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Abstract Together with the flow and sediment, instream large wood (LW; fallen trees, branches, and roots
within river corridors) sustains the physical and ecological integrity of rivers. Still, howmuch wood rivers store
remains largelyunknown. QuantifyingLW is crucial for rivermanagement, restoration, and floodmitigation, but
remains challenging due to its high spatio-temporal variability. Field surveys are labour-intensive, while man-
ualmapping of aerial imagery is also time-consuming and constrained by the observer’s experience. This study
presents an automated approach to detect andmeasure stationary LW using high-resolution imagery and con-
volutional neural networks. Detection locates woodwith bounding boxes, while segmentation outlines its size.
Two models (YOLOv10 for detection and YOLOv8 for segmentation) were trained with data from eight rivers in
the Alps andAndes, and testedon independent data. Themethoddetected 6.60m³ofwood,while 7.36m³were
estimated from field surveys, identifying up to 97% of large pieces and 66% of all pieces at 0.3 confidence. Seg-
mentation achieved amean Average Precision of 70%. Although diameters were underestimated and jam sizes
differed from observations, spatial distributions were reliably captured. This scalable approach overcomes key
survey limitations, offering an efficient tool for monitoring LW.

Non-technical summary Wood in rivers plays a crucial role inmaintaining healthy ecosystems by in-
fluencing sedimentmovement and providing habitats for aquatic life. Measuring howmuchwood is stored in a
river is essential for restoring habitats, managing rivers, and reducing flood risks. However, counting andmea-
suring wood in the field is slow and can only cover small areas, while analysing aerial images manually takes a
lot of time and effort. We developed a new automated method using high-resolution drone images and artifi-
cial intelligence to solve this. We trained computer models to detect and measure wood in rivers by analysing
images from eight rivers in the Swiss Alps and Argentinean Andes. The models were tested on a separate river
to ensure accuracy. Ourmethod identified over 97% of the largest wood pieces and accurately estimatedwood
volumes, comparable to field measurements. While there were inaccuracies with certain wood shapes, the re-
sults were promising for capturing the overall distribution of wood in rivers. This automated method makes it
possible to monitor wood in rivers quickly and on a larger scale. It offers a useful tool for scientists, conserva-
tionists, and river managers to better understand andmanage river ecosystems.

Keywords Remote Sensing, Aerial Imagery, Wood Quantification, Machine Learning

1 Introduction

Instream large wood (LW), which refers to fallen trees,
branches and rootwads lying within the river corridor,
is a crucial element in river ecosystems (Verdonschot
and Verdonschot, 2023) that supports greater ecosys-
tem complexity (Gurnell et al., 2005) and promotes
biodiversity, increasing resilience to disturbances like
floods and droughts (Wohl et al., 2019). Quantifying
the volume of LW in rivers is important for effective
river management, habitat restoration, and flood mit-
igation strategies. However, LW storage quantification

∗Corresponding author: janbert.aarnink@unil.ch

is challenging due to its significant spatial and tempo-
ral variability, which is influenced by multiple factors
(Wohl et al., 2017, 2019; Iroumé et al., 2020). Several
studies have shown that LW storage is controlled by
basin-scale variables like bioclimatic regime, precipita-
tion, land use and forest characteristics and reach-scale
variables, like river morphology and its spatial hetero-
geneity and wood characteristics and recruitment pro-
cesses (Scott and Wohl, 2018; Wohl et al., 2018). Ef-
fective management must account for the fluctuations
in LW storage and balance them with flood mitigation
goals (Iroumé et al., 2020). The natural wood regime,
which includes LWsupply, transport and storage, varies
spatially and temporally, necessitating region-specific
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management strategies that consider local dynamics
(Wohl et al., 2019). While traditional river management
has commonly resulted in reduced LW storage (Wohl
et al., 2017), the amount of LW stored in rivers is largely
unknown. This study focused on these challenges and
aimed to advance the detection and quantification of
LW volumes in river environments.
Traditionally, field surveys have been employed to

manually measure LW, its size and orientation (Wohl
et al., 2010; Eaton et al., 2012; Merten et al., 2010; Galia
et al., 2018). A survey team walks through the river’s
section of interest and tag all pieces of large wood af-
ter gathering relevant information. The length of the
piece, as well as the diametre, usually measured at one
or two locations chosen to best represent its overall size,
using tape measures or range finders, are measured,
and information on the orientation of the pieces with
respect to the flow direction of the river and the decay
was stored, as well as information onwhich pieces were
in a wood jam with other pieces. These common field
survey techniques have been described in detail (Máčka
et al., 2011). These methods are labour-intensive, and
outcomes are often temporally and spatially limited.
Recent advances in remote sensing technology, the in-
creased availability of satellite data and particularly
the use of Uncrewed Aerial Vehicles (UAVs) (see Table
S2) have changed how we monitor river environments
(Sendrowski and Wohl, 2021; Piégay et al., 2019), offer-
ing high-resolution and cost-effective alternatives for
large-scale assessments (Manfreda et al., 2018). UAV-
derived RGB orthomosaics provide detailed spatial data
that enable precise quantification of forested areas and
fluvial features. However, the complexity and vari-
ability of natural environments present challenges in
accurately identifying and measuring LW from these
datasets (Sanhueza et al., 2022; Jutras-Perreault et al.,
2023; Hess et al., 2024). Table S1 expands on a previous
review (Buscombe et al., 2024; Sendrowski and Wohl,
2021) and shows a list of studies using aerial imagery
to detect large wood in rivers. These studies demon-
strate the potential of UAVimagery in capturing detailed
and accurate data on LW. UAVs have also been used to
explore LW recruitment and retention in braided rivers
and dynamic river systems impacted by volcanic activ-
ity (Bertoldi et al., 2013; Ulloa et al., 2015). These studies
emphasize the importance of UAVs for capturing spa-
tial variability and wood deposition patterns, particu-
larly in response to natural disturbances. One of the
most critical challenges for detecting LW from UAVs is
the interference from riparian vegetation and canopy
cover, which can obscure wood (Hess et al., 2024), par-
ticularly in forested environments, leading to signifi-
cant detection and measurement errors. Additionally,
the similarity in colour between sediments and wood
can make it difficult to differentiate them in orthomo-
saics (Sanhueza et al., 2022). The porosity in wood jams
and backgroundmaterials like rocks and organic debris
further complicates volume calculations (Wohl et al.,
2019). While UAVs provide a cost-effective means to es-
timate LW volume and distribution with high accuracy
(Sanhueza et al., 2022, 2019), the process of manually
identifying,measuring, and analysing LWfromUAVim-

agery can still be time-consuming and labour-intensive.
Ground truthing involves validating UAV data with field
measurements, which adds to the workload. The man-
ual annotation of images and subsequent volume calcu-
lations necessitate significant human resources, mak-
ing the process less efficient and prone to human errors
(Hess et al., 2024; Sanhueza et al., 2019). Also, the detec-
tion and identification of LWorientations have yet to be
automated.
Many studies summarized in Table S1 effectively de-

tected and monitored LW but did not quantify wood
volume automatically, still requiring manual calcula-
tions. However, quantifying the LW volume is critical
for understanding fluvial processes, ecosystem dynam-
ics, and flood risk management (Wohl et al., 2019; Ruiz-
Villanueva et al., 2014, 2016). Estimating LWvolume ac-
curately remains amajor challenge due to the complex-
ity of wood jams, variability in orientation, and the lim-
itations of existing automatic detectionmethods. To ad-
dress these challenges, scientists have been conducting
manual surveys. Given these challenges, there is a clear
need to automate the analysis of UAV imagery to en-
hance efficiency. Automation can significantly reduce
the human effort required for such studies, allowing
for more rapid, standardized, repeatable, and reliable
data processing (Tassielli et al., 2024). Integrating re-
mote sensing techniques can facilitate long-term stud-
ies of wood dynamics. Airborne LiDAR Scanner (ALS),
which creates 3Dmodels of topography and vegetation,
has shown significant potential in detecting and map-
ping instream wood on a large scale. Another advance-
ment was the development of an automated framework
that uses ALS data to map LW in small coastal streams
(Kuiper et al., 2023). This method, which integrates
point cloud filtering and skeletonization techniques,
demonstrated detection accuracy ranging from 37% to
87%, depending on factors such as canopy cover and
wood submergence. Similarly, Structure from Motion
(SfM) photogrammetry has been used to assess wood
accumulations in the field, offering a new approach
to detecting LW, even though they are limited in spa-
tial scale and focus on a limited amount of structures
(Ortega-Terol et al., 2014; Spreitzer et al., 2019; San-
hueza et al., 2019). Similarly, several studies (Haschen-
burger and Rice, 2004; Lassettre et al., 2008; Tamminga
et al., 2015) relied on manual or semi-automated ap-
proaches that involved significant manual validation
steps, which limited their scalability and automation
potential. An early attempt showed that computer vi-
sion techniques can automatically measure wood vol-
umes (Correia et al., 1993). This approach could further
enhance the accuracy of LW detection and quantifica-
tion by minimizing manual errors and increasing effi-
ciency. The use of photo analytical methods was also
exploredwith a focus on stackedwood,whichhas impli-
cations for solid wood content estimation (Pásztory and
Polgár, 2016). The methods achieved higher accuracy
than traditional techniques, emphasizing the role of im-
age processing in wood detection. Also, even though
not created explicitly for image processing, the XGBoost
tool effectively classified LW in aerial imagery (Liang
et al., 2022).
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By leveraging advanced machine learning tech-
niques, such as convolutional neural networks (CNNs),
it is possible to develop models that can automati-
cally detect, segment, andmeasure LW in UAV imagery.
This approach not only streamlines the workflow but
also minimizes the potential for human error, ensuring
more reliable and reproducible results (Manfreda et al.,
2018; Kamilaris and Prenafeta-Boldú, 2018). CNNs have
shown promise in various object detection tasks, offer-
ing a potential solution to enhance the automateddetec-
tion and measurement of LW (Kamilaris and Prenafeta-
Boldú, 2018; Schmidhuber, 2015; Rouge, 2022; Rey-
mond, 2022; Buscombe et al., 2024). The prior research
highlights how automated deep-learning-based image
segmentation and object detection can accurately iden-
tify and measure wood features in high-resolution or-
thoimages. Most of these studies, however, used the
same data for training and testing. Therefore, the
method might overfit and be accurate for one specific
site instead of being globally applicable. Furthermore,
although effective in wood detection and storage esti-
mation, Sendrowski andWohl (2021) andGrimmer et al.
(2025) relied on the use of multispectral data, which is
not a common tool that is available with all aerial obser-
vation devices.
While CNNs have been successfully used forwood de-

tection, the key challenge remains accurately estimat-
ing wood volume from UAV imagery. This study aims
to bridge that gap by leveraging CNNs to not only de-
tect LW but also quantify its volume, providing a scal-
able solution for river monitoring. We present a novel
application of CNNs to analyse UAV orthomosaics. By
leveraging CNNs’ ability to learn and generalize from
high-dimensional RGB image data, we aim to improve
the accuracy and efficiency of LWmonitoring. Our goal
is to provide scientists and river managers with a tool to
track wood volume over time and assess whether crit-
ical amounts of stored wood could pose a risk to in-
frastructure during floods. Automating the detection
andmeasurement process can also facilitate large-scale
studies and continuous monitoring, providing valuable
insights into temporal changes in LW storage and its
spatial distribution. It can also turn data gathered for
different purposes into a new source of wood storage
estimation. Understanding these changes is crucial for
assessing how LW dynamics influence river character-
istics like sediment transport, habitat formation, and
flood risks, ultimately aiding in effective river manage-
ment. This can be particularly beneficial for river man-
agement and restoration efforts, where timely and accu-
rate data are important for informed decision-making
(Hess et al., 2024; Sendrowski and Wohl, 2021). By im-
plementingCNNs for volume estimation, this study pro-
vides a scalable and repeatable method for quantifying
LW storage in rivers.

2 Methods
The goal of this study is to detect LW in UAV-derived or-
thomosaics and to estimate its volume. To achieve this,
our approach combines two sequential processes. At
first, object detection using a convolutional neural net-

work (CNN) is performed to locate wood pieces and de-
lineate bounding boxes. Thereafter, a wood segmenta-
tionmodel estimates thewood surface areawithin these
bounding boxes, which is then used to infer LW diame-
tre and volume.

2.1 Data Acquisition
High-resolution data from 7 rivers in the Swiss Alps
and the Argentinean Andes, along with an additional
satellite image of the Hoh River in the United States,
were used to build a diverse training dataset. A sepa-
rate dataset from the Avançon de Nant in the Swiss Alps
was exclusively used for independent testing to evaluate
model performance. Table S2 shows the different loca-
tions at which the data was collected. Furthermore, a
series of satellite images in which LWwas visible at the
Hoh River around coordinate (47.806721, -124.053095)
WGS84 in theUnited Stateswas taken fromGoogleMaps
and added to the training database. In machine learn-
ing, having training data fromdiverse sources enhances
the model’s ability to generalize across different condi-
tions, improving robustness (Goodfellow et al., 2016).
The UAV data were converted into high-resolution geo-
rectified orthomosaics, the primary data source for this
analysis. The orthomosaics were cropped to include
only the river and the immediate vicinity, excluding sur-
rounding forests or other non-relevant areas. The se-
lected rivers offer a range of environmental conditions.
The Swiss rivers are high-elevation mountain streams
with narrower channels and predominantly coniferous
riparian forests. The Argentinean rivers are wider, and
characterized by deciduous vegetation. While overall
LW storage was comparable, slightly higher volumes
were observed in the Argentinean rivers. The inclusion
of the Hoh River in the training dataset added valuable
diversity, particularly in terms of larger wood pieces.
Despite being derived from satellite imagery, the reso-
lution resulted in wood pieces occupying similar pixel
dimensions to the UAV-acquired images. In addition to
detecting LW and estimating the volume of the single
pieces and at the river reach scale, the LW piece orien-
tation was also identified. To do so, a shapefile (.shp)
containing a line that follows the river’s thalweg is re-
quired, which, for this study, we visually drew based on
the orthomosaic. The main line of the shapefile needs
to run from upstream to downstream and follow the
river’s thalweg. Secondary lines, like tributaries, can
be included in the shapefile. The algorithm determined
the orientation with respect to the closest point on any
of the lines.

2.2 Model training and validation
Two convolutional neural networks were trained using
different versions of the YOLOmodel (Varghese andM.,
2024) from Ultralytics (Jocher et al., 2023). The YOLO
models used in this study are open-source and freely
available under the GPL-3.0 license, making them ac-
cessible for both academic and commercial applica-
tions. The first model used the 10th version of the
YOLO architecture and was designed to detect LW in
orthomosaics by locating and drawing bounding boxes
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Figure 1 Example of the detection on an orthomosaic at the Navizence (Canton Valais, Switzerland), on a section of the river that was not used as training
data. The red bounding boxes indicate the detection of a piece of instream wood. Its ID number is indicated above (left), and so is the confidence score of
the CNN (right). The purple line shows the thalweg of the river. The bounding box indicated with a yellow-red dashed line is a false detection and has a
confidence score of 10.6%.

around objects (detection). Segmentation, used in the
second model, outlines the exact pixels belonging to
each detected object. YOLO was selected because we
have a large, labelled image database specifically for LW
detection in rivers, which allows us to train and fine-
tune the model effectively. Additionally, YOLO is a well-
established object detection framework with known
performance in both research and industry (Sharma
et al., 2021). Its flexibility enables easy adaptation for
UAV-deriveddetectionpurposes. Themodel comeswith
different complexities that influence its performance
and processing time. Larger models have more links
and nodes and can handle more complex data. For
this study, the small (17 MB), medium (34 MB), bal-
anced (42 MB) and large (52 MB) versions of the detec-
tion model were trained, all with 960 pixels (960p) in-
put image size. Training time ranged from 2 to 6 hours,
depending on the model size, with larger models re-
quiring longer training but offering marginal accuracy
gains, although this can vary based on the hardware
used. Different colour spaces, as proposed by Liang
et al. (2022), who found that detections in the YCbCr
colour space were more effective, were also considered
when training the detection model. Subsequently, the
best-performing model was chosen for the detection

step in themethod. The gathered datasetswere cropped
into tiles of 960x960 pixels. Twenty percent of the tiles
were randomly copied, after which the data was man-
ually labelled by drawing bounding boxes around the
visible pieces of LW. The training dataset consisted of
226 labelled images extracted from the orthomosaics of
the 8 rivers, with 205 images used for training and 21
for validation. These were randomly selected from a
larger set of cropped tiles to ensure diverse training in-
put. These images include a range of lighting conditions
and shadow scenarios, such as shaded sections under
canopy and varying illumination conditions, to help the
model generalise across real-world variability.

Themost recentYOLOmodel (v10) did not yet include
a feature for segmentation. Therefore, for the second
step, the 8th version of the YOLO model (Jocher et al.,
2023) was trained to segment wood pixels within de-
tected bounding boxes. The wood segmentation algo-
rithm was developed to estimate the wood surface area
within each detection bounding box, from which the
diametre and volume of the wood pieces were calcu-
lated. To optimize the model’s performance, we tested
the ’medium,’ ’large,’ and ’extra-large’ versions of the
YOLOv8 model at 160 (160p) and 320 pixels (320p) input
image resolutions. For this dataset, labelled boxes from
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thewood detection training datawere cropped from the
orthomosaics described in Table S2. On these cropped
boxes, polygons were drawn around the pixels that rep-
resent wood. A total of 266 cropped bounding boxes
were labelled, with 247 used for training and the rest for
validation.
The images were manually annotated by three indi-

viduals with experience in surveying LW in rivers, and
all labels were subsequently reviewed and verified by
the first author to ensure consistency and accuracy. Al-
though inter-annotator agreement was not formally as-
sessed, this multi-review process aimed tominimise in-
consistencies in the training data. The full set of anno-
tated images used for training, validation and testing is
publicly available (see data availability section) to sup-
port reproducibility and verification.

2.3 Detection and segmentation process

The proposed method consists of wood detection and
wood segmentation steps. During the detection steps,
the orthomosaic was divided into 480x480 pixel tiles
with anaddedborder layer of 240pixels (calledpadding)
on all sides, resulting in 960x960 pixel tiles. The wood
detections were performed on these tiles, retaining
only bounding boxes with their centres in the mid-
dle 480x480 region. Detected bounding boxes were
stored with their location, size, and confidence score
in the coordinate system of the orthomosaic. Quali-
tative analysis where we visually inspected the detec-
tion data has indicated that the algorithm can detect the
same piece of wood multiple times. Therefore, we im-
plemented a safeguard approach to address this by re-
tainingonly onedetection if the IntersectionoverUnion
(IoU) between overlapping bounding boxes exceeds 0.7.
Nonetheless, multiple detections may occur frequently
for larger pieces.
The detectionswere then filtered by confidence score

at intervals of 10%. Per confidence score, which func-
tions as a threshold, separate text files were created for
each detection in the form of bounding boxes, which
are boxes that envelope the detected log. The file in-
cludes Detection ID, the confidence score, the centre of
the X and Y coordinates, the minimum X and Y coordi-
nates of the bounding box, the maximum X and Y co-
ordinates of the bounding box, and the diagonal length
of the bounding box (which represent the length of the
log). Also, per confidence score, orthomosaics include
only the bounding boxes of the detections with a con-
fidence score larger than the threshold. The orthomo-
saics, of which Figures 1 & 2 show examples, also in-
clude the detection ID and confidence score per bound-
ing box and can aid in the decision of what confidence
threshold to use for the reduction of false positives. For
example, in the case shown in Figure 1, a threshold of
20%, instead of 10%wouldbe advisedbecause detection
number 79 (indicated with a yellow-red dashed bound-
ing box) is a clear false positive with a confidence score
of 10.6%.
Each detection was cropped once a confidence level

was chosen (which was 30% for all orthomosaics ex-
cept for theNavisence, whereweused a 20%confidence

level based on visual inspection), and thewood segmen-
tationmodel was applied. The segmentationmodel cre-
ated a mask polygon, a polygon line that borders all the
pixels segmented as LW. The number of segmented pix-
els was determined by counting the segmented pixels
included in the mask polygon. The length of the wood
piece was determined bymeasuring the diagonal of the
bounding box. This approach assumes the LWpiece lies
in a straight line, which is not always the case for bent
or irregularly shapedwood. Such simplifications can in-
troduce inaccuracies in length estimates. The total sur-
face area was calculated by multiplying the pixel count
by the size of eachpixel. To counteract pixels of overlap-
ping bounding boxes (for example, in the case of mul-
tiple LW pieces within a jam) being counted multiple
times, the total surface area was corrected based on an
analysis of the number of unique pixels versus the num-
ber of total pixels per jam. The diametre was calculated
by dividing the surface area by the length, assuming the
wood piece is cylindrical. This approach simplifies the
geometry of thewood piece, disregarding irregularities,
and assumes a uniform, circular cross-section along its
entire length. The number of unique pixels segmented
per jamwas divided by the total pixels detected as wood
for that jam. This ratio adjusts the detected pixels for
each piece in the jam, ensuring accurate volume calcu-
lation. The volume was then calculated using this di-
ametre and length. Edge detection filters were applied
to analyse the orientation of each piece of LWwithin the
boundingboxusing the Sobel operator, which computes
intensity gradients to detect edges andhas been adapted
here for diagonal edge detection using customized So-
bel filters (Gonzalez and Faisal, 2019). The function esti-
mates the predominant orientation of elongated objects
like wood by applying these filters in two diagonal ori-
entations (North-West South-East andNorth-East South-
West). The angle of the LW relative to the closest point
on the river line shapefile (i.e., thalweg) was calculated,
as well as the longitudinal distance along the thalweg
line from upstream to downstream.

2.4 Performancemetrics

Several performance metrics were used to evaluate
the effectiveness and accuracy of the trained machine-
learningmodels. Precision, recall, mean Average Preci-
sion (bothmAP50 andmAP50-95) are themost common
metrics used to evaluate object detection and segmenta-
tion models and often refer to the concept of Intersec-
tion over Union (IoU) (Lin et al., 2014). IoU, also known
as Jaccard’s Index, measures the overlap between the
predicted bounding box inferred by the model and the
ground truth bounding box from the validation dataset.
Mathematically, IoU is defined as the ratio of the area of
overlap between the predicted and ground truth bound-
ing boxes to the area of their overlap. A higher IoU score
indicates better alignment between the prediction and
the actual object, with a value of 1 representing per-
fect overlap. Subsequently, precision refers to the pro-
portion of correctly detected objects out of all detec-
tions made, while recall measures the proportion of ac-
tual objects correctly detected by the model. Precision
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Figure 2 Example of the detection of LW accumulated in a jam, on an orthomosaic from the Kander River (Canton Bern, Switzerland), on a section of the
river that was not used as training data. The red bounding boxes indicate the detection of a piece of LW. Its ID number is indicated above (left), and so is the
confidence score of the CNN (right).

specifically assesses how well the model distinguishes
actual objects from false positives, providing insights
into themodel’s ability tomake positive predictions that
are indeed accurate. While recall assesses the model’s
completeness in identifying objects of interest, a high
recall score indicates that the model effectively identi-
fies most of the relevant objects in the data. Average
Precision (AP) and mean Average Precision (mAP) in-
corporate a trade-off between precision and recall and
are calculated for a given threshold. For example, the
mAP50 (mean Average Precision at IoU threshold 0.50)
is the average precision when detection is correct if the
Intersection over Union (IoU) between the predicted
and ground truth object is at least 0.50. The mAP50–95
provides a more comprehensive evaluation by averag-
ing precision across IoU thresholds from 0.50 to 0.95
in steps of 0.05, reflecting the model’s performance at
varying levels of localization accuracy (i.e., thresholds).

In our study, the primary objective was not to achieve

a perfect fit of bounding boxes but to maximize detec-
tion regarding the number of LW pieces and their es-
timated size and volume. Given this focus, relying on
themean Average Precision (mAP) alone as the key per-
formance metric may not fully capture the model’s ef-
fectiveness in meeting these objectives. Therefore, we
prioritized the recall over the mAP.

2.5 Test site: Avançon de Nant

To test the method’s performance in a dataset not used
for training or validation, we applied our models to a
test dataset from the Avançon deNant stream in theVal-
lon de Nant (VDN) region in the Swiss Alps. This sep-
aration ensures that the testing evaluates the model’s
performance on completely unseen data. The VDN is
a protected area in the Alps of Canton Vaud, in Switzer-
land’s upper Rhône River basin. The drainage area is
around 13 km², and the elevation ranges from the Pont
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(a)
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Figure3 (a) The catchment of theAvançondeNantwith the acquiredorthomosaic overlaid in the centre and (b) a closeupof theorthomosaic. Background
map source: Esri Terrain Map.

de Nant at 1253 to 3100 metres above sea level. With a
partially glacial and snowmelt dominated regime, the
Avançon de Nant stream (see Figure 3) runs through a
relatively steep, partially forested valley (average gradi-
ent is around 17% according to Antoniazza et al., 2022),
varying in morphology from a braided multi-thread
reach in the upper part to a more confined step-pool
lower reach. For this research, we focused on the upper
forested multi-thread channel section of the valley be-
tween 1470 and 1530 metres in altitude, covering about
1 kilometre of the river.

RGB aerial imagery of a 950-metre section of the
Avançon de Nant River was captured using a DJI Phan-
tom 4 Pro drone on the 25th of July, 2024. The imagery
was processed using WebODM photogrammetry soft-
ware, producing an orthomosaic with a spatial resolu-
tion of 2 cm per pixel.

As part of an extensive fieldwork campaign in spring-
summer 2024, the location, length, diametre, and orien-
tation of all LW pieces in the river were surveyed. The
aerial survey was conducted approximately one month
after this field survey (see Figure 4), resulting in an
orthomosaic of the same river section. This overlap
provides an opportunity to directly compare the algo-
rithm’s detection performance against field-measured
values for each piece of LW. However, due to the wet
summer conditions and frequent high flows, some
wood pieces were transported and moved from their
initial location within themonth between the fieldwork

and the aerial survey. Figure 4 shows that 3 out of 4 of
the largest floods of the season took place in this period.
The limited GPS signal during the survey made it chal-
lenging to match individual LWpieces between the sur-
vey data and the orthomosaic in locations withmultiple
LW. Consequently, only 29 individual wood pieces visi-
ble in the orthomosaic could be reliably matched to the
surveyed logs. These were selected for precise, one-to-
one comparison with the model’s results. The remain-
ing surveyed LWcould not be confidently located in the
imagery due to occlusions, spatial shifts, or ambiguous
matching.

Several analyses were performed to evaluate the
method’s effectiveness and accuracy for these individ-
ual LW pieces. LW lengths, diametres, and volumes
were compared between the survey data and the algo-
rithm’s detections, along with assessing the accuracy
of orientation detection. In addition, the spatial dis-
tribution of the volume of wood for both the ground
truth and the detected data was compared by analysing
the measured and obtained wood volumes in the longi-
tudinal direction. The orientation of detected LW was
grouped into three classes: 0–22.5 degrees (parallel),
22.5–67.5 degrees (oblique), and 67.5–90 degrees (per-
pendicular). The frequency distributions of the volume
and length of wood pieces were also compared, as well
as volumes per wood jam and distribution of the orien-
tations. While the detailed testing was conducted on in-
dividual LW pieces, a broader comparison of wood jam
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sizes was also performed. The total volume of wood in
jams was assessed by summing the estimated volumes
of detectedLWgrouped into jams, allowing for a general
evaluation of jam sizes despite the challenges in direct
validation.
To compare the distribution of the length, diametre,

and volume of LWpieces between field surveymeasure-
ments and the outputs of the detection algorithm, a Ker-
nel Density Estimation (KDE) was performed. KDE is a
non-parametric method for estimating the probability
density function of a continuous variable. It visualizes
the underlying distribution of data without assuming a
specific distribution shape. KDE was used to smooth
the distribution of LW characteristics from the survey
and algorithmic data. The density plots provide a visual
comparison, highlighting areas where the algorithm’s
estimates closely resemble the survey measurements.
The method facilitates a clear and intuitive comparison
between the two datasets, offering insights into their re-
spective distributions.
A direct comparison was conducted between survey

measurements and algorithm estimations to assess the
accuracy of the wood detection algorithm. Scatter plots
were used to visualize the relationship between ob-
served and estimated values for key parametres, in-
cluding LW length, diametre, and volume. The first
set of comparisons was performed between survey and
algorithm-derived lengths, diametres, and volumes for
a subset of 29 LW pieces. The second one compares
length versus diametre for all LW, using survey data and
algorithm detection. These visualizations allowed for
an evaluation of systematic biases, over- or underesti-
mation tendencies, and the overall performance of the
detection method in capturing LWdimensions.

3 Results

3.1 Wood detection performance
To show thewooddetectionperformance, we compared
the validation data (randomly cut out orthomosaic sec-
tions of 480x480 pixelswithmanually labelled bounding
boxes) of the training process to the detectionsmade by
the model. This data included both individual pieces of
wood and pieces in wood jams. From the tested mod-
els, the small YOLOv10 model yielded the best results.
When analysing detection rates of different size thresh-
olds (regardless of the LW size), detection rates vary
across wood size classes (i.e., bounding box areas di-
vided into five equal-sized bins based on pixel ranges).
The model identified 66% of all LW pieces and per-
formed particularlywell for larger sizes (the 10% largest
pieces in the dataset, here between 3.4 and 10.2 metres
in length), achieving a detection rate of 97% (see Figure
5). The wood detectionmodel achieved amean Average
Precision of 46% at an intersection over union (IoU) of
0.5, a recall of over 50% and amAP-95 approaching 22%
(Figure 6). Qualitative analysis showed that the same
piece was often detected multiple times (see detection
numbers 406 and 407 in Figure 1).
The size classes in Figure 5 correspond to bounding

box pixel areas and were divided into five equal-sized

bins to analyse performance across LW sizes. For ref-
erence, these pixel areas approximately correspond to
LW pieces with lengths ranging from 43 cm to 10.2 m,
assuming an average pixel size of 2 cm (see Table S2).
While the class divisions are fixed for this analysis, we
acknowledge that they depend on image resolution. For
example, a LWpiecewith the samephysical dimensions
would fall into a different class if captured at a different
resolution.
The training and validation metrics for the small ver-

sion of the YOLOv10 model are displayed in Figure 6,
which shows the performance metrics throughout 200
epochs. The precision and recall metrics significantly
improved during the training process, with precision
stabilizing around 0.5 and recall peaking at 0.45. These
metrics indicate that the model performed reasonably
well at identifying wood pieces despite room for im-
provement. The mAP50 for bounding box predictions
achieved a peak of 0.46. While this value may seem
modest relative to standard benchmarks (e.g., the COCO
dataset; Lin et al., 2014), it reflects the challenges of
detecting irregular, overlapping wood pieces in hetero-
geneous river environments, and we consider it a sat-
isfactory result in this context. This value indicates
the model’s ability to accurately detect LW when con-
sidering a moderate overlap (IoU of 0.5) between pre-
dicted bounding boxes and ground truth labels. The
stricter mAP50-95 metric, which averages performance
across IoU thresholds between 0.5 and 0.95, achieved a
maximum score of 0.22. This indicates that while the
model performed well at moderate IoU thresholds, it
still has difficulties finding the exact extent of the pieces
of wood. This reflects the challenge of precisely local-
izing irregularly shaped wood objects and finding their
limits. When training a similar small YOLOv10 detec-
tion model with 960p input data using the YCbCr colour
space as suggested by Liang et al. (2022), the bestmAP50
and mAP50-95 it produced were 27.4% and 12.6% re-
spectively.

3.2 Wood segmentation performance

The segmentation model generally effectively deter-
mines the wood surface area within the detection
bounding boxes, providing a solid basis for subsequent
LW diametre and volume calculations. Figure 7 shows
four detections segmented by the model. It shows that
the algorithm performs well on individual pieces of
wood but slightly follows an overlapping piece in Fig-
ure 7c. In Figure 7d, the algorithm follows the contours
of a single LW piece, even though the bounding box is
incorrectly showing multiple pieces of wood. Unlike
the detection model, the segmentation model’s metrics
continued to show a gradual upward trend toward the
end of the 200 epochs (Figure 8), suggesting that further
training could result in additional incremental improve-
ments.
The extra-large version of the YOLOv8 segmentation

model at 320p yielded the best results, balancing de-
tection accuracy and computational efficiency. The
performance of the segmentation model is visualized
in Figure 8, with key metrics including precision, re-
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Figure 5 Percentage of detected pieces of wood in the validation dataset in blue at a confidence threshold of 0.3, and the average Intersection over Union
(IoU) of the detected pieces in orange. The LW pieces are binned into brackets in terms of pixel size, representing the following approximate length ranges:
Class 1: 43–108 cm, Class 2: 108–161 cm, Class 3: 161–221 cm, Class 4: 221–341 cm, Class 5: 341–1020 cm.

call, mAP50, and mAP50-95. The model’s precision in-
creased steadily throughout training, reaching approx-
imately 0.8. The recall metric improved to around
0.65, demonstrating that the model successfully cap-
tured most of the wood pixels with a low number of
false negatives. The mean Average Precision at an IoU
threshold of 0.5 for segmentation masks reached val-
ues around 0.7, suggesting a substantial overlap be-
tween predicted masks and the ground truth at this IoU
level. For the more strict mAP50-95 metric, which av-
erages performance over IoU thresholds ranging from
0.5 to 0.95, the model achieved scores between 0.25
and 0.3. While this indicates a lower accuracy across
varying overlap thresholds, it highlights the challenges

of segmenting complex wood shapes in natural envi-
ronments. The combination of high precision, recall,
and robust mAP50 scores suggests that the extra-large
YOLOv8 model at 160p is well-suited for wood segmen-
tation tasks in river environments. However, this seg-
mentation model is only executed on wood pieces that
were detected in the first step of the method.

3.3 Algorithm Accuracy Assessment

To evaluate the model on unseen data, we used the
Avançon de Nant river, which was not included in the
training dataset and serves as an independent test site.
All results presented in this section are based solely
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Figure 6 Results training the detectionmodel (YOLOv10, small, 960p). (a) precision, which indicates howmany of the LW pieces were detected; (b) recall,
which indicates whether a detected box was a Lw piece; (c)mean Average Precision at an Intersection over Union (IoU) of 0.5; (d)mAP for IoUs ranging from
0.5 to 0.95. All values on the y axes are dimensionless scalars. An epoch inmachine learning is one complete pass through the entire training dataset, during
which the model updates its weights to improve learning.
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Figure 7 Four segmented detections from the Avançon de Nant dataset, (a): detection 179, (b): detection 391, (c): detection 450, (d): detection 515. The
blue line indicates the polygon around all the pixels classified as wood. (b) and (c) are examples of wood pieces in jams.
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Figure 8 Segmentationmodel (YOLOv8, extra-large, 320p) training results. (a) precision, which indicates howmany of the segmented pixels were correct;
(b) recall, which indicates whether the segmented pixel was wood; (c)mean Average Precision at an Intersection over Union (IoU) of 0.5; (d)mAP for IoUs
ranging from 0.5 to 0.95. All values on the y axes are dimensionless scalars. All values on the y axes are dimensionless scalars. For each epoch, the training
process has used all the training data to improve performance.

on detections from this river. This approach ensures
that the evaluation reflects the model’s generalization
to new environments and image conditions.

3.3.1 Individual wood pieces

This section presents an evaluation of detection and
volume estimation accuracy for individual LW pieces.
While segmentation provides the basis for estimating
surface area, volume estimation involves further calcu-

lations that combine the segmented areawith bounding
box length, and therefore is analysed separately from
segmentation performance. The comparison between
the surveyed individual wood pieces and the detected
ones shows a generally high level of accuracy in de-
tecting the correct orientation of the wood pieces, with
the algorithm correctly identifying the orientation in
83% of the cases. This means it is a useful tool for
analysing spatial arrangement. Table 1 compares 29
LWpieces surveyed during fieldwork that were also de-
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Table 1 Comparison between individual LWmeasurements in surveys (Sur.) and estimates from the algorithm (Alg.). The second and third columns show
the surveyed lengths and diametres, where the sixth and seventh column shows the LW lengths and diametres as analysed by the algorithm.

Survey Length Diam. Vol. Algorithm Length Diam. Vol. Correct Vol.
Number Sur. Sur. Number Alg. Alg. Total Orien- Diff.

(m) (m) (m3) (m) (m) (m3) tation? (m3)
N17 4.1 0.12 0.046 333 4.0 0.14 0.060 no -0.013
N13 7.3 0.35 0.702 682 7.8 0.37 0.836 yes -0.133
N19 3.0 0.10 0.024 158 3.6 0.11 0.036 yes -0.013
N10 3.0 0.12 0.034 297 3.2 0.16 0.065 yes -0.032
1005 1.9 0.22 0.072 141 2.0 0.17 0.046 yes 0.027
15 2.7 0.10 0.021 294 2.4 0.12 0.028 yes -0.007
22 3.5 0.50 0.687 632 3.4 0.23 0.146 yes 0.541
14 1.6 0.15 0.028 654 1.0 0.14 0.017 yes 0.011
2623 2.5 0.10 0.020 488 2.7 0.17 0.059 yes -0.039
29 15.5 0.35 1.491 102 & 103* 11.3 & 11.8 0.17 & 0.23 0.470 yes 1.021
N2 2.6 0.12 0.029 268 2.7 0.20 0.084 yes -0.054
8 2.8 0.12 0.032 617 2.5 0.12 0.030 no 0.002
6 2.6 0.18 0.066 611 2.2 0.12 0.025 yes 0.041
34 2.8 0.17 0.064 79 2.7 0.15 0.047 yes 0.016
2 1.6 0.12 0.018 422 1.7 0.15 0.029 no -0.011
66 2.6 0.12 0.029 412 2.7 0.13 0.037 yes -0.008
82 1.7 0.10 0.013 63 2.0 0.13 0.027 no -0.014
78 2.2 0.18 0.056 590 3.2 0.23 0.136 yes -0.080
N42 1.6 0.10 0.013 225 1.6 0.11 0.016 yes -0.003
N54 2.8 0.10 0.022 199 2.2 0.06 0.007 yes 0.015
105 2.3 0.39 0.275 379 1.1 0.08 0.005 no 0.270
106 1.5 0.12 0.017 198 1.5 0.12 0.016 yes 0.001
N45 1.0 0.14 0.015 378 1.4 0.09 0.009 yes 0.006
N51 2.7 0.11 0.026 532 1.4 0.12 0.015 yes 0.011
103 3.0 0.13 0.040 362 & 363* 1.5 & 3.2 0.03 & 0.10 0.027 yes 0.013
N50 1.8 0.15 0.032 535 1.7 0.17 0.036 yes -0.004
N49 2.0 0.10 0.016 181 2.2 0.14 0.032 yes -0.016
95 3.4 0.13 0.045 9 2.9 0.13 0.037 yes -0.009
127 2.2 0.10 0.017 12 1.7 0.11 0.017 yes 0.000
Sum 3.951 Sum 2.394 83% 1.54

Abs. Diff. 2.41
*Some LWpieces were detected with multiple bounding boxes.

tected by the wood detection algorithm in the ortho-
mosaic. When looking at the detected length of the
pieces, the table shows that the method performs well
with a median error of 10%. The median difference
between the measured and algorithmically estimated
lengths was 0.3 m with an interquartile range of 0.4 m.
The errors increased up to a median of 20% when look-
ing at the detected diametre of the LW pieces. The me-
dian difference between the measured and algorithmi-
cally estimated diametres was 0.02mwith an interquar-
tile range of 0.04 m. Regarding the volume, the errors
compounded with a median error of 40%. The median
difference between the measured and algorithmically
estimated diametre was 0.014 m³ with an interquartile
range of 0.031 m³. This analysis is restricted to 29 LW
pieces that were identified in both the survey and the
orthomosaic. These logs form the basis for length, di-
ametre, and volume comparisons.
These findings are underlined by the data in Figure

9. The three scatterplots compare the survey data for
LW lengths, diametres, and volumes to the estimates
made by the method. Ideally, all data points should
align with the 1:1 line, representing perfect agreement

between the observations and detections. However, in
each plot the data points deviate from this ideal line,
particularly for larger wood pieces. The largest pieces
had the most impact on the estimation of the total vol-
ume. On average, the largest four pieces of wood are
underestimated by 0.42 m³, whereas the other 25 pieces
are slightly overestimated by 0.0056 m³ on average. The
median uncertainty for the volume estimation based on
all 29 pieces is 40%. This discrepancy is most evident in
the diametres and, as a result, in the volume, where the
algorithm tends to underestimate these values for larger
pieces. The consistent underestimation of diametre is
a key factor leading to the overall underestimation of
volume on the reach scale, as volume is directly related
to the length and quadratically related to the diametre
(considering thewood pieces as cylinders). This pattern
is captured in Table 1.

3.3.2 River reach scale

Unlike the individual comparison in the previous sec-
tion, this reach-scale analysis includes all LWpieces sur-
veyed and all LWdetected, even if individual one-to-one
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matching was not possible. The total number of LW
pieces surveyed was 135. At the same time, the wood
detection algorithm identified 221 pieces in the same
area. According to the algorithm, 118 meet the crite-
ria of large wood (longer than 1 m and larger than 0.1
m diametre). The remaining 17 were either too short
or too narrow to qualify as large wood based on the de-
fined size thresholds. These smaller pieces are not nec-
essarily false positives. When looking at the larger scale
wood storage estimation, Figure 10 shows the volume
per 50 metres along the river as detected by the algo-
rithm in blue versus the data from the survey in orange
and the data from the survey excluding the buried LWin
green. Even though the two datasets were acquired one
month apart from each other, and after a visual inspec-
tion showed changes in LW deposited on the bed, the
peaks in wood storage demonstrate the concentrations

ofwoodalong the river bedand indicate correctlywhere
the largest jams were located. The signal of the wood
stored along the river generally agrees between the sur-
vey and the algorithm. Themethod estimated the wood
volumeequal to 6.60m³, whereas the total volumeof un-
buried wood found during the survey was 7.36 m³. The
discrepancy canpartially be attributed to underestimat-
ing the number of pieces in large jams.

Figure 11a compares wood orientations as derived by
the algorithmandmeasured during the field survey. LW
pieces were classified into three orientation categories:
Orientation 1 (0–22.5°), Orientation 2 (22.5–67.5°), and
Orientation 3 (67.5–90°). The algorithm’s orientation
predictions generally align with the survey data and
show more pieces with orientation two than with the
other orientation. The algorithm also analyses a simi-
lar amount of LWwith orientation 3. However, there is
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a noticeable discrepancy in LW pieces with orientation
1, where the algorithm predicts fewer than the survey
data.
Figure 11b compares the total wood jam volumes of

the survey and the algorithm, where the survey data
was gathered using traditional measurements. A dis-
crepancy is observed when estimating the largest wood
jams, where the algorithm underestimates the total vol-
ume. This underestimation is due to the algorithm’s
difficulty in accurately determining the volume of the
larger individual wood pieces. The largest observed
wood jam consists of multiple pieces, including piece
number 29. This piece (see Table 1, also shown in the
middle part of Figure 12) was measured to have a vol-
ume of 1.49 m³ in the survey versus 0.47 m³ as esti-
mated by the algorithm. Furthermore, a detailed quan-
titative analysis revealed that the mean absolute error
(MAE) between the algorithm’s estimated jam volume
and the actual volume measured during the survey was
0.10 m³. To gain further insight into the algorithm’s ac-
curacy across different jam sizes, the jams were seg-
mented into two groups: the six largest jams and all
other jams. The results indicated that the mean ab-
solute difference for the six largest jams was 0.20 m³,
suggesting a higher volume estimation discrepancy for
larger jams. In contrast, the mean absolute difference
for the remaining jams was significantly lower at 0.04
m³, indicating a more precise volume estimation for
smaller jams. These findings suggest that while the al-
gorithm performs well overall, its accuracy tends to de-
crease for larger jams, possibly due to increased com-
plexity in their volume estimation.

3.4 Efficiency of the proposedmethod
As shown in Table 2, our method significantly reduces
the time required for wood volume mapping compared
to traditional approaches. A traditional field survey re-
quires approximately 6 work days for a 15-hectare area,
while UAV imagery with manual mapping reduces this
to 4 work days. In contrast, our automated approach
completes the task in only 1.5 work days, enabling a
much faster and more scalable solution.

4 Discussion
4.1 Strengths, novelty, and challenges
As summarised in Table S1, few prior studies have
proposed an automated approach comparable to this
work, but they differ significantly in methodology. For
instance, Sendrowski and Wohl (2021) employed both
object-based and pixel-based classifications using su-
pervised support vector machines (SVM) and unsuper-
vised ISO clustering on multispectral satellite imagery,
classifying units like water, sediment, vegetation, and
wood. Their performance, evaluated by correctly clas-
sified reference samples, showed overall accuracies be-
tween 65% and 99%. Another study by Sendrowski et al.
(2023) applied a binary (wood/no wood) deep learning
approach to pixel-wise classification. Similarly, Bus-
combe et al. (2024) used a deep learningmodel with dis-
tinct training strategies and higher-resolution imagery,

achieving segmentation accuracies ranging from0.49 to
0.98 for wood detection. However, these studies did not
calculate metrics such as volume, size, or orientation of
individual pieces of wood. Liang et al. (2022) did, how-
ever, compute volumes. Regarding their results (Table
5 in Liang et al., 2022), their approach overestimated
the total LW volume by 43% (22.65 m³ in the survey
and 32.45 m³ using the automatic approach). However,
when comparing volumes per block in their approach
to our results in Table 1, we see similar R² values (0.53
and 0.48, although we are comparing block volumes to
individual piece volumes). Furthermore, changes in
colour space increased the performance of their meth-
ods, something we did not find.
The automated detection method presented in this

study introduces advancements in LW monitoring by
overcoming the limitations of previous approaches.
While earlier methods focused primarily on either the
detection (Rouge, 2022; Reymond, 2022) or segmenta-
tion (Pásztory and Polgár, 2016) of wood from aerial or
UAV imagery, this novel approach goes beyond iden-
tification. Our method detects individual LW pieces
and provides detailed measurements of metrics such
as length and diametre. Furthermore, it distinguishes
whether the wood is part of a jam and determines the
orientation of each piece, which might influence the
tendency to move (Merten et al., 2010), aspects that
have not been addressed in prior work. The ability to
quantify these attributes is a substantial improvement
because it is the same as the data typically obtained
through traditional fieldwork.
LW length, diametre, orientation, and identifying

wood jams are important for understanding wood dy-
namics in river systems. Collecting such data in the
fieldhas traditionally been labour-intensive (Galia et al.,
2018), often requiring several days of work across chal-
lenging terrain. In contrast, this automated approach
allows for the rapid collection of comparable data us-
ing UAVs within a fraction of the time (Sendrowski and
Wohl, 2021; Hess et al., 2024). A drone survey can
cover a large river reach in a matter of hours, provid-
ing high-resolution orthomosaics that enable measure-
ments without manual intervention. The data derived
from the method are getting close to the data quality
collected manually, thus facilitating new initiatives for
large-scale monitoring of river systems.
Another key strength of thismethod is scalability. Un-

like field surveys, which are limited by personnel and
time constraints, using UAV imagery combined with
machine learning allows for monitoring LW over large
and remote areas. This is particularly advantageous
in regions where fieldwork is impractical or access is
restricted due to environmental conditions. The uti-
lization of advanced object detection algorithms (e.g.,
YOLOv8 and YOLOv10, Jocher et al., 2023) ensures that
the system is accurate andefficient, capable of detecting
a high percentage of LWpieces withminimal error. The
capacity to automate such a process brings the promise
of near-real-timemonitoring, providing rivermanagers
and researcherswith up-to-date information that canbe
critical for river restoration, flood mitigation, and river
management.
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Figure 11 Comparison of (a) orientations and (b) jam volumes between the algorithm data in blue and the survey data in orange. Only jams with at least
a volume of at least 0.025 m³ were plotted.

Understanding camera parametres, particularly
aperture and shutter speed, is important when cap-
turing images in environments like river systems.
Automatic white balance adjustments in cameras tend
to neutralize colours towards a mid-tone grey (Za-
pryanov et al., 2012), which can be problematic in areas
with sediment bars and vegetation. Sediment bars can
appear washed out and overexposed, leading to a loss
of detail. This overexposure can obscure important
surface features for image analysis. Reducing the
shutter speed could help capture colour information
more effectively, preserving detail and contrast (James
et al., 2017). Optimizing exposure settings is, therefore,
important for improving the accuracy of detection and
classification models from aerial imagery.
Another limitation is the assumption that all

wood pieces have a cylindrical shape. In practice,
wood pieces may have irregular forms with several
branches, which can affect both field measurements
and algorithm-derived estimates (Hortobágyi et al.,
2024a). This simplification likely contributes to an
error in the estimation of volume, especially for larger
or more complex pieces. A useful future develop-
ment could involve validating the volume estimates
of irregularly shaped logs with high-precision field
measurements. By comparing detailed field-derived
volumes of complex-shaped wood pieces with those
estimated by the current method, it may be possible to
quantify the extent of over- or underestimation. If a
systematic discrepancy is found, the method could be
enhanced by adding a shape-classification step to iden-
tify cylindrical and irregular wood pieces. Different
volume estimation algorithms could then be applied
depending on the LWpiece geometry. In a similar way,
the lengths of in-field pieces can be compared to the
field-derived lengths, and the extra step could include
a better estimation of length.
Also, a potential improvement for volume estimation

would be to split the segmented shape along its main
axis and estimate local diametres for each segment,

summing the volumes to obtain a more accurate total.
This approach could better capture irregular or tapered
LW pieces and is a promising direction for future re-
finement. As field-derived estimations are also prone
to simplifications with these added steps, the method
could potentially becomemore accurate than fieldmea-
surements.
A limitation of our accuracy assessment is that the

test dataset was based entirely on a single river, the
Avançon de Nant. This river’s specific characteristics,
such as typical wood dimensions, channel morphology,
and riparian forest type, may have influenced detec-
tion performance. As a result, the model’s accuracy in
this study may not fully reflect how it would perform
in rivers with very different environmental settings or
wood recruitment processes. Expanding field valida-
tion to additional rivers with varying geomorphic and
ecological contexts is an important next step to assess
model generalizability and robustness.

4.2 Wood detection

The wood detection algorithm effectively detects LW
(see Figure 1). Using distinct datasets for training/vali-
dation and testing strengthens the robustness of the re-
sults. When using the CNN with a confidence thresh-
old of 0.3 (detecting pieces of which the network has at
least a 30% confidence), 66.2% of all pieces in the val-
idation data (regardless of the large wood criteria) and
97.1% of LW in the largest size bracket (between 3.4 and
10.2 metres, see Figure 5, bracket 5) were detected. The
mean average precision (mAP) was 46%. The modest
mAP score can be attributed to the detection task’s com-
plexity and the mAP metric’s intrinsic limitations. De-
tecting LW in natural environments is inherently chal-
lenging due to the variability in shape, size, and envi-
ronmental factors such as shadows, rocks, and vegeta-
tion. Despite these challenges, although the algorithm
underestimates the total size of some jams and over-
estimates others when looking at the total amount of
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Figure 12 Four largest LW diametre from Table 1 segmented. A blue line is drawn around the segmentation mask and thus indicates the pixels which the
segmentation algorithm identifies as wood. Above each Bounding Box, the detection ID and confidence score are shown in red.

Table 2 Comparison of time and effort required for wood detection methods (for 15 ha, based on our own findings, doing surveys, labelling the data and
running our algorithm). Processing time includes pre-processing (e.g., cropping the river section, defining thalweg shapefiles), running the detection and
segmentation algorithms, and post-processing (e.g., volume andorientation analysis). It excludesmodel training, which is performed separately and reused
across datasets.

Method Field Time Processing Time Total Time
(work days) (work days) (work days)

Traditional Field Survey 5 (2 people) 1/2 6
UAV Imagery & Manual Mapping 1 3 4
UAV Imagery & Proposed Approach 1 1/2 1.5

wood stored in the Avançon de Nant test case, the al-
gorithm detects 6.60 m³ where the infield survey found
7.36 m³ (89.7 percent) of unburied wood pieces. Unlike
what was found by Liang et al. (2022), training detection
in the YCbCr colour space was not found to yield bet-
ter results as compared to RGB. The level of accuracy
demonstrates the method’s potential for estimating vis-
ible wood volume, though limitations remain, such as
the underestimation of diametres for thicker pieces (see
Table 1 andFigure 9b). Despite these constraints, the re-
sults suggest that themethod can contribute to LWmon-
itoring by aiding in the detection and quantification of
unburied wood. The mAP metric, though widely used,
is highly sensitive to deviations in bounding box place-
ment and size. This can be attributed to the stringent
Intersection over Union (IoU) threshold of 0.5. Minor
misalignments, which may be inconsequential to hu-
man observers, can significantly lower the mAP score.
The IoUs shown in Figure 5 are lower than the standard
0.5 thresholds as used by the calculation of the mAP;
the nature of the data makes achieving higher IoUs par-
ticularly challenging. LW in orthomosaics often lack
clearly defined boundaries, which introduces subjectiv-
ity in labelling, even among human annotators. Thus,
although the IoU scores donot oftenexceed 0.5, thehigh
detection rates for larger LW pieces (the most impor-
tant for LW volume) demonstrate that the algorithm ef-
fectively captures the estimation of the total wood vol-
ume. As a result, while the algorithm effectively de-
tects larger, more prominent pieces of wood critical for
volume estimation, the score does not fully reflect its

practical effectiveness. This highlights the need to con-
sider different quantitativemetrics togetherwith practi-
cal outcomes carefully when evaluating performance in
complex environments, such as the detection of wood
in rivers. While mAP provides insights as to how well
the algorithm labels the data in the same way as hu-
man annotatorswould, itmay not fully capture the algo-
rithm’s efficacy in detecting all LW. Future work should
prioritise expanding the training dataset and refining
the model to improve performance (Zhao et al., 2019;
Kamilaris and Prenafeta-Boldú, 2018) so that the model
would increase its detection rate on even the smallest
pieces.

Furthermore, the results indicate that the classifica-
tion algorithm has difficulties with identifying shorter,
thicker LWpieces. By comparing the percentage of pix-
els classified as wood in each cropped bounding box
to the LW length (detailed in the supplementary mate-
rial), we observed that examples, where the algorithm
underperformed (LW pieces shorter than 5 metres and
thicker than 27 centimetres), fell outside the envelope
of ratios represented in the training data. This indicates
that the training data lacks sufficient examples of short,
thick LW, likely contributing to the algorithm’s reduced
performance on LWpieces with these dimensions. The
model was trained on a relatively small dataset of only
206 labelled images. This limited dataset likely con-
tributes to the model’s lower precision, particularly for
smaller or irregularly shaped wood pieces, which may
be underrepresented in the training data. Expanding
the dataset with more labelled images, especially of
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complex and varied wood structures, would improve
the model’s generalisation and overall precision. With
a larger, more diverse training dataset, the algorithm
would likely achieve a higher mAP, reflecting more ac-
curate detections across different LW shapes and sizes.

4.3 Wood segmentation

It was shown that from the 29 LW pieces found in both
the survey and by the algorithm (see Table 1), the av-
erage error in length was 15.6% and in diametre was
25.7%. However, this dataset is not representative of
all the data because the data mainly included pieces
that were not in wood jams. This is because, during
fieldwork, for each wood jam only one location was
acquired instead of a location for each individual LW
piece. This made it difficult to determine definitively
which LW piece in the survey corresponded to the LW
piece detected. Therefore, the error regarding length
and diametres for LW in jams might differ. Further-
more, these statistics do not consider the LW that were
not detected by the initial algorithm, which is governed
by the performance of the detection algorithm.
Figure 12 shows the 4 LW pieces with the largest di-

ametres fromTable 1 and theirmask. Apart fromdetec-
tion 682, the figure demonstrates a structural underesti-
mation of the number of pixels segmented as wood. In
the case of detected piece number 379, not only did the
segmentation algorithmperformsubstandardly, but the
detectionmodel also did not detect the entire LWpiece,
adding to the error.
One approach to address the underestimation of the

diametre would be to apply a correction factor. By
analysing the percentage of underestimation relative to
the bounding box size, it would be possible to devise a
scaling factor to multiply the algorithm-derived diame-
tres. This method, however, would require site-specific
estimations and, therefore, might not necessarily be a
robust solution. A more effective solution would be to
improve the algorithm’s training data. As stressed in
other studies, uncertainties will inevitably arise when
correcting such data, as aerial images cannot fully re-
place field surveys (Galia et al., 2023; Hortobágyi et al.,
2024b).
The training data revealed a gap in examples where

themask covers a high percentage of the pixels, indicat-
ing thick LW pieces relative to the bounding box diago-
nal, which corresponds to the length of the piece (see
Figure 13). The survey data points in the top left cor-
ner of the figure highlight five LW pieces from Table 1
with diametres over 37 cm and lengths shorter than 5
metres. These LW pieces have been manually labelled
for this analysis. The training data lacks examples in the
range of thick LW,which limits the algorithm’s ability to
segment such pieces accurately. To address this limita-
tion, labelling additional thick, short LWand retraining
the model would enable the algorithm to better gener-
alize to complex shapes and provide more precise esti-
mates of both diametre and volume. Prioritizing these
improvements in future algorithm versions would lead
to a more robust and reliable solution.

4.4 Wood size and volume at the reach scale

Although effective in identifying the presence of wood,
the trained algorithm tends to underestimate the di-
ametre of individual pieces (Figure 13). This underes-
timation, although relatively small in absolute terms,
has a substantial impact on the final LW volume esti-
mation due to the mathematical nature of the calcu-
lation. Since the volume of a cylindrical object is de-
termined by squaring the diametre, even minor inac-
curacies in diametre measurement are amplified sig-
nificantly when calculating the final volume. As a re-
sult, this discrepancy leads to noticeable differences be-
tween the algorithm’s predicted volumes and those de-
rived from traditional survey-basedwoodmeasurement
methods, potentially affecting the accuracy and reliabil-
ity of inventory assessments or resource estimations.
The results show a discrepancy between the number

of LW pieces surveyed and the number detected by the
algorithm, which can be explained by several factors.
First, the data were collected on different dates, and
variations in storage conditions were observed, mean-
ingwe are not analysing exactly identical datasets. Con-
sequently, theremayhave beenmore or less LWpresent
during the drone survey. Also, the field survey only ac-
counted for LW pieces with a diametre greater than 0.1
metres and a length exceeding 1metre, whereas the de-
tection algorithm identified all wood pieces regardless
of size. Although post-processing removed all pieces
shorter than 1 metre, we did not exclude those smaller
than 0.1 metres in diametre due to the potential un-
derestimation of diametre and disregarding actual large
wood. However, the proposed detection method does
not experience a significant increase in processing time
when including smaller pieces, suggesting that these
can reasonably be considered.
In Figure 10, the comparison of volumes between the

algorithm and survey data clearly shows a divergence.
The algorithm systematically underestimates the vol-
ume compared to the survey, with peaks in the survey
volume data being noticeably higher than predicted.
This discrepancy is particularly evident in stretches
with larger and more irregularly shaped wood, suggest-
ing that the segmentation algorithm has difficulties ac-
counting for such variations. Figure 13 further supports
this by illustrating the relationship between length and
diametre, with the algorithm consistently predicting
smaller diametres than observed in the survey. The fig-
ures emphasize the gap between the two, with the sur-
vey data showing a generally larger diametre for a given
length. This discrepancy directly translates into the un-
derestimations in Figure 10.
When comparing the lengths and diametres from the

survey with those detected by the algorithm, Figure 13
illustrates the lengths of the 135 surveyed LW pieces
versus the 221 detected ones, along with their diame-
tres. The lengths between the two datasets correspond
reasonably well, although the detected dataset includes
more small pieces, likely because those smaller pieces
were not surveyed due to their size. However, the di-
ametres show a notable discrepancy: while the sur-
veyed dataset includes several LW pieces with diame-
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Figure 13 Lengths vs diametres of all the LW pieces that meet the large wood criteria in the survey data in orange and the algorithm data in blue.

tres over 0.25 metres, the algorithm does not estimate
any LW piece under a 5-metre length to have a diame-
tre over this threshold. This underestimating diame-
tres leads to a more significant underestimation of vol-
umes, given the quadratic relationship in volume calcu-
lations. It suggests that the algorithmmaybe overfitting
to thinpieces,whichareoverrepresented in the training
dataset. Therefore, it is advised to either use different
segmentation models for different size bounding boxes
to increase performance, or to use a correction factor
for volume estimation.

We selected all surveyed LW with a diametre greater
than 37 cm and a length shorter than 5 metres. These
LW pieces are shown in Figure 14. Among them, three
LWpieces (ID 64, 12, andN8) are not visible in the ortho-
mosaic. This may be due to burial by sediment, vegeta-
tion cover, or displacement that occurred between the
time of the field survey and the drone flight. LW piece
number 64 could be number 413 in the detections; how-
ever, this is unclear from the data. Also, the segmenta-
tion algorithm did not indicate any pixel to be classified
as wood in the cropped-out bounding box. The survey
indicates that the particular piece is partially buried,
which suggests the lack of effectiveness of the method
regarding buried or partially buried LW.

The detection algorithm had difficulties detecting
thicker LWpieces. LWpiece 3, 50, N24 and N46 are visi-
ble in the orthomosaic but are not detected by the algo-
rithm. This could be explained by the small number of
thicker, shorter LWpieces in the training data. Also, the
segmentation algorithm seems to suffer from this lack
of training data for pieces with similar characteristics.
LW piece 632 and 379 are (partly) detected but improp-
erly segmented (see Figure 12). Again, this is the case

because most of the training data includes thin pieces.
A solution to this limitationwouldbe to extend the train-
ing database of both the detection and segmentation al-
gorithms to include more short, thick examples.

When looking at the comparison between the distri-
bution of the orientations between the survey and the
detections in the algorithm (see Figure 11a), the results
can be unreliable because of the tendency of the algo-
rithm to infer multiple detections on the same wood
piece. When double detections are made, even though
the orientation analysis might be correct, the algorithm
still counts the piece with that orientation double. This
could lead to inaccuracies when analysing the differ-
ent jams and their volumes (see Figure 11b). The algo-
rithm can indicate a single LWpiece as awood jam if de-
tected multiple times. Therefore, as large jams tend to
be underestimated in volume whilst smaller jams tend
to be overestimated, with the current performance of
the algorithm, thewoodorientation andprecise jamvol-
ume estimation remain challenging. Detecting wood
jams presents several challenges due to the complex na-
ture of the jam. One primary difficulty arises from the
multiple layers of wood that make up a jam, which can
obscure individual pieces. Additionally, wood located
beneath a canopy or buried adds more complexity, as
it is often hidden from view in aerial or satellite im-
agery. A further limitation in the detection process of
the method is related to the resolution and size of the
detection boxes. The orthomosaic is cropped into boxes
of 960x960 pixels, with the test data having a resolu-
tion of approximately 2 cm per pixel. As a result, the
maximum length of a detectable wood piece is theoret-
ically capped at 27.15metres. However, this limit varies
depending on the pixel size of the orthomosaic being
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Figure 14 Examples of short LW pieces with large diametres. For different reasons, the LW pieces are not correctly analysed. (a) LW piece 105: partially
detected. (b) LW piece 3: no visual. (c) LW piece 22: detected. (d) LW piece 3: not detected. (e) LW piece 50: not detected. (f) LW piece 63: buried. (g) LW
piece N24, rootwad, not detected. (h) LW piece N46, stump, not detected. (i) LW piece N8: no visual.
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analysed, which might differ in resolution from the test
data. Finally, the method also relies on the availability
of high-quality orthomosaics to ensure accurate detec-
tion and analysis. Lower-quality or less detailed images
can hinder the ability to detect wood jams effectively.
The resolution is a well-known problem in remote sens-
ing of wood (Sendrowski and Wohl, 2021), and a cor-
rection has been proposed (Hortobágyi et al., 2024b) to
account for the differences in the number of detected
pieces due to the different resolutions of aerial images.
These authors showed a linear relationship between im-
age resolution and the number of wood pieces detected,
as well as the jam number and the number of pieces in
a jam. Similar corrections could be made to minimise
this error, but they were not made in this study.

5 Conclusions
This study demonstrates the potential of convolutional
neural networks (CNNs) for detecting and quantifying
LW volumes in river environments using UAV-derived
orthomosaics. Thedevelopedmodels successfully iden-
tified large wood and estimated its volume. However,
challenges remained due to limitations in training data
diversity, particularly for shorter, thicker LW pieces,
and the complexity of wood jams. Increasing both the
quantity and variety of training data could improve ob-
ject detection and segmentation performance, further
advancing this automated LWquantification approach.
The results revealed specific limitations, notably in

segmenting irregular wood pieces and accurately esti-
mating wood diametres, leading to volume underesti-
mations, especially for shorter, thicker LW pieces. Ex-
panding the training dataset with a broader range of
wood examples and applying a correction factor for sys-
tematic underestimation of diametres could enhance
accuracy.
While the current models show promise, further

refinements are necessary to improve their accuracy
and reliability. Key areas for enhancement include in-
creasing training data diversity and refining segmenta-
tion techniques. These improvements will strengthen
the models’ robustness and applicability for large-scale
river ecosystemmonitoring and management.
To advance this field and enable fair comparisons of

automated wood detection and quantificationmethods,
we encourage the scientific community to collaborate
on developing a standardized benchmark dataset for
large wood detection and segmentation. Such a dataset
would be a valuable resource for optimizing and validat-
ing machine learning and traditional computer vision
models. Additionally, a comprehensive database of an-
notated large wood could support future advancements
in LWquantification techniques.
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