

Bachelorarbeit

Hohgant-Sandstein als potentielles Hartgestein

vorgelegt am Departement Erdwissenschaften der ETH Zürich

unter der Leitung von

Dr. Lukas Nibourel, Departement Erdwissenschaften, ETH Zürich Dr. Stefan Heuberger, Departement Erdwissenschaften, ETH Zürich

> eingereicht von Maira Noemi Coray 18-935-197 am Zürich, 29. Juli 2021

Zusammenfassung

Die Eignung des Hohgant-Sandsteins (Helvetische Decken) als potentielles Hartsteinvorkommen wird in Flühli, Region Entlebuch, mit standardisierten Feld- sowie Labormethoden untersucht und rohstoffgeologisch beurteilt. Obwohl ein Abbau in dieser Region aufgrund konkurrierenden Schutzinteressen nicht infrage kommt, ist die Ziellithologie hier durchgehend aufgeschlossen, sodass der stratigraphische Bau und die Gesteinseigenschaften exemplarisch in ihrer gesamten Mächtigkeit von 90 m bestimmt werden können. Es dominieren Quarzsandsteine mit variablem Anteil an Kalzitzement oder Matrix. Aufgrund des Feldbefundes (geologische Karte, stratigraphische Profile), punktueller Schmidt-Hammer Messungen, Point Load Tests sowie Dünnschliff- und XRD-Analysen werden zwei Teilbereiche bestehend aus dick (meist > 2 m) gebankten, kompakten Quarzsandsteinen als potentiell nutzbar eingestuft. Der untere Teilbereich (40 m mächtig) liegt an der Basis, der obere Teilbereich (19 m mächtig) befindet sich im oberen Drittel des Hohgant-Sandsteins. Unterbrochen werden die potenziell nutzbaren Bereiche durch 24 m mächtige, dünn (< 20 cm) gebankte Mergel und Kalksandsteine. Der Übergang zur mergeligen Stad-Formation über dem Hohgant-Sandstein ist graduell, sodass die obersten Meter als nicht nutzbar eingestuft werden.

Grobkörnige (> 0.5 mm) Sandsteine zeigen beim Point Load Test eine höhere Brechbarkeit als feinkörnige Sandsteine mit erhöhtem Kalzitanteil. Das könnte darauf hinweisen, dass grobkörnige, korngestützte Sandsteine mit geringem Zement- beziehungsweise Matrixanteil entlang der Korngrenzen schneller brechen oder entlang der grösseren Porenräume rascher verwittern. Der Einfluss der Korngrösse sowie der Grundmasse auf die Brechbarkeit erfordert weitere Untersuchungen und ist auch für andere Schweizer Hartsteinvorkommen wie Flyschsandstein relevant.

Die abgeschätzte nutzbare Mächtigkeit (59 m) im Untersuchungsgebiet liegt unter der durchschnittlichen Mächtigkeit der Nutzschicht heutiger Abbaustandorte. Aufgrund rascher, lateraler Fazies- und Mächtigkeitsschwankungen und der scheinbar grösseren Brechbarkeit grobkörniger Sandsteinlagen werden für eine abschliessende Beurteilung weitere Untersuchungen, inklusive aufwändigeren physikalischen Testverfahren, benötigt.

Inhaltsverzeichnis

Z	ZusammenfassungI					
Ir	haltsve	rzeichnisII				
1. Einleitung						
	1.1	Hintergrund1				
	1.2	Fragestellung und Ziel1				
2. H		rtsteine der Schweiz				
	2.1	Definition der Hartsteine				
	2.2	Hartsteinvarietäten der Schweiz				
3.	6. Übersicht des Untersuchungsgebietes					
4.	Me	thoden10				
	4.1	Aufschlussbeschreibung und Beprobung10				
	4.2	Bestimmung der physikalischen Eigenschaften11				
	4.3	Mineralogische Analyse14				
	4.3.1	Dünnschliffanalyse14				
	4.3.2	XRD-Röntgenstrukturanalyse14				
5.	Res	sultate16				
	5.1	Aufschlussbeschreibung				
	5.1.1	Stratigraphischer Aufbau20				
	5.1.2	Homogenitätsbereiche				
	5.1.3	Tektonik				
	5.2	Standardisierte, ingenieurgeologische Feldmethoden32				
	5.3	Laborarbeit				
	5.3.1	Dünnschliffanalyse				
	5.3.2	XRD-Röntgenstrukturanalyse				
6 Diskussion 3						
	6.1	Feldbefund				
	6.2	Physikalische Eigenschaften				
	6.3	Laboranalyse41				
	6.4	Einfluss des Quarzgehaltes und der Korngrössen41				
7.	7. Schlussfolgerung und Ausblick45					
8.	8. Danksagung					
9.	9. Literaturverzeichnis					

Abbildungsverzeichnis	
Tabellenverzeichnis	52
Anhang	52
Eigenständigkeitserklärung	XXVIII

1. Einleitung

1.1 Hintergrund

In der Schweiz werden jährlich rund 2 Millionen Tonnen felsgebrochener Hartstein für den Bau und den Unterhalt von Verkehrsinfrastrukturen benötigt. 600'000 Tonnen werden zu Bahnschotter verarbeitet und 800'000 Tonnen für den Strassenbau verwendet (Bundesamt für Raumentwicklung ARE, 2012). Geeignete geologische Einheiten für die Hartsteinproduktion wie Kieselkalk oder besonders harte Sandsteine sind in der Schweiz reichlich vorhanden. Dennoch konnten Schweizer Abbaustandorte den inländischen Bedarf an Hartgestein in den letzten Jahrzehnten nur teilweise decken. Grund dafür sind vor allem Konflikte mit konkurrierenden Schutz- und Nutzungsinteressen. Um den Zugang zu diesem wichtigen Rohstoff auch in Zukunft raumplanerisch sicher zu stellen, wurde die swisstopo, in Zusammenarbeit mit der Fachgruppe Georessourcen Schweiz beauftragt, eine flächendeckende Geo-Datenbank der Hartsteinvorkommen der Schweiz zu erstellen.

Damit das Gestein als Hartstein klassifiziert werden kann, muss es vorgegebene Kriterien erfüllen (Kapitel 2.1). Eine potentielle Hartsteinlithologie stellt der Hohgant-Sandstein dar (Gerber, 2003). Weil diese Gesteinseinheit bisher nicht als Hartstein abgebaut wurde, ist seine Eignung noch nicht restlos geklärt. Anhand verschiedener Daten aus der Literatur ist die Verteilung der Gesamtmächtigkeit der Niederhorn-Formation punktuell bekannt. Ebenfalls kann anhand stratigraphischer Beschreibungen die ungefähre nutzbare Mächtigkeit (d.h. der Anteil an Gesteinen, welcher für den Abbau von Hartstein infrage kommt) approximativ bestimmt werden. Die Abschätzungen über die Mächtigkeiten der nutzbaren Schichten basieren auf groben Beurteilungskriterien mittels Angaben aus der Literatur und der Annahme eines Mindestquarzgehalt von 25 %, eines kleinen Schichtsilikatanteils und einer genügend dicken Bankmächtigkeit.

1.2 Fragestellung und Ziel

Mit dieser Arbeit wird geprüft, ob der Hohgant-Sandstein den Anforderungen einer Hartsteinlichologie entspricht und in die Geo-Datenbank der Fachgruppe Georessourcen Schweiz aufgenommen werden soll. Somit ergibt sich folgende Leitfrage:

Hohgant-Sandstein: eine potentielle Einheit für die Gewinnung von Hartstein?

Um diese Frage beantworten zu können, wird die Mineralogie, die Struktur und die Textur der Einheit charakterisiert. Weiter stellen sich die Fragen, wie gross die Gesamtmächtigkeit sowie die davon nutzbare Mächtigkeit des Hohgant-Sandsteins ist. Ausserdem soll der stratigraphische Aufbau dokumentiert werden. Hier sollen vor allem der Quarz- und der Kalzitgehalt sowie die Schichtsilikate der einzelnen Schichten untersucht werden. Dabei soll untersucht werden, wie gross der Anteil der Komponenten im Verhältnis zur Grundmasse ist. Ein weiterer wichtiger Aspekt für die Untersuchungen am Hohgant-Sandstein ist das Erfassen der Bankmächtigkeiten der einzelnen Schichten. Zudem stellt sich die Frage, welche der zu untersuchenden Parametern die physikalischen Eigenschaften am meisten beeinflussen. Zudem soll geklärt werden, welche Methoden sich am besten eignen, um die physikalischen Eigenschaften eines Gesteins zu beschreiben, und somit seine Eignung als Hartstein zu bestimmen. Das Ziel dabei ist es, möglichst einfache Methoden zu finden, um durch verschiedene Messpunkte die Heterogenitäten im Hohgant-Sandstein abbilden zu können. Entspricht der Hohgant-Sandstein den Anforderungen eines Hartsteins, könnte er in der Geo-Datenbank der Hartsteinvorkommen der Schweiz ergänzt werden. Die vorliegende Bachelorarbeit soll damit einen wichtigen Beitrag zur erwähnten Datenbank leisten.

2. Hartsteine der Schweiz

Kapitel 2.1 definiert den Begriff Hartstein und zeigt die Kriterien auf, welche erfüllt werden müssen, damit ein Gestein als Hartstein charakterisiert wird. Die Hartsteinvarietäten, welche in der Schweiz aktuell genutzt werden, werden in Kapitel 2.2 aufgezeigt.

2.1 Definition der Hartsteine

Hartsteine müssen hohe Anforderungen erfüllen, damit sie für Hartsteinprodukte verwendet werden können. Die Definition der Hartsteine geht auf de Quervain (1967) zurück. Nach ihm müssen Hartsteine einen Anteil von mehr als 75 % an harten Mineralen (nach Mohs > 5.5) und eine Druckfestigkeit von mehr als 140 MPa aufweisen beziehungsweise über einen Anteil an harten Mineralen von mindestens 25 % und dabei eine Druckfestigkeit von über 180 MPa verfügen (Tabelle 1).

Die Hartsteinlichologie in einem potentiellen Abbaugebiet sollte eine Mächtigkeit von minimal 50 m erreichen. Für einen potentiellen Hartstein muss innerhalb einer Schicht eine genügend grosse Bankmächtigkeit (> 30 cm) erreicht werden. Der Grund dafür ist, dass beim Brechen des Gesteins für die Herstellung von Bahnschotter so scharfkantige, zufällige Bruchformen und möglichst viele 32 - 50 mm grosse Bruchstücke für Schotter gewonnen werden können (SN 670 110-NA/EN 13450 und R RTE 21110, Anhang 1).

Für die Anwendung von Hartstein im Verkehrsinfrastrukturbereich muss das Gestein weitere Voraussetzungen, die in Richtlinien und Prüfverfahren festgelegt sind, erfüllen. Das Gestein muss eine hohe Verwitterungsresistenz, eine hohe Abriebfestigkeit sowie einen geringen Gehalt an Schichtsilikaten aufweisen (Bundesamt für Raumentwicklung ARE, 2012). Für die Bewertung von Hartstein, das als Bahnschottter und Strassensplit gebraucht werden kann, wird das Los-Angeles-Prüfverfahren angewendet. Hierbei wird eine Gesteinsprobe zusammen mit Stahlkugeln in einer Trommel rotiert. Nach dem Prüfvorgang wird der Widerstand gegen Zertrümmerung mit dem Los-Angeles-Koeffizient bestimmt (SN 670 903-2C/EN 1097-2, Anhang 1). Ein weiteres Prüfverfahren ist der Widerstand gegen das Polieren und das Bestimmen der Resistenz gegen das Abnutzen des Gesteins (Bundesamt für Raumentwicklung ARE, 2012)

Mittlere Druckfestigkeit	Gehalt an harten Mineralen [%]			
[MPa]	0 - 25	25 - 50	50 - 75	75 - 100
> 220	mittelhart	hart	hart	hart
180 - 220	mittelhart	hart	hart	hart
140 - 180	mittelhart	mittelhart	mittelhart	hart
100 - 140	weich	weich	mittelhart	mittelhart
60 - 100	weich	weich	weich	mittelhart
< 60	sehr weich	weich	weich	weich

Tabelle 1: Klassifikation der Hartsteine nach de Quervain (1967). Kriterien für die Einteilung sind die einaxiale Druckfestigkeit und der Gehalt an harten Mineralen.

2.2 Hartsteinvarietäten der Schweiz

In der Schweiz werden meist Kieselkalke, Flysch-, Molasse- und Glaukonitsandsteine zu Hartgesteinsprodukten verarbeitet. Diese Hartsteine treten entlang des Alpenrandes vom Waadtland und Wallis über das Berner Oberland bis ins St. Galler Rheintal auf (Abbildung 1). Dieses Gebiet der potentiellen Hartsteine wird als Hartsteingürtel beschrieben (Bärtschi, 2012). Die Abbildung 2 zeigt, dass in diesem Gürtel insgesamt 34 potentielle Hartsteingebiete liegen (Bundesamt für Raumentwicklung ARE, 2012). Der Hohgant-Sandstein wurde im Laufe dieser Potentialstudie nicht als potenzielle Hartstein-Lithologie berücksichtigt.

Abbildung 1: Hartsteinvorkommen in der Schweiz (Bundesamt für Raumentwicklung ARE, 2012).

Hartsteine der Schweiz

Abbildung 2: Die 34 potentiellen Hartsteingebiete in der Schweiz (Bundesamt für Raumentwicklung ARE, 2012).

3. Übersicht des Untersuchungsgebietes

Der Hohgant-Sandstein ist Teil der Niederhorn-Formation. Die Niederhorn-Formation gehört zu den helvetischen Decken und bildete sich vor rund 38 Millionen Jahren zwischen zwei transgressiven Phasen im flachmarinen Milieu (Menkveld-Gfeller et al., 2016). Das Ablagerungsgebiet des Hohgant-Sandsteins lag an einer vom Wellengang beeinflussten Küste. Charakteristisch für den Hohgant-Sandstein sind starke laterale Fazies- und Mächtigkeitsänderungen, welche auf synsedimentäre tektonische Bewegungen des Untergrundes zurückgeführt werden (Menkveld-Gfeller, 1995).

Abbildung 3 zeigt das Vorkommen des Hohgant-Sandsteins auf. Das Aufschlussgebiet zieht sich vom Wildhorn im Südwesten bis zum Pilatus im Nordosten (Menkveld-Gfeller, 1994). Unpublizierte, provisorische Resultate zeigen, dass die Mächtigkeit der Niederhorn-Formation stark variiert. Die grössten Mächtigkeiten treten zwischen Interlaken und Luzern auf (Abbildung 4).

Abbildung 3: Tektonische Übersichtskarte des Helvetikums mit der Verbreitung der lithostratigraphischen Einheiten: Verteilung des Hohgant-Sandsteins in der Schweiz. In orange eingefärbt ist die Niederhorn-Formation (Karte von Menkveld-Gfeller,1994, mit eigener Ergänzung).

Für die Region Entlebuch wird eine Mächtigkeit des Hohgant-Sandsteins von über 200 m abgeschätzt (Levi, 2001). Aufgrund der hier zu erwartenden hohen nutzbaren Mächtigkeit liegt das Untersuchungsbiet der vorliegenden Arbeit in dieser Umgebung. Abbildung 5 zeigen die aufgrund der Literaturdaten erwarteten nutzbaren Mächtigkeiten und in Rot eingezeichnet das Untersuchungsgebiet. Eine nutzbare Mächtigkeit muss die Kriterien, welche in Kapitel 2.1 beschrieben werden, erfüllen.

Abbildung 4: Mächtigkeit der Niederhorn-Formation anhand von Literaturdaten abgeschätzt. Das rote Quadrat zeigt das Untersuchungsgebiet. *Karte erstellt in QGIS 2.16 (2016) mit Grundkarte von swisstopo (2021)*.

Abbildung 5: Abgeschätzte nutzbare Mächtigkeit der Niederhorn-Formation. Das rote Quadrat zeigt das Untersuchungsgebiet. Karte erstellt in QGIS 2.16 (2016) mit Grundkarte von swisstopo (2021).

Das Untersuchungsgebiet befindet sich südöstlich der Gemeinde Flühli im Kanton Luzern in der Nähe des Chessilochs (Abbildung 6). Abbildung 7 zeigt den näheren Ausschnitt des Gebietes. Dieses zieht sich über eine Fläche von 0.027 km² hin und erstreckt sich entlang des Seebebachs auf einer Höhe von 1'145 bis 1'215 m ü. M. Diese Umgebung eignet sich für die Untersuchungen am Hohgant-Sandstein, da hier neben der zu erwartenden hohen Schichtmächtigkeit auch das stratigraphische Profil entlang des Seebebachs (A - A') und des kleinen trockenen Bachbetts (B - B'), welches sich im südöstlichen Teil

des Gebietes befindet, lückenlos aufgeschlossen ist. Die Erreichbarkeit zum Seebebach ist schwierig, da das Gebiet nicht durch Strassen und Wege erschlossen ist und die Topographie des Geländes steil ist. Erschwerend für den Zugang sind die reiche Vegetation an den Hängen sowie starke Niederschläge, die zu Hochwasser im Bach führen. Das Gebiet gehört zum UNESCO Biosphärenreservat Entlebuch (UNESCO Biosphäre, 2020). Deshalb wird dieses Gebiet für den Abbau von Hartstein nicht infrage kommen. Die Untersuchung des Hohgant-Sandsteins in der Entlebuch-Region soll jedoch als Referenz für weitere Hohgant-Sandstein-Gebiete dienen.

Abbildung 6: Überblick des Untersuchungsgebietes in der Region Entlebuch bei Flühli (LU). Karte erstellt in QGIS 2.16 (2016) mit Grundkarte von swisstopo (2021).

Abbildung 7: Überblick des Untersuchungsgebietes. Die untersuchten Aufschlüsse liegen entlang des Seebebachs. An den Profilspuren A – A' und B – B' werden die beiden Querprofile erstellt. *Karte erstellt in QGIS 2.16 (2016) mit Grundkarte von swisstopo (2021).*

4. Methoden

In diesem Kapitel werden die einzelnen Arbeitsschritte der durchgeführten Untersuchungen beschrieben. Als Vorbereitung für die Feldarbeit und um Informationen zur räumlichen Verteilung sowie zum stratigraphischen Aufbau des Hohgant-Sandsteins zu erhalten, werden vorhandene geologische Unterlagen verwendet. Diese umfassen unter anderem die Diplomarbeit von Levi (2001), der Untersuchungen im Gebiet der Schafmatt durchführte, sowie Daten zur Schichtmächtigkeit der Niederhorn-Formation. Mit den Untersuchungsresultaten wird erhofft, die Leitfrage, ob der Hohgant-Sandstein im Untersuchungsgebiet Hartsteinpotential aufweist, zu beantworten.

Kapitel 4.1 beinhaltet die Vorgehensweise zur Beschreibung des Aufschlusses und der Bankmächtigkeiten. Das Kapitel 4.2 beschreibt die standardisierten sowie physikalischen Feldmethoden, welche verwendet wurden, um die Qualität und somit auch die Nutzbarkeit des Hohgant-Sandsteins zu beurteilen. Die Laborarbeit wird in Kapitel 4.3 verschrieben. Diese dient einer semi-quantitativen Analyse des Mineralbestandes.

4.1 Aufschlussbeschreibung und Beprobung

Als Schlüsselparameter für die Aufschlussbeschreibung werden (i) die Schichtsilikat-, Quarz und Kalzitanteile und (ii) die Bankmächtigkeit sowie die Mächtigkeit der definierten Homogenitätsbereiche systematisch bestimmt, um daraus ein stratigraphisches Profil sowie zwei Querprofile zu erstellen. Ein Homogenitätsbereich weist vergleichbare lithologische sowie physikalische Eigenschaften auf. Die lithologische Beschreibung erfolgt nach den Standards aus dem Arbeitsbericht der Nagra von Naef et al. (2019). Dafür werden im Gestein erkennbare Minerale, Grösse und Rundung der Körner sowie Textur beschrieben. Für eine Abschätzung des Kalzitgehaltes kann das Gestein mit verdünnter Salzsäure (10 %) behandelt werden. Je stärker die Reaktion der Salzsäure mit dem Gestein, desto höher ist der Kalzitgehalt. Wichtig ist auch die Abschätzung der Bankmächtigkeit, da für die Produktion von Hartstein eine Schicht eine Mindestdicke von ca. 30 cm haben muss. Die Messung der Bankmächtigkeit kann mittels eines Doppelmeters durchgeführt werden. Damit die Profile erstellt werden können, werden im Feld jeweils die Basis und der Top eines Homogenitätsbereiches gesucht und auf der Karte eingezeichnet. Zusätzlich wird der Verwitterungsgrad der einzelnen Schichten angeschaut. Dies ist insbesondere im Zusammenhang mit den physikalischen Feldtests (Kap. 4.2) sehr wichtig. Im Feld werden Fallrichtung (Fallazimut) und Einfallwinkel der Schichten gemessen. Diese dienen der Erstellung von Querprofilen. Die Querprofile werden senkrecht zum durchschnittlichen Streichen der Schichten erstellt, sodass sie die wahre Mächtigkeit der Gesteine und das wahre Schichteinfallen abbilden.

Ausserdem werden Gesteinsproben gesammelt, welche für spätere Untersuchungen essenziell sind (Kapitel 4.2 und Kapitel 4.3). Von jedem Homogenitätsbereich werden jeweils 1 bis 2 Proben entnommen. Die Probenentnahmen dienen dem Verständnis des stratigraphischen Aufbaues der Schichtpakete des Hohgant-Sandsteins. Die Informationen über die Schichtgrenzen, Orientierungsmessungen sowie die Entnahmestellen der Gesteinsproben werden auf einer Karte mithilfe des Programms QGIS 3.16 (2021) eingezeichnet.

4.2 Bestimmung der physikalischen Eigenschaften

Ergänzend zu Skizzen, petrologischen Untersuchungen und makroskopischen Beobachtungen werden verschiedene ingenieurgeologische Gesteinsklassifikationen vorgenommen. Es wird ein Rückprallhammer (Schmidt-Hammer, 'Original Schmidt L/LR' von Proceq (2018)) verwendet, um die physikalischen Eigenschaften des Gesteins zu charakterisieren. Zudem wird der Point Load Test durchgeführt, um empirisch die einaxiale Druckfestigkeit des Gesteins zu bestimmen (Franklin, 1985).

Durch die petrologischen und makroskopischen Untersuchungen soll das Gestein an Ort systematisch und standardisiert analysiert werden. Dazu gehört die Feststellung des Verwitterungsgrades des Gesteins nach Read & Stacey (2009). Dem Gestein kann ein Verwitterungsgrad von W1 (frisch und unverwittert) bis W5 (total verwittert) zugeordnet werden (Anhang 2). Ebenfalls wird ein Hammerhärtetest nach Read & Stacey (2009) eingesetzt (Anhang 3). Bei diesem Test wird durch Schlagen mit dem Hammer auf das Gestein die Gesteinshärte beurteilt. Die Werte bewegen sich zwischen R0 (sehr weich) und R6 (sehr hart). Einen Wert von R6 bedeutet, dass das Gestein nur unter wiederholten Hammerschlägen zersplittert und beim Aufprall von Hammer auf das Gestein ein metallisches Geräusch zu hören ist. R3 hingegen bedeutet, dass das Gestein durch einen Schlag gebrochen wird und die Oberfläche mit dem Messer ritzbar ist.

Der geologische Strength Index (GSI) ist eine Bewertung der Gesteinsmasse auf einer Aufschlussskala anhand des Trennflächengefüges sowie der Oberflächeneigenschaften dieser Trennflächen. Je mehr das Gestein zerbrochen und verwittert ist, desto tiefer ist der GSI-Wert. Als Grundlage für die Beurteilung dient das Schema in Anhang 4 von Hoek & Marinos (2000).

Der Schmidt-Hammer ist ein handlicher Rückprallhammer und wird zur Abschätzung der Gesteinsfestigkeit von Gesteinsaufschlüssen eingesetzt. Die Rückprallprüfung ermöglicht eine schnelle und grobe Abschätzung der Härte des Gesteins. Durch eine gespannte Feder im Hammer wird ein Gewicht beschleunigt, dessen Druck auf einen Schlagbolzen wirkt und auf das Gestein schlägt und zurückprallt. Die Rückprallstrecke kann direkt nach dem Schlag vom Hammer abgelesen werden. Je härter das Gestein, desto höher ist der Rückprallwert. Mit dem erhaltenen Rückprallwert kann die einaxiale Druckfestigkeit aus dem Diagramm der Abbildung 8 in Abhängigkeit der Dichte des Gesteins abgeschätzt werden. Die einaxiale Druckfestigkeit hängt aufgrund der Gravitation auch von der Orientierung des Hammers ab und muss deswegen zusätzlich korrigiert werden. Bei einem Sandstein kann eine Dichte von 27 kN/m³ angenommen werden (Schön, 2015). Die gewonnenen Rückprallwerte werden nach Basu & Aydin (2004) zur horizontalen Hammerausrichtung normalisiert. Bei diesem Test muss auf eine saubere und ebene Oberfläche des Gesteins geachtet werden. Die Orientierung des Hammers in Bezug auf das Untersuchungsobjekt wird festgehalten, das heisst, ob der Hammer zur Schichtung/Schieferung des Gesteins parallel oder senkrecht eingesetzt wird (Lemy & Löw, o. D.). Die Messung mittels Schmidt-Hammer erfolgt 20-mal pro Untersuchungsobjekt.

Abbildung 8: Beziehung zwischen dem Rückprallwert und der einaxialen Druckfestigkeit (Lemy & Löw, o. D.).

Ein weiterer Test für die Bestimmung der Gesteinshärte ist der Point Load Test. Dieser Test gibt an, wieviel Kraft es braucht, ein Gestein zu brechen Hierfür werden Gesteinsblöcke gesammelt mit einer ungefähren Grösse von 100 mm x 50 mm (L~D) und einem quadratischen Querschnitt (W~D. Abbildung 9 zeigt eine die empfohlenen Dimensionen. Die gesammelten Proben werden zwischen die beiden Kolben des Point Load Gerätes geklemmt (Abbildung 10). Mit der hydraulischen Pumpe wird der untere Kolben nach oben gepresst. So wird ein Druck auf das Gestein ausgeübt, bis es bricht. Die Kraft, die es braucht, um das Gestein zu brechen, kann auf dem Druckmessungsgerät abgelesen werden. Für einen gültigen Test muss die Bruchfläche durch beide Belastungspunkte laufen (Lemy & Löw, o. D.). Durch Berechnungen mittels der folgenden Formeln von Franklin (1972) kann die einaxiale Druckfestigkeit berechnet werden. Als erstes wird der äquivalente Kerndurchmesser berechnet (Formel 1. 1). Daraus kann aus den Werten der aufgewendeten gemessenen Kraft für das Brechen des Gesteins die Punktlastfestigkeit kalkuliert werden (Formel 1. 2). Um die einaxiale Druckfestigkeit (Formel 1. 4) zu erhalten,

wird die grössenkorrigierte Punktlastfestigkeit benötigt, welche mittels der Formel 1. 3 berechnet werden kann. Pro Homogenitätsbereich wird der Versuch jeweils an 4 bis 7 Proben durchgeführt. Gemäss Standardvorgehen werden pro Lokalität 10 bis 30 Proben untersucht (Thuro, 2010).

Abbildung 9: Empfohlene Dimensionen der Gesteinsblöcke. D = Höhe des Blockes, W = durchschnittliche Breite des Blockes, L = Länge des Blockes (Franklin, 1985).

Abbildung 10: Skizze des Point Load Gerätes (Thuro, 2010).

1. 1: Formel für die Berechnung des äquivalenten Kerndurchmessers [mm²]. W = kleinste Breite senkrecht zu Belastungsrichtung [mm], D = Abstand zwischen Kontaktpunkten [mm] (Franklin, 1985).

$$D_e^2 = 4 \times \frac{W * D}{\pi}.$$

1. 2: Formel für die Berechnung der korrigierten Punktlastfestigkeit [MPa]. P = aufgewendete Kraft für das Brechen [kN] (Franklin, 1985).

$$I_s = \frac{P}{D_o^2}.$$

1.3: Formel für die Berechnung der grössenkorrigierten Punktlastfestigkeit [MPa] (Franklin, 1985).

$$I_{s(50)} = F * I_s,$$

 $F = \left(\frac{D_e}{50}\right)^{0.45}.$

1. 4: Formel für die Berechnung der einaxialen Druckfestigkeit [MPa] (Franklin, 1985).

Einaxiale Druckfestigkeit UCS = $25 * I_{s(50)}$.

4.3 Mineralogische Analyse

Der Mineralbestand wird mit Mikroskopie im Dünnschliff und mit XRD-Röntgenstrukturanalyse im Labor semi-quantitativ an jeweils 11 Proben ermittelt. Die Dünnschliffmethode dient ausserdem der Beschreibung der Struktur, der Textur und des Gefüges sowie der Analyse des Fossiliengehaltes.

4.3.1 Dünnschliffanalyse

Die gesammelten Proben werden mit der Steinsäge zu Klötzchen mit einer Grösse von 35 mm x 20 mm x 15 mm verkleinert. Die vorbereiteten Klötzchen werden von Hand geschliffen und anschliessend mit Kanadabalsam (n = 1.54) auf einen Objektträger (45 mm x 32 mm) geklebt. Die Präparate werden poliert, bis sie eine Dicke von 30 µm aufweisen. Die Präparate bleiben ungedeckt, da eine Deckung bei Sandstein nicht nötig ist. Unter dem Mikroskop können anschliessend die Parameter beschrieben werden. Für eine bessere Unterscheidung der einzelnen Minerale können ausser dem normalen Licht auch gekreuzte Polarisatoren genutzt werden. Die Minerale in den Dünnschliffen werden nach Korngrösse, Sortierung, Rundung, Sphärizität untersucht und nach den im Arbeitsbericht von Naef et al. (2019) aufgeführten Standards beschrieben. Die prozentualen Mineralanteile nach Terry & Chilingar (1955) werden gezählt. Ebenfalls wird das Gefüge analysiert. Es wird darauf geachtet, ob sich die Körner berühren oder nicht. Demnach kann zwischen korngestütztem oder nichtkorngestütztem Gefüge unterschieden werden und es wird differenziert, ob es sich beim Material zwischen den Körnern um eine Matrix oder einen Zement handelt. Neben dem Lichtmikroskop wird auch das digitale Mikroskop verwendet. Damit können hochaufgelöste Fotografien der Dünnschliffe erstellt werden.

4.3.2 XRD-Röntgenstrukturanalyse

Diese Methode dient einer semi-quantitativen Analyse der Gesteinsproben. Die gesammelten Proben werden dazu mithilfe einer hydraulischen Presse von Enerpac (2020) zerkleinert. Diese Presse besteht aus einem Druck- und einem Arbeitskolben, welche miteinander verbunden sind. Durch eine Kraft auf den Druckkolben kann eine grosse Kraft am Arbeitskolben ausgelöst werden. Wird der Einschalter bedient, beginnt sich der Druckkolben zu bewegen und der Arbeitskolben senkt sich. Dies übt eine grosse Kraft auf die in einem Behälter befindlichen Probe aus. Durch diese Kraftausübung zerbricht die Probe. Von jeder Probe werden ca. 60 g gebraucht. Nach dem Zerkleinern mit der hydraulischen Presse wird das Material durch ein 4 mm Sieb durchgeschüttet. Der Vorgang des Zerkleinerns wird wiederholt, bis die gewünschte Menge von 60 g erreicht ist und das Material kleiner als 4 mm ist. Der nächste Schritt ist die Feinzerkleinerung mit der Scheibenschwingmühle. Die Scheibenschwingmühle von SIEBTECH-NIK (2021) dient der schnellen, staub- und verlustfreien Zerkleinerung von Gesteinen. Die Proben werden in einem Mahlgefäss aus Wolframcarbid mit 6 % Kobalt zerkleinert. Durch eine horizontale

Schwingung wird ein Schlag sowie eine Reibung auf das Probematerial ausgeübt, wodurch dieses zerkleinert wird. Nach dem Zermalmen kann das Material eine Feinheit von bis zu $< 40 \,\mu\text{m}$ aufweisen. Die vorzerbrochenen Gesteinsfragmente (ca. 50 g) werden in das Mahlgefäss gegeben und für rund vier Minuten gemahlen. Das Endprodukt wird in ein Probenglas gefüllt und genau angeschrieben. Die Proben können nun für die Röntgenstrukturanalyse verwendet werden.

Die XRD-Röntgenstrukturanalyse funktioniert durch eine Diffraktion von monochromatischer Röntgenstrahlung an den Ebenen im Kristallgitter. Durch Röntgenstrahlen mit einer bestimmen Wellenlänge $(\lambda = 1.5406A)$ kann der Abstand im Kristallgitter (d-Space) gemessen werden. Dies ergibt Informationen über den atomaren Aufbau der enthaltenen Minerale. Dafür wird die Oberfläche der Probe mit einem bekannten Einfallswinkel (θ) bestrahlt. Die Atome des Kristallgitters bewirken, dass die aufkommende Strahlung gestreut und gebeugt wird. Die Stärke der Beugung wird mit dem Detektor gemessen und es wird in einem Diffraktogramm gegen den Diffraktionswinkel (Winkel zwischen Detektor und einfallendem Röntgenstrahl) festgehalten. Der Abstand zwischen den Ebenen im Kristallgitter wird mit der Bragg'schen Gleichung (1913) ($n\lambda = 2d \sin\theta$) berechnet (Allmann, 2003). Für die semi-quantitative Analyse wird der Scintillation Counter an der ETH Zürich verwendet. In Tabelle 2 sind die Einstellungen aufgelistet, welche bei der Messung verwendet werden. Auf den Objektträger werden eine sehr kleine Menge des vorbereiteten Pulvers und etwas Ethanol aufgetragen. Ethanol bewirkt, dass die Minerale eine willkürliche Position einnehmen. Diese Objektträger werden dann in das XRD-Röntgenstrukturanalyse-Gerät gelegt. Nach den vorgenommenen Voreinstellungen beginnt die Messung und das Diffraktogramm wird erstellt. Da jedes Mineral ein charakteristisches Diffraktogramm aufweist, können diese mit einem Programm abgeglichen werden. Beim Diffraktogramm ist die x-Achse der Winkel 20 und die y-Achse die Intensität. Dabei gibt die Lage der Intensitätsmaxima Aufschluss über die vorhandenen Minerale in der Probe. Die Intensität der ermittelten Strahlung ist abhängig von den Mengenanteilen der verschiedenen Minerale. Das erstellte Diffraktogramm wird als raw-file in ein Abgleichungsprogramm geladen und die prozentualen Anteile der Minerale können eruiert werden.

Rotationswinkel	$2-90^{\circ}$ für 2 θ
Schrittweite	0.01° für 20
Zeit pro Schritt	1 s
Divergenzschlitz	12 mm
Elektronenstrom	40 mA
Elektrische Spannung	40 kV

Tabelle 2: Übersicht der verschiedenen Einstellungen bei der Messung.

5. Resultate

Dieses Kapitel beschreibt die Ergebnisse der vorgenommenen Untersuchungen anhand der beschriebenen Methoden in Kapitel 4. Durch die Messungen im Feld kann eine geologische Karte des Untersuchungsgebietes erstellt werden (Abbildung 11). Diese Karte dient als Grundlage für die Beschreibungen in den folgenden Kapiteln und ist in Anhang 5 in grösserem Format eingefügt. In Anhang 6 ist die Tabelle über die geographische Lage der Proben sowie den Daten der strukturgeologischen Messungen aufgeführt. In Abbildung 12 sind das stratigraphische Profil und die Resultate der verschiedenen Feldarbeiten und Prüfungsverfahren zusammengefasst aufgeführt (Anhang 7).

Die gesammelten Proben FL-21-01 bis FL-21-12 aus den verschiedenen Schichten des Untersuchungsgebietes werden für die Analyse im Feld (Kapitel 5.1), für die ingenieurgeologischen Tests (Kapitel 5.2) sowie für die späteren Untersuchungen im Labor (Kapitel 5.3) verwendet. In Abbildung 11 sind die Entnahmestellen der Proben eingezeichnet.

Abbildung 11: Erstellte geologische Karte des Untersuchungsgebietes. Karte erstellt in QGIS 2.16 (2021) mit Grundkarte von swisstopo (2021).

Resultate

Abbildung 12: Stratigraphischer Aufbau, Gesteinszusammensetzung, Verwitterungsgrad und Hammerhärtetest nach Read & Stacey (2009), geologischer Strength Index nach Hoek & Marinos (2000), Schmidt-Hammer Werte, berechnete einaxiale Druckfestigkeit durch Schmidt-Hammertest und durch Point Load Test.

5.1 Aufschlussbeschreibung

Aus den Feldbegehungen kann die Stratigraphie der Schichten im Untersuchungsgebiet entlang des Flusses erstellt werden, da die Aufschlüsse des Hohgant-Sandsteins sowie der angrenzenden Lithologien fast lückenlos und deutlich erkennbar sind und die Kontakte zwischen den einzelnen Schichten bestimmt werden können. Die Schichten liegen in normaler stratigraphischer Polarität vor. Es beginnt im untersten Teil mit dem Schrattenkalk. Darauf folgt das Fräkmünt-Member, ein Horizont bestehend aus Fossilien und sandigen Zwischenlagen. Auf diesem liegt der siltige Sandstein des Tierberg-Members. Der Hohgant-Sandstein befindet sich mit scharfem Kontakt über diesem siltigen Sandstein. Über dem Hohgant-Sandstein im obersten Teil ist die Stad-Formation aufgeschlossen.

Aus den Feldbeobachtungen der Kontaktgrenzen und der Messungen der Schichten kann die geologische Karte (Abbildung 11) sowie die beiden Querprofile (Abbildung 14 und Abbildung 15) längs der Flüsse erstellt werden. Das Profil A – A' wird entlang des Seebebachs und das Profil B – B' wird beim trockenen Bachbett (Abbildung 13) erstellt, wie es in Abbildung 7 eingezeichnet ist. Die Schichtmessungen zeigen ein relativ konstantes Einfallen in Richtung Ost-Südost. Dabei beträgt der durchschnittliche Einfallswinkel entlang der Profilspur A - A' 35° (Abbildung 14). Bei der Profilspur B - B' ist der Einfallswinkel flacher und beträgt rund 26° (Abbildung 15). Die Mächtigkeit des Hohgant-Sandsteins ist entlang des Profils B - B' geringer. Ausserdem sind die Schichten im mittleren Bereich entlang dieses Profils feiner geschiefert. Insgesamt sind entlang des trockenen Flussbeetes die kompakteren Schichten weniger mächtig und stärker gebankt.

Abbildung 13: Entlang dieses trockenen Flussbettes verläuft das Profil B - B'.

Resultate

Abbildung 14: Querprofil entlang der Spur A - A' aus der geologischen Karte der Abbildung 11.

Abbildung 15: Querprofil entlang der Spur B - B' aus der geologischen Karte der Abbildung 11.

Im folgenden Abschnitt werden die einzelnen Einheiten nach dem stratigraphischen Aufbau von alt bis jung makroskopisch beschrieben (Kapitel 5.1.1). In Kapitel 5.1.2 werden die einzelnen Homogenitätsbereiche des Hohgant-Sandsteins definiert. Die strukturgeologischen Beobachtungen werden in Kapitel 5.1.3 aufgeführt.

5.1.1 Stratigraphischer Aufbau

Schrattenkalk

Nur der Top des Schrattenkalks grenzt an das Untersuchungsbiet und wird in der vorliegenden Arbeit nicht näher untersucht. Abbildung 16 zeigt die Kontaktgrenze vom Schrattenkalt zum Fräkmünt-Member entlang des Seebebachs.

Abbildung 16: Kontaktgrenze von Schrattenkalk und zu Fräkmünt-Member. Die Ausrichtung nach Nordosten.

Fräkmünt-Member

Es handelt sich hierbei um einen bioklastischen Kalkstein mit einer Schichtmächtigkeit von rund 10 Metern. Sehr charakteristisch für diese Einheit sind die fossilienreichen Lagen. Hierbei handelt es sich um Nummuliten in einer Grundmasse aus feinem Mikrit (Abbildung 17). Nach der Klassifizierung von Dunham (1962) handelt es sich hierbei um einen Boundstone (Anhang 8). Zusätzlich treten neben den Fossilhorizonten Bereiche mit erhöhtem Tongehalt und weniger Nummuliten auf. Mit der Lupe sind kleine Quarzkörner festzustellen. Da das Gestein im Kontakt mit Salzsäure reagiert, hat es Kalzit in der Grundmasse. Die Verwitterungsfarbe reicht von hell- bis mausgrau. Das Gestein ist wenig verwittert und weist keine Zerklüftung auf. Aus diesem Schichtpaket stammt die Probe FL-21-05. Abbildung 18 zeigt die Obergrenze des Fräkmünt-Members sowie die Untergrenze des Tierberg-Members.

Abbildung 17: Nummuliten im Fräkmünt-Member (Foto: Lukas Nibourel).

Abbildung 18: Kontaktgrenze von Fräkmünt-Member zu Tierberg-Member. Die Ausrichtung nach Norden.

Tierberg-Member

Die gesamte Schichtmächtigkeit beträgt etwa 9 m. Die Grundmasse des Gesteins weist eine dunkelgraue Farbe auf und besteht aus siltigem Sand. Mit der Lupe sind neben feinen Quarzkörnern auch Glaukonitkörner mit einer Grösse von 0.1 bis 1 mm ersichtlich. In Abbildung 19 ist der Glaukonit im Gestein makroskopisch gut erkennbar. Feststellbar ist eine Schieferung im cm-Bereich. Die Schicht weist keine Bankung auf und ist entlang des Seebebachs nur leicht verwittert. Aus dieser Schicht stammt die Probe FL-21-06. Das Tierberg-Member grenzt nach oben an den Hohgant-Sandstein (Abbildung 20).

Abbildung 19: Nahaufnahme des Tierberg-Members (Foto: Lukas Nibourel). Glaukonit (grüne Körner) ist deutlich zu erkennen.

Abbildung 20: Top des Tierberg-Members und Untergrenze des Hohgant-Sandsteins (Foto: Christoph Nänni). Ausrichtung nach Nordwesten.

Hohgant-Sandstein

Die Farbe des unteren Teils des Hohgant-Sandsteins variiert zwischen grau bis braun. Der Sandstein ist gekennzeichnet durch eine grobkörnige Textur. Die Körner sind zwischen 1 bis 3 mm gross. Dabei handelt es sich vorwiegend um Quarz. Schichtsilikate sind nicht ersichtlich. Im Gestein sind ausserdem Fossilien aus Kalzit zu erkennen. Es handelt sich dabei grössten Teils um kleine Nummuliten oder Muschelbruchstücke. Auffällig sind kleine Löcher im leicht verwitterten Gestein. Diese deuten darauf hin, dass einzelne Komponenten herausgewittert sind (Abbildung 21).

Abbildung 21: Löcher im Hohgant-Sandstein. Ebenfalls sind die Quarzkörner im Gestein erkennbar. Foto stammt von der Entnahmestelle der Probe FL-21-07.

Zwischen den Komponenten ist kaum eine Grundmasse zu erkennen. Diese reagiert mit Salzsäure nur schwach, was darauf hindeutet, dass wenig Kalzit enthalten ist. Insgesamt wirkt der untere Teil aufgrund seiner festen isotropen Textur sehr kompakt. Die Bankmächtigkeiten liegen im 2 m-Bereich, zum Teil sind die Bänke kaum erkennbar. Aus diesem Abschnitt kommen die Proben FL-21-01 und FL-21-07 her. Die Probe FL-21-02 stammt aus dem oberen Bereich beim Wasserfall und weist eine ähnliche Textur und Struktur auf. Allerdings scheint es, dass bei diesem Gestein die Grundmasse dominanter ist und die Quarzkörner kleiner sind. In diesem Bereich ist die Bankung der Schicht stärker (0.2 - 2 m). Die Abbildung 22 zeigt eine Skizze des kompakten Sandsteins, in welcher die Entnahmelokalitäten der Proben FL-21-02 und FL-21-07 einzeichnet sind.

Abbildung 22: Skizze des unteren Teils des Hohgant-Sandsteins beim Wasserfall. Sie zeigt den kompakten Hohgant-Sandstein. Die Entnahmestellen der Proben FL-21-02 und FL-2107 sind eingezeichnet.

Wie in Abbildung 12 im stratigraphischen Profil gezeigt wird, liegt über diesem kompakten Teil ein Bereich mit einer dünnen Bankung (Abbildung 23 und Abbildung 24). Im Vergleich zwischen den beiden Profilen A - A' (Abbildung 14) und B - B' (Abbildung 15) ist erkennbar, dass der mittlere Bereich des Hohgant-Sandsteins beim Profil B - B' dünner gebankt ist, wie dies in Abbildung 25 gezeigt wird. Bei diesen dünnen Bankungen handelt es sich um eine Abfolge von grauem, kalkigem Sandstein mit Zwischenlagen aus mergeligem Ton (Abbildung 26). Die Sandsteinlagen sind ungefähr 2 - 20 cm und die Tonlagen rund 2 cm mächtig. Der kalkige Sandstein weist eine braune bis dunkelgraue Farbe auf und enthält feine Quarzkörner (0.1 - 0.8 mm) sowie eine Grundmasse bestehend aus mikritischem Kalzit (starke Reaktion mit verdünnter Salzsäure). Insgesamt sind diese Sandlagen relativ stark verwittert und zerklüftet. Die Tonlagen sind dunkelgrau, mergelig, tonig bis siltig und stark verwittert. Ebenfalls ist in diesen Lagen eine Bioturbation zu erkennen (Abbildung 27). Die Proben FL-21-03 und FL-21-08 sind dieser kalkigen Sandlage entnommen. Resultate

Abbildung 23: Mittlerer Teil des Hohgant-Sandsteins oberhalb des Wasserfalls. Die Bankung ist hier rund 30 cm. Der Doppelmeter dient als Referenz. Ausrichtung nach Nordosten.

Abbildung 24: Mittlerer Teil des Hohgant-Sandsteins oberhalb des Wasserfalls. Die Bankung liegt hier im 10 cm-Bereich. Der Doppelmeter dient als Referenz. Ausrichtung nach Norden.

25: Mittlerer, dünn gebankter Bereich des Hohgant-Sandsteins. Foto stammt vom getrockneten Bachbett bei Pro-B'. Der Doppelmeter dient als Referenz. Ausrichtung nach Süden.

Abbildung 26: Schematische Darstellung des gebankten mittleren Bereichs des Hohgant-Sandsteins. Sie zeigt die Abfolge von tonigen- und sandig-kalkigen Lagen.

Abbildung 27: Bioturbation im mittleren Bereich des Hohgant-Sandsteins in einer sandig-kalkigen Bank.

Auf dem Bereich mit den dünnen Bankungen liegen kompaktere Sandsteinlagen mit einer Mächtigkeit von ungefähr 3 m und anschliessend verschiedene Lagen mit höheren Ton- oder Kalzitgehalten mit einer Bankung im m-Bereich. Darauf folgt eine kompakte Schicht mit einer grauen, braun-orangenen Farbe (Abbildung 28). Die Struktur ist grobkörnig und enthält wenig Kalzitzement (kaum Reaktion mit HCL). Die Quarzkörner weisen eine Grösse von 1 - 3 mm auf. Ausserdem sind keine Schichtsilikate zu erkennen. Die orangene Farbe bei der Entnahmestelle der Probe FL-21-11 ist infolge von Verwitterungsprozessen entstanden und deutet auf einen höheren Anteil an Eisen hin.

Abbildung 28: Die Probenentnahmestelle von FL-21-11 liegt an der Basis der abgebildeten mächtigen Bank von 8 m. Der Doppelmeter dient als Referenz. Ausrichtung nach Nordosten.

Auf dieser kompakten Schicht von ungefähr 8 m Dicke (oberhalb der Probeentnahmestelle FL-21-11, Abbildung 12) tritt ein kalkiger Sandstein mit einer grauen bis braunen Farbe und ähnlicher Textur sowie Komponentenzusammensetzung wie jene der darunterliegenden Schicht auf. Er weist eine Bankung im 0.5 m-Bereich auf. Zudem ist der Sandstein leicht geschiefert. Aus diesem Bereich entstammt die Probe FL-21-04.

Der oberste Teil des Hohgant-Sandsteins weist eine dunkelgraue, kalkige Grundmasse mit feinen Quarzkörnern auf. Hier ist der Kalzitgehalt grösser, da das Gestein mit Salzsäure stark reagiert. Das Gestein lässt sich als sandig und mergelig beschreiben. Neben dem Quarz sind Schichtsilikate und Glaukonite feststellbar. Die Schicht zeigt eine feine Lamination und eine leichte Verwitterung auf und kommt aus einem Bereich mit einer dünneren Bankung. Aus dem stark geschieferten Teil stammt die Probe FL-21-10. Die Probe FL-21-09 ist weniger geschiefert und kommt aus dem Bereich mit einer mittlerer Bankung (Abbildung 29). Weiter oben in der Stratigraphie wird das Gestein mergeliger und stärker geschiefert (Abbildung 30).

Abbildung 29: Zeigt die Lokalität der Proben FL-21-09 und FL-21-10 (Foto: Christoph Nänni). Nach oben wird das Gestein stärker geschiefert. Der Doppelmeter dient als Referenz. Ausrichtung nach Nordosten.

Abbildung 30: Top des Hohgant-Sandsteins mit starker Schieferung. Das Gestein ist tonig-mergelig. Der Doppelmeter dient als Referenz. Ausrichtung nach Nordosten.

Stad-Formation

Der graduelle Übergang vom Hohgant-Sandstein zur Stad-Formation ist gekennzeichnet durch eine starke Schieferung mit erhöhtem Tongehalt im Gestein. Charakteristisch am Aufschluss dieser Formation ist eine relativ konstante Mächtigkeit in der Schichtung. Diese variiert zwischen 2 und 5 cm. Das Gestein entlang des Flussbeetes ist wenig verwittert. Die Formation weist graue bis grünliche Farbtöne auf. Das Gestein ist sandig bis siltig. Die Quarzkörner sind mit der Lupe deutlich erkennbar. Die Mineralaggregate sind rund 0.2 mm gross. Ebenfalls im Gestein enthalten sind etwa 1 mm grosse Glaukonit-körner und vereinzelt Hellglimmer wie Muskovit. Die Grundmasse besteht aus einem feintonigen, grauen Zement, der einen erhöhten Kalzitanteil aufweist, da er mit Salzsäure reagiert. Aus diesem Abschnitt stammt die Probe FL-21-12.

5.1.2 Homogenitätsbereiche

Aufgrund von ähnlichen lithologischen und physikalischen Eigenschaften kann der Hohgant-Sandstein im Untersuchungsgebiet in vier verschiedene Homogenitätsbereiche eingeteilt werden. Diese Homogenitätsbereiche sind bei der stratigraphischen Kolonne der Abbildung 12 und in den beiden Querprofilen der Abbildung 14 und Abbildung 15 von a bis d eingezeichnet. Der Bereich a umfasst unterste kompakte Teil des Hohgant-Sandsteins und ist gekennzeichnet durch die grobkörnige Struktur, den geringen Anteil einer Grundmasse sowie der dick gebankten Schichten. Die Proben FL-21-01, FL-21-02 und FL-21-07 wurden von diesem Bereich entnommen. Insgesamt hat dieser untere Teil eine Schichtmächtigkeit von ungefähr 40 m. Darüber folgt der Bereich b mit dem Schichtpaket aus kalkigem Sandstein mit tonigmergeligen Zwischenlagen. Die Proben FL-21-03 und FL-21-08 stammen aus diesem ungefähr 24 m mächtigen Bereich. Der Homogenitätsbereich c enthält die kompakte Schicht aus grösseren Quarzkörnern und wenig Kalzitzement. Ausserdem ist dieser Bereich dick gebankt. Aus diesem Bereich kommen die Proben FL-21-04 und FL-21-11. Dieser Teil ist rund 19 m mächtig. Der oberste Bereich d mit ungefähr 7 m Mächtigkeit besteht aus feinen Quarzkörnern in einer kalkigen Grundmasse. Dieser Teil weist eine feine Bankung auf. Die Proben FL-21-09 und FL-21-10 sind von diesem Homogenitätsbereich.

5.1.3 Tektonik

Die Schichten im Untersuchungsgebiet weisen ein relativ gleichmässiges Einfallen und konstante Fallwinkel auf (Kapitel 5.1). Ausserdem sind keine grossräumigen Verfaltungen ersichtlich. Innerhalb der Einheiten sind kleinere Verwerfungen vorhanden (Abbildung 11). In der Einheit des Fräkmünt-Members ist ein kleiner Bruch mit einem Versatz von etwa 20 cm zu erkennen. Entlang der Verschiebungsfläche gibt es einige Rutschharnisse. Weiter ist an der Basis des Hohgant-Sandsteins eine sinistrale Verwerfung mit einem Versatz von 5 m feststellbar (Abbildung 11 und Abbildung 14). Im Aufschluss entlang des trockenen Bachbetts ist im Hohgant-Sandstein eine Verwerfung mit scheinbarem Versatz von 20 cm vorhanden (Abbildung 31). In der Stad-Formation sind entlang des Flusses subvertikale Brüche zur Schieferung zu erkennen.

Abbildung 31: Verwerfung im trockenen Bachbett (Foto: Christoph Nänni). Ausrichtung nach Süden.

5.2 Standardisierte, ingenieurgeologische Feldmethoden

Bei den Probenentnahmestellen von FL-21-01 bis FL-21-12 sind ingenieurgeologische Untersuchungen durchgeführt worden (Abbildung 11). In Anhang 9 werden die Resultate der ingenieurgeologischen Methoden in einer Tabelle aufgeführt.

Insgesamt ist der Verwitterungsgrad der Gesteinsschichten nach Read & Stacey (2009) entlang des Bachbetts eher gering. Erkennbar ist dies an der intakten Textur sowie an der nur leicht verwitterten Gesteinsoberfläche. Der Verwitterungsgrad liegt zwischen W1 bis W3. Die Verwitterungsgrade der jeweiligen untersuchten Stellen sind in Abbildung 12 aufgeführt. Der tiefste Verwitterungsgrad liegt innerhalb des Fräkmünt-Members sowie im Homogenitätsbereich a des Hohgant-Sandsteins.
Der Hammerhärtetest nach Read & Stacey (2009) zeigt im Untersuchungsgebiet Werte von R3 bis R6 auf. Der geringste Wert mit R3 erreicht der Tierberg-Member und der höchste liegt mit R6 im Homogenitätsbereich a (Abbildung 12).

Der geologische Strength Index (GSI) variiert bei den Gesteinen. Er liegt zwischen 30 bis 85. Der höchste GSI wird im Homogenitätsbereich a bei der ermittelt. Das bedeutet, dass dieses Gestein intakt ist. Die Schichten mit tieferen GSI-Werten, wie im Bereich b, sind stark zerbrochen und verwittert. Die bestimmten GSI-Werte der einzelnen Schichten sind ebenfalls in der Abbildung 12 eingetragen.

Entlang der Stratigraphie sind in jedem Abschnitt mindestens 20 Schmidt-Hammer Messungen gemacht worden. Wie die Diagramme der Abbildung 12 zeigen, liegen die Rückprallwerte der Gesteinspakete zwischen 30 und 70. Die grössten Variationen der Rückprallwerte gibt es im Bereich b und in der Stad-Formation (Abbildung 12). Der höchste durchschnittliche Schmidt-Hammer Wert mit 62 wird es bei der Messung im Homogenitätsbereich a erreicht. Der niedrigste Wert mit 41 wird im stark gebankten Bereich b gemessen. Diese Werte werden normalisiert auf eine horizontale Hammerausrichtung. Mithilfe dieser neu berechneten Werte kann aus der Grafik der Abbildung 8 die einaxiale Druckfestigkeit (UCS) abgeschätzt werden. Die grösste einaxiale Druckfestigkeit hat der Homogenitätsbereich a. In Abbildung 8 wird gezeigt, dass je höher der UCS desto grösser der Fehler ist. Der geringste Wert mit 80 MPa liegt im Homogenitätsbereich b (Abbildung 12).

Aus den vier Homogenitätsbereichen im Hohgant-Sandstein werden jeweils an fünf bis sieben Proben ein Point Load Test durchgeführt. Die erhaltenen Werte befinden sich in der Tabelle in Anhang 10. Die höchste einaxiale Druckfestigkeit mit 178.58 MPa wird im grobkörnigen Homogenitätsbereich c gemessen werden. Der kleinste Wert mit 58.58 MPa wird im kompakten Bereich a des Hohgant-Sandsteins festgestellt (Abbildung 12).

5.3 Laborarbeit

Im Folgenden werden die Resultate der Untersuchungen der Dünnschliffanalyse sowie der XRD-Röntgenstrukturanalyse aufgezeigt.

5.3.1 Dünnschliffanalyse

In diesem Kapitel werden die allgemeinen mikroskopischen Beobachtungen aus den Dünnschliffen beschrieben. In Anhang 11 ist die Tabelle mit den Proben FL-21-01 bis FL-21-10 und den Dünnschliffbeschreibungen sowie den Fotografien im natürlichen Licht sowie mit gekreuztem Polarisator aufgeführt. Die Korngrössen variieren zwischen 0.1 und 2 mm. Grundsätzlich ist die Sortierung der Körner eher moderat und die Rundung meist subangular. Dabei ist die Sphärizität zwischen niedrig und hoch. Das Gefüge ist meist korngestützt und besteht aus einem Kalzitzement. Die Dünnschliffe der Sandsteine weisen alle eine relative Ähnlichkeit in der Zusammensetzung der Minerale auf. Die Hauptkomponenten sind Quarz und Kalzit. In vereinzelten Dünnschliffen kommt auch Glaukonit und Hellglimmer (Muskovit) vor.

Im folgenden Abschnitt werden die Dünnschliffe der Proben in der Reihenfolge des stratigraphischen Aufbaus von alt bis jung beschrieben. Dabei werden die Proben aus ähnlichen Homogenitätsbereichen zusammengefasst. Die bestimmten Komponentenanteile gegenüber der Grundmasse sowie die Prozentanteile der enthaltenen Minerale werden in der Abbildung 12 aufgeführt.

FL-21-05

In diesem Dünnschliff sind deutlich Fossilien zu sehen. Bei den Fossilien handelt es sich um Nummuliten, die im Querschnitt sowie im Längsschnitt zu erkennen sind. Mit gekreuzten Polarisatoren sind hohe Interferenzfarben ersichtlich. Somit bestehen diese Nummuliten aus Kalzit. Der Zement zwischen den Fossilien besteht aus feinem Kalzit. Ebenfalls enthalten ist ein geringer Anteil an Ton. Nach Dunham (1962) handelt es sich hier um einen Boundstone.

FL-21-06

Deutlich sind im Dünnschliff Quarz- und Glaukonitkomponenten zu erkennen. Die durchschnittliche Korngrösse der Quarze beträgt 0.2 mm und jene der Glaukonite 0.8 mm. Die Glaukonite sind rundlicher als die Quarze. Die Sortierung ist moderat. Zwischen den Körnern ist eine Grundmasse aus Kalzit mit wenig Ton zu erkennen. Die Mineralaggregate berühren sich nur leicht, das heisst, dass das Gefüge korngestützt ist. Dieses Gestein kann als siltiger Sandstein definiert werden (Naef et al., 2019).

FL-21-01, FL-21-02a, FL-21-02b und FL-21-07

Das meist vorkommende Mineral ist Quarz. Untergeordnet kommen auch Glaukonit sowie ein geringer Anteil an Hellglimmer vor. Die Körner sind rund 0.1 bis 2 mm gross und die Kornrundung ist subangular. Dabei sind die grössten Körner die rundesten. Die Korngrössenverteilung ist bimodal. Die Spharizität variiert von niedrig bis hoch. Das Gefüge ist korngestützt und besteht vorwiegend aus einem Kalzitzement und wenig Quarz. Insgesamt sind die Kristalle sehr kompakt angeordnet. Es sind im Dünnschliff FL-21-02a Fossilien wie zum Beispiel Nummuliten zu erkennen. Es handelt sich also bei diesem Proben um einen grobkörnigen Sandstein. Die folgenden Abbildungen zeigen die Quarzkörner sowie den Zement in natürlichem Licht und mit gekreuztem Polarisator (Abbildung 32 und Abbildung 33).

Abbildung 32: Dünnschliff FL-21-02 in natürlichem Licht. Eingezeichnet ist der Zement aus Kalzit und Quarzkörner.

Abbildung 33: Dünnschliff FL-21-02 in polarisiertem Licht. Eingezeichnet ist der Zement aus Kalzit und Quarzkörner.

FL-21-03 und FL-21-08

Bei diesen Dünnschliffen ist deutlich erkennbar, dass der Quarzanteil geringer und der Gehalt der Grundmasse höher ist. Die Quarzkörner sind im Durchschnitt 0.3 mm gross. Ebenfalls sind Glaukonite mit einer Grösse von 0.1 mm auffindbar. Dabei ist die Sortierung moderat bis gut. Die Körner sind gerundet und weisen eine mittlere Sphärizität auf. Der Zement zwischen Mineralaggregaten besteht aus sparitischem Kalzit und einem sehr geringen Anteil Ton. Die Körner berühren sich nur leicht, demnach ist das Gefüge korngestützt. In beiden Gesteinsproben sind Nummuliten enthalten.

FL-21-04, FL-21-09 und FL-21-10

Die Gesteine enthalten vorwiegend Quarz sowie wenig Hellglimmer und Glaukonit. Die Korngrösse der Minerale liegt zwischen 0.3 bis 1.2 mm. Im Dünnschliff wirkt die Sortierung eher moderat. Die Körner sind wenig gerundet und die Sphärizität ist niedrig. Das Gefüge besteht aus einem sparitischen Kalzitzement und ist korngestützt. Im Zement sind einige grössere Kalzitkristalle zu erkennen.

5.3.2 XRD-Röntgenstrukturanalyse

Die Resultate der XRD-Analyse der 10 untersuchten Proben sowie der Referenzprobe KK33 des Helvetischen Kieselkalks von Bärtschi (2012) werden in diesem Kapitel beschrieben. Die Diffraktogramme der Proben sind in Anhang 12 bis Anhang 22 aufgeführt. Die erhaltenen Anteile der Minerale der Proben werden in Abbildung 12 ebenfalls grafisch dargestellt. Das Untersuchungsresultat der Probe KK 33 von Bärtschi (2012) befindet sich in Anhang 23.

Mit einer erhöhten Wahrscheinlichkeit enthalten alle Proben vor allem die Minerale Quarz und Kalzit. Andere nur in geringen Mengen erhaltene Mineralphasen werden nicht semi-quantitativ ausgewertet. Die gemessenen Anteile sind in Tabelle 3 aufgeführt. Die 10 Proben des Untersuchungsgebietes bestehen alle, mit Ausnahme der Probe FL-21-05 aus dem Fräkmünt-Member, aus mehr als 76 Gew.-% Quarz. Der Kalzitanteil variiert zwischen 3.96 und 23.57 Gew.-%. Die Probe K33 des Kieselkalks weist einen geringeren Anteil an Quarz auf. Der höchste Prozentanteil an Quarz und somit den geringsten Anteil an Kalzit zeigt die Probe FL-21-01 aus dem Homogenitätsbereich a des Hohgant-Sandsteins. Neben der Probe FL-21-05 hat die Probe FL-21-09 aus dem Bereich d des Hohgant-Sandsteins den höchsten Kalzitgehalt mit 23.57 Gew.-% (Abbildung 12). Alle Proben enthalten keine Schichtsilikate.

Probe	Quarzanteil [Gew%]	Kalzitanteil [Gew%]
FL-21-01	92.59	7.41
FL-21-02	91.74	8.26
FL-21-03	85.71	14.29
FL-21-04	83.11	16.89

Tabelle 3: Resultate der XRD-Röntgenstrukuranalyse.

Resultate

FL-21-05	0	100
FL-21-06	85.96	14.04
FL-21-07	96.04	3.96
FL-21-08	87.35	12.65
FL-21-09	76.43	23.57
FL-21-10	81.90	18.10
KK33	66.41	33.59

6. Diskussion

In diesem Kapitel werden die erhaltenen Resultate aus den Analysearbeiten des Kapitels 5 diskutiert. Die Beobachtungen im Feld werden in Kapitel 6.1 thematisiert. Kapitel 6.2 beinhaltet die Auswertung der geologischen Tests und in Kapitel 6.3 werden die Ergebnisse der Dünnschliffanalyse sowie der XRD-Röntgenstrukturanalyse besprochen. Im letzten Teilkapitel werden die Resultate der verschiedenen durchgeführten Untersuchungen miteinander in Verbindung gebracht (Kapitel 6.4).

6.1 Feldbefund

Die Gesamtmächtigkeit des Hohgant-Sandsteins wird auf über 90 m geschätzt (Abbildung 12). Diese Abschätzung korreliert mit den Mächtigkeitsdaten der Abbildung 4. Allerdings sind diese Werte deutlich unter den Mächtigkeitswerten von Levi (2001). Seine Schätzungen der Mächtigkeit für die Entlebuch-Region liegen bei mehr 200 m. Die Werte der vorliegenden Arbeit sind aufgrund der guten Aufschlussverhältnisse im Untersuchungsgebiet mit Sicherheit genau. Ein weiterer Grund die Genauigkeit ist, dass im vorgestellten Untersuchungsgebiet keine grossen Verwerfungen erkennbar sind. Zu berücksichtigen ist, dass kleinräumige Verwerfungen vorhanden sind, welche an anderen Stellen, wo die Aufschlussverhältnisse schlechter sind, zu ungenauen Mächtigkeitsangaben führen können. Die Ursachen für die deutliche Diskrepanz zu Levi's Werten könnten sein, dass seine Mächtigkeitsdaten ungenau und deshalb weniger verlässlich sind. Auch ist möglich, dass Levi die Unter- und Obergrenze des Hohgant-Sandsteins nicht gleichgesetzt hat. Zudem könnten grossräumige Verwerfungen oder sedimentäre Unterschiede infolge syntektonischer Ablagerung zu unterschiedlichen Mächtigkeiten in der Region führen.

Die beiden erstellten Querprofile (Abbildung 14 und Abbildung 15) stimmen gut überein. Jedoch ist im Profil B - B' die Tierberg-Formation mächtiger. Dies kann auf eine unterschiedliche Sedimentablagerung zurückgeführt werden. Zusätzlich ist auffällig, dass in diesem Profil der Hohgant-Sandstein weniger mächtig als im Profil A - A' ist. Der Grund dafür könnte eine Verwerfung im waldbedeckten Bereich sein oder eine ungenaue Kartierung des Tops, da der Bereich d des Hohgant-Sandsteins schwierig von der Stad-Formation zu unterscheiden ist. Erwartungsgemäss passt das stratigraphische Profil der Abbildung 12 mit den Querprofilen und der geologischen Karte gut überein, da die Aufschlüsse mit den Schichtgrenzen im Gelände gut ersichtlich sind.

Der Hohgant-Sandstein des Untersuchungsgebietes lässt sich in vier Homogenitätsbereiche unterordnen (Abbildung 12, Abbildung 14 und Abbildung 15). Das kann aus der Komponentenzusammensetzung, der Struktur und der Textur sowie der physikalischen Eigenschaften der untersuchten Proben geschlossen werden. Die Proben FL-21-01, FL-21-02 und FL-21-07 stammen unter dem Homogenitätsbereich a des Hohgant-Sandsteins. Die Gesteine dieses Bereiches sind durch grosse Quarzkomponenten und einen

geringen Anteil an Zement zwischen den Körnern gekennzeichnet. FL-21-03 und FL-21-08 werden dem dünn gebankten Bereich b zugeteilt. Aus dem kompakten, grobkörnigen Homogenitätsbereich c kommen die Proben FL-21-04 und FL-21-11. Die Proben FL-21-09 und FL-21-10 sind dem Bereich d entnommen. Dieser oberste Teil besteht aus feinkörnigem Quarz und einer kalkigen Grundmasse.

Der stratigraphische Aufbau zeigt eine Variation in der Grössenverteilung der Quarze und dem unterschiedlichen Gehalt an Kalzitzement (Abbildung 12). Zudem gibt es in einigen Bereichen einen höheren Gehalt an Glaukoniten (Tierberg-Member und Homogenitätsbereich d). Dies deutet darauf hin, dass es innerhalb von kurzer Zeit verschiedene Milieuveränderungen durch Schwankungen im Meeresspiegel gegeben hat. Das bedeutet, dass sich der Eintrag von Detritus verändert hat und aufgrund der sich verändernden Wassertiefe unterschiedliche Fossilien in den Schichten befinden. Dieser Eindruck stimmt mit den Untersuchungen von Menkveld-Gfeller et al. (2016) überein.

Die Beobachtungen im Feld zeigen, dass in den Bereichen a und c des Hohgant-Sandsteins ein kompetenter Sandstein vorliegt (Abbildung 12, Abbildung 14 und Abbildung 15). Aus dem stratigraphischen Profil der Abbildung 12 sowie aus den Querprofilen der Abbildung 14 und der Abbildung 15 ist ersichtlich, dass im Bereich a die Bankung meist grösser als 1 m ist. Ausserdem ist makroskopisch ein genügend hoher Gehalt (> 75 %) an harten Mineralen sowie wenig Zement zwischen den Körnern vorhanden. Die Quarzkörner sind grösser als in den anderen Bereichen (1 bis 3 mm). Das Gestein in diesem Abschnitt weist eine kompakte Struktur und isotrope Eigenschaften auf. Insgesamt hat dieser Bereich eine Schichtmächtigkeit von 20 m. Der Bereich c des Hohgant-Sandsteins mit einer Mächtigkeit von 19 m könnte aufgrund seiner strukturellen Eigenschaften einen weiteren kompetenten Hartsteinbereich darstellen (Abbildung 12, Abbildung 14 und Abbildung 15). Besonders im unteren Teil des Bereichs sind grössere Quarzkörner eingelagert. Zusätzlich sind in diesem Bereich kaum Schichtbänke vorhanden. Der mittlere Bereich b mit einer Mächtigkeit von 24 m kann als potentieller Hartstein ausgeschlossen werden, da die Schichten zu fein gebankt sind und sich deswegen nicht genügend grosse Gesteinsaggregate herausbrechen lassen, um beispielsweise Bahnschotter herzustellen. Zusätzlich sind die Zwischenlagen aus mergeligem Ton zu weich. Der Bereich d, der eine Mächtigkeit von 7 m hat, weist eine zu feine Schichtung und einen zu hohen Tongehalt auf (Abbildung 14 und Abbildung 29). Das bedeutet, dass sich das Gestein in diesem Bereich nicht als Hartstein eignet.

6.2 Physikalische Eigenschaften

Es ist eine deutliche Korrelation zwischen den Resultaten des Verwitterungsgrades, dem Hammerhärtetest und dem geologischen Strength Index sowie den Schmidt-Rückprallwerten zu erkennen. Dies bedeutet, dass bei höherem Verwitterungsgrad (W2 - W3) die Werte des Hammerhärtetestes tiefer ausfallen. Diese Beobachtung macht durchaus Sinn, da bei stärker verwittertem Gestein die Festigkeit geringer ist. Deswegen ist auch der geologische Strength Index in solchen Gesteinen tiefer. Die Aufschlüsse entlang des Bachbetts sind grundsätzlich wenig verwittert und daher lassen sich die verschiedenen Schichten gut miteinander vergleichen. Ausserdem sind die Rückprallwerte in Schichten mit erhöhter Verwitterung ebenfalls niedriger und so auch die einaxiale Druckfestigkeit, berechnet aus dem Schmidt-Hammertest. Ein typisches Beispiel für eine stärkere Verwitterung liefern die Testresultate des tonigmergeligen Bereichs c. Diese weist einen Verwitterungsgrad von W3 auf. Der Hammerhärtetest zeigt einen Wert R4, einen GSI von 60, einen durchschnittlichen Rückprallwert von 41 sowie eine berechnete einaxiale Druckfestigkeit von 80 MPa. Bei unverwitterten Gesteinen fallen die Testresultate genau umgekehrt aus. Als Beispiel dient das Gestein des Bereichs a, der einen tiefen Verwitterungsgrad aufweist, bei Hammerhärtetest und GSI hohe Werte zeigt und auch bei den Schmidt-Hammerwerten sowie beim berechneten UCS im höheren Bereich sind (Abbildung 12).

Die Point Load Testresultate sind anders ausgefallen als erwartet. Die tiefste einaxiale Druckfestigkeit, berechnet aus den Ergebnissen des Point Load Tests, treten bei der Entnahmestelle der grobkörnigen Probe FL-21-07 aus dem kompakten Bereich a auf. Diese Probe zeigt mit dem Schmidt-Hammertest allerdings eine hohe einaxiale Druckfestigkeit (Abbildung 12). Mögliche Gründe dafür könnten sein, dass das Testgestein des PLTs stark verwittert ist oder es einen Zusammenhang mit der Grösse der Körner sowie dem Zementanteil, auf welche in Kapitel 6.4 noch eingegangen wird, gibt. Die höchsten Werte des PLTs zeigen die Messungen im obersten Teil des Hohgant-Sandsteins. Dies könnte ebenfalls mit dem Gehalt des Kalzitzements im Gestein in Verbindung gebracht werden. Der PLT ist mit viel Aufwand verbunden. Die Aussagekraft ist aufgrund der wenigen Proben pro Schicht eingeschränkt. Die unerwarteten Resultate werfen neue Fragen auf, welche in Kapitel 7 diskutiert werden.

Die durchgeführten ingenieurgeologischen Tests sind im Feld einfach anwendbar und erweisen sich als sinnvoll, da sie relevante Informationen über die physikalischen Eigenschaften des Gesteins liefern. Beim Schmidt-Hammertest ist Vorsicht geboten, da hier genau dokumentiert werden muss, wie der Hammer ausgerichtet ist und wie die Messung zur Schieferung steht. Bei dieser Methode könnte eine Fehlerquelle auftreten, wenn eine Messung genau über grossen Quarzkörnern vorgenommen wird (Abbildung 34). Je mehr grössere Quarzkörner sich unter dem Schlagbolzen befinden, desto höher ist der Rückprallwert. Da der Quarz ein hartes Mineral ist, führt die Messung zu höheren Werten. Die Resultate dieser Tests können als Referenzwerte für Untersuchungen des Hohgant-Sandsteins in anderen Gebieten dienen.

— Schlagbolzen — Quarzhörner

Abbildung 34: Schmidt-Hammertest über Quarzkörner.

Aufgrund dieser Resultate können die Wechsellagerungen von Sandstein und Tonlagen des Bereichs b sowie der feinkörnige Bereich d der Abbildung 12 für potentiellen Hartstein ausgeschlossen werden, da hier die berechneten einaxialen Druckfestigkeiten unter 140 MPa liegen (de Quervain, 1967). Die Messungen im Bereich der Probe FL-21-08 ergeben eine einaxiale Druckfestigkeit von 150 MPa. Allerdings weisen hier die Rückprallwerte eine grosse Streuung auf, so dass dieser Bereich ebenfalls als Hartstein nicht interessant sein dürfte.

6.3 Laboranalyse

Die Analyse der Dünnschliffe ist eine gute Methode für die genaue Beschreibung der Komponentenzusammensetzung, der Struktur und der Textur. Es kann der Anteil der Grundmasse im Verhältnis zu den Körnern abgeschätzt werden. Ausserdem kann festgestellt werden, ob es sich bei der Grundmasse um einen Zement oder eine Matrix handelt und woraus sie besteht. Das Mikroskopieren ist für das Ermitteln der Minerale sowie deren prozentualen Anteile nützlich. Die Untersuchungen zeigen, dass die Gesteinsproben mit einem geringeren Anteil der Grundmasse mehr und grössere Quarzkörner enthalten. Dies tritt vor allem bei den Proben FL-21-01, FL-21-02a, FL-21-02b und FL-21-07 des Bereichs a auf. Ausserdem haben alle untersuchten Proben nur einen sehr geringen Anteil an Schichtsilikaten. Einen hohen Gehalt an Schichtsilikaten kann bei Belastung zu Brüchen entlang dieser Minerale führen. Nach der Dünnschliffanalyse könnten fast alle Proben als Hartstein klassifiziert werden, da sie einen Anteil von harten Mineralen von mehr als 75 % enthalten (de Quervain, 1967). Die Proben FL-21-03, FL-21-08 und FL-21-09 enthalten weniger harte Minerale. Bei der Grundmasse handelt es sich um einen Zement aus Kalzit. Dies bedeutet, dass sich die Porenräume erst nach der Ablagerung mit Kalzit auskristallisiert haben. Insgesamt sind die Körner in den meisten Proben schlecht sortiert, was bei der Ablagerung auf einen kurzen Transportweg hindeutet. Die Beschreibung der Dünnschliffe des Hohgant-Sandsteins hinsichtlich Komponentenzusammensetzung, Struktur und Textur deckt sich mit jener von Levi (2001). Die semi-quantitative Analyse erweist sich ebenfalls als ergänzend, da die prozentualen Anteile der Minerale aufgezeigt werden. Die Ergebnisse der Untersuchungen der Dünnschliffe decken sich mit jenen der XRD-Röntgenstrukturanalyse. Keine der untersuchten Proben enthält Schichtsilikate. Das bedeutet, dass in den untersuchten Gesteinen keine Tonminerale auftreten. Ausserdem zeigt die Referenzprobe KK33 ähnliche prozentuale Anteile der Minerale, wie in den Analysen von Bärtschi (2012). Das bedeutet, dass die XRD-Analyse durchaus aussagekräftig ist. Die Relevanz der XRD-Analyse wird im folgenden Kapitel beschrieben.

6.4 Einfluss des Quarzgehaltes und der Korngrössen

Die Beobachtungen aus den vorangehenden Kapiteln werden nun in Verbindung gebracht. Es erweist sich als wertvoll, die Untersuchungsresultate miteinander zu vergleichen (Abbildung 12).

Die Resultate der Feldbeobachtungen, der ingenieurgeologischen Tests und der Laboranalysen stimmen mehrheitlich überein. Die Schichten, welche sich im Feld als schwächer erwiesen haben, fallen auch bei den ingenieurgeologischen Tests schlechter aus. Das bedeutet, dass sie einen höheren Verwitterungsgrad, einen tieferen Wert im Hammerhärtetest, einen tieferen GSI sowie eine tiefere einaxiale Druckfestigkeit aufweisen. Somit kann mit einfachen und sorgfältigen Feldbeobachtungen eine relativ gute Abschätzung der Eignung vorgenommen werden.

Die Gesteinsproben dieser Schichten zeigen bei den Dünnschliffanalysen und bei der XRD-Röntgenstrukturanalyse einen niedrigeren Quarzgehalt, kleinere Körner sowie eine grössere Grundmasse. Somit wird bestätigt, dass feinkörnige Gesteine mit tieferen Quarzanteilen und einer grösseren Grundmasse zu einer rascheren Verwitterung führen. Der Zusammenhang zwischen Verwitterungsgrad und Quarzanteil beziehungsweise Menge der Grundmasse zeigt sich umgekehrt auch in Schichten mit einer tieferen Verwitterung, die grobkörnige Gesteine mit hohen Quarzanteilen und einer geringeren Grundmasse enthalten. Ausserdem ist eine Korrelation zwischen der einaxialen Druckfestigkeit, berechnet mittels der Werte des Schmidt-Hammertests, und dem prozentualen Quarzgehalt der Gesteine zu erkennen (Abbildung 35). Das bedeutet je mehr Quarz enthalten ist, desto höher ist die UCS. Das macht durchaus Sinn, da Quarz ein hartes Mineral ist und zu hohen Rückprallwerten führt.

Abbildung 35: Einaxiale Druckfestigkeit berechnet durch die Werte des Schmidt-Hammertests vs. Prozentualem Anteil Quarz gemessen mit XRD-Röntgenstrukturanalyse.

Wie sich beim Point Load Test herausgestellt hat, könnte ein möglicher Grund für die tiefen einaxialen Druckfestigkeiten im Bereich der Probenentnahmestelle FL-21-07 sein, dass Gestein mit grösseren Quarzkörnern mit wenig Zement dazwischen schneller bricht. Das erklärt sich damit, dass sich Brüche entlang von grossen Körnern mit weniger Kraft einfacher entwickeln können. Falls dies die Erklärung für die tiefen einaxialen Druckfestigkeiten in diesen Bereichen ist, wäre diese Gestein nicht geeignet für die Produktion von Bahnschotter. Wie oben erwähnt, wären hier weitere PLTs erforderlich, da die Resultate nicht mit den Schmidt-Hammertestwerten übereinstimmen. Von den untersuchten Parametern sind die Grösse des Quarzes, der Anteil im Gestein sowie das Verhältnis von Komponenten gegenüber dem Zement ausschlaggebend für die physikalischen Eigenschaften einer Schicht. Zusätzlich stellt die Bankmächtigkeit ein weiteres wichtiges Kriterium für die Ermittlung eines potentiellen Hartsteingebietes dar.

Abbildung 36: Querprofil entlang der Profilspur A – A'. In rot eingefärbt ist potentielle nutzbare Mächtigkeit des Hohgant-Sandsteins mit 59 m.

Nach den erfolgten Untersuchungen über Mineralogie, Struktur, Textur sowie Gesamt- und Bankmächtigkeiten kann der Hohgant-Sandstein als potentieller Hartstein in Betracht gezogen werden. Der unterste Bereich a des Hohgant-Sandsteins mit einer möglich nutzbaren Mächtigkeit von 40 m stellt einen kompetenten Bereich dar. Der mittlere Teil kann infolge der zu dünn gebankten Schichten (< 30 cm), der tonig-mergeligen Zwischenlagen und der zu geringen einaxialen Druckfestigkeit nicht genutzt werden. Der kompakte Bereich c mit einer Mächtigkeit von ungefähr 19 m kann ebenfalls für ein potentieller Hartstein infrage kommen. Somit ist die totale nutzbare Mächtigkeit etwas geringer als der abgeschätzten Mächtigkeit (Abbildung 5). Die potentielle nutzbare Mächtigkeit des Hohgant-Sandsteins von 59 m ist in der Abbildung 36 eingezeichnet.

7. Schlussfolgerung und Ausblick

Nachdem in Kapitel 6 die Resultate besprochen wurden, wird in diesem Kapitel die Schlussfolgerung daraus präsentiert, um die Leitfrage «Hohgant-Sandstein: eine potentielle Einheit für die Gewinnung von Hartstein?» zu beantworten.

Aus den durchgeführten Analysen können folgenden Kernaussagen getroffen werden:

- Die Gesamtmächtigkeit des Hohgant-Sandsteins beträgt rund 90 m. Dabei ist die Untergrenze scharf und die Obergrenze graduell. Im ganzen Untersuchungsgebiet sind keine grösseren Verwerfungen zu erkennen.
- Die systematische Beschreibung der Lithologie im Untersuchungsgebiet mit sehr guten Aufschlussverhältnissen erlaubt eine gute Abschätzung der Nutzbarkeit der Gesteine für Hartsteinzwecke.
- Die geologische Karte, das stratigraphische Profil sowie die beiden Querprofile sind gut aufeinander abgestimmt. Deutlich zeigen sie den Aufbau der Schichten im Untersuchungsgebiet. Der Hohgant-Sandstein lässt sich im Untersuchungsgebiet in vier Homogenitätsbereiche unterteilen. Über dem siltig-sandigen Tierberg-Member folgt mit scharfem Kontakt der unterste Teil des Hohgant-Sandsteins, ein sehr reiner, kompetenter, meist grobkörniger dick gebankter Quarzsandstein (Bereich a). Über diesem Bereich befinden sich die fein gebankten Schichten mit tonig-mergeligen Zwischenlagen (Bereich b). Darüber liegt der grobkörnige kompakte Bereich c und zuoberst befindet sich im Bereich d der dünn gebankte Sandstein mit leicht erhöhtem Silt-und Tonanteil.
- Zwei Bereiche des Hohgant-Sandsteins werden als potentiell nutzbar eingestuft: der erste Bereich (40 m) befindet sich an der Basis, der zweite Bereich (19 m) liegt im oberen Teil des Hohgant-Sandsteins. Wichtigste Eigenschaften dieser Bereiche sind: Bankmächtigkeit, Quarz als Hauptkomponente, wichtigster Nebenbestandteil Kalzit in der Grundmasse, geringer Schichtsilikatanteil und gute Werte des Schmidt-Hammer- sowie Point Load Tests.
- Die potentiellen nutzbaren Bereiche werden durch ungefähr 24 m mächtige, dünn gebankte, kalkige Sandsteine mit Mergelzwischenlagen unterbrochen. Der oberste Bereich des Hohgant-Sandsteins wird aufgrund des erhöhtem Mergelanteils und der Schieferung ebenfalls als nicht nutzbar eingestuft.
- Standardisierte, physikalische Feldtests (Verwitterungsgrad, Hammerhärtetest, GSI, Schmidt-Hammer und Point Load Test) ergänzen die rohstoff-geologische Beurteilung und prognostizieren für die nutzbaren Bereiche eine einaxiale Druckfestigkeit von meist über 150 MPa. Die

Testresultate widerspiegeln neben den physikalischen Eigenschaften auch den Verwitterungsgrad der getesteten Felsoberfläche. Die Schmidt-Hammer Resultate korrelieren in erster Linie mit dem Quarzanteil.

- Die Point Load Testresultate deuten an, dass grobkörnige Sandsteine entlang der Korngrenzen relativ einfach zerbrechen oder aufgrund erhöhter Porosität rascher verwittern. Feinkörnige Sandsteine mit erhöhtem Kalzitanteil in der Grundmasse scheinen weniger leicht brechbar zu sein. Aufgrund der ungenügenden Anzahl Test sind die Zusammenhänge zwischen Gehalt und Grösse der Quarzkomponenten sowie Anteil der Grundmasse noch nicht eindeutig. Für genauere Resultate sind weitere systematische Abklärungen mit Point Load Tests gefordert.
- Dünnschliffanalysen und semi-quantitative XRD-Analysen liefern vergleichbare Quarz-Kalzitverhältnisse. XRD-Analysen sind bei feinkörnigen Gesteinen unumgänglich oder können punktuell zur unabhängigen Überprüfung eingesetzt werden.

Um die physikalischen Eigenschaften des Gesteins zu bestimmen, ist eine Kombination der verwendeten Methoden sinnvoll. Die Resultate sind aussagekräftig, da sie sich bei den verschiedenen Verfahren mehrheitlich decken.

Zusammenfassend kann als Antwort auf die Leitfrage dieser Arbeit gesagt werden, dass der Hohgant-Sandstein als potentielle Hartsteinlithologie infrage kommt. Auch wenn die potentielle nutzbare Mächtigkeit des Hohgant-Sandsteins im Untersuchungsgebiet mit insgesamt 59 m im unteren Spektrum liegt und auf zwei Teilbereiche aufgeteilt ist, kann mit dieser Studie das Potential des Hohgant-Sandsteins als Hartstein bestätigt werden. Zur vertieften Beurteilung sind weitere Point Load Tests und eine Prüfung des Gesteins mittels des Los-Angeles-Verfahren. Die Beurteilung ist aufgrund starker lateraler Fazies- und Mächtigkeitsschwankung sehr komplex. Daher müssen noch weitere Profile untersucht werden, um eine gute Übersicht zu erhalten. Um den Einfluss der Korngrösse und dem Anteil Kalzitzement auf die Brechbarkeit besser zu verstehen, müssen weitere Point Load Tests an zusätzlichen Lokalitäten und mehr Proben pro Lokalität durchgeführt werden.

Da im vorgestellten Untersuchungsgebiet der Hohgant-Sandstein nicht abgebaut werden kann (Moorlandschaft von nationaler Bedeutung), können die Erkenntnisse der Analysen als Referenz für potentielle Lokalitäten, welche sich für den Abbau von Hartstein besser eignen, dienen.

8. Danksagung

Ich möchte mich bei allen herzlich bedanken, die mich bei meiner Bachelorarbeit unterstützt haben. Ein besonderer Dank geht an:

- Dr. Lukas Nibourel, Mitarbeiter der Fachgruppe Georessourcen Schweiz FGS, für die Bereitstellung des Themas, die wertvollen Hilfestellungen, die Begleitungen im Feld und für die fundierte Begutachtung meiner Bachelorarbeit,
- Dr. Stefan Heuberger, Leiter der Fachgruppe Georessourcen Schweiz FGS, für die fachkundige Betreuung der Arbeit, die konstruktiven Inputs und die Unterstützung bei der Feldarbeit,
- Lydia Zehnder, Departement Erdwissenschaften ETH Zürich, Laborassistentin im Institut für Geochemie und Petrologie, für die Unterstützung bei der XRD-Röntgenstrukturanalyse,
- Dr. Stephan Wohlwend, Departement Erdwissenschaften ETH Zürich, Professur für Klimageologie, für die fachmännische Unterstützung beim Mikroskopieren und für die Begleitung im Feld,
- Remy Lüchinger, Departement Erdwissenschaften ETH Zürich, Geologisches Institut, für die Herstellung der Dünnschliffe,
- Christoph Nänni, Leiter Geologie und Naturgefahren beim Tiefbauamt Graubünden, für die aufschlussreiche Begleitung bei der Feldarbeit,
- meine Mutter Elisabeth Coray für das Korrekturlesen meiner Arbeit.

9. Literaturverzeichnis

- Allmann, R. (2003). Röntgen-Pulverdiffraktometrie. Rechnergestützte Auswertung, Phasenanalyse und Strukturbestimmung. Heidelberg: Springer.
- Bärtschi, C. (2012). Kieselkalke in der Schweiz: Charakterisierung eines Rohstoffs aus geologischer, petrographischer, wirtschaftlicher und umweltrelevanter Sicht. Beiträge zur Geologie der Schweiz, Geotechnische Serie 67.
- Basu, A., & Aydin, A. (2004). A method for normalization of Schmidt hammer rebound values. International Journal of Rock Mechanics and Mining Sciences, 41(7), S. 1211-1214.
- Bragg, W., & Bragg, W. (1913). The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605), S. 428-438.
- Bundesamt für Raumentwicklung ARE. (2012). Evaluation von Potenzialgebieten für Hartseinbrüche ausserhalb der Landschaften von nationaler Bedeutung (BLN). Erarbeitet von VSH, swisstopo, ARE, BAFU, KPK und SGTK.
- de Quervain, F. (1967). Technische Gesteinskunde (2. Auflage). Basel: Birkhäuser.
- Dunham, R. (1962). Classification of carbonate rocks according to depositonal textures. In W. Ham, *Classification of Carbonate Rocks* (S. 108-121). Tulsa: AAPG Memoir.
- ENERPAC. (2020). *enerpac.com*. Abgerufen am 8. Juli 2021 von https://www.enerpac.com/enus/presses/USPressesHydraulic#v
- Franklin, J. (1985). Suggested method for determining point load strength. *International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22*(2), S. 51-60.
- Gerber, M. (2003). Konfliktanalyse bezüglich Vermeidung eines Versorgungsnotstandes der schweizerischen Bauwirtschaft mit felsgebrochenen Hartgesteinen zur Herstellung hochwertiger Beläge und Bahnschotter. ASTRA.
- Hoek, E., & Marinos, P. (2000). GSI: A geologically friendly tool for rock mass strength estimation. *nternational Society for Rock Mechanics and Rock Engineering*.
- Lemy, F., & Löw, S. (o. D.). Rock Mass Characterization. Zürich: ETH.
- Levi, D. (2001). Geologische Untersuchungen im Gebiete SSW der Schafmatt (LU). Universität Bern.
- Menkveld-Gfeller, U. (1994). Die Wildstrubel-, die Hohgant- und die Sanetsch-Formation: drei neue lithostratigraphische Einheiten des Eocaens der helvetischen Decken. *Eclogae Geologicae Helvetiae*, 87, S. 789-809.
- Menkveld-Gfeller, U. (1995). Stratigraphie, Fazies und Palaeogeographie des Eocaens der helvetischen Decken der Westschweiz (Diablerets- und Wildhorn-Decke). Eclogae Geologicae Helvetiae, 88, S. 115-134.

- Menkveld-Gfeller, U., Kempf, O., & Funk, H. (2016). Lithostraphic units of the Helvetic Paleogene: review, new definition, new classification. *Swiss Journal of Geosciences, 109*, S. 171-199.
- Naef, H., Büchi, M., Bläsi, H., Deplazes, G., & Gysi, M. (2019). *Arbeitsbericht NAB 19-11*. Wettingen: Nagra.
- proceq. (2018). *proceq.com*. Abgerufen am 5. Juli 2021 von https://www.proceq.com/de/vergleichen/schmidt-ruckprallhammer/

QGIS.org. (2021). *QGIS 3.16*. (QGIS Association) Von http://www.qgis.org abgerufen

- Read, J., & Stacey, P. (2009). Guidelines for open pit slope design. Collingwood: CSIRO Publishing.
- Schön, J. (2015). *Pysical properties of rock: Fundamentals and principles of petrophysics*. Amsterdam: Elsevier.
- SIEBTECHNIK TEMA. (2021). *siebtechnik-tema.de*. Abgerufen am Juli 2021 von https://www.siebtechnik-tema.de/scheibenschwingmuehle/
- swisstopo. (2021). *geo.admin.ch.* Abgerufen am 12. Juni 2021 von Karte erstellt in QGIS 2.16 (2016) mit Grundkarte von swisstopo (2021).
- Terry, R., & Chilingar, V. (1955). Summary of "Concerning some additional aids in studying sedimentary formations". *Journal of Sedimentary*, 25, S. 229-234.
- Thuro, K. (2010). Empfehlung Nr. 5 "Punktlastversuche an Gesteinsproben" des Arbeitskreises 3.3
 "Versuchstechnik Fels" der Deutschen Gesellschaft für Geotechnik. *Bauchtechnik*, 87, S. 322-330.
- UNESCO Biosphäre. (2020). *Biosphäre Entlebuch*. Abgerufen am 8. Juli 2021 von https://www.biosphaere.ch/de/

Grafiken, Diagramme und Tabellen erstellt von Maira Coray.

Abbildungsverzeichnis

Abbildung 1: Hartsteinvorkommen in der Schweiz (Bundesamt für Raumentwicklung ARE, 2012)4
Abbildung 2: Die 34 potentiellen Hartsteingebiete in der Schweiz (Bundesamt für Raumentwicklung
ARE, 2012)
Abbildung 3: Tektonische Übersichtskarte des Helvetikums mit der Verbreitung der lithostratigraph-
ischen Einheiten: Verteilung des Hohgant-Sandsteins in der Schweiz. In orange eingefärbt ist die
Niederhorn-Formation (Karte von Menkveld-Gfeller, 1994, mit eigener Ergänzung)6
Abbildung 4: Mächtigkeit der Niederhorn-Formation anhand von Literaturdaten abgeschätzt. Das rote
Quadrat zeigt das Untersuchungsgebiet. Karte erstellt in QGIS 2.16 (2016) mit Grundkarte von
<i>swisstopo (2021)</i> 7
Abbildung 5: Abgeschätzte nutzbare Mächtigkeit der Niederhorn-Formation. Das rote Quadrat zeigt das
Untersuchungsgebiet. Karte erstellt in QGIS 2.16 (2016) mit Grundkarte von swisstopo (2021)
Abbildung 6: Überblick des Untersuchungsgebietes in der Region Entlebuch bei Flühli (LU). Karte
erstellt in QGIS 2.16 (2016) mit Grundkarte von swisstopo (2021)
Abbildung 7: Überblick des Untersuchungsgebietes. Die untersuchten Aufschlüsse liegen entlang des
Seebebachs. An den Profilspuren $A - A'$ und $B - B'$ werden die beiden Querprofile erstellt. <i>Karte erstellt</i>
in QGIS 2.16 (2016) mit Grundkarte von swisstopo (2021)9
Abbildung 8: Beziehung zwischen dem Rückprallwert und der einaxialen Druckfestigkeit (Lemy &
Löw, o. D.)
Abbildung 9: Empfohlene Dimensionen der Gesteinsblöcke. D = Höhe des Blockes, W = durch-
schnittliche Breite des Blockes, L = Länge des Blockes (Franklin, 1985)
Abbildung 10: Skizze des Point Load Gerätes (Thuro, 2010)
Abbildung 11: Erstellte geologische Karte des Untersuchungsgebietes. Karte erstellt in QGIS 2.16
(2021) mit Grundkarte von swisstopo (2021)16
Abbildung 12: Stratigraphischer Aufbau, Gesteinszusammensetzung, Verwitterungsgrad und
Hammerhärtetest nach Read & Stacey (2009), geologischer Strength Index nach Hoek & Marinos
(2000), Schmidt-Hammer Werte, berechnete einaxiale Druckfestigkeit durch Schmidt-Hammertest und
durch Point Load Test
Abbildung 13: Entlang dieses trockenen Flussbettes verläuft das Profil B - B'
Abbildung 14: Querprofil entlang der Spur A - A' aus der geologischen Karte der Abbildung 1119
Abbildung 15: Querprofil entlang der Spur B - B' aus der geologischen Karte der Abbildung 1119
Abbildung 16: Kontaktgrenze von Schrattenkalk und zu Fräkmünt-Member. Die Ausrichtung nach
Nordosten
Abbildung 17: Nummuliten im Fräkmünt-Member (Foto: Lukas Nibourel)21

Abbildung 18: Kontaktgrenze von Fräkmünt-Member zu Tierberg-Member. Die Ausrichtung nach
Abhildung 10: Nahaufnahma das Tierbarg Members (Fata: Lukas Nihaura). Claukanit (erüna Körmar)
Abbildung 19. Nahaumannie des Herberg-Meinbers (Foto. Lukas Moburer). Glaukonit (grune Komer)
11 deutlich zu erkennen.
Abbildung 20: Top des Tierberg-Members und Untergrenze des Hohgant-Sandsteins (Foto: Christoph
Nänni). Ausrichtung nach Nordwesten
Abbildung 21: Löcher im Hohgant-Sandstein. Ebenfalls sind die Quarzkörner im Gestein erkennbar.
Foto stammt von der Entnahmestelle der Probe FL-21-07
Abbildung 22: Skizze des unteren Teils des Hohgant-Sandsteins beim Wasserfall. Sie zeigt den kom-
pakten Hohgant-Sandstein. Die Entnahmestellen der Proben FL-21-02 und FL-2107 sind eingezeichnet.
Abbildung 23: Mittlerer Teil des Hohgant-Sandsteins oberhalb des Wasserfalls. Die Bankung ist hier
rund 30 cm. Der Doppelmeter dient als Referenz. Ausrichtung nach Nordosten
Abbildung 24: Mittlerer Teil des Hohgant-Sandsteins oberhalb des Wasserfalls. Die Bankung liegt hier
im 10 cm-Bereich. Der Doppelmeter dient als Referenz. Ausrichtung nach Norden
Abbildung 25: Mittlerer, dünn gebankter Bereich des Hohgant-Sandsteins. Foto stammt vom ge-
trockneten Bachbett bei Profilspur B - B'. Der Doppelmeter dient als Referenz. Ausrichtung nach Süden.
Abbildung 26: Schematische Darstellung des gebankten mittleren Bereichs des Hohgant-Sandsteins. Sie
zeigt die Abfolge von tonigen- und sandig-kalkigen Lagen
Abbildung 27: Bioturbation im mittleren Bereich des Hohgant-Sandsteins in einer sandig-kalkigen
Bank
Abbildung 28: Die Probenentnahmestelle von FL-21-11 liegt an der Basis der abgebildeten mächtigen
Bank von 8 m. Der Doppelmeter dient als Referenz. Ausrichtung nach Nordosten
Abbildung 29: Zeigt die Lokalität der Proben FL-21-09 und FL-21-10 (Foto: Christoph Nänni). Nach
oben wird das Gestein stärker geschiefert. Der Doppelmeter dient als Referenz. Ausrichtung nach
Nordosten
Abbildung 30: Top des Hohgant-Sandsteins mit starker Schieferung. Das Gestein ist tonig-mergelig.
Der Doppelmeter dient als Referenz. Ausrichtung nach Nordosten
Abbildung 31: Verwerfung im trockenen Bachbett (Foto: Christoph Nänni). Ausrichtung nach Süden.
Abbildung 32: Dünnschliff FL-21-02 in natürlichem Licht. Eingezeichnet ist der Zement aus Kalzit und
Quarzkörner
Abbildung 33: Dünnschliff FL-21-02 in polarisiertem Licht. Eingezeichnet ist der Zement aus Kalzit
und Quarzkörner

Abbildung 34: Schmidt-Hammertest über Quarzkörner.	40
Abbildung 35: Einaxiale Druckfestigkeit berechnet durch die Werte des Schmidt-Hammertests vs	s. Pro-
zentualem Anteil Quarz gemessen mit XRD-Röntgenstrukturanalyse.	42
Abbildung 36: Querprofil entlang der Profilspur A – A'. In rot eingefärbt ist potentielle nutzbare M	lächt-
igkeit des Hohgant-Sandsteins mit 59 m	43

Tabellenverzeichnis

Tabelle 1: Klassifikation der Hartsteine nach de Quervain (1967). Kriterien für die Einteilung si	ind die
einaxiale Druckfestigkeit und der Gehalt an harten Mineralen	4
Tabelle 2: Übersicht der verschiedenen Einstellungen bei der Messung	15
Tabelle 3: Resultate der XRD-Röntgenstrukuranalyse.	36

Anhang 19: XRD-Röntgenstrukturanalyse der Probe FL-21-08	XXIII
Anhang 20: XRD-Röntgenstrukturanalyse der Probe FL-21-09	XXIV
Anhang 21: XRD-Röntgenstrukturanalyse der Probe FL-21-10	XXV
Anhang 22: XRD-Röntgenstrukturanalyse der Probe K33.	XXVI
Anhang 23: Darstellung der Ergebnisse der quantitativen Mineralbestimmung im	Säulendiagramm
(Bärtschi, 2012)	XXVII

|--|

Norm	Titel	Stand
SN 670 110-NA/EN	Gesteinskörnungen für Bahnschotter	2004
13450		
SN 670 903-2C/	Prüfverfahren für mechanische und physikalische Eigenschaf-	
EN 1097-2	ten von Gesteinskörnungen - Teil 2: Verfahren zur Bestim-	
	mung des Widerstandes gegen Zertrümmerung (Los-Angeles-	
	Versuch)	
R RTE 21110	RTE 21110 Unterbau und Schotter – Normalspur und Meterspur	
	Regelwerk Technik Eisenbahn RTE	
	Verband öffentlicher Verkehr	

Anhang 2: Tabelle der	Verwitterungsgraden von	W1 bis W5	(Read & Stacey,	2009)
-----------------------	-------------------------	-----------	-----------------	-------

Term	Symbol	Description
Fresh	Fr/W1	No visible sign of weathering
Slightly weathered	SW/W2	Partial (< 5 %) staining or discoloration of rock sub- stance, usually by limonite. Colour and texture of fresh rock is recognisable. No discernible of the par- ent rock type.
Moderatly weathered	MW/W3	Staining or discoloration extends throughout all rock substance. Original colour is no longer recognisable.
Highly weathered	HW/W4	Limonite staining or bleaching affects all rock sub- stance and other signs of chemical or physical de- composition are evident. Colour and strength of the original fresh rock no longer recognisable.
Completely weat- hered	CW/W5	Rock has soil properties, i.e. it can be remoulded and classified according to USCS, although texture of the original rock can still be recognized.

Anhang 3:	Tabelle über d	ie Hammerhärte	von R0 bis R6	(Read &	Stacey, 2009).
-----------	----------------	----------------	---------------	---------	----------------

ISRM grade	Term	UCS (MPa)	Is ₅₀ (MPa)	Field estimate of strength
R6	Extremely strong	>250	>10	Rock material only chipped under repeated hammer blows, rings when struck.
R5	Very strong	100-250	4-10	Requires many blows of a geological hammer to break intact rock specimens.
R4	Strong	50-100	2-4	Handheld specimens broken by a single blow of a geological hammer.
R3	Medium strong	25-50	1–2	Firm blow with geological pick indents rock to 5 mm, knife just scrapes surface.
R2	Weak	5-25	***	Knife cuts material but too hard to shape into triaxial specimens.
R1	Very weak	1–5	***	Material crumbles under firm blows of geological pick, can be shaped with knife.
RO	Extremely weak	0.25-1	***	Indented by thumbnail.

Anhang 4: Grafik zur Bestimmung geologischer Strength Index zur Bewertung der Härte des Gesteins (Hoek & Marinos, 2000).

alka. Zürich 1191600 Genf -FL-21-02 FL-21-07 35 FL-21-08/32 FL-21-03 1300 83 21-11 34 FL-21-04 30 FL-21-09 FL-21-10 FL-21-11 14 FL-21-012 Seebebach 1290 FL-21-01 1200 7210 2260 2250 220-. 69 FL-21-06 220 2220 . 2HO B Schichtung 1190 62 21 25 1191400 Schieferung 7700 Verwerfung 1770 260 100 m 1150 50 0 2749 Proben V •

Anhang 5: Erstellte geologische Karte über das Untersuchungsgebiet.

2646400

2646600

- Stad-Formation
- Hohgant-Sandstein
- Tierberg-Member
- Fräkmünt-Member
- Schrattenkalk
- Schichtgrenze Aufgeschlossen
- Bewegungsrichtung
- Rutschharnische

2646800

Anhang 6: Felddaten der Proben.

Probe	Lokalität	Datum	Х	Y	Stratigraphische Einheit	Probenorientierung	Beschreibung
FL-21-01	Flühli	20210416	2646540.17	1191524.27	Hohgant-Sandstein	082/35	2 m dicke massive Sandstein Bank, quarz-dominierend
FL-21-02	Flühli	20210416	2646570.75	1191582.76	Hohgant-Sandstein	108/35	0.5 m dicke Bank, sand-dominierend
FL-21-03	Flühli	20210416	2646593.33	1191580.38	Hohgant-Sandstein	094/40	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-04	Flühli	20210416	2646611.05	1191556.39	Hohgant-Sandstein	082/40	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-05	Flühli	20210423	2646535.07	1191444.85	Fräkmünt-Member	080/22	Fossilhorizont
FL-21-06	Flühli	20210423	2646525.56	1191462.12	Tierberg-Member	109/33	Schieferung, sandig bis mergelig, Glaukonit
FL-21-07	Flühli	20210423	2646559.69	1191582.79	Hohgant-Sandstein	120/33	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-08	Flühli	20210423	2646575.62	1191574.46	Hohgant-Sandstein	103/32	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-09	Flühli	20210423	2646621.61	1191551.58	Hohgant-Sandstein	090/33	feinkörnig, Quarz und Kalzit
FL-21-10	Flühli	20210423	2646621.61	1191552.58	Hohgant-Sandstein	090/34	Schieferung, feinkörning
FL-21-11	Flühli	20210609	2646612	1191552.73	Hohgant-Sandstein	080/38	kompakte Bank, grosse Quarzkörner
FL-21-12	Flühli	20210609	2646635.26	1191561.25	Stad-Formation	070/14	Schiegerung in cm - Bereich

		Depositi	onal texture reco	gnizable		Depositional
	Compon	ents not bound to	gether during de	position	Components	recognizable
	Contains cart	oonate and mud c	lay / fine silt)	Lacks mud	together	
	Mud su	pported	Grain	grain	deposition	
	Less than 10 % grains	More than 10 % grains	supported	supported		
ſ	Mudstone	Wackestone	Packstone	Grainstone	Boundstone	Crystalline
	<u>5 mm</u>	5 mm 0 0 0	5 mm	5 mm	5 mm	5 mm

Anhang 8: Klassifizierung nach Dunham (1962).

Anhang 9: Resultate der ingenieurgeologischen Tests.

Diab Diab Select P Sel	Probe	Lokalität	Datum	х	Y Stratigraphis	R-Wert	Hammer Ori Hammer Or	i x ₂ (phi)	V _{2(phi)} ²	V ₂ ²	R _h (normalise	nit weight (k	Verwitterung	Hammerhärte	GSI	UCS [Mpa]	Beschreibung
P.14.0 Poll S202408 Biolefield Poll Poll<	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	57	0 sub-paralle	0.04161	3.03110062	3.22932137	55.5752153	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Phil Phil <th< td=""><td>FL-21-01</td><td>Flühli</td><td>20210416</td><td>2646540.17</td><td>1191524.27 hgant-Sandst</td><td>62</td><td>0 sub-paralle</td><td>0.04526</td><td>3.62109862</td><td>3.85790267</td><td>60.7436876</td><td>27</td><td>W2</td><td>85</td><td>R6</td><td>150</td><td>2 m dicke massive Sandstein Bank, guarz-dominierend</td></th<>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	62	0 sub-paralle	0.04526	3.62109862	3.85790267	60.7436876	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Ph10 Ph110 Ph1100 Ph110 Ph1100 Ph110 Ph1100 Ph1100 Ph11000 <th< td=""><td>FL-21-01</td><td>Flühli</td><td>20210416</td><td>2646540.17</td><td>1191524.27 hgant-Sandst</td><td>49</td><td>0 sub-paralle</td><td>0.03577</td><td>2.19583817</td><td>2.3394364</td><td>47.3021784</td><td>27</td><td>W2</td><td>85</td><td>R6</td><td>150</td><td>2 m dicke massive Sandstein Bank, guarz-dominierend</td></th<>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	49	0 sub-paralle	0.03577	2.19583817	2.3394364	47.3021784	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Phile Phile Selects / Select	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	52	0 sub-paralle	0.03796	2.49337875	2.65643484	50.4051723	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Ph14. Ph14. <th< td=""><td>FL-21-01</td><td>Flühli</td><td>20210416</td><td>2646540.17</td><td>1191524.27 hgant-Sandst</td><td>63</td><td>0 sub-paralle</td><td>0.04599</td><td>3.74537136</td><td>3.99030229</td><td>61.7772282</td><td>27</td><td>W2</td><td>85</td><td>R6</td><td>150</td><td>2 m dicke massive Sandstein Bank, guarz-dominierend</td></th<>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	63	0 sub-paralle	0.04599	3.74537136	3.99030229	61.7772282	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Phile Phile Selected Phile Phile Selected Phile	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	49	0 sub-paralle	0.03577	2.19583817	2.3394364	47.3021784	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Photo Photo <th< td=""><td>FL-21-01</td><td>Flühli</td><td>20210416</td><td>2646540.17</td><td>1191524.27 hgant-Sandst</td><td>53</td><td>0 sub-paralle</td><td>0.03869</td><td>2.59674104</td><td>2.76655656</td><td>51.4393293</td><td>27</td><td>W2</td><td>85</td><td>R6</td><td>150</td><td>2 m dicke massive Sandstein Bank, guarz-dominierend</td></th<>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	53	0 sub-paralle	0.03869	2.59674104	2.76655656	51.4393293	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Name Name Name Name Na	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	50	0 sub-paralle	0.0365	2.29292732	2.44287476	48.3366024	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
F110 Paint	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	50	0 sub-paralle	0.0365	2.29292732	2.44287476	48.3366024	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
F.1.0 Prior Deams Deams <th< td=""><td>FL-21-01</td><td>Flühli</td><td>20210416</td><td>2646540.17</td><td>1191524.27 hgant-Sandst</td><td>57</td><td>0 sub-paralle</td><td>0.04161</td><td>3.03110062</td><td>3.22932137</td><td>55.5752153</td><td>27</td><td>W2</td><td>85</td><td>R6</td><td>150</td><td>2 m dicke massive Sandstein Bank, guarz-dominierend</td></th<>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	57	0 sub-paralle	0.04161	3.03110062	3.22932137	55.5752153	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
International (1) 200100 20040000 2004000	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	58	0 sub-paralle	0.04234	3.14491813	3.35058205	56.6090216	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Initial 201005 20460000 2010010 <t< td=""><td>FL-21-01</td><td>Flühli</td><td>20210416</td><td>2646540.17</td><td>1191524.27 hgant-Sandst</td><td>55</td><td>0 sub-paralle</td><td>0.04015</td><td>2.80973874</td><td>2.99348339</td><td>53.507412</td><td>27</td><td>W2</td><td>85</td><td>R6</td><td>150</td><td>2 m dicke massive Sandstein Bank, guarz-dominierend</td></t<>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	55	0 sub-paralle	0.04015	2.80973874	2.99348339	53.507412	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Phile Phile <th< td=""><td>FL-21-01</td><td>Flühli</td><td>20210416</td><td>2646540.17</td><td>1191524.27 hgant-Sandst</td><td>50</td><td>0 sub-paralle</td><td>0.0365</td><td>2.29292732</td><td>2.44287476</td><td>48.3366024</td><td>27</td><td>W2</td><td>85</td><td>R6</td><td>150</td><td>2 m dicke massive Sandstein Bank, guarz-dominierend</td></th<>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	50	0 sub-paralle	0.0365	2.29292732	2.44287476	48.3366024	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Initial Name Name Name Name <t< td=""><td>FL-21-01</td><td>Flühli</td><td>20210416</td><td>2646540.17</td><td>1191524.27 hgant-Sandst</td><td>54</td><td>0 sub-paralle</td><td>0.03942</td><td>2.70219437</td><td>2.87890608</td><td>52.4734077</td><td>27</td><td>W2</td><td>85</td><td>R6</td><td>150</td><td>2 m dicke massive Sandstein Bank, guarz-dominierend</td></t<>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	54	0 sub-paralle	0.03942	2.70219437	2.87890608	52.4734077	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Photo Photo Photo Photo <	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	48	0 sub-paralle	0.03504	2.10084006	2.23822583	46.2676532	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, quarz-dominierend
Number Synthesis Part of the second	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	46	0 sub-paralle	0.03358	1.91711699	2.04248807	44.1982714	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, quarz-dominierend
Pix1-0 Pix1-0 Pix1-0 Pix1-0 <td>FL-21-01</td> <td>Flühli</td> <td>20210416</td> <td>2646540.17</td> <td>1191524.27 hgant-Sandst</td> <td>57</td> <td>0 sub-paralle</td> <td>0.04161</td> <td>3.03110062</td> <td>3.22932137</td> <td>55.5752153</td> <td>27</td> <td>W2</td> <td>85</td> <td>R6</td> <td>150</td> <td>2 m dicke massive Sandstein Bank, guarz-dominierend</td>	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	57	0 sub-paralle	0.04161	3.03110062	3.22932137	55.5752153	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Firshi Firshi<	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	56	0 sub-paralle	0.04088	2.91937416	3.11028849	54.5413466	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
F1-210 F1MI 201244 J J J J J J J J J J J J J J J J J J J	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	59	0 sub-paralle	0.04307	3.26082669	3.47407052	57.642769	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Ph.2100 Field 201000 2 464070.5 1101582.7.6 hpunt Sandt 62 90 0.0530 4 5009897 4.337278 6.4242287 72 V/2 80 85 270 0.5 m dade Bane, Sand dominierred R.2120 Filell 2020402 26467075 1101582.7 fbunt Sandt 90 0.0632 4.347278 27 V/2 80 85 270 0.5 m dade Bane, Sand dominierred R.2140 Filell 2020402 2646707.5 1101582.7 fbunt Sandt 60 0.0632 4.449775 10.0776 2.540388 27 V/2 80 85 270 0.5 m dade Bane, Sand dominierred R.2140 Filell 2020405 2469707.5 1101582.7 fbunt Sandt 60 0.00484 42032714 42060778 101582.7 fbunt Sandt 60 0.00484 4203274 4206078 101582.7 fbunt Sandt 60 0.00484 4203274 4500878 7 V/2 80 85 270 0.5 m dade Bane, Sand dominierred R.2140 Filull 202046 44002774<	FL-21-01	Flühli	20210416	2646540.17	1191524.27 hgant-Sandst	57	0 sub-paralle	0.04161	3.03110062	3.22932137	55.5752153	27	W2	85	R6	150	2 m dicke massive Sandstein Bank, guarz-dominierend
Pic-12-02 Fileli 2020016 20467075 1101582.75 pam-Sands 90 0.0430 4.9609973 5317285 64.21925 27 V2 80 85 270 0.5 m dick Bank, Sand dominerend Pr.21-02 Fileli 2020101 20467075 1101582.75 pam-Sands 62 90 0.0433 4.9609973 217 V2 80 85 270 0.5 m dick Bank, Sand dominierend R-12-02 Fileli 2020012 26457075 1191582.75 pam-Sands 62 90 0.0434 4.9609973 1317257 64.2472873 127 V2 80 85 270 0.5 m dick Bank, Sand dominiserend R-12-02 Fileli 2020016 2645705 1191582.75 pam-Sands 62 0 0.0434 4.9009973 1191582.75 pam-Sands 60 0 0.0434 4.9009973	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	62	90	0.04526	4.90698973	4.31577258	64.2472873	27	W2	80	R5	270	0.5 m dicke Bank, Sand dominierend
Pic-12-02 Field 201010 246570.75 19155.27.6 kgmr-5mml 99 0.0.439 4.446707.8 5.944338 6.1.49120.52 72 V/2 80 R5 270 0.5 m dice bank, Sand dominered F12-126 Field 2021045 5.64570.75 15155.27.6 kgmr-5mml 60 90 0.0438 4.45270.75 120.27 V/2 80 R5 270 0.5 m dice bank, Sand dominiered F12-126 Field 2021045 5.46570.75 13155.27.6 kgmr-5mml 60 0.0438 4.4052074 6.325087.8 270 0.5 m dice bank, Sand dominiered F12-126 Field 2021045 5.46570.75 13155.27.6 kgmr-5mml 60 0.0488 4.0802074 5.3891474 5.589651 270 0.5 m dice bank, Sand dominiered F12-126 Field 2021045 5.465707.5 13155.27.6 kgmr-5mml 60 0.0498 4.0302074 5.3891474 5.589651 270 0.5 m dice bank, Sand dominiered F12-126 Field 2021046 5.465775 15155.27.6 kgmr-5mml 59	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	62	90	0.04526	4.90698973	4.31577258	64.2472873	27	W2	80	R5	270	0.5 m dicke Bank, Sand dominierend
Pic-12-02Field201041264670.75119152.76 hgmr-5mml6.2900.04324.40237216.42272737.2 $V2$ 80852700.5 m dice bank. Smd domineredField710442010415264670.75119152.76 hgmr-5mml6.2900.04324.92327416.42232737.7 $V2$ 80852700.5 m dice bank. Smd domineredField2010415264670.75119152.76 hgmr-5mml6.2900.04384.93273416.42232747.7 $V2$ 80852700.5 m dice bank. Smd domineredField2010415264670.75119152.77 hgmr5mml6.5900.04884.08024193.89147418.589685177 $V2$ 80852700.5 m dice bank. Smd domineredField2010415264670.75119152.77 hgmr5mml6.5900.04884.08024193.89147418.589685177 $V2$ 80852700.5 m dice bank. Smd domineredField2010415264670.75119152.76 hgmr5mml6.0900.04884.28327414.0602742.32038377 $V2$ 80852700.5 m dice bank. Smd domineredField2010415264570.75119152.76 hgmr5mml6.1900.04884.24327414.0602742.32038377 $V2$ 80852700.5 m dice bank. Smd domineredField2010416264570.75119152.76 hgmr5mml6.1900.04984.24332644.060274	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	59	90	0.04307	4.48449726	3.94418398	61.4191925	27	W2	80	R5	270	0.5 m dicke Bank, Sand dominierend
F1-2-120 F1011 2020416 26465707 191382, 7 b parts model 62 90 0.088 6422372 4 0.850778 191382, 7 b parts model 62 90 0.048 6423725 6427373 191382, 7 b parts model 60 90 0.048 6423725 6427373 191382, 7 b parts model 60 90 0.0488 6428743 5558651 27 VZ 80 85 270 0.5 m dicke bank, sand dominerend F1-21-20 F10110 2021016 2645775 191382, 7 b parts model 62 90 0.0488 408807419 5598173 55586951 27 VZ 80 85 270 0.5 m dicke bank, sand dominerend F1-21-20 F1011 2021046 2646775 191382, 7 b parts model 62 90 0.0488 4.6327074 6.260888 27 VZ 80 85 270 0.5 m dicke bank, sand dominerend F1-21-20 F1011 2021046 2646775 191382, 7 b parts model 6.277 6.3784749 6.3841439 6.31817375 6.378	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	62	90	0.04526	4.90698973	4.31577258	64.2472873	27	W2	80	R5	270	0.5 m dicke Bank, Sand dominierend
F12-120 F10H 2021041 6 246470.75 191582.76 hpart.smodt 62 99 0.0452 4 307228 6 427273 52.77 V2 80 F5 270 0.5 m dick Bark, Sand dominierend F12-120 F10H 2021045 5 64670.75 191582.76 hpant.smodt 56 90 0.0468 40882419 35891474 55899651 27 V2 80 R5 270 0.5 m dick Bark, Sand dominierend F12-120 F10H 2021015 546570.75 191582.76 hpant.smodt 60 90 0.0458 40882419 358914743 55899651 27 V2 80 R5 270 0.5 m dick Bark, Sand dominierend F12-120 F10H 2021015 546570.75 191582.76 hpant.smodt 63 90 0.0488 40822704 6300138 27 V2 80 R5 270 0.5 m dick Bark, Sand dominierend F12-120 F10H 2021016 546570.75 191582.76 hpant.smodt 63 7040776 3401876 5270 0.5 m dick Bark, Sand dominierend </td <td>FL-21-02</td> <td>Flühli</td> <td>20210416</td> <td>2646570.75</td> <td>1191582.76 hgant-Sandst</td> <td>60</td> <td>90</td> <td>0.0438</td> <td>4.62323704</td> <td>4.06620774</td> <td>62.3620383</td> <td>27</td> <td>W2</td> <td>80</td> <td>R5</td> <td>270</td> <td>0.5 m dicke Bank, Sand dominierend</td>	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	60	90	0.0438	4.62323704	4.06620774	62.3620383	27	W2	80	R5	270	0.5 m dicke Bank, Sand dominierend
F12-120 F10H 20210H6 26457075 119352.76 hgant-Sandt 60 0.0488 40882379 4.0802071 6.232038 27 W2 80 85 270 0.5m dicks and, sand dominierend F12-120 F10H 20210H6 26457075 119352.76 hgant-Sandt 66 90 0.0488 40882319 5591728 6427873 5193728 6427877 1293727 0.5m dicks and, sand dominierend F12-120 F10H 20210H6 26457075 1191582.76 hgant-Sandt 62 90 0.0488 46323774 40660774 6232038 27 W2 80 85 270 0.5m dicks and, sand dominierend F12-120 F10H 2021416 26457075 1191582.76 hgant-Sandt 60 0.0488 46233724 40660774 6232038 27 W2 80 85 270 0.5m dicks and, sand dominierend F12-120 F10H 2021416 26457075 1191582.76 hgant-Sandt 55 0.5 70 0.5m dicks and, sand dominierend F12-120 F	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	62	90	0.04526	4,90698973	4.31577258	64,2472873	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
F12-120 F00H 2020016 2645075 1915827 h part-smith 56 90 0.0088 4.00802419 5591378 5859851 27 V2 80 85 270 0.5 m dice bank. Sand dominerend F12-100 F10H1 2020166 2645075 1915827 h part-smith 60 90 0.0438 4.00802419 6420737 197587 h part-smith 60 90 0.0438 4.0323704 64207375 197587 h part-smith 60 90 0.0438 4.5323704 (4060777 a) 1915827 h part-smith 60 90 0.0438 4.5323704 (4060777 a) 1915827 h part-smith 63 90 0.0498 6.2332704 (4060777 a) 1915827 h part-smith 63 90 0.0498 6.200704 (1314734 7 V2 80 85 270 0.5 m dice bank. Sand dominerend F1-210 F00H 2020166 26457075 1915827 h part-smith 61 90 0.0438 4740776 h (3156736 95 0.5 m dice bank. Sand dominerend F1-210 F00H 2020166 26457075 1915827 h part-smith 59 90 0.0437 474047	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	60	90	0.0438	4.62323704	4.06620774	62.3620383	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
F12-120 F1011 20210416 246457075 19158276 hgant-Smidt 62 90 0.04088 4.5897278 72 V2 80 R5 270 0.5 m dice Bank, Sand dominerend F12-120 F1011 20210416 26657075 19158276 hgant-Smidt 60 90 0.0438 6.2322704 6.0650776 1252270 5.5 m dice Bank, Sand dominerend F12-120 F1011 2021046 26457075 19158276 hgant-Smidt 60 90 0.0438 6.2322704 6.0650776 6.2570 5.5 m dice Bank, Sand dominerend F12-120 F1011 2021046 26457075 19158276 hgant-Smidt 56 90 0.04488 4.0802419 5.531726 8.5 70 0.5 m dice Bank, Sand dominerend F12-120 F1011 2021046 26457075 15158276 hgant-Smidt 59 90 0.04437 4.7440775 5.533763 72 V2 80 R5 270 0.5 m dice Bank, Sand dominerend F12-120 F1011 2021046 26457075 15155276 hgant-Smidt <	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	56	90	0.04088	4.08082419	3.58914734	58.5896851	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
F1-210 FUINI 20210416 20450775 1191892.7 b gan-shadts 60 90 0.0438 4.6233704 0.450776 119182.7 b gan-shadt 61 90 0.0438 4.6233704 0.450776 119182.7 b gan-shadt 61 90 0.0438 4.6233704 4.5807051 127 W2 80 85 270 0.5 m dick Ban, Sand dominerend 1-21.00 10111 20210416 646570.75 119182.7 b gan-shadt 61 90 0.04331 4.7404776 13538365 27 W2 80 85 270 0.5 m dick Ban, Sand dominerend 1-21.00 10111 20210416 646570.75 119182.7 b gan-shadt 57 90 0.04331 4.7404767 3.7303265 27 W2 80 85 270 0.5 m dick Ban, Sand dominerend 1-21.00 10111 20210146 646570.75 119182.7 b gan-shadt	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	56	90	0.04088	4.08082419	3.58914734	58.5896851	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
F12-102 Filuiti 22021045 22021045 26420737 1232038 27 W2 80 R5 270 0.5 m dicke ams, Sand dominierend F12-102 Filuiti 22021045 26450735 115182.7 h pant-Sands 60 90 0.0438 46232704 402602774 72 W2 80 R5 270 0.5 m dicke ams, Sand dominierend F12-102 Filuiti 22021046 26457035 115182.7 h pant-Sands 61 90 0.0488 40260276 3341838 61319125 27 W2 80 R5 270 0.5 m dicke ams, Sand dominierend F12-102 Filuiti 2021046 26457075 115182.7 h gant-Sands 59 90 0.04807 44849726 3341838 61.191925 27 W2 80 R5 270 0.5 m dicke ams, Sand dominierend F12-102 Filuiti 2021046 26457075 115182.7 h gant-Sands 59 90 0.04161 4219925 27 W2 80 R5 270 0.5 m dicke ams, Sand dominierend F12-102 Filuiti 2021046 26457075 115182.7 h gant	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	62	90	0.04526	4.90698973	4.31577258	64.2472873	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
Initial 2021046 26457075 191582.7 b [mars-sands 60 90 0.0439 4622320e 0.060077 25.30036 27 W2 80 F5 270 0.5 m dicke Bank, Sand dominerend F12-102 Filubil 2021046 24657075 131582.7 b [mars-sands 56 90 0.04088 4.0602074 53.30026 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominerend F12-102 Filubil 2021045 24657075 131582.7 b [mars-sands 51 90 0.04084 4.7640786 4.1900766 8.549703 18158.7 b [mars-sands 50 0.5 m dicke Bank, Sand dominierend F12-102 Filubil 2021045 24657075 191582.7 b [mars-sands 57 90 0.04104 4.1232008 5.1070538 9.1393226 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F12-102 Filubil 2021045 26459735 131582.7 b [mars-sands 57 90 0.04104 4.1232008 5.7050378 9.131580.3 b [mars-sands	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	60	90	0.0438	4.62323704	4.06620774	62.3620383	27	W2	80	R5	270	0.5 m dicke Bank, Sand dominierend
I-1-102 Filhil 2021046 246870.75 11958.27 bgmt-sands 63 90 0.04989 5.0520024 4.443186 5.1897035 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend II-102 Filhil 2020416 246670.75 11958.27 bgmt-sands 61 90 0.04984 45092143 55390256 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend I-1202 Filhil 2020416 246670.75 119158.27 bgmt-sands 57 90 0.04911 42129208 3.7568232 57.3302.56 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend I-1202 Filhil 2020416 246670.75 119158.27 bgmt-sands 57 90 0.04161 42129208 3.7568232 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend II-1203 Filhil 2020416 246693.3 119150.38 bgmt-sands 40 0.2 - 0.1 m dicke, sandg Bank mit mergeligen Zwickhenlagen II-12	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	60	90	0.0438	4.62323704	4.06620774	62.3620383	27	W2	80	R5	270	0.5 m dicke Bank, Sand dominierend
In-1.3 2102 Fluhi 20210416 2646570.75 119158.2.76 hgant-Sands 65 90 0.00883 4.0882419 2.5896851 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend FL2102 Flühi 20210416 2646570.75 119158.2.76 hgant-Sands 59 90 0.04433 4.4849726 3441838 6.1 1995 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend FL2102 Flühi 20210416 2646570.75 119158.2.76 hgant-Sands 57 90 0.04431 4.484976 34418978 6.119159 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend FL2102 Flühi 20210416 246570.75 1191582.76 hgant-Sands 57 90 0.041614 4.1212904 1101628 1508716 373988222 27 W2 80 R4 80 0.02-0.2 m dicke, sandge Bank mit mergeligen Zwischenlagen FL2103 Flühi 20210416 246593.33 1191590.38 hgant-Sands 40 0 sub-parallel 0.0293 1.1491228 1.0391061 3.1392406	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	63	90	0.04599	5.05200264	4.44331365	65.1897035	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
H-21-02 Flühli 20210416 2646570.75 191582.76 bgant-Sandst 61 90 0.04437 47460788 41007061 63.307340 17 W2 80 P5 270 0.5 m dicke Bank, Sand dominierend Fi-21-02 Flühli 2021046 2646570.75 1191582.76 bgant-Sandst 57 90 0.04161 4.48449726 3.94418398 61.4191925 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F12-102 Flühli 20210416 2646570.75 1191582.76 bgant-Sandst 57 90 0.04161 4.48449726 3.94415398 61.4191925 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F12-102 Flühli 20210416 2646593.33 1191580.38 bgant-Sandst 40 0.02 1.41612385 1.5067316 3.93024725 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandge Bank mit mergelgen Zwischengagen F12-103 Flühli 20210416 2646593.33 1191580.38 bgant-Sandst 41 0 sub-paralle 0.0328 1.929238 1.92924806 5.739213 202	FL-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	56	90	0.04088	4.08082419	3.58914734	58.5896851	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
FL-21-02 FUNII 20210416 264570.75 191582.76 hgant-Sands 59 90 0.04307 4.48449726 3.94113936 67.1 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F1-21-02 Flühli 20210416 264570.75 1191582.76 hgant-Sands 57 90 0.04307 4.48449726 3.9413398 6.14191925 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F1-21-02 Flühli 20210416 264570.75 1191582.76 hgant-Sands 57 90 0.04161 4.1329084 3.7056378 55330236 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F1-21-03 Flühli 20210416 26459333 11915803 hgant-Sands 47 0 sub-parallel 0.0321 12924306 45233001 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandge Bank mit mergeligen Zwischenlagen F1-21-03 Flühli 20210416 26459333 11915803 hgant-Sands 45 0 sub-parallel 0.0232 1.41613282 1.5087416 37.956232 27 <td< td=""><td>FI-21-02</td><td>Flühli</td><td>20210416</td><td>2646570.75</td><td>1191582.76 hgant-Sandst</td><td>61</td><td>90</td><td>0.04453</td><td>4.76406786</td><td>4.19007061</td><td>63.3047343</td><td>27</td><td>W2</td><td>80</td><td>R5</td><td>270</td><td>0.5 m dicke Bank. Sand dominierend</td></td<>	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	61	90	0.04453	4.76406786	4.19007061	63.3047343	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
FL-21-02 Flühi 2021046 2664570.75 191582.76 hgant-Sands 57 90 0.04161 4.2132908 3.955378 5533026 27 W2 80 85 270 0.5 m dicke Bank, Sand dominerend FL-21-02 Flühi 20210416 2664570.75 1191582.76 hgant-Sands 90 0.04161 4.2132908 3.956378 5533026 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominerend FL-21-03 Flühi 20210416 2664570.75 1191582.76 hgant-Sands 40 0 sub-parallel 0.0212 1.4161328 150874176 37.9868232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandge Bank mit mergeligen Zwischenlagen FL-21-03 Flühi 20210416 2664593.33 1191580.38 hgant-Sands 40 sub-parallel 0.0292 1.4161328 1.59874176 37.9868232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandge Bank mit mergeligen Zwischenlagen FL-21-03 Flühi 20210416 2664593.33 1191580.38 hgant-Sands 45 0 sub-parallel 0.03285 1.2994028 1.2994028	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	59	90	0.04307	4.48449726	3.94418398	61.4191925	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
FL-21-02 Fluhi 20210416 2646570.75 1191582.76 hgant-Sands 59 90 0.04307 4.4849726 3.9441338 61.4191925 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F1-21-02 Fluhi 20210416 2646570.75 1191582.76 hgant-Sands 57 90 0.04161 4.2132004 3.7065378 59.3302.36 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F1-21-03 Fluhi 20210416 2646593.33 1191580.38 hgant-Sands 47 0 sub-parallel 0.0321 1.03281 1.037147 37.968232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandje Bank mit mergeligen Zwischenlagen F1-21-03 Fluhi 20210416 2646593.33 1191580.38 hgant-Sands 40 0 sub-parallel 0.0325 1.1828302 1.9479608 43.163398 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandje Bank mit mergeligen Zwischenlagen F1-21-03 Fluhi 20210416 2646593.33 1191580.38 hgant-Sands 45 0 sub-parallel 0.0325 <td>FI-21-02</td> <td>Flühli</td> <td>20210416</td> <td>2646570.75</td> <td>1191582.76 hgant-Sandst</td> <td>57</td> <td>90</td> <td>0.04161</td> <td>4.21329084</td> <td>3.70565378</td> <td>59.5330236</td> <td>27</td> <td>W2</td> <td>80</td> <td>R5</td> <td>270</td> <td>0.5 m dicke Bank. Sand dominierend</td>	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	57	90	0.04161	4.21329084	3.70565378	59.5330236	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
F1-21-02 Flühli 20210416 2646570.75 1191582.76 hgant-Sands 57 90 0.04161 4.2132908 3.70565378 59.530236 27 W2 80 R5 270 0.5 m dicke Bank, Sand dominierend F1-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sands 40 0 0.0431 2.07033 2.133206 42.3 7.9966232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen F1-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sands 40 0 sub-parallel 0.0292 1.41613285 1.50874176 37.99668232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen F1-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sands 45 0 sub-parallel 0.0325 1.28289201 1.971698 4.43807 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen F1-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sands 45 0 sub-parallel 0.03255 1.55874176 <td< td=""><td>FI-21-02</td><td>Flühli</td><td>20210416</td><td>2646570.75</td><td>1191582.76 hgant-Sandst</td><td>59</td><td>90</td><td>0.04307</td><td>4.48449726</td><td>3.94418398</td><td>61.4191925</td><td>27</td><td>W2</td><td>80</td><td>R5</td><td>270</td><td>0.5 m dicke Bank. Sand dominierend</td></td<>	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	59	90	0.04307	4.48449726	3.94418398	61.4191925	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
Fil2-103 Flühl 20210416 2646593.33 1191580.38 hgant-Sandst 40 0 sub-parallel 0.029 141613285 150874176 37.9866232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 246593.33 1191580.38 hgant-Sandst 41 0 sub-parallel 0.0292 1.41613285 150874176 37.9866232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 246593.33 1191580.38 hgant-Sandst 40 0 sub-parallel 0.0292 1.41613285 150874176 37.9866232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 246593.33 1191580.38 hgant-Sandst 57 0 sub-parallel 0.031062 3293213 55.575153 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen	FI-21-02	Flühli	20210416	2646570.75	1191582.76 hgant-Sandst	57	90	0.04161	4.21329084	3.70565378	59.5330236	27	W2	80	R5	270	0.5 m dicke Bank. Sand dominierend
FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 47 0 sub-parallel 0.02993 2.13924306 45.2330201 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergelige Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 40 0 sub-parallel 0.02993 1.49440259 1.5974163 37968523 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergelige Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 45 0 sub-parallel 0.03285 12937806823 2237 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergelige Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 45 0 sub-parallel 0.03285 1291796088 41.182714 7 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergelige Zwischenlagen FL-21-03 Flühli 20210416 2645593.33 1191580.38 hgant-Sandst 45 0 sub-parallel <td>FL-21-03</td> <td>Flühli</td> <td>20210416</td> <td>2646593.33</td> <td>1191580.38 hgant-Sandst</td> <td>40</td> <td>0 sub-paralle</td> <td>0.0292</td> <td>1.41613285</td> <td>1.50874176</td> <td>37.9868232</td> <td>27</td> <td>W3</td> <td>60</td> <td>R4</td> <td>80</td> <td>0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen</td>	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	40	0 sub-paralle	0.0292	1.41613285	1.50874176	37.9868232	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2645593.33 1191580.38 hgant-Sands 41 0 sub-parallel 0.02993 1.49440259 1.59213 39.0224725 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2645593.33 1191580.38 hgant-Sands 40 0 sub-parallel 0.0220 1.41613285 1.50874176 37.986232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2645593.33 1191580.38 hgant-Sands 57 0 sub-parallel 0.03110062 3.2293137 55.5752153 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2645593.33 1191580.38 hgant-Sands 41 0 sub-parallel 0.0325 1.52173 3.0224725 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	47	0 sub-paralle	0.03431	2.007933	2.13924306	45.2330201	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandst 40 0 sub-parallel 0.0292 1.4161328 1.50874176 37.9868232 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 45 0 sub-parallel 0.03285 1.94796088 43.163388 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 46 0 sub-parallel 0.03285 1.9171169 2.0424807 4.1982714 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 45 0 sub-parallel 0.03285 1.9171608 43.163388 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 3	FI-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	41	0 sub-paralle	0.02993	1,49440259	1.59213	39.0224725	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20201416 2645593.33 1191580.38 hgant-Sandst 5 0 sub-parallel 0.03285 1.82839201 1.94796088 43.1633988 27 W3 60 R4 80 0.02 - 0.2 m dick, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2645593.33 1191580.38 hgant-Sandst 46 0 sub-parallel 0.03285 1.9171699 2.04248807 44.1982714 27 W3 60 R4 80 0.02 - 0.2 m dick, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 45 0 sub-parallel 0.03285 1.82839202 1.94796088 43.1633988 27 W3 60 R4 80 0.02 - 0.2 m dick, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 41 0 sub-parallel 0.02555 1.0561498 1.12521739 2.067532 27 W3 60 R4 80 0.02 - 0.2 m dick, sandige Bank mit mergeligen Zwische	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	40	0 sub-paralle	0.0292	1.41613285	1.50874176	37,9868232	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 57 0 sub-parallel 0.04163 3.0311006 3.2293213 55.57513 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 46 0 sub-parallel 0.03358 1.91711699 2.04248807 44.1982714 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 41 0 sub-parallel 0.02555 1.0561498 1.1521739 32.052792 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 48 0 sub-parallel 0.02502 2.27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 11	FI-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	45	0 sub-paralle	0.03285	1.82839202	1.94796088	43.1633988	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 46 0 sub-parallel 0.03285 1.91711699 2.04248807 4.182714 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 45 0 sub-parallel 0.03285 1.82833020 1.94796088 43.1633988 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 35 0 sub-parallel 0.03256 1.59218 1.252173 32.0852792 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 46 0 sub-parallel 0.03358 1.97111699 2.04248807 4.1982714 27 W3 60 R4 <	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	57	0 sub-paralle	0.04161	3.03110062	3.22932137	55,5752153	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandst 45 0 sub-parallel 0.03285 1.8283920 1.94796088 2.7 W3 60 R4 80 0.02 0.2 mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandst 41 0 sub-parallel 0.02993 1.49440259 1.59213 39.0224725 27 W3 60 R4 80 0.02 0.2 mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandst 48 0 sub-parallel 0.03558 1.9171169 2.0424807 44.1982714 27 W3 60 R4 80 0.02 0.2 nd ke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandst 46 0 sub-parallel 0.03358 1.91711699 2.04248807 44.1982714 27 W3 60	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	46	0 sub-paralle	0.03358	1.91711699	2.04248807	44.1982714	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 41 0 sub-parallel 0.02993 1.4944025 1.59213 39.0224725 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 35 0 sub-parallel 0.02555 1.0561498 1.12521739 32.8052792 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 48 0 sub-parallel 0.03304 2.10084006 2.2382283 4.262676532 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 30 sub-parallel 0.03305 1.2973878 27.6159704 27 W3 60 R4 80 0.02 - 0.2 m dicke, sa	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	45	0 sub-paralle	0.03285	1.82839202	1.94796088	43.1633988	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandsi 35 0 sub-parallel 0.02555 1.0561498 1.12521739 32.8052792 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandsi 48 0 sub-parallel 0.03504 2.1084006 2.2382283 46.2676532 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 46 0 sub-parallel 0.03256 1.9171169 2.04248807 47.1982714 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 45 0 sub-parallel 0.02326 1.9479608 43.1633988 27 W3 60 R4 80 0.02	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	41	0 sub-paralle	0.02993	1.49440259	1.59213	39.0224725	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandsi 48 0 sub-parallel 0.03504 2.10084006 2.382258 46.2676532 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandsi 40 0.0358 1.91711699 2.04248807 44.1982714 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandsi 45 0 sub-parallel 0.03219 0.7484428 0.79738778 27.6159704 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandsi 32 0 sub-parallel 0.02376 2.6564348 50.4051723 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwische	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	35	0 sub-paralle	0.02555	1.0561498	1.12521739	32.8052792	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 46 0 sub-parallel 0.03358 1.9171169 2.04248807 4.1982714 27 W3 60 R4 80 0.02 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 45 0 sub-parallel 0.02328 1.24748807 42.1682714 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 45 0 sub-parallel 0.023285 1.94796088 43.1633988 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 32 0 sub-parallel 0.02326 2.96928861 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen <tr< td=""><td>FL-21-03</td><td>Flühli</td><td>20210416</td><td>2646593.33</td><td>1191580.38 hgant-Sandst</td><td>48</td><td>0 sub-paralle</td><td>0.03504</td><td>2.10084006</td><td>2.23822583</td><td>46.2676532</td><td>27</td><td>W3</td><td>60</td><td>R4</td><td>80</td><td>0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen</td></tr<>	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	48	0 sub-paralle	0.03504	2.10084006	2.23822583	46.2676532	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.31 1191580.38 hgant-Sandst 30 0 sub-parallel 0.074847288 0.7738778 27.6159704 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 32 0 sub-parallel 0.03285 1.82839202 1.94796088 43.1633988 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 32 0 sub-parallel 0.03285 1.82839202 1.94796088 43.1633988 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 52 0 sub-parallel 0.029293 1.49440259 1.59214 50.4051723 27 W3 60 R4 80	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	46	0 sub-paralle	0.03358	1.91711699	2.04248807	44.1982714	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandst 45 0 sub-parallel 0.02365 1.8283920 1.94796088 43.1633988 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandst 32 0 sub-parallel 0.02360 1.94796088 43.1633988 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 hgant-Sandst 52 0 sub-parallel 0.0376 2.4933785 2.65643448 50.052723 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandst 48 0 sub-parallel 0.03762 2.72 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	30	0 sub-paralle	0.0219	0.74844288	0.79738778	27.6159704	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.31 1191580.38 kgant-Sandsi 32 0 sub-parallel 0.02932 2.7 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 kgant-Sandsi 52 0 sub-parallel 0.02932 2.7 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 kgant-Sandsi 41 0 sub-parallel 0.03902 1.59213 39.0224725 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 kgant-Sandsi 48 0 sub-parallel 0.03904 2.10840265 2.757532 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2645933.31	FL-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	45	0 sub-paralle	0.03285	1.82839202	1.94796088	43,1633988	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL2103 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 52 0 sub-parallel 0.02502 2.4933787 2.7 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 52 0 sub-parallel 0.02993 1.49440259 1.59213 39.0224725 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 48 0 sub-parallel 0.02504 2.24937875 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandsi 38 0 sub-parallel 0.02504 2.2382583 46.2676532 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03	FI-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	32	0 sub-naralle	0.02336	0.86525252	0.92183626	29.6928861	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
Fiz-12-03 Fibili 20210416 2646593.33 1191580.38 Mgant-Sandst 41 0 sub-parallel 0.03904 2.1944025 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 191580.38 Mgant-Sandst 48 0 sub-parallel 0.03904 2.1084006 2.2382583 46.2676532 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 Mgant-Sandst 38 0 sub-parallel 0.02774 1.2658665 1.3486484 35.9149211 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 Mgant-Sandst 38 0 sub-parallel 0.02774 1.2658665 1.34646484 35.9149221 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Ban	FI-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	52	0 sub-naralle	0.03796	2.49337875	2.65643484	50.4051723	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandig 8 ab-parallel 0.03504 2.10084006 2.2382258 46.2676532 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandig 48 0 sub-parallel 0.03504 2.10084006 2.23822583 46.2676532 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.33 1191580.38 hgant-Sandig 80 sub-parallel 0.02774 1.2658665 1.34864864 35.9149221 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen FL-21-03 Flühli 20210416 2646593.31 1191580.38 hgant-Sandige Bank mit mergeligen Zwischenlagen 2.3943646 35.9149221 27 W3 60 R4 80 0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen	FI-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	41	0 sub-naralle	0.02993	1.49440259	1.59213	39.0224725	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-03 Flühli 20210416 266593.33 191580.38 gent Sandige Bank mit mergengen Zwischenlagen FL-21-03 Flühli 20210416 266593.33 191580.38 gent Sandige Bank mit mergengen Zwischenlagen FL-21-03 Flühli 20210416 266593.33 191580.38 hgant Sandige Bank mit mergengen Zwischenlagen FL-21-03 Flühli 20210416 266593.33 191580.38 hgant Sandige Bank mit mergengen Zwischenlagen FL-21-03 Flühli 20210416 266593.33 191580.38 hgant Sandige Bank mit mergengen Zwischenlagen	FI-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	48	0 sub-naralle	0.03504	2.10084006	2.23822583	46,2676532	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
E-21-03 Flühli 20210416 266593.33 1191580.38 Inspit-Sandst 49 0 sub-parallel 0.03577 2:1958817 2:3394356 47.3021784 27 W3 60 R4 80 0.02 0.2 m dick sandige Bank mit merginger Twischenlagen	FI-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	38	0 sub-naralle	0.02774	1.2658665	1.34864864	35,9149221	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
	FI-21-03	Flühli	20210416	2646593.33	1191580.38 hgant-Sandst	49	0 sub-paralle	0.03577	2.19583817	2.3394364	47.3021784	27	W3	60	R4	80	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen

FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	44	0	sub-parallel	0.03212	1.7417581	1.85566147 42.1283	32 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	59	0	sub-parallel	0.04307	3.26082669	3.47407052 57.6427	69 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	58	0	sub-parallel	0.04234	3.14491813	3.35058205 56.60902	16 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	58	0	sub-parallel	0.04234	3.14491813	3.35058205 56.60902	16 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	52	0	sub-parallel	0.03796	2.49337875	2.65643484 50.4051	23 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	60	0	sub-parallel	0.0438	3.37882629	3.59978678 58.6764	06 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	59	0	sub-parallel	0.04307	3.26082669	3.47407052 57.6427	69 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	59	0	sub-parallel	0.04307	3.26082669	3.47407052 57.6427	69 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	55	0	sub-parallel	0.04015	2.80973874	2.99348339 53.5074	12 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	55	0	sub-parallel	0.04015	2.80973874	2.99348339 53.5074	12 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	56	0	sub-parallel	0.04088	2.91937416	3.11028849 54.54134	66 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	55	0	sub-parallel	0.04015	2.80973874	2.99348339 53.5074	12 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	55	0	sub-parallel	0.04015	2.80973874	2.99348339 53.5074	12 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	59	0	sub-parallel	0.04307	3.26082669	3.47407052 57.6427	69 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	45	0	sub-parallel	0.03285	1.82839202	1.94796088 43.1633	88 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	50	0	sub-parallel	0.0365	2.29292732	2.44287476 48.33660	24 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FI-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	55	0	sub-parallel	0.04015	2.80973874	2,99348339 53,5074	12 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FI-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	55	0	sub-parallel	0.04015	2.80973874	2.99348339 53.5074	12 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FI-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	58	0	sub-parallel	0.04234	3.14491813	3.35058205 56.60902	16 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FI-21-04	Flühli	20210416 2646611.05 11915	56.39 hgant-Sandst	54	0	sub-parallel	0.03942	2,70219437	2.87890608 52.47340	77 27	W2	80	R5	170	0.1 - 0.5 m dicke kompakte Sandsteinbänke mit viel Kalzit
FL-21-05	Flühli	20210423 2646535.07 11914	44.85 ikmünt-Mem	59	90	sub paramen	0.04307	4 48449726	3 94418398 61 41919	25 27	W1	80	R5	260	Eossilhorizont
FL-21-05	Flühli	20210423 2646535.07 11914	44.85 ikmünt-Mem	58	90		0.04234	4 34784853	3 82399933 60 47619	01 27	W1	80	R5	260	Fossilhorizont
FL-21-05	Flühli	20210423 2646535.07 11914	44.85 ikmünt-Mem	59	90		0.04204	1 18/19726	3 94418398 61 41919	25 27	W1	80	R5	260	Fossilhorizont
FL 21-05	Flübli	20210423 2646525.07 11914	44.05 ikmünt Mom	50	90		0.04207	1 19110720	2 04419209 61 4101	25 27	W1	80	R5	200	Fossilhorizont
FL-21-05	Flübli	20210423 2040535.07 11914	44.85 kmünt Mom	10	90		0.04307	2 21210605	2 92500722 51 0907	15 27	W1	80	R5	200	Fossilhorizont
FL-21-05	FIGHI	20210423 2040335.07 11914	44.65 Kinunt-Wein	49	90		0.05577	3.21210093	2.02309723 31.9007	.15 27	VV 1	80	R5	200	Fossilhorizont
FL 21-05	Flake	20210423 2040535.07 11914	44.85 kmünt Mom	50	30		0.04013	4 63232704	4 06620774 62 2620	01 27	VV1	80	R.S	200	Fossilhorizont
FL-21-05	Flahl	20210423 2040335.07 11914	44.65 Kinunt-Wein	50	90		0.04334	4.02525704	2 82200022 60 47610	01 27	VV 1	80	R5	200	Fossilhorizont
FL-21-05	Flahl	20210423 2040335.07 11914	44.65 Kinunt-Wein	50	90		0.04234	4.54/64655	2 50014724 50 5004701	101 27	VV 1	80	R5	200	Fossilhorizont
FL-21-05	Flahl	20210423 2040335.07 11914	44.65 Kinunt-Wein	50	90		0.04066	4.00002415	2 20565228 50 5220	27	VV 1	80	R5	200	Fossilhorizont
FL-21-05	Flahl	20210423 2040335.07 11914	44.65 Kinunt-Wein	57	90		0.04101	2.05044950	2 47449001 57 64610	.50 27 .61 27	VV 1	80	R5	200	Fossilhorizont
FL-21-05	FIUNII	20210423 2646535.07 11914	44.85 ikmunt-iviem	55	90		0.04015	3.95044855	3.4/448001 57.64616	2/	VV 1	80	RS	260	Fossinorizont
FL-21-05	FIUNII	20210423 2646535.07 11914	44.85 ikmunt-Mem	54	90		0.03942	3.82216404	3.36165178 56.7024	76 27	W1	80	R5	260	Fossilhorizont
FL-21-05	FIUNII	20210423 2646535.07 11914	44.85 ikmunt-Mem	50	90		0.0365	3.32993628	2.92872992 52.9255	259 27	W1	80	R5	260	Fossilhorizont
FL-21-05	FIUNII	20210423 2646535.07 11914	44.85 ikmunt-Mem	62	90		0.04526	4.90698973	4.315//258 64.24/28	2/	W1	80	R5	260	Fossilhorizont
FL-21-05	FIUNII	20210423 2646535.07 11914	44.85 ikmunt-Mem	60	90		0.0438	4.62323704	4.06620774 62.3620	83 27	W1	80	R5	260	Fossilhorizont
FL-21-05	FIUNII	20210423 2646535.07 11914	44.85 ikmunt-Mem	56	90		0.04088	4.08082419	3.58914/34 58.58968	51 27	W1	80	R5	260	Fossilhorizont
FL-21-05	Flunii	20210423 2646535.07 11914	44.85 ikmunt-Mem	58	90		0.04234	4.34784853	3.82399933 60.47619	01 27	W1	80	R5	260	Fossilhorizont
FL-21-05	FIUNII	20210423 2646535.07 11914	44.85 ikmunt-Mem	69	90		0.05037	5.96599207	5.24/18135 /0.8416	19 27	W1	80	R5	260	Fossilhorizont
FL-21-05	Fluhli	20210423 2646535.07 11914	44.85 kmunt-Mem	59	90		0.04307	4.48449726	3.94418398 61.41919	25 27	W1	80	R5	260	Fossilhorizont
FL-21-05	Fluhli	20210423 2646535.07 11914	44.85 kmunt-Mem	57	90		0.04161	4.21329084	3.70565378 59.5330	236 27	W1	80	R5	260	Fossilhorizont
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	40	90		0.0292	2.24574002	1.97516272 43.46372	66 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	49	90		0.03577	3.21210695	2.82509723 51.98073	.15 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	47	90		0.03431	2.98272143	2.62334915 50.09029	25 27	W2	35	R3	120	Schieterung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	46	90		0.03358	2.87116523	2.52523377 49.1446	77 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	39	90		0.02847	2.14882114	1.88992108 42.51550	63 27	W2	35	R3	120	Schieterung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	42	90		0.03066	2.44585091	2.15116331 45.35886	84 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	48	90		0.03504	3.09636866	2.72330363 51.03563	85 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	42	90		0.03066	2.44585091	2.15116331 45.35886	84 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	50	90		0.0365	3.32993628	2.92872992 52.92552	259 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	42	90	-	0.03066	2.44585091	2.15116331 45.35886	84 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	46	90		0.03358	2.87116523	2.52523377 49.1446	77 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	48	90		0.03504	3.09636866	2.72330363 51.03563	85 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	47	90	-	0.03431	2.98272143	2.62334915 50.09029	25 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	48	90		0.03504	3.09636866	2.72330363 51.03563	85 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	46	90		0.03358	2.87116523	2.52523377 49.1446	77 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	32	90		0.02336	1.52893825	1.34472459 35.86263	48 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	55	90		0.04015	3.95044859	3.47448001 57.64616	61 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	49	90		0.03577	3.21210695	2.82509723 51.9807	.15 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	51	90	ļ	0.03723	3.44985665	3.03420173 53.87009	55 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit
FL-21-06	Flühli	20210423 2646525.56 11914	62.12 erberg-Memt	36	90		0.02628	1.87061077	1.64523081 39.6678	51 27	W2	35	R3	120	Schieferung, sandig bis mergelig, Glaukonit

FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	52	90		0.03796	3.57186807 3.14151264 54.8144329	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	55	90		0.04015	3.95044859 3.47448001 57.6461661	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	52	90		0.03796	3.57186807 3.14151264 54.8144329	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	54	90		0.03942	3.82216404 3.36165178 56.7024576	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	56	90		0.04088	4.08082419 3.58914734 58.5896851	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	52	90		0.03796	3.57186807 3.14151264 54.8144329	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	52	90		0.03796	3.57186807 3.14151264 54.8144329	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, guarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	52	90		0.03796	3.57186807 3.14151264 54.8144329	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, guarz-dominierend
FI-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	48	90		0.03504	3.09636866 2.72330363 51.0356385	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, guarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582 79 hgant-Sandst	55	90		0.04015	3 95044859 3 47448001 57 6461661	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, guarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582 79 hgant-Sandst	48	90		0.03504	3 09636866 2 72330363 51 0356385	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, guarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582 79 bgant-Sandst	50	90		0.0365	3 37993628 2 92872992 52 9255259	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, guarz-dominierend
FL 21 07	Flühli	20210423	2646550.60	1101592 70 bgant Sandst	50	90		0.0305	2 05044850 2 47448001 57 6461661	27	W2	75	PE	210	2 m dicke massive Sandstein Bänke, quarz dominierend
FL 21 07	Flühli	20210423	2646550.60	1101592 70 bgant Sandst	55	90		0.02706	2 57196907 2 14151264 54 9144220	27	W2	75	PE	210	2 m dicke massive Sandstein Bänke, quarz dominierend
EL 21-07	Flühli	20210423	2646559.69	1191582.79 ligant-Sandst	16	90		0.03750	3.37180807 3.14131204 34.8144323	27	W2	75	PE	210	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-07	FIGHT	20210423	2040559.09	1191562.79 ligant-sanust	40	90		0.03556	2.67110525 2.52525577 49.1440577	27	VV 2	75	R5	210	2 m dicke massive Sandstein Banke, quarz-dominierend
FL-21-07	FIUNII	20210423	2646559.69	1191582.79 ngant-sandst	53	90		0.03869	3.09597053 3.25006206 55.7585499	27	W2	75	R5	210	2 m dicke massive Sandstein Banke, quarz-dominierend
FL-21-07	FIUNII	20210423	2646559.69	1191582.79 ngant-Sandst	56	90		0.04088	4.08082419 3.58914734 58.5896851	27	W2	75	R5	210	2 m dicke massive Sandstein Banke, quarz-dominierend
FL-21-07	Flunii	20210423	2646559.69	1191582.79 ngant-Sandst	62	90		0.04526	4.90698973 4.31577258 64.2472873	27	W2	75	R5	210	2 m dicke massive Sandstein Banke, quarz-dominierend
FL-21-07	Fluhli	20210423	2646559.69	1191582.79 hgant-Sandst	62	90		0.04526	4.90698973 4.31577258 64.2472873	27	W2	75	R5	210	2 m dicke massive Sandstein Banke, quarz-dominierend
FL-21-07	Flühli	20210423	2646559.69	1191582.79 hgant-Sandst	58	90		0.04234	4.34784853 3.82399933 60.4761901	27	W2	75	R5	210	2 m dicke massive Sandstein Bänke, quarz-dominierend
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	35	90		0.02555	1.78205608 1.5673456 38.7175532	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	58	90		0.04234	4.34784853 3.82399933 60.4761901	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	55	90		0.04015	3.95044859 3.47448001 57.6461661	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	52	90		0.03796	3.57186807 3.14151264 54.8144329	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	54	90		0.03942	3.82216404 3.36165178 56.7024576	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	40	90		0.0292	2.24574002 1.97516272 43.4637266	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	61	90		0.04453	4.76406786 4.19007061 63.3047343	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	37	90		0.02701	1.96125652 1.72495513 40.6176152	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	58	90		0.04234	4.34784853 3.82399933 60.4761901	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	46	90		0.03358	2.87116523 2.52523377 49.1446577	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	43	90		0.03139	2.54904292 2.24192227 46.305843	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	48	90		0.03504	3.09636866 2.72330363 51.0356385	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FI-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	35	90		0.02555	1.78205608 1.5673456 38.7175532	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574 46 hgant-Sandst	55	90		0.04015	3 95044859 3 47448001 57 6461661	27	W2	75	R5	150	0.02 - 0.2 m dicke sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574 46 hgant-Sandst	43	90		0.03139	2 54904292 2 24192227 46 305843	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	Flühli	20210423	2646575.62	1191574.46 hgant-Sandst	52	90		0.03796	3 57186807 3 14151264 54 8144329	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
EL 21.09	Flühli	20210423	2646575.62	1101574.46 bgant Sandst	52	90		0.04015	2 05044850 2 47448001 57 6461661	27	W2	75	PE	150	0.02 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
EL 21-00	Flübli	20210423	2646575.62	1191574.40 ligant-Sandst	53	90		0.04015	2 57196907 2 14151264 54 9144220	27	W2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL 21-08	Flake	20210423	2040373.02	1101574.46 hgant Sandst	52	50		0.03730	3.37180807 3.14131204 34.8144323	27	W2	75	RS	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-00	Fluin	20210423	2040375.02	1191574.40 ligant-Sanust	25	90		0.03942	3.82210404 3.30103178 30.7024370	27	VV 2	75	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-08	FIUNII	20210423	2646575.62	1191574.46 ngant-Sandst	35	90		0.02555	1.78205608 1.5673456 38.7175532	27	2	/5	R5	150	0.02 - 0.2 m dicke, sandige Bank mit mergeligen Zwischenlagen
FL-21-09	Flunii	20210423	2646621.61	1191551.58 ngant-Sandst	30	90		0.0219	1.3/064826 1.20550612 33.95550/9	27	W2	40	R4	90	Teinkornig, Quarz und Kalzit
FL-21-09	Fluhli	20210423	2646621.61	1191551.58 hgant-Sandst	32	90		0.02336	1.52893825 1.34472459 35.8626348	27	W2	40	R4	90	feinkornig, Quarz und Kalzit
FL-21-09	Fluhli	20210423	2646621.61	1191551.58 hgant-Sandst	48	90		0.03504	3.09636866 2.72330363 51.0356385	27	W2	40	R4	90	feinkornig, Quarz und Kalzit
FL-21-09	Fluhli	20210423	2646621.61	1191551.58 hgant-Sandst	35	90		0.02555	1.78205608 1.5673456 38.7175532	27	W2	40	R4	90	feinkornig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	41	90		0.02993	2.34474994 2.06224346 44.4115047	27	W2	40	R4	90	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	44	90		0.03212	2.65432598 2.33452033 47.252452	27	W2	40	R4	90	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	39	90		0.02847	2.14882114 1.88992108 42.5155063	27	W2	40	R4	90	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	31	90		0.02263	1.44874773 1.27419581 34.9094982	27	W2	40	R4	90	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	46	90		0.03358	2.87116523 2.52523377 49.1446577	27	W2	40	R4	90	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	42	90		0.03066	2.44585091 2.15116331 45.3588684	27	W2	40	R4	90	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	50	0	sub-parallel	0.0365	2.29292732 2.44287476 48.3366024	27	W2	40	R4	120	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	39	0	sub-parallel	0.02847	1.33995415 1.4275813 36.9509787	27	W2	40	R4	120	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	43	0	sub-parallel	0.03139	1.65721522 1.76558986 41.0932446	27	W2	40	R4	120	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	48	0	sub-parallel	0.03504	2.10084006 2.23822583 46.2676532	27	W2	40	R4	120	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	51	0	sub-parallel	0.03723	2.39210751 2.5485409 49.3709318	27	W2	40	R4	120	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	56	0	sub-parallel	0.04088	2.91937416 3.11028849 54.5413466	27	W2	40	R4	120	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	50	0	sub-parallel	0.0365	2.29292732 2.44287476 48.3366024	27	W2	40	R4	120	feinkörnig, Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	49	0	sub-parallel	0.03577	2,19583817 2,3394364 47,3021784	27	W2	40	R4	120	feinkörnig. Quarz und Kalzit
FL-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	52	0	sub-parallel	0.03796	2,49337875 2,65643484 50,4051723	27	W2	40	R4	120	feinkörnig. Quarz und Kalzit
FI-21-09	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	54	0	sub-parallel	0.03942	2,70219437 2,87890608 52 4734077	27	W2	40	R4	120	feinkörnig. Quarz und Kalzit
	1				÷ .	2									

FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	50	90		0.0365	3.32993628	2.92872992	52.9255259	27	W2	75	R5	140	Schieferung, feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	48	90		0.03504	3.09636866	2.72330363	51.0356385	27	W2	75	R5	140	Schieferung, feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	52	90		0.03796	3.57186807	3.14151264	54.8144329	27	W2	75	R5	140	Schieferung, feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	45	90		0.03285	2.76170008	2.4289575	48.198717	27	W2	75	R5	140	Schieferung, feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	42	90		0.03066	2.44585091	2.15116331	45.3588684	27	W2	75	R5	140	Schieferung, feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	43	90		0.03139	2.54904292	2.24192227	46.305843	27	W2	75	R5	140	Schieferung, feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	47	90		0.03431	2.98272143	2.62334915	50.0902925	27	W2	75	R5	140	Schieferung, feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	53	90		0.03869	3.69597053	3.25066266	55,7585499	27	W2	75	R5	140	Schieferung, feinkörning
FI-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	49	90		0.03577	3,21210695	2,82509723	51,9807115	27	W2	75	R5	140	Schieferung, feinkörning
FI-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	47	90		0.03431	2.98272143	2.62334915	50.0902925	27	W2	75	R5	140	Schieferung, feinkörning
FI-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	50	90		0.0365	3.32993628	2.92872992	52,9255259	27	W2	75	R5	140	Schieferung, feinkörning
FI-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	42	90		0.03066	2.44585091	2.15116331	45.3588684	27	W2	75	R5	140	Schieferung, feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	52	90		0.03796	3 57186807	3 14151264	54 8144329	27	W2	75	R5	140	Schieferung feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	46	90		0.03358	2 87116523	2 52523377	49 1446577	27	W2	75	R5	140	Schieferung feinkörning
FL-21-10	Flühli	20210423	2646621.61	1191551.58 hgant-Sandst	51	90		0.03723	3 44985665	3 03420173	53 8700955	27	W2	75	R5	140	Schieferung feinkörning
FL-21-10	Flübli	20210423	2646621.61	1191551.58 hgant-Sandst	38	90		0.03723	2 05399331	1 80651855	41 5668135	27	W2	75	RS	140	Schieferung feinkörning
FL-21-10	Flübli	20210423	2646621.61	1191551.50 hgant-Sandst	46	90		0.02774	2.05555555	2 52523377	41.3000133	27	W2	75	R5	140	Schieferung feinkörning
FL 21 10	Flühli	20210423	2646621.01	1101551.50 hgant Sandst	40	90		0.03550	2.00626966	2.52525577	51 0256295	27	W2	75	PE	140	Schieferung, feinkörning
FL-21-10	Flübli	20210423	2646621.61	1191551.50 hgant-Sandst	50	90		0.0365	3 32993628	2.72330303	52 9255 259	27	W2	75	R5	140	Schieferung feinkörning
FL-21-10	Flübli	20210423	2646621.61	1191551.50 hgant-Sandst	/3	90		0.0303	2 54904292	2.52072552	46 305843	27	W2	75	R5	140	Schieferung feinkörning
FL-21-12	Flübli	20210425	2646662.49	1191550.01 tad-Formatic	30	90		0.03135	2 14882114	1 88992108	42 5155063	27	VV 2	75	11.5	140	Schiegerung in cm - Bereich
EL 21-12	Flühli	20210010	2646662.49	1191550.01 tad-1 offinatio	20	90		0.02047	1 20462092	1 12065555	22.0005.900	27					Schiegerung in cm - Bereich
EL 21-12	Flühli	20210010	2646662.49	1191550.01 tad-1 offinatio	29	90		0.02117	2.05200221	1 90651955	41 5669125	27					Schiegerung in cm - Bereich
EL-21-12	Flühli	20210010	2646662.49	1191550.01 tad-1 offinatio	21	00		0.02774	1 44974772	1.00051055	24 0004092	27					Schiegerung in cm - Bereich
FL 21 12	Flake	20210010	2646662.49	1101550.01 tad-Formatic	20	00		0.02203	2.05200221	1 00000000	41 5669135	27					Schiegerung in em Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	38	90		0.02774	2.05399331	1.80051855	41.5008135	27					Schlegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	42	90		0.03066	2.44585091	2.15110331	45.3588684	27					Schlegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	32	90		0.02336	1.52893825	1.34472459	35.8626348	27					Schlegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	50	90		0.0365	3.32993628	2.928/2992	52.9255259	27					Schiegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	45	90		0.03285	2.76170008	2.4289575	48.198717	27					Schlegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	32	90		0.02336	1.52893825	1.34472459	35.8626348	27					Schlegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	35	90		0.02555	1.78205608	1.50/3450	38./1/5532	27					Schlegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	48	90		0.03504	3.09636866	2.72330363	51.0356385	27					Schlegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	38	90		0.02774	2.05399331	1.80651855	41.5668135	27					Schiegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	45	90		0.03285	2.76170008	2.4289575	48.198/1/	27					Schiegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	42	90		0.03066	2.44585091	2.15116331	45.3588684	27					Schiegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	50	90		0.0365	3.32993628	2.928/2992	52.9255259	27					Schiegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	44	90		0.03212	2.65432598	2.33452033	47.252452	27					Schiegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	50	90		0.0365	3.32993628	2.928/2992	52.9255259	27					Schiegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	40	90		0.0292	2.24574002	1.97516272	43.4637266	27					Schiegerung in cm - Bereich
FL-21-12	Flunii	20210616	2646662.49	1191550.01 tad-Formatic	58	90		0.04234	4.34784853	3.82399933	60.4761901	2/					Schlegerung in cm - Bereich
FL-21-12	Fluhli	20210616	2646662.49	1191550.01 tad-Formatic	55	0	sub-parallel	0.04015	2.809/38/4	2.99348339	53.507412	27					Schiegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	48	0	sub-parallel	0.03504	2.10084006	2.23822583	46.2676532	27					Schiegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	56	0	sub-parallel	0.04088	2.91937416	3.11028849	54.5413466	27					Schiegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2040062.49	1191550.01 tad-Formatic	52	U	sup-parallel	0.03796	2.49337875	2.65643484	50.4051723	2/					schiegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	48	U	sup-parallel	0.03504	2.10084006	2.23822583	46.26/6532	2/					Schiegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	56	0	sub-parallel	0.04088	2.91937416	3.11028849	54.5413466	27					Schiegerung in cm - Bereich
FL-21-12	FIUNII	20210616	2646662.49	1191550.01 tad-Formatic	45	0	sub-parallel	0.03285	1.82839202	1.94/96088	43.1633988	27					Schiegerung in cm - Bereich
FL-21-12	FIUNI	20210616	2646662.49	1191550.01 tad-Formatic	49	0	sub-parallel	0.03577	2.19583817	2.3394364	47.3021784	27					Schiegerung in cm - Bereich
FL-21-12	Fluhli	20210616	2646662.49	1191550.01 tad-Formatic	49	0	sub-parallel	0.03577	2.19583817	2.3394364	47.3021784	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	44	0	sub-parallel	0.03212	1.7417581	1.85566147	42.1283932	27					Schiegerung in cm - Bereich
FL-21-12	flühli	20210616	2646662.49	1191550.01 tad-Formatic	55	0	sub-parallel	0.04015	2.80973874	2.99348339	53.507412	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	50	0	sub-parallel	0.0365	2.29292732	2.44287476	48.3366024	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	48	0	sub-parallel	0.03504	2.10084006	2.23822583	46.2676532	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	50	0	sub-parallel	0.0365	2.29292732	2.44287476	48.3366024	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	53	0	sub-parallel	0.03869	2.59674104	2.76655656	51.4393293	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	53	0	sub-parallel	0.03869	2.59674104	2.76655656	51.4393293	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	45	0	sub-parallel	0.03285	1.82839202	1.94796088	43.1633988	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	47	0	sub-parallel	0.03431	2.007933	2.13924306	45.2330201	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	45	0	sub-parallel	0.03285	1.82839202	1.94796088	43.1633988	27					Schiegerung in cm - Bereich
FL-21-12	Flühli	20210616	2646662.49	1191550.01 tad-Formatic	42	0	sub-parallel	0.03066	1.57476338	1.67774603	40.0579417	27					Schiegerung in cm - Bereich

Anhang 10: Resultate des Point Load Tests.

Date	2021	0616												
Location	Fluehli													
Rock Typ	sandstone	9												
	Homoge		W1	W2		De^2		Test		ls(50)	Einaxiale	Einaxiale		
Sample	nität	D [mm]	[mm]	[mm]	W [mm]	[mm^2]	P [kN]	Validity	Is [Mpa]	[MPa]	Druckfes	Zugfesti	Mittel	Beschreibung
	sbreich		[]	[]	400		44000	valiarcy		[1111 0]	tigkeit	gkeit		
1a	а	60	100	100	100	7639.44	11000	Yes	1.44	1.85	46.28	1.80		Isotrop
1b	а	70	80	100	90	8021.41	22000	Yes	2.74	3.57	89.13	3.43		isotrop
1c	а	70	110	100	105	9358.31	7000	Yes	0.75	1.01	25.17	0.93		isotrop
1d	а	90	110	90	100	11459.16	24000	Yes	2.09	2.95	73.75	2.62		isotrop
1e	а	120	80	70	75	11459.16	34000	No	2.97	4.18	104.48	3.71	58.58	isotrop
2a	b	115	60	50	55	8053.24	70000	No	8.69	11.31	282.73	10.87		unregelmässig gebrochen, grössere Bankung
2b	b	70	140	140	140	12477.75	57000	Yes	4.57	6.56	163.97	5.71		unregelmässig gebrochen, grössere Bankung
2c	b	80	145	130	137.5	14005.63	30000	Yes	2.14	3.16	78.91	2.68		unregelmässig gebrochen, grössere Bankung
2d	b	45	80	80	80	4583.66	35000	Yes	7.64	8.75	218.79	9.54		unregelmässig gebrochen, grössere Bankung
2e	b	50	80	70	75	4774.65	4000	No	0.84	0.97	24.23	1.05		unregelmässig gebrochen, grössere Bankung
2f	b	45	80	90	85	4870.14	27000	Yes	5.54	6.44	161.04	6.93	155.68	unregelmässig gebrochen, grössere Bankung
3a	С	60	100	95	97.5	7448.45	57000	Yes	7.65	9.78	244.58	9.57		Bankung
3b	С	57	100	95	97.5	7076.03	50000	Yes	7.07	8.93	223.25	8.83		Bankung
3c	С	60	90	80	85	6493.52	48000	Yes	7.39	9.16	229.07	9.24		Bankung
3d	с	70	100	120	110	9803.94	60000	Yes	6.12	8.32	208.07	7.65		Bankung
3e	с	40	100	90	95	4838.31	24000	Yes	4.96	5.75	143.87	6.20		Bankung, dünnbankig
3f	с	60	120	110	115	8785.35	6000	Yes	0.68	0.91	22.65	0.85		verwittert
3g	с	75	80	70	75	7161.97	12000	No	1.68	2.12	53.08	2.09	178.58	verwittert
4a	d	60	100	90	95	7257.47	46000	Yes	6.34	8.06	201.40	7.92		grosse Quarzkörner
4b	d	65	60	50	55	4551.83	40000	No	8.79	10.06	251.40	10.98		Bricht normal zu Schichtung
4b	d	65	60	50	55	4551.83	38000	Yes	8.35	9.55	238.83	10.44		grosse Quarzkörner
4c	d	35	100	110	105	4679.16	6000	No	1.28	1.48	36.91	1.60		grosse Quarzkörner
4d	d	25	120	110	115	3660.56	10000	Yes	2.73	2.98	74.41	3.41	171.55	grosse Quarzkörner
KK1	-	65	80	70	75	6207.04	37000	Yes	5.96	7.31	182.86	7.45		Kieselkalk
КК Э		25	90	80	85	2705.63	14000	Yes	5.17	5.27	131.68	6.47	157.27	Kieselkalk

Anhang 11: Beschreibungen der Dünnschliffe von FL-21-01 bis FL-21-10.

Dünn-	Korngrösse	Rundung	Sortierung	Gefüge	Zusammen-	Dünnschliffaufnahme	Dünnschliffaufnahme mit gekreuztem Polarisator
schliff					setzung		
FL-21-01	0.5 – 1 mm	Subangular	Moderat	- Kornge- stützt - Grund- masse: We- nig Zement aus spariti- schem Ze- ment - kompakte Textur	- Quarz (85%) - Kalzit (10%) - Glaukonit (3%) - Hellglimmer (2%)	- L Ora	T.
FL-21-02a	0.1 – 2 mm	Subangular	Moderat	- Kornge- stützt - Wenig Grundmasse aus Kalzit mit Lamel- lenstruktur	- Quarz (80%) - Kalzit (18%) - Hellglimmer (2%) - Fossilien (Nummuliten)		

FL-21-02b	0.2 – 2 mm	Subangular	Moderat	- Kornge- stützt - Wenig Grundmasse aus spariti- schem Kal- zit	- Quarz (83%) - Kalzit (15%) - Hellglimmer (2%)	- Lõun	
FL-21-03	0.2 mm	Subrounded	Moderat bis gut	- Kornge- stützt - Grund- masse: mik- rospariti- scher Ze- ment aus Kalzit mit Ton	- Quarz (65%) - Kalzit (30%) - Glaukonit (4%) - Fossilien (Nummuliten) - Erze (1%)		
FL-21-04	0.3 – 1 mm	Subangular	Moderat	- Kornge- stützt - Grund- masse: Ze- ment aus Kalzit	- Quarz (75%) - Kalzit (22%) - Erze (1%) - Hellglimmer (2%)	lorr	

FL-21-05				- Bounds- tone - zwischen Fossilien Kalzitze- ment	- Kalzit - Fossilien (Nummuliten)	Lom	
FL-21-06	0.2 – 0.8 mm	Quarz sub- angular, Glaukonit rund	Quarz gut, Glaukonit moderat	- Kornge- stützt - Grund- masse: Kal- zitzement mit wenig Ton	- Quarz (65%) - Kalzit (25%) - Glaukonit (10%) - Hellglimmer - Fossilien (Nummuliten)		
FL-21-07	0.5 – 2 mm	Subangular	Moderat	- Kornge- stützt - Grund- masse: We- nig Zement aus Kalzit und Quarz	- Quarz (90%) - Kalzit (10%)	LOW	

FL-21-08	0.5 mm	Subrounded	Moderat bis	- Kornge-	- Quarz		
			gut	stützt	(65%)		
				- Grund-	- Kalzit	State State State	
				masse: Ze-	(30%)		
				ment aus	- Glaukonit		
				mikrospari-	(4%)		
				tischem Ze-	- Fossilien		
				ment mit	(Nummuliten)		
				Tongehalt	- Erze (1%)	1.0mm	Bonn-
FL 21.00	0.5	Carlana da d	Cert	Variation	0		
FL-21-09	0.5 mm	Subrounded	Gut	- Kornge-	- Quarz		
				stützt	(60%)		
				- Grund-	- Kalzit		
				masse: Mik-	(35%)		
				rospariti-	- Glaukonit		
				scher Ze-	(5%)	antine and a second	and the second
				ment mit	- Fossilien	The second s	
				Kalzit und	(Muscheln,		
				wenig Ton	Nummuliten)	10mm	2000
FL-21-10	0.3 – 1.2	Subangular	Moderat	- Kornge-	- Quarz		
	mm			stützt	(80%)		and the second
				- Grund-	- Kalzit		
				masse: Ze-	(19%)		and the state of the state of
				ment aus	- Hellglimmer		
				Kalzit und	(1%)		the second second second
				Quarz			A state of the second
						10mm	down -
Anhang 12: XRD-Röntgenstrukturanalyse der Probe FL-21-01.

<u>Ex d (Å)</u>	Ex I (%)	P1 d (Å)	P1 I (%)	P2 d (Å)	P2 I (%)
4.253339	28.4543	4.254250	20.1452		
3.341615	100	3.342680	99.7289		
3.030514	7.1112	2 456200	6 0040	3.028940	7.8457
2.455982	10.3435	2.456200	6.8813	2 2004 50	4 3494
2.280214	5.4902	2.280800	7.0808	2.280150	1.3181
2.23506/	4.313	2.236050	3.1913		
1.070190	6 7757	1.070200	2 9021		
1.000940	2 2006	1.979300	2.0921	1 007900	1 475
1.909049	10 7972	1 017470	12 0672	1.90/090	1.475
1.671854	5 934	1.671340	3 5902		
1 541758	13 1223	1 541180	8 5767		
1 537039	6 6577	1.5 11100	0.5707		
1.382268	11.5785	1.381780	5.2856		
1.378770	7.9892				
1.375177	10.1312	1.374630	6.3826		
1.371517	9.3111	1.371640	4.1886		
1.287579	2.3832	1.287600	1.9946		
1.255603	3.6955	1.255650	2.4932		
1.199997	3.9946	1.199550	2.593		
1.183994	5.2779	1.183720	2.194	1.184580	0.0392
1.180734	4.1393	1.179920	2.3935		
1.14/630	1.457				

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 13: XRD-Röntgenstrukturanalyse der Probe FL-21-02.

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 14: XRD-Röntgenstrukturanalyse der Probe FL-21-03.

SIeve - FL-21-03.xml

Jun 18, 2021 1:34 PM (MINPET)

Phases (2)

<u>Ex d (Å)</u>	Ex I (%)	P1 d (Å)	P1 I (%)	P2 d (Å)	P2 I (%)
4.253176	14.9723	4.255130	19.5347		
3.340506	100	3.343430	96.2301	2 022200	4.6.00.60
3.02/163	14.5066	2 456700	6 6300	3.033780	16.0269
2.454/15	0./509	2.456/00	6.6399	2 262220	7 6765
2.201203	2 2626	2.201340	2 1766	2.203320	2.0705
2.230030	4 6745	2.230330	5 1002		
1 080030	4 7006	1 070720	2 7007		
1.911133	4.4372	1.575720	2.7507	1.911280	2,9169
1.863902	3.9715				
1.817992	14.0937	1.817880	11.4514		
1.672026	4.7535	1.671710	3.3681		
1.541714	11.3083	1.541500	8.1796		
1.537346	3.954				
1.382219	6.915	1.382080	4.9077		
1.374917	8.4175	1.374940	6.0625		
1.3/1526	6.9414	1.3/1930	3.9454		
1.26/603	1.9155	1.26/920	1.9240		
1 100800	4 0506	1 100820	2.4058		
1 183788	1 3971	1 184010	2 1171		
1.180333	3.9012	1.180160	2.3095	1.179100	0.3045
1.152881	2,7502	1.153000	1.4435	1.153120	0.5449

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 15: XRD-Röntgenstrukturanalyse der Probe FL-21-04.

SIeve - FL-21-04.xml	Jun 10, 2021 10:15 AM (MINPET)
	, , , , , , , , , , , , , , , , , , , ,

Phases (2)

Peaks (21 of 22)

<u>Ex d (Å)</u>	Ex I (%)	P1 d (Å)	P1 I (%)	P2 d (Å)	P2I(%)
4.252601	24.4496	4.253920	20.7063		
3.853207	1.8277			3.847110	1.5428
3.340535	100	3.342080	103.5313		
3.028167	22.0902	2 456000	6 0366	3.028940	21.1345
2.455025	7.0283	2.280190	7.2472	2.280150	3.5506
2.235619	3.5391	2.235770	3.4165		
2.126/99 2.088590	7.5434	2.126960	5.4872	2 090450	2 9377
1.979682	5.3003	1.979080	2.8989	2.050 150	2.5577
1.909571	1.8111			1.90/890	3.9/33
1.817874	10.9662	1.817110	12.2167	1.071550	5.0255
1.671393	5.6492	1.671040	3.6236		
1.382058	6.9536	1.381580	5.2801		
1.371481	10.152	1.371510	4.1413		
1.256053	2.1/66 2.7499	1.255480	2.5883		
1.183485	3.6554	1.183390	2.2777	1.184580	0.1057
1.180565	5.26/1	1.1/9820	2.2///		

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 16: XRD-Röntgenstrukturanalyse der Probe FL-21-05.

© 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 17: XRD-Röntgenstrukturanalyse der Probe FL-21-06.

SIeve - FL-21-06.xml

Jun 10, 2021 10:24 AM (MINPET)

Phases (2)

Peaks (23 of 29)

Ex d (Å)	Ex I (%)	P1 d (Å)	P1 I (%)	P2 d (Å)	P2 I (%)
4.250503	23.0959	4.254990	15.8131		
3.340618	100	3.343470	98.8321		
3.029003	17.1096	3 456970	0.0040	3.034450	16.1481
2.400/00	0.2400	2.400670	7 0066	2 202500	2 502
2.2/52/4	3 0041	2.201450	3 9533	2.202390	2.303
2.127787	8.4795	2.127710	5.9299		
1.979644	6.8493	1.979860	3.9533		
1.912901	1.9452			1.912580	2.9067
1.818174	14.2329	1.817960	12.8482		
1.72/015	2.274	4 674 720	2 05 22		
1.6/1/14	5.6/12	1.6/1/30	3.9533		
1.5%1552	10 6438	1.541550	0.0949		
1.466218	2.9178				
1.452987	4,4932	1.452890	1.9766		
1.439237	5.0959			1.438730	0.759
1.416489	5.5068	1.418410	0.9883		
1.382250	6.8493	1.382100	5.9299		
1.373002	7.3200	1.3/4900	0.9102		
1 369133	6.863	1.3/1000	4.5410		
1.317257	1.2192				
1.283041	2.0685			1.283860	0.0969
1.256355	6.1918	1.255950	2.965		
1.253273	2.3836				
1.197436	5.7671	1.197/90	0.9883	4 4 7 9 7 4 9	0 2007
1.180366	5.9/26	1.180170	1.9/66	1.1/9310	0.2907
1.152505	4.9605	1.152960	0.9665	1.152590	0.4644

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 18: XRD-Röntgenstrukturanalyse der Probe FL-21-07.

3.695989	2.3221				
3.338919	100	3.342080	96.73		
3.029597	3,7861			3.028940	3.7861
2,454332	6.6964	2.456000	6.4809		
2.280152	3.5207	2.280190	6.7711	2.280150	0.6361
2.234015	4.8211	2.235770	3.1921		
2.126783	6.6434	2.126960	5.1267		
1.979075	6.8778	1.979080	2.7084		
1.817853	11.0752	1.817110	11.4141		
1.671609	5.5774	1.671040	3.3855		
1.659045	3.0784	1.658220	1.5477		
1.654922	2.185				
1.541280	12.7383	1.541020	8.0286		
1.452125	2.6317	1.452180	1.4509		
1.381//3	9.1999	1.381580	4.9332		
1.374439	13.0833	1.3/4310	6.1907		
1.3/1098	13.216	1.3/1510	3.8692		
1.28/193	1.6852	1.28/190	1.9346		
1.200747	0.0610	1.255460	2.4102		
1.199/4/	4.3109	1.199310	2.4102	1 104500	0.0100
1 170507	4 1700	1 170820	2.1201	1.104300	0.0109
1 152881	3 5517	1 152650	1 4500	1 151580	0 1401
1.132001	3.3311	1.132030	1.1505	1.131300	0.1-101

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 19: XRD-Röntgenstrukturanalyse der Probe FL-21-08.

Ex d (Å)	Ex I (%)	P1 d (Å)	P1 I (%)	P2 d (Å)	P2 I (%)
4.256367	16.5653	4.256340	19.6063		
3.699452	4.2834	3 344250	00.0215		
3.030394	16.1951	5.544250	55.0215	3.028940	14.34
2.456273	9.3733	2.457400	6.7335	2 200150	3 4001
2.260107	5.0238	2.201030	2 9706	2.260150	2.4091
2.128184	6.835	2.128170	4.753		
1.981212	4.7594	1.980260	2.7726	1 871330	2 5055
1.818643	11.8324	1.818320	11.4865	1.071550	2.3333
1.672876	3.6489	1.672120	3.5648		
1.382235	7.192	1.382440	4.3569		
1.375239	6.055	1.375260	5.5452		
1.3/1998	9.5188	1.372310	3.6638		
1.200406	2.1417	1.200100	2.2775		
1.197876	1.0444	1.198140	0.7922	1 104500	0.0717
1.153336	4.2306	1.153320	1.2873	1.151580	0.5306

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 20: XRD-Röntgenstrukturanalyse der Probe FL-21-09.

SIeve - FL-21-09.xml

Jun 10, 2021 10:50 AM (MINPET)

Phases (2)

Peaks (23 of 26)

Ev d (Å)	Ev I (%)	P1 d (Å)	D1 T (%)	(Å) h CQ	P2 T (%)
4 248578	51 0054	4 253050	22 1103	F2 u (A)	FZI(70)
3.852145	8.8483	4.255050	22.1105	3.847110	2.4313
3.339007	100	3.342840	107.3315		
3.301178	7.1608			2 0200 40	22.205
3.02//59	53.2041			3.028940	33.305
2.454285	11.6534	2.455500	6.9765	2.450150	4.0550
2.280428	14.8917	2.281560	7.8352	2.280150	5.5952
2.125955	9.4641	2.126530	5.2592		
2.091/30	3.9453	1 079070	2 6410	2.090450	4.6294
1 908896	4 3786	1.9/09/0	3.3415	1 907890	6 2613
1.869615	6.6819			1.871330	6.0282
1.818065	21.6192	1.817670	13.4164		
1.811842	8.5975	1 (71430	3 5410		
1.00/225	2.005	1.0/1420	3.3419		
1.541137	14.4128	1.540850	9.2305		
1.381950	8.5747	1.381700	5.6886		
1.371499	12.9304	1.371330	4.1859		
1.200033	7.300	1.200250	2.254		
1.199997	4.4698	1.199670	2.7906		
1.180067	5.9293	1.179580	2.576		
1.170090	1.3911			1.170040	0.0666
1.152607	11.0832	1.152480	2.0393	1.151580	1.2323

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 21: XRD-Röntgenstrukturanalyse der Probe FL-21-10.

SIeve	- FL-21-10.xr	nl				Jun 10,	2021 1	0:54 AN	1 (MINPET)
			Pha	ises (2))				
Num	Compound N	lameMineral N	ame QM	Peaks M	latched	I Ratio	I %	I/Ic	PDF #
12	Silicon Oxide Calcium Carbonate	Quartz, syn Calcite	S I	18 of 26 (69 7 of 28 (25%	%) 5)	0.95 0.21	81.90 18.10	3.15 3.39	01-085-0930 01-072-4582
100									6.0 Kine Mayring 1 (days (gauge
1111									
1Ē									
3									
1111				u					6
				1.1.1	6.11	m 111 H	1.1	111	l, 11, ⁰
			Dealer	(22 - 6	22)				
			Peaks	(22 01	23)				
<u>Ex d (</u>	<u>Å) ExI(%)</u>	P1 d (Å) P1	I(%) P	2 d (Å) I	P2 I (%)	-			
4.251967 3.342386 3.028740	100 19.4927	3.342840 94.	5692 3.0	028940 2	20.9484				

13.4654 100	4.253050	19.4813 94.5692		
19.4927	2 455500	6 4 47	3.028940	20.9484
3./333 11.8552	2.281560	6.147	2.280150	3.5193
4.061 3.5053 4.0325	2.126530	4.6339	2.090450	2.9118
4.5597	4 047670		1.871330	3.7917
12.3254 5.7139	1.81/6/0 1.671420	11.8212 3.1208		
10.4161 13.6791 7.0818	1.540850 1.381700	8.133 5.0122		
6.9108 7.1815	1.374930 1.371330 1.388350	6.147 3.6882		
2.4793 5.0869	1.255530 1.227750	2.4588		
5.6284 4.0182 5.3007	1.197270 1.184180 1.179580	2.0805	1.184580	0.1047
4.5027	1.152480	1.7968	1.151580	0.7751
	$\begin{array}{c} 13.4654\\ 100\\ 19.4927\\ 3.7333\\ 11.8552\\ 4.061\\ 3.5053\\ 4.0325\\ 4.5597\\ 12.3254\\ 5.57139\\ 10.4161\\ 13.6791\\ 13.6791\\ 13.6791\\ 13.6791\\ 13.6791\\ 5.6854\\ 2.4793\\ 5.6854\\ 2.4793\\ 5.0869\\ 5.6284\\ 4.0182\\ 5.3007\\ 4.5027\end{array}$	13.4654 4.25050 100 100 13.34284 1.3523 1.4552 2.281560 4.061 1.25257 1.25257 1.25257 1.25257 1.25254 1.6416 1.341660 1.341660 1.341660 1.341670 7.6618 6.9108 1.341700 7.6618 6.9108 1.341200 7.6654 1.341200 7.6654 1.341200 7.6654 1.341200 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6654 1.342500 7.6554 1.345500 1.35550 1.355	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $\textcircled{\sc c}$ 2021 International Centre for Diffraction Data. All rights reserved.

Anhang 22: XRD-Röntgenstrukturanalyse der Probe K33.

SIeve - K33.xml

Jun 18, 2021 1:40 PM (MINPET)

Phases (2)

Peaks (26 of 34)

				0 _	
<u>Ex d (A)</u>	Ex I (%)	P1 d (A)	<u>P1 I (%)</u>	P2 d (A)	<u>P2 I (%)</u>
14.091821	2.0813				
7.071597	13.5282				
4.718961	5.8019	4 256330	17 4325		
3.849386	3.0078	4.230330	17.4325	3.847110	3.6573
3.536155	11.9458				
3.342375	100	3.344370	99.0483		
3.029466	47.2274			3.028940	50.0993
2.457197	5.9444	2.457400	7.9239	2.490130	7.5040
2.281233	13.9843	2.281990	7.2305	2.280150	8.4167
2.236662	5.5453	2.237160	2.7734		
2.12/504	7.0563	2.128170	4.9524	2 000 450	6 0620
1.980831	4.3621	1.980280	2.4762	2.090430	0.9038
1.907119	8.9808			1.907890	9.4187
1.872763	10.7912			1.871330	9.068
1.818486	13.62/9	1.818400	12.4801		
1.542050	10 5061	1 541930	9.0134		
1.537348	4.9465	1.5 11550	5.0151		
1.438977	4.3478			1.437690	2.6052
1.382474	8.2252	1.382470	4.9524		
1 371865	13 799	1 372320	3 9619		
1.339593	4,9893	1.572520	5.5015		
1.283681	6.7855			1.282370	0.3507
1.256259	5.7306	1.256280	2.5753		
1.252079	4.0057	1 228700	1 3867		
1.207694	3.2502	1.220700	1.5007		
1.183667	5.0463	1.184340	2.1791	1.184580	0.2505
1.179231	4.918	1.180490	2.3772	1 177240	1 1022
1.1/0/33	D.U/40			1.1//240	1.1022

 \odot 2021 International Centre for Diffraction Data. All rights reserved.

Eigenständigkeitserklärung

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eigenständigkeitserklärung

Die unterzeichnete Eigenständigkeitserklärung ist Bestandteil jeder während des Studiums verfassten Semester-, Bachelor- und Master-Arbeit oder anderen Abschlussarbeit (auch der jeweils elektronischen Version).

Die Dozentinnen und Dozenten können auch für andere bei ihnen verfasste schriftliche Arbeiten eine Eigenständigkeitserklärung verlangen.

Ich bestätige, die vorliegende Arbeit selbständig und in eigenen Worten verfasst zu haben. Davon ausgenommen sind sprachliche und inhaltliche Korrekturvorschläge durch die Betreuer und Betreuerinnen der Arbeit.

Titel der Arbeit (in Druckschrift):

Hohgant-Sandstein als potentielles Hartgestein

Verfasst von (in Druckschrift): Bei Gruppenarbeiten sind die Namen aller Verfasserinnen und Verfasser erforderlich.

Name(n): Coray

Vorname(n): Maira Noemi

Ich bestätige mit meiner Unterschrift:

- Ich habe keine im Merkblatt "Zitier-Knigge" beschriebene Form des Plagiats begangen.
- Ich habe alle Methoden, Daten und Arbeitsabläufe wahrheitsgetreu dokumentiert.
- -Ich habe keine Daten manipuliert.
- _ Ich habe alle Personen erwähnt, welche die Arbeit wesentlich unterstützt haben.

Ich nehme zur Kenntnis, dass die Arbeit mit elektronischen Hilfsmitteln auf Plagiate überprüft werden kann.

Ort. Datum

Ort, Datum	Unterschrift(en)
Zürich, 29. Juli 2021	M. Coray
	0

Bei Gruppenarbeiten sind die Namen aller Verfasserinnen und Verfasser erforderlich. Durch die Unterschriften bürgen sie gemeinsam für den gesamten Inhalt dieser schriftlichen Arbeit.