to more complex models, this does not
preclude the importance of mechanisms represented in the more
complexmodels or effects mediated by processes we were not able to
measure. There are likely awide array of processes acting concurrently
to determine microbiome composition and diversity. For example,
other studies conducted in the NutNet experiment have shown that
the fertilization treatments can increase both arthropod abundance
and leaf damage61,70, which have been shown to be associated with
more diverse fungal endophyte communities49. Other studies at these
sites have shown that experimental nutrient addition alters the soil
microbiome and root endophyte communities62,71, whichmay serve as
innocula for the foliar microbiome72,73.

Differences among host species are also likely to be an important
factor shaping the plant microbiome52,73,74. For example, a recent
observational study found that variation in the fungal microbiome in
tropical tree specieswas associatedwith a correlated, commonsuite of
leaf traits (e.g., tissue nutrient concentration or specific leaf area, SLA)
which represent a spectrum from slow to fast return on investments in
leaf nutrients or carbon (i.e., the leaf economic spectrum)52,75. In the
current study, we examined the dominant grass at each site, and most
host species were only sampled at a single site. Nonetheless, we found
that biomass was consistently associated with microbial diversity
across sites, where hosts differed, and within sites, where host identity
washeld constant, pointing to the generality of biomass and shading in
shaping the host microbiome. While this approach provides con-
sistency among sites by sampling thehost that is dominant at each site,
the design does not allow a direct comparison of the effects of among
host variation on the microbiome. A natural follow up to this work
would be to sample a range of host species along the leaf economic
spectrum within each site, and test whether these traits predict the
microbiome composition or diversity within or across sites52. A com-
plementary study would isolate host identity from site conditions by
sampling the microbiome of a widespread species across a range
of sites.

Our results demonstrate the potential for human activities,
such as increasing nutrient supply rates and altering herbivore
abundances, to cause global shifts in microbiome diversity43–45.
Because the composition and diversity of the microbiome can
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alter host fitness and interactions with the environment3,7–13,
understanding the local and biogeographic processes governing
plant microbiome diversity has important implications for the
productivity and diversity of grassland ecosystems3,7–13. More
generally, we show striking similarity in the processes governing
the diversity of microbes from different taxonomic domains
across a wide range of different host species growing under
ambient and experimental conditions in 23 different grasslands
spanning seven countries on four continents. These results also
map onto core theoretical frameworks in community ecology
(e.g., metacommunity and island biogeography theory)14–16. Taken
together, these results suggest that there may be general princi-
ples governing microbiome diversity across spatial scales and
host species.

Methods
We conducted this work using sites that are part of the Nutrient Net-
work Experiment (NutNet; www.nutnet.org), a globally replicated
experiment manipulating elemental nutrient supplies and herbivore
density in grasslands worldwide58,59. We used amplicon sequencing to
measure relative abundances of fungal (ITS1) and prokaryotic (16S)
diversity in the leaves of the most widespread grass at each of 23
grassland sites. We also measured biotic and abiotic variables as
described below.

Data were collected within the context of an experiment
composed of a factorial combination of two treatments: nutrient
addition and herbivore reduction applied to 5 × 5 m plots. The
nutrient addition treatment entailed the addition of nitrogen (N),
phosphorus (P), potassium (K), and micronutrients (10 g Nm−2 yr−1

as timed-release urea,10 g Pm−2 yr−1 as triple-super phosphate,
10 g Km−2 yr−1 as potassium sulfate, and 100 gm−2 yr−1 of a micro-
nutrient mix; 6% Ca, 3% Mg, 12% S, 0.1% B, 1% Cu, 17% Fe, 2.5% Mn,
0.05% Mo, and 1% Zn). N, P, and K were applied annually, and the
micronutrient mix was applied once at the start of the study. Her-
bivore reduction was accomplished by fencing plots with 230 cm
tall fences to exclude nonclimbing mammals. The lower 90 cm of
the fence was 1 cm wire mesh, which included an additional 30 cm
outward facing flange stapled to the ground to exclude digging
animals. The upper portion of the fencewas composedof strands of
barblesswire. Slight deviations in fencedesign aredetailed byBorer
et al.59. The experiment was a completely randomized block design
withmost sites (77%) having 3 replicate blocks (range = 2–5) and the
treatments had been applied for a median of 8 years at the time of

sampling (range = 2–8). Treatments were applied to 5 × 5m plots,
the experimental unit.

DNA Extraction and Sequencing
The focal hosts included 18 grass species from 15 genera (Table S1). At
peak biomass, we collected the most mature, non-senescent leaves
totaling at least 250mgof fresh tissue fromeach of three individuals of
the focal grass species in each plot for a median of 36 leaf samples per
site (range = 12–54). Samples were stored in CTAB buffer and shipped
to the University of Minnesota for processing and sequencing. Upon
receipt, leaves were surface sterilized by immersing them for 1minute
each successively in water, 75% ethanol, 0.4125% sodium hypochlorite
(bleach solution), 75% ethanol and sterile distilled water. Following
surface-sterilization, samples were stored at −80 °C. Subsequently,
leaves were ground in liquid nitrogen with a mortar and pestle, and
total genomic DNA was extracted using the Qiagen Plant Mini Extrac-
tion Kit (Qiagen N.V., Venlo, Netherlands), and standardized to 20 ng
μl−1. Amplicon sequencingwasperformed for the v4 16 S rRNA and ITS-
1 regions using 2 × 250 paired end on an Illumina MiSeq platform,
according to standard protocols at the University of Minnesota
Genomics Center (UMGC)76. Samples for v4 16S rRNA amplicon
sequencing were split across 9 sequencing runs and samples for ITS-1
amplicon sequencing were split across 7 sequencing runs.

All data processing and analysis was performed in R (v. 4.1.2)77.
Raw sequencing data were filtered, trimmed, and merged into exact
sequence variants (ESVs; sequences that are identical) using the
default pipeline in ‘dada2’ package (v. 1.14) for each sequencing run
independently78. Callahan et al.66 and Porath-Krause, et al.68 provide
further discussion of sequence grouping and use of ESVs. Taxonomic
assignment alsowas performed using the ‘dada2’ package (v. 1.14). The
SILVA SSU v132 database was used to assign bacterial taxa to 16S rRNA
reads79. For fungal taxa assignments to ITS-1 reads, theUNITEdatabase
(version 8.2) was used. ESVs were filtered for chloroplast and mito-
chondrial contamination80. Processed data from each sequencing run
were combined with their respective taxonomy classification into
phyloseq objects using the ‘phyloseq’ package (v 1.30.0)81. Phyloseq
objectswere combinedbasedon samplenames intoonefinal phyloseq
object with ESVs summed among matching samples across all
sequencing runs. We removed sequences that were identified as cya-
nobacteria or non-fungal eukaryotes. We also removed samples with
<1000 reads (5% of total samples).

We obtained 33,500,410 fungal (ITS) and 40,609,045 bacterial
and archaeal (16S) DNA sequences from the 705 leaf samples with a
mean of 48,778 (range = 1019–245,463) fungal and 60,883 (range =
1110–739,738) prokaryotic (bacterial and archaeal) reads per sample.
We detected 16,924 unique fungal ESVs. Of these fungal taxa, 94%
hadmatches at the Phylum level, 76% at the Class level, and 71% at the
Order level. The ESVs with taxonomic matches represented 9 phyla,
38 classes, and 115 orders (Fig. S4), with the majority (96%) being
either Ascomycota (74%) or Basidiomycota (25%). We detected
49,905 unique bacterial or archaeal ESVs. Of these taxa, 24% had
matches at the Domain level, 22% had matches at the Phylum level,
22% at the Class level, and 20% at the Order level. The ESVs with
taxonomic matches were 99.5% bacteria and represented 42 phyla,
94 classes, and 192 orders (Fig. S4), with the majority (81%) being
either Proteobacteria (46%), Bacteroidetes (15%), Firmicutes (10%), or
Actinobacteria (10%). Note that all ESVs identified as Fungi, Bacteria,
or Archaea (matched and unmatched to a lower taxonomic level)
were used in subsequent analyses. Using these data, we calculated
fungal and prokaryotic (bacterial and archaeal) diversity at the site
and leaf level.

Environmental measurements
At the same time as we collected samples for DNA sequencing, we
measured physical and biological characteristics of the environment

Fig. 5 | Nutrient and fencing effects on leaf-scale endophyte diversity are
mediated by biomass effects on shade. Arrow width represents magnitude of
standardized coefficients (Table S6). Double-headed, dashed arrows indicate
relationships modeled as correlated errors. Black arrows represent positive
coefficients and orange arrows represent negative coefficients. All tests are
two-tailed.
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that we expected could control microbiome diversity based on the
theoretical and empirical evidence discussed above (plant biomass,
plant diversity, host abundance, shading, soil resources, and
climate).

We measured aboveground live plant biomass in each plot by
clipping all plants in two 0.1 × 1m strips, sorting out the current year’s
growth (live biomass), drying the biomass to a constant mass at 60 °C,
and weighing the dried samples to the nearest 0.01 g. We calculated
plant diversity and focal host abundance based on percent cover of all
vascular plant species in a 1 ×1m plot. We used these data to estimate
the relative abundance of our focal host species in each plot
(Focal Host CoverTotal Plant Cover) and plant diversity at the plot and site scale. Our metric
of plant diversity was Effective Number of Species based on the
Probability of Interspecific Encounter (ENSPIE), which is equivalent to
Inverse Simpson’s Diversity. We also used ENSPIE as our metric of
microbial diversity, and we discuss some of the properties of this
metric in the next section.

To calculate shading, we measured the amount of photo-
synthetically active radiation (PAR)blocked by the plant canopy. To do
this we measured PAR above the plant canopy and at ground level
below the plant canopy using a ceptometer, allowing us to calculate an
index of shading (1 - PAR at Ground Level

PAR Above Canopy ). PAR measurements were made
within two hours of solar noon.

We measured soil chemistry in 10 cm deep soil cores collected
prior to the application of the nutrient treatments and analyzed them
for soil nutrients (C, N, P, pH) using standardmethods82. In ourmodels,
we include total N (%), extractable P (ppm), C:N, and pH.

Climate datawere accessed from theWorldClimdatabase83. In our
analyses, we included mean annual precipitation (MAP: 249 to 1877
mm yr−1), mean annual temperature (MAT: −3 to 23 °C), and a water
availability index (WAI) calculated as MAP divided by potential eva-
potranspiration (WAI =MAP/PET).

Diversity metrics and statistical analyses
We calculated fungal and prokaryotic diversity in all individual leaf
samples collected in control or treatment plots (leaf-scale diversity).
We also calculated host population-scale fungal and prokaryotic
diversity by summing the abundance of all ESVs collected in the focal
host at each site and calculating the diversity of the summed abun-
dances. We calculated plant community diversity at the 1 m2 plot scale
using the plant percent cover data.

In assessing plant and fungal diversity, we use the Effective
Number of Species based on the Probability of Interspecific Encounter
(ENSPIE). ENSPIE is equivalent to Inverse Simpson’s Diversity, and is a
biodiversity metric that is more robust than raw or rarefied species
richness to some of the challenges associated with amplicon sequen-
cing data, including the presence or absence of rare species, skewed
abundance distributions, anduneven sampling intensity (e.g., differing
number ofDNA readsper sample)67. For example, analysis of simulated
sequencing data has shown that ENSPIE converges more rapidly on the
underlying population diversity than richness or rarefied richness,
especially when taxa abundances are highly skewed as is often the case
for this type of sequencing data68. ENSPIE estimates the number of
equally abundant species or ESVs in a sample and is calculated as

1=
PS

i = 1
p
2

i

where S is the total number of species or ESVs and pi is the

proportion of the community represented by species or ESVi67.

All analyses were conducted using R version 4.1.2 (2021-11-01).
For univariate analyses at the plot or leaf scale, we account for
nesting of samples within sites or plots by using Mixed Effects
Models (MEMs) fit with the lmer function in the lme4 R library (ver-
sion 1.1-27.1) with p-values generated using Satterthwaite’s degrees of
freedom method using the lmerTest R library (version 3.1-2). Model

specifications are included in Tables S1–S3, which include the
random-effects structure.

In our analyses of environmental covariates (e.g., climate,
plant biomass, and shading), we used a multi-model approach to
model selection using the dredge and model.avg functions in the
MuMIn library (version 1.43.17)84, because there could be multiple
models with similar AIC values. Parameter importance in the
multi-model approach is the sum of the Akaike weights summed
across the set of models within 4 AICc units of the top model
(lowest AICc) in which a parameter is included. Importance ranges
from 0 (parameter has no explanatory weight) to 1 (parameter is
in all top models). We standardized the input variables using the
arm library (version 1.12-1).

Structural Equation Models were fit using the piecewiseSEM R
library (version 2.1.2)85. We developed our full model (Model 1; Fig. S1)
based on existing evidence for likely mechanistic links between the
experimental treatments (Nutrient Addition and Grazing Reduction),
the host community (Plant Diversity, Plant Biomass, Host Abundance,
and Shading), and microbiome diversity (Fungal Diversity and Pro-
karyote Diversity). In cases where a relationship between two variables
was not clearly unidirectional, we specified the relationship as corre-
lational. These cases are specified by double-headed arrows in the
Fig. 5, S1, S2, and S3 and Table S6. Overall model fit was assessed with
Fisher’s C statistic. This statistic indicates that the hypothesizedmodel
is consistent with the data when p is greater than a significance
threshold (p >0.05)85. We compared these three SEM models by
examining the AIC and using a likelihood ratio test using the anova
function in R.

Of our 23 sites, we were missing light data at 6 sites and soils
data at 4 sites. In our analyses of observational data, we present
analyses for the full set of sites when possible, and we note when
fewer sites are included due tomissing data (Table S1). The following
responses and covariates were natural log transformed to normalize
residuals: host cover, plant, fungal, and prokaryotic diversity, plant
biomass, soil P and N.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in thismanuscript are archived at the Environmental Data
Initiative (https://environmentaldatainitiative.org/): https://doi.org/10.
6073/pasta/c1d1074bb1dd46d1ba037f6a80d21233. The raw sequen-
cing data have been deposited on the National Center for Bio-
technology Information Sequence Read Archive (NCBI SRA) under
Bioproject PRJNA944716 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA944716). For databases used in this study, SILVA database is
available at https://www.arb-silva.de; UNITE database is available at
https://unite.ut.ee/repository.php.
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