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A B S T R A C T   

Bayesian Networks (BNs) are commonly used to model socio-ecological systems, as their graphical structure 
supports participatory modelling, they can integrate quantitative data and qualitative knowledge, and account 
for uncertainty. Although the spatial and temporal dimensions are important in socio-ecological systems, there is 
a lack of openly available and easy-to-use tools to run BNs with spatial data over time. Here, we present gBay 
(gbay.ethz.ch), an online platform where users can link their BNs to spatial data, run the network iteratively to 
incorporate dynamics and feedbacks, and add geo-processing calculations to account for spatial interactions. We 
demonstrate the use of this tool on the examples of a modelling a regulating ecosystem service, where we account 
for neighbourhood effects, and land-use decisions, where we include regional-level boundary conditions. The 
gBay platform supports users with its graphical interface and instructive wiki page, and provides a step towards 
more accessible and flexible socio-ecological modelling.   

1. Introduction 

As ecosystems undergo changes that jeopardize their capacity to 
provide essential services to society (Cardinale et al., 2012; Foley et al., 
2005), natural resource managers and landscape planners face chal-
lenging decisions on sustainable landscape development (Wu, 2013). 
Modellers aim to support these decisions, e.g. through mapping 
ecosystem services and assessing trade-offs between them (Carpenter 
et al., 2009), or predicting scenarios of future land use (Carpenter et al., 
2015; Verkerk et al., 2018). However, modelling complex 
socio-ecological systems requires integrating various types of informa-
tion (Hamilton et al., 2015a), such as Earth Observation and in-situ data, 
empirical or process-based models, and socio-economic data. Models are 
often associated with high uncertainties, due to both the inherent vari-
ability of socio-ecological systems and the common lack of data 
(Ascough et al., 2008; Ropero et al., 2013). At the same time, local ex-
perts and stakeholders often have valuable knowledge about their 
socio-ecological systems, and involving them in the modelling process 
facilitates communication and learning (Ruckelshaus et al., 2013; Voi-
nov and Bousquet, 2010). Involving stakeholders and producing cred-
ible results that can support decision-making requires a flexible and 

transparent modelling process (Jakeman et al., 2006; Voinov et al., 
2016). 

An increasingly common approach to deal with these challenges is 
the use of Bayesian Networks (BNs), directed graphs where variables are 
linked through conditional probabilities (Marcot and Penman, 2019). 
Key advantages of BNs include their capacity to integrate qualitative and 
quantitative information, their explicit treatment of uncertainty, and 
their graphical structure (Uusitalo, 2007). The graphical structure of a 
BN represents causalities in the modelled system, which increases 
modelling transparency in comparison to black-box (e.g. empirical) 
models (Jakeman et al., 2006), and facilitates communication with 
stakeholders (Voinov and Bousquet, 2010). For example, co-developing 
BNs with stakeholders has been used to address ambiguities in water 
management (Henriksen et al., 2012) and to build a common under-
standing of an agricultural socio-ecological system (Salliou et al., 2017). 
A BN of forest ecosystem services provided a common language for ex-
perts from different fields, thus supporting planning (Gonzalez-Redin 
et al., 2016). 

Different types of information can be integrated in a BN, since the 
links between variables in a BN can be quantified individually (Borsuk 
et al., 2004). Often, information on some components of the modelled 
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system is already available in the form of empirical and process-based 
models, which can be translated to conditional probabilities (Borsuk 
et al., 2004; Stritih et al., 2019). BNs can also learn relationships be-
tween variables directly from data (Stelzenmüller et al., 2010), such as 
remote sensing (Dlamini, 2010), water quality measurements (Ames 
et al., 2005), or species observations (Hamilton et al., 2015b). When 
data are scarce or unavailable, they can be supplemented with expert 
knowledge (Ames et al., 2005; Borsuk et al., 2004; Hamilton et al., 
2015b; Pollino et al., 2007). 

The probabilistic structure of BNs means that uncertainties are 
explicit and propagated through the network. Socio-ecological systems 
are inherently complex and variable, leading to high uncertainties that 
are exacerbated by limited data availability (Regan et al., 2002). It is 
particularly important to consider these uncertainties in risk assess-
ments, where unlikely extreme events are relevant (Grêt-Regamey and 
Straub, 2006; McDonald et al., 2016). BNs can be used to identify 
knowledge gaps (Hamilton et al., 2015b; Stritih et al., 2019), and can 
easily be updated as soon as new information becomes available 
(Hamilton et al., 2015b). 

In environmental applications, the spatial and temporal components 
are often crucial (Carpenter et al., 2009). The spatial composition of 
ecosystems and land use in landscapes is essential to their function, and 
needs to be taken into account when trying to understand landscape 
change or identify trade-offs or synergies between ecosystem services 
(Nelson et al., 2009; Raudsepp-Hearne et al., 2010). Therefore, models 
of socio-ecological systems are often spatially explicit. Spatially explicit 
BNs, where the network is linked to a raster, have been used to model 
scenarios of future land use (Carpenter et al., 2015; Celio et al., 2014) 
and map ecosystem services (Gonzalez-Redin et al., 2016; Grêt-Regamey 
et al., 2013; Landuyt et al., 2013; Villa et al., 2014). The temporal 
dimension has been addressed less frequently in BN-modelling, as BNs 
are most commonly static, and the construction of dynamic BNs is often 
seen as cumbersome (Uusitalo, 2007). Dynamic BNs use the “time--
sliced” approach (Kjaerulff and Madsen, 2013), where each variable of 
the system is represented by a separate node in each time step, resulting 
in a copy of a network for each time slice, with temporal links between 
these iterations. This approach can be used to model landscape changes 
over time (Chee et al., 2016). 

In most spatial applications of BNs so far, the models have been run 
for every individual pixel of a raster. A major limitation of this approach 
is that is fails to take into account spatial interactions (Landuyt et al., 
2015; Stritih et al., 2019) and cross-scale effects, which often have an 
important influence both on ecological and socio-economic processes 
(Peters et al., 2007). For example, a habitat is only suitable for a species 
if it is large enough to support a viable population or connected to other 
habitats. Farmers’ decisions to cultivate a parcel of land may depend on 
the decisions of other farmers or an overarching policy that prescribes 
certain amounts of ecological set-aside to be eligible for subsidies (Celio 

and Grêt-Regamey, 2016). In case of ecosystem services such as flood 
protection or pollination, the provision and demand for the services do 
not occur at the same location (Bagstad et al., 2013), and the provision 
of services is related to the spatial composition of ecosystems in the 
landscape (Grêt-Regamey et al., 2014; Syrbe and Walz, 2012). There-
fore, interactions across space at different levels should be taken into 
account when modelling socio-ecological systems. 

Several tools have been developed to run BNs with spatial data (see 
Table 1), but most do not explicitly support iterative inference over time, 
feedback loops, or spatial interactions. For such more complex appli-
cations, modellers typically use the API of common BN software pack-
ages such as HUGIN or Netica (P�erez-Mi~nana, 2016) to link their BNs to 
spatial data (Celio et al., 2014; Chee et al., 2016; Grêt-Regamey et al., 
2013; Sun and Müller, 2013). However, there is a lack of openly avail-
able and easy-to-use tools (i.e. including a graphical user interface), 
which would allow users to run spatially explicit BNs over multiple time 
steps. 

In this paper, we present gBay, an online platform with a simple 
graphical interface that links BNs to spatial data. Users can run their BNs 
iteratively, over multiple time steps, with raster or vector data. In 
addition, the platform includes the possibility to account for spatial in-
teractions, such as neighbourhood effects. We describe the architecture 
of the platform and its use. Furthermore, we illustrate how accounting 
for effects at different spatial scales, such as neighbourhood effects and 
regional boundary conditions, can help improve the realism and reduce 
uncertainties in models of ecosystem services and land-use change. We 
discuss the advantages of BNs and the gBay platform, as well as the 
limitations of this modelling approach and ongoing challenges. 

2. Methods 

2.1. Bayesian Networks 

A Bayesian Network is a directed, acyclic graph with an underlying 
joint probability distribution (Jensen, 2001; Kjaerulff and Madsen, 
2013; Pearl, 1988). It consists of nodes representing variables, each 
with a set of mutually exclusive states. The states of a node can be cat-
egorical (e.g. land use types) or quantitative (e.g. the distance to the 
nearest forest). The links between nodes represent the (directed) causal 
relationships or dependencies between these nodes (e.g. X→Y). The 
joint probability distribution P(X, Y) of the nodes is condensed in 
conditional probability tables (CPTs), which contain the probability 
distribution of each node for each combination of its parent nodes’ 
states. The probability that node Y is in state y can be calculated by 
summing its conditional probabilities over the states x of its parent 
nodes: P(Y ¼ y) ¼

P
xP(Y ¼ y |X ¼ x)*P(X ¼ x), in a process called 

marginalization (Kjaerulff and Madsen, 2013). 
Fig. 1 shows an example of a BN, which predicts land-cover change in 

Table 1 
Overview of existing tools for spatial Bayesian Network applications.  

Tool GUI Requirements Data 
type 

Dynamics/ 
Feedbacks 

Spatial interactions Development 
ongoing 

Availability Publications 

GeoNetica Yes Netica Raster No No Yes Commercial 
https://www.norsys.com/W 
ebHelp/NETICA/X_GeoNetica. 
htm 

Mayfield et al. 
(2018) 

PMAT (Probabilistic 
Map Algebra tool) 

Yes QGIS and 
Netica 

Raster No No No Open 
https://github.com/DriesLan 
duyt/PMAT 

Landuyt et al. 
(2015) 

Bnspatial R package No R Raster Potentially No Yes Open 
http://github.com/dar 
iomasante/bnspatial 

Masante 
(2019) 

GeoBUGS No WinBUGS Vector Yes Partially (spatial 
autocorrelation) 

No Open 
https://www.mrc-bsu.cam.ac. 
uk/software/bugs/the-bu 
gs-project-winbugs/ 

Thomas et al. 
(2004)  
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a system where meadow abandonment leads to forest encroachment. 
The future land cover (LC_t1) is a child node of the current land cover 
(LC_t0) and the intensity of agricultural use. The causal relationships 
between the nodes are quantified in the CPT of node LC_t1, which 
specifies the belief that the future land cover will be either a meadow or 
a forest for each combination of the states of its parent nodes. 

Once the BN is compiled, it can be updated for specific cases by 
adding evidence. Evidence can be data (e.g. when we know the type of 
land cover in a pixel) or scenarios (e.g. when we explore what happens 
in a system if agricultural use changes). When we know the state of a 
node with 100% certainty, this is called hard evidence (e.g. that the 
agricultural intensity of a pixel is low), while soft evidence contains 
some uncertainty and is in the form of a probability distribution (e.g. our 
observation indicates that the land cover is a meadow with 70% prob-
ability and a forest with 30% probability). 

When evidence is added to the network, the joint probability dis-
tribution is updated through a process called inference, which results in 
a posterior probability distribution (PPD) of all the nodes in the 
network, thus providing information about the expected (most likely) 
state of target nodes, as well as the associated uncertainty (Jensen, 
2001). Evidence can also be propagated along a chain of nodes (e.g. 
X→Y→Z) according to the chain rule: P(X, Y, Z) ¼ P(Z|Y)*P(Y|X)*P(X), 
and from child nodes to parent nodes. For example, in the network in 
Fig. 1, knowledge about current land cover could be used to infer the 
past land cover. 

2.2. Coupling BNs and spatial data with gBay 

Here, we present gBay (Bayesian Networks with geo-data), an online 
tool to link a BN to spatial data and run a process over multiple time 
steps. Fig. 2 illustrates the functionalities of the gBay platform. Spatial 
data is used as evidence on specific nodes in a BN. Inference is then 
performed for each pixel or object of the input data, where the output is 
a probability distribution across the possible states of target nodes for 
each spatial unit. The outputs of inference can be used as inputs in the 
next iteration to account for temporal dynamics (see Section 2.3). In 
addition, spatial inputs or outputs can be processed with a Python script 
to account for spatial interactions at different scales (see Section 2.4). 

The gBay platform consists of an online graphical user interface 
(Fig. 3) where the users can upload a network (in the.dne format), 
developed in Netica or a similar BN software. The uploaded network is 
visualized in the GUI, where users can select one or more “target nodes”, 

the PPD of which they wish to calculate. Spatial data can be added to the 
network in the form of raster (a GeoTIFF file for each input node) or 
vector files (a shapefile or geodatabase, with attributes corresponding to 
input nodes) by dragging the file to the designated location in the 
network or by using the menu provided for each node. gBay can take 
into account both hard and soft evidence (see Table 2). To set hard ev-
idence, the input raster (or attribute table of the vector data) contains 
only one value per pixel (or object). For soft evidence, the input raster or 
vector file has a band (or attribute) for each state of the input node. In 
addition, users can set non-spatial hard or soft evidence (for the whole 
area) by simply clicking on the state of the node or entering the soft 
evidence probabilities. All configurations (links, iterations, hard and soft 
evidence) including the corresponding geo-data can be saved and 
reloaded later if necessary. 

Fig. 1. Example of a simple Bayesian Network 
representing land cover change, where the future 
land cover (LC_ t1) is a child node of the current 
land cover (LC_t0) and agriculture intensity 
(agr_int), with the corresponding conditional 
probability table (CPT). In this network, hard evi-
dence has been added to the node ‘agriculture in-
tensity’ and soft evidence to the node ‘land cover 
t0’. Marginalization is used to calculate the poste-
rior probability that the future land cover is a 
meadow P(LC_t1 ¼ meadow), with the corre-
sponding probabilities in the CPT shown in bold.   

Fig. 2. Conceptual model of the gBay platform. Spatial inputs can be used as 
direct inputs to a BN, or processed using a Python script. The output of the BN is 
a spatial dataset with a probability distribution for each pixel or object. The 
output can be an input to the next time step in an iterative BN, to incorporate 
dynamics and feedbacks. 
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The output has the same geometry as the input spatial files, and 
contains the probability of each state of the target node for each spatial 
unit (i.e. the whole PPD in a multi-band raster or attribute table), as well 
as information about the most likely state. In addition, Shannon’s 

evenness index of the PPD is calculated: J ¼ H/Hmax, where H ¼
PN

i¼1
pi⋅ 

log2pi , Hmax ¼ log2(N), where pi is the probability of state i and N is the 
number of states. The index is a standardized measure of entropy, which 
expresses uncertainty and can be compared between nodes with 
different numbers of states (Marcot, 2012). It has values between 0 and 
1, where 1 denotes a uniform distribution between all possible states 
(maximum uncertainty), and 0 denotes complete certainty about the 
state of the node. For continuous target nodes, the output additionally 
contains information about the mean, median, and standard deviation of 
the PPD. 

Running BNs with large spatial data can be computationally inten-
sive. At the moment, gBay runs on a virtual server (Ubuntu 16.04.4, with 
6 cores at 3 GHz), and its processing speed depends on the size of the 
network and spatial data. For example, when running a network of 17 
nodes and 1128 CPT rows with four input rasters, gBay can process 
around 4000 pixels per second. When processing large networks or 
datasets, users can receive the outputs via email in case of a browser 
timeout. User data (including BNs, spatial data and scripts) are auto-
matically deleted from the server after one day. 

2.3. Temporal dynamics through iterations 

Bayesian Networks usually represent a static state of the studied 
system, and one of their major drawbacks is that they cannot incorporate 
feedback loops (Uusitalo, 2007). This limitation can be overcome by 
dynamic BNs, using the so-called “time-slicing” approach (Kjaerulff and 
Madsen, 2013), where each time step is represented by a separate 
network. However, developing such dynamic BNs can be very cumber-
some (Uusitalo, 2007). In gBay, a simplified version of the time-slicing 
approach is implemented, where the BN is run iteratively, in multiple 
time steps, and the outputs of one time step are used as inputs to the 
next. 

For example, when modelling land-cover change, we start with a 

map of current land cover (LC_t0). During one time step, land-cover 
change takes place, and through inference, we obtain the probability 
distribution of land cover after the first time step (LC_t1, e.g. after 5 
years). This LC_t1 then becomes the input for starting land use in the 
second time step; in other words, the result of one iteration is used as 
starting condition for a second iteration (see Celio et al., 2014, for an 
example). 

On the gBay platform, BNs can be run iteratively by specifying 
temporal links (between nodes representing time steps) and the number 
of iterations. For example, if the output node (LC_t1) is selected as a 
“Link” node, an arrow appears that can be connected to the corre-
sponding input node (LC_t0). Multiple links can be used reflecting 
different variables that are connected over time. 

2.4. Multi-scale processes using Python scripts 

The gBay platform can account for spatial processes at different 
levels corresponding to different types of geoprocessing operations 
(Tomlin, 1994). In the basic mode of gBay, inference is performed at the 
local level, for each individual pixel or object. However, gBay also 
provides the option to consider processes at different levels. Calculations 
across scales can be implemented by running an intermediate processing 
Python script (indicated with a script icon in Fig. 2). 

At the focal level, a Python script can be used to take into account 
the neighbouring pixels or objects, e.g. to obtain the land cover of 
neighbouring pixels within a specified window, or calculate the distance 
to the nearest pixel of a specified land cover type. In the land-cover 
change example, forest encroachment on a meadow depends on the 
distance to the nearest forest patch, which can be calculated from the 
input land cover raster using a python script (see Appendix A). This 
information can be used to set new evidence on a node (e.g. “Distance to 
forest”). 

At the zonal level, the Python script evaluates pixels or objects across 
the whole study area, for example to check whether regional boundary 
conditions have been reached. An example of such boundary conditions 
is a minimum percentage of a specific land use category, defined by an 
agricultural policy. 

A Python script can be run before performing inference, i.e. to 

Fig. 3. The gBay interface, where the 
uploaded BN is visualized. The orange- 
coloured nodes indicate that spatial data 
has been added as evidence, and the names 
of the datasets are displayed. Icons next to 
the node names indicate the target nodes 
and nodes used in the intermediate process-
ing Python script. When hovering over a 
node, a set of options appear (to upload a file 
with spatial evidence, set the node as a 
target, use it in a Python script, link it to 
another node across time steps, or set soft 
evidence – likelihood). In this case, ‘land 
cover t1’ is linked across time steps to ‘land 
cover t0’ (indicated with an orange arrow). 
In the panel on the left, the number of iter-
ations can be specified, and a Python script 
can be uploaded. The configuration (the 
network, evidence, spatial data, target 
nodes, intermediate processing options) can 
be saved and re-loaded. For long processing 
times, users can receive a link to their results 
via email in case of a browser timeout. The 
console can be viewed in order to monitor 
the processing. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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calculate spatial evidence (such as focal statistics) based on the input 
data, or in between iterations. It can also be used to modify evidences 
over time (e.g. to implement a policy that changes between time steps). 
gBay currently supports intermediate processing scripts written in Py-
thon, using openly available libraries including gdal, ogr, numpy, and 
math. Python was chosen as the language of the intermediate processing 
scripts since it is one of the most widely used programming languages, 
with a large community, particularly in spatial modelling, and provides 
many open access libraries. A set of scripts to model spatial interactions 
at the focal and zonal levels are available on the gBay wiki and can be 
downloaded and adapted. In addition, advanced users can develop their 
own scripts, where the input and output format must match the format 
used by gBay (a list of nodes, containing an array of probabilities across 
states for every pixel or object, see Appendix A for details). It is 
important to note that the processing time of gBay increases when more 
complex geoprocessing is performed. Two examples of BN models that 
incorporate spatial interactions are described in more detail below. 

2.5. Case studies 

2.5.1. Avalanche protection in Davos: accounting for neighbourhood effects 
Protection from snow avalanches is one of the most important 

ecosystem services provided by forests in the Swiss Alps (Grêt-Regamey 
et al., 2008). An avalanche release is less likely inside a forest (Bebi 
et al., 2009), and forests also reduce the mass and velocity of avalanches 
that flow through them (Feistl et al., 2014). The release and size of av-
alanches depend on terrain characteristics and snow conditions, the 
protection capacity of the forest is related to its structure and species 
composition, and the value of the service depends on the risk to settle-
ments and infrastructure. A BN was used to combine Earth Observation 
data on terrain and forest structure, existing process-based and empir-
ical models about the avalanche process, and expert knowledge about 
risk factors. The BN was run with spatial data to map the provision and 
demand for avalanche protection in the region of Davos, Switzerland 
(Stritih et al., 2019). The resulting maps of avalanche protection contain 
large uncertainties, and a sensitivity analysis was used to identify the 
key sources of uncertainty in the model. One of the main sources of 
uncertainty was the definition of potential release areas of avalanches. 

The probability of an avalanche release depends on topography 
(slope, curvature, terrain roughness), as well as snow conditions. In the 
BN, the topographical factors were combined using fuzzy logic (Vei-
tinger et al., 2016). For each factor, a membership function (describing 
the probability that a pixel belongs to a potential release area as a 
function of the factor) was defined by experts. The membership function 
describes the probability that a pixel belongs to a potential release area 
as a function of the factor). For example, the factor of slope has a 
trapezoid-like membership function, where avalanche releases can 
occur on slopes between ca. 28 and 55�, but the release probability is 
highest between 35 and 45�. The factors of slope, curvature, and terrain 
roughness were then combined using a fuzzy-AND operator (for details, 
see Veitinger et al., 2016) to fill the CPT of the node “Release”. This way, 
an avalanche release probability can be calculated for each pixel of the 
study area. 

This pixel-based approach neglects the interactions between neigh-
bouring spatial units, i.e. whether a release pixel is connected to other 
release pixels. However, the probability of an avalanche release depends 
on the size of the potential release area (Bühler et al., 2013). An 
avalanche release can only occur when there is a sufficient volume of 
snow to be released, which depends on the amount of snow (i.e. the 
avalanche release depth, which is estimated using a probability distri-
bution of maximum new snow, based on long-term observations (SLF, 
2017)) and the size of the release area. 

In order to incorporate neighbourhood effects, we implemented an 
updated version of the BN from Stritih et al. (2019) in gBay. The model is 
implemented in two iterations (see Fig. 4). First, the avalanche release 
probability of each individual pixel is calculated based on its slope, 
curvature, and roughness. Then, these probabilities are used as an input 
to a Python script that calculates the size of the release area. Spatial 
metrics (such as patch sizes) are commonly calculated based on Boolean 
class memberships – either a pixel is a release area, or it is not. However, 
since the definition of release areas is uncertain, such an area calculation 
would depend on an arbitrary threshold probability (e.g. 50%) at which 
we consider a pixel to be in a release area. To avoid this problem, we 
used a fuzzy geographical area calculation (Fonte and Lodwick, 2004). 
We defined a set of probability thresholds α (between 0 and 1). For each 
threshold, all pixels with P(release) > α were considered to be release 
pixels, and adjoining release pixels form a release area. A release area 
size was calculated for each α, and based on the different sizes for 
different threshold probabilities, we could estimate a probability dis-
tribution of release area size (see Appendix B for an illustration). 

In the second iteration, the probability distribution of release area 
size was used as soft evidence on the node “Release area size”. Combined 
with the maximum new snow height, the release area defined whether 
the snow volume (release area*new snow height) was sufficient for an 

Table 2 
Overview of spatial inputs and outputs for the gBay platform. The inputs can be 
in raster or vector form, and may represent hard evidence (certain knowledge of 
a node’s state) or soft evidence (a probability distribution), while the outputs 
represent the whole probability distribution across the states of the target nodes.   

Input format Input values Output 

Raster .tif file per input 
node (same 
resolution and 
extent) 

Hard evidence: 
Single-band raster of 
the known value of a 
node (discrete or 
continuous) 

target.tif: 
Multi-band raster of 
the probability 
distribution across the 
states of the target 
node: 
band 1: probability of 
state 1 
band 2: probability of 
state 2 
… 
band n: probability of 
state n 
band nþ1: most 
probable state 
target_stats.tif: 
band 1: Evenness 
index 
For continuous nodes: 
band 2: mean 
band 3. median 
band 4. standard 
deviation 

Soft evidence: 
Multi-band raster of 
the probability 
distribution across 
the states of a node 
band 1: probability of 
state 1 
band 2: probability of 
state 2 
… 
band n: probability of 
state n 

Vector one.shp file or 
geodatabase.gdb 
including one feature 
class (reads the 
attribute table) 

Hard evidence: 
Attribute with the 
name of the input 
node, where the value 
corresponds to the 
known value of the 
node (discrete or 
continuous). 

Same geometry as 
input with attributes 
representing the 
probability 
distribution across the 
states of the target 
node: 
target_s1: probability 
of state 1 
target_s2: probability 
of state 2 
… 
target_sn: probability 
of state n 
target_snþ1: most 
probable state 

Soft evidence: 
Values in the 
attribute table 
represent the 
probability 
distribution across 
the states of a node: 
input_s1: probability 
of state 1 
input _s2: probability 
of state 2 
… 
input _sn: probability 
of state n  
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avalanche release. If the snow volume was below the threshold for small 
snow avalanches as defined by the Canadian classification of avalanche 
sizes (SLF, 2018), we assumed that the release will not occur, setting the 
“Release (corrected)” probability to zero. 

The updated BN model of avalanche protection was run in gBay with 
spatial inputs (at a 5-m resolution) for the Dischma valley in Davos. The 
whole network is illustrated in Appendix B.1. The release probability, 
the total provision of avalanche protection and the associated uncer-
tainty were calculated, and compared with the results of the previous 
model that did not account for release area size. 

2.5.2. Implementing boundary conditions for land-use change in the 
Entlebuch UNESCO biosphere 

Land-use decisions have a strong impact on landscape development, 
and are influenced by an interplay of biophysical and socio-economic 
factors, policies, and personal preferences. Celio and Grêt-Regamey 
(2016) used a participatory approach to develop a model of farmers’ 
decisions and resulting land-use change in the Entlebuch UNESCO 
Biosphere in the Canton of Lucerne, Switzerland. After identifying po-
tential factors influencing land-use decisions through literature review, 
an expert group was formed. The experts weighted the influencing fac-
tors to find a subset of the most relevant variables, and defined the 
causal relations between them. Then, they defined node states and the 
conditional probabilities. The BN was updated with local actors’ 
knowledge, and validated through a review by experts (Celio et al., 
2012). For a detailed description of the participatory modelling process, 
see Celio et al. (2014). 

The resulting BN predicts land-use change based on biophysical 
factors (such as slope and potential natural vegetation), agricultural 
policy (amount and types of direct payments), zoning (e.g. vicinity to a 
residential area), and individual farmers’ characteristics, such as their 
education, whether they have a part-time business, and their view on 
ecological policies (see Fig. 5). The land-use change probabilities are 
defined for a time-step of 5 years and the BN can be run iteratively to 
model longer periods. The BN was used to model scenarios of agriculture 

policy (AP; old agricultural direct payments or the more ecology- 
oriented agricultural policy implemented in 2014) and farmer charac-
teristics (production- or ecology- oriented farmers). The scenario maps 
illustrated the trends of the different combinations of APs and actor 
characteristics. However, the scenarios were calculated only taking into 
account individual parcel information, not considering limitations on 
the regional scale, such as prescribed minimum amounts of specific land- 
use types to support cattle production. The cell-level approach means 
that the exogenous limits of farmers’ decisions were neglected. 

In order to account for the regional boundary conditions, we adapted 
the BN developed by Celio and Grêt-Regamey (2016) for agricultural 
land use, and implemented it in gBay. The limits of land-use change were 
defined based on the maximum number of cattle grazing per hectare, as 
defined by the Federal Office for the Environment (2013). Assuming that 
the number of cattle in the region remains constant, we estimated the 
minimum area of extensive, medium- and intensive agricultural land 
required to fulfil this legal obligation. This limited the conversion of 
agriculture to other land-use types through extensification and aban-
donment. When certain minimum areas of agricultural land-use had 
been reached, no further cells were converted to other land-use types. 
This boundary condition was implemented at the end of every iteration 
(time step) of the network in gBay. Using a Python script, we checked 
the amount of extensive, medium-intensive, and intensive-agriculture 
cells across the whole study area. If the required amount of a certain 
agricultural land-use category was not reached, the script searched 
among the cells that had been converted from other land-use categories 
to find those where the change was least likely, and converted them back 
to their previous probability distribution until the minimum area of the 
category was reached. In other words, land-use change was prevented by 
the minimum-amount-condition in those cells where it was least likely 
to occur. This “roll-back” mechanism is explained in more detail in 
Appendix C. 

Fig. 4. Part of the avalanche protection BN used to calculate the avalanche release probability. In the first step, the per-pixel release probability is calculated based 
on the local slope, curvature, and terrain roughness. The release probability is an input to a Python geoprocessing script, which calculates the fuzzy size of each 
connected release area. In the second step, this size influences the release probability (‘Release (corrected)’). The nodes show the prior probability distributions, 
before evidence is added to the network. 
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3. Case study results 

3.1. Avalanche protection 

We mapped the provision of avalanche protection and associated 
uncertainty in the Dischma valley in Davos, using a BN adapted from 
(Stritih et al., 2019). Since the definition of avalanche release areas was 
a major source of uncertainty in the model, we adapted the model to 
account for neighbourhood effects in the release process. Fig. 6a and 6b 
show the resulting maps with and without accounting for spatial in-
teractions, where the colours indicate the mean value of avalanche 
protection provision (expressed in height of snow stopped) and the 
uncertainty (entropy of the posterior probability distribution). The most 
important areas providing avalanche protection are steeper, densely 
forested areas, but the model shows a high spatial heterogeneity and 
high uncertainty. In the basic model (without neighbourhood effects), 
the mean coefficient of variation across the whole study area amounts to 
95%. When taking the size of the release area into account, the spatial 
pattern remained similar, but the uncertainty was reduced (mean CV of 
87%, see Appendix B, Table B.2). 

Fig. 6c and 6d show the release probability without and with the 
correction for spatial interactions (release area size). The BN that ac-
counts for the release size results in fewer release areas (Fig. 6d), as 
smaller areas are less likely to reach a sufficient volume of snow for an 

avalanche release. In addition, in areas that are originally assigned a low 
release probability, the probability is additionally reduced as they are 
unlikely to form part of a large release area. Thus, a clearer spatial 
pattern of potential release areas emerges, with the mean entropy (un-
certainty) of the release probability map reduced from 29% to 19% (see 
Appendix B, Table B.2). 

3.2. Land-use decisions 

The BN of agricultural land-use decisions in the Entlebuch was run in 
the iterative mode in gBay, with and without the inclusion of boundary 
conditions (minimum area of medium- and intensive agriculture due to 
legal requirements for cattle breeding). The resulting land-use maps and 
distribution of land-use types are shown for two scenarios (production- 
oriented farmers with the old direct payment system and ecology- 
oriented farmers with the new agricultural policy) across three time 
steps (Fig. 7). In both scenarios, the boundary conditions had an effect 
on the final land-use change. 

In the ecology-oriented scenario, the farmers’ decisions drive 
extensification, leading to a rapid loss of intensive agricultural land 
when no limits are implemented. When the boundary conditions are 
implemented, the minimum is reached very quickly (within one time 
step), preventing further land-use change. In the production-oriented 
scenario, the boundary conditions have a smaller effect, as farmers are 

Fig. 5. BN for agricultural land-use decisions in the Entlebuch, where land-use change is driven by spatial factors (orange, mainly biophysical factors), agricultural 
policy (grey), farmer characteristics (green). The target node is depicted in yellow. Intermediate nodes are shown in blue, and nodes used in the Python script to 
implement boundary conditions are indicated with a script icon (Source of the BN: Celio and Grêt-Regamey, 2016). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

A. Stritih et al.                                                                                                                                                                                                                                   



Environmental Modelling and Software 127 (2020) 104658

8

more likely to maintain their intensive agriculture. However, the 
medium-intensive plots are converted to extensive use if the minimum 
limits are not implemented. 

4. Discussion 

In this paper, we presented gBay, an openly available online platform 
for spatially- and temporally-explicit Bayesian Networks. The platform 
offers an easy-to-use GUI to run BNs with spatial data, over multiple time 
steps. As such, it aims to facilitate spatial BN modelling of socio- 
ecological systems, by including the temporal component and spatial 
interactions, as well as making it more accessible to practitioners. BN 
models can be used to integrate different types of information, account 
for uncertainty, and can facilitate participatory modelling. In the 
following, we discuss how the gBay platform can help users draw on 
these advantages, as well as the associated challenges and limitations. In 
addition, we discuss the implications of our case studies for landscape 
planning. 

4.1. Integrating information across scales 

Data on socio-ecological systems is becoming increasingly available 
through sources such as Earth Observation and social media, and in-
formation is also available in the form of local actors’ or expert 
knowledge. BNs are well suited to integrating these different types of 
information, as is illustrated in the avalanche protection case study, 
where remote sensing inputs were combined with process-based, 
empirical models and expert knowledge (Stritih et al., 2019). 

However, while BNs are commonly used to integrate information about 
a static system, the temporal and spatial are often not explicitly repre-
sented in BNs, although they are essential in most socio-ecological sys-
tems (Hamilton et al., 2015a). 

The gBay platform provides the possibility to incorporate dynamics 
by using the iterative BN approach, which can include feedback loops, 
thus addressing one of the major limitations of BN models (Kelly 
(Letcher) et al., 2013; Uusitalo, 2007). However, the iterative BNs are 
mainly suitable for systems where one (or few) variables change over 
time (e.g. land-use change), while other variables act as drivers of this 
change (such as state-and-transition models, see Chee et al., 2016), and 
feedbacks only occur between time steps. For more complex dynamic 
interactions, other modelling approaches, such as coupled-component 
models or system dynamic models, may be more appropriate (Kelly 
(Letcher) et al., 2013; Lauf et al., 2012; Schreinemachers and Berger, 
2011). 

In addition to the temporal component, gBay can also account for 
processes that occur at different spatial scales or organizational levels. 
Socio-ecological systems are influenced by different processes at 
different scales (Verburg et al., 2004), and interactions between these 
processes across scales can result in non-linear dynamics or threshold 
effects (Peters et al., 2007). In BN models, processes at higher organ-
isational levels (e.g. regional policies, market conditions, climate) are 
often represented by a node in the network (Celio et al., 2014; 
Grêt-Regamey et al., 2013; Kleemann et al., 2017), but potential feed-
backs from the lower to the higher level are not accounted for. Using the 
Python module in gBay, the cumulative effects at the local level can be 
calculated and used to update the higher-level node in the next time 

Fig. 6. Maps of avalanche protection in the Dischma valley, Davos: a) & b) The value of avalanche protection provision, expressed in height of snow stopped, with 
the associated uncertainty; c) & d) The probability of an avalanche release; without taking into account the neighbourhood effect in the avalanche release process (a 
& c) and with the neighbourhood effect calculated in gBay (b and d). 
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step. For example, while land-use decisions the level of individual par-
cels depend on regional policies, rapid land-use change across many 
parcels may in turn affect the policies in a feedback effect that can be 
accounted for in gBay. 

While the Python module increases modelling flexibility and allows 
us to incorporate spatial interactions or boundary conditions, the in-
termediate calculations used to modify BN inputs or outputs should be 
compatible with the probabilistic logic of BNs. The explicit treatment of 
uncertainties is a major advantage of BNs, but it is challenging to include 
the information about the whole probability distribution per each pixel 
in spatial calculations. A simple approach is to set a threshold proba-
bility (each pixel with a probability of forest above 50% is considered a 
forest in a neighbourhood calculation). However, this means a loss of 
information about the probability distribution, and results can be 
strongly affected by the arbitrary threshold (Arnot et al., 2004). To deal 
with this, fuzzy landscape metrics can be applied to account for uncer-
tain membership in a class (e.g. land cover) (Arnot et al., 2004; Fonte 
and Lodwick, 2004), such as the fuzzy area calculation used in the 

avalanche protection example. However, these do not account for 
variability in spatial processes (e.g. flows). In ecosystem services as-
sessments, the directional flow between service providing and receiving 
areas is important. To account for ES flows in space in a probabilistic 
manner, Johnson et al. (2012) have used a combination of BNs and 
agent-based models that simulate the flow of ES units. Such an approach 
would add an additional level of complexity, but offers a probabilistic 
perspective on spatial processes that should be addressed. 

4.2. Dealing with uncertainty 

Socio-ecological models often contain high uncertainties, partly due 
to limited data, measurement errors, and subjective judgement, but 
partly also related to the inherent spatial and temporal variability of the 
modelled systems (Regan et al., 2002). These uncertainties should be 
acknowledged and taken into account in decision-making (Maier et al., 
2008). A major advantage of BNs is that uncertainties can be explicitly 
accounted for and propagated through the models (Stritih et al., 2019; 

Fig. 7. Predicted land-use change in the Entlebuch 
under two different scenarios (production-oriented 
farmers with the old agricultural direct payments, 
and ecology-oriented farmers with the new agri-
cultural policy), with and without zonal boundary 
conditions that limit farmers’ decisions imple-
mented through a Python script in gBay. The maps 
show the land use in three time steps, i.e. after 5, 
10, and 15 years. The bar plots show the distribu-
tion of land-use types in the study region for the 
three time steps. The ecology-oriented scenario 
without boundary conditions shows the fastest 
land-use change, with all agriculture changing to 
extensive agriculture or forest. In both the pro-
duction- and ecology-oriented scenario, the 
implementation of boundary conditions limits the 
land-use change.   
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Uusitalo, 2007). The output of inference in gBay contains a probability 
distribution across all the possible states of the target node for each pixel 
or object of the study area, which means that the output uncertainty can 
be quantified in a spatially explicit way. gBay automatically provides the 
user with measures of uncertainty including the entropy (Marcot, 2012) 
and standard deviation (for continuous nodes) of the probability dis-
tribution. These can be used to map uncertainties, as demonstrated in 
the avalanche protection case study (see Fig. 6). Mapping uncertainties 
is particularly important when these are spatially heterogeneous, such 
as in remote-sensing based classifications (Petrou et al., 2013). 

Although maps of uncertainty can be easily generated in gBay, 
interpreting them is not straightforward (Landuyt et al., 2015). The way 
in which spatial uncertainties are visualized may have a strong effect on 
how they are understood by end-users (Kunz et al., 2011). In the 
avalanche protection example (Fig. 6), we used a bivariate map to depict 
both the modelled value and associated uncertainty, with darker colours 
indicating higher uncertainty, thus drawing attention to areas of high 
uncertainty (Kunz et al., 2011). In other applications, it may be more 
appropriate to emphasize areas of higher certainty by linking uncer-
tainty to transparency or fuzziness. Since different types of users prefer 
different visualizations of uncertainty (MacEachren et al., 2005), gBay is 
currently limited to providing data on uncertainty, which users can use 
in their preferred visualization mode. 

4.3. Increasing the accessibility and transparency of BN modelling 

Involving stakeholders in modelling socio-ecological systems can 
increase the credibility of model results and support learning (Jakeman 
et al., 2006; Voinov and Bousquet, 2010). A key requirement for credible 
participatory modelling is transparency (Voinov and Bousquet, 2010). 
BNs have been promoted as a tool for participatory modelling due to 
their transparent model structure and capacity to incorporate expert 
knowledge (Bromley, 2005). This type of use is demonstrated in our 
land-use decision case study, where the model was co-developed with 
experts from different fields and updated with local stakeholder 
knowledge. However, participatory modelling is an iterative process, 
and models should be updated as new information becomes available, 
which is often not within the frame of research projects. Models are 
more likely to have an impact on decision-making when local experts 
and decision-makers take ownership of the model (Jakeman et al., 
2006), and can generate new results as new information becomes 
available in an iterative process (Ruckelshaus et al., 2013). Open access 
and easy-to-use web-based tools can support the adoption of models by 
local experts and practitioners (Voinov et al., 2016). 

Although the structure of a BN model is in itself transparent, and 
many graphical tools are available to develop BNs, the application of 
BNs to spatial data usually requires programming skills to use the API of 
BN software (such as Netica or HUGIN) (P�erez-Mi~nana, 2016). The gBay 
platform aims to reduce this gap and make spatial BNs more accessible 
to a wider range of users. Because of its simple user interface, users 
without programming experience can use gBay to link their BNs with 
spatial data. This is supported by the gBay wiki page (wiki.gbay.ethz.ch) 
with instructions, examples of BNs and associated data that can be 
downloaded to test the platform. 

Nonetheless, developing a BN is not straightforward. Model co- 
development with stakeholders is a time-consuming process, and it is 
important to ensure stakeholder diversity and consider group dynamics 
(Voinov and Bousquet, 2010). When experts are asked to parametrize a 
BN model, challenges include potential biases (Kuhnert et al., 2010), 
fatigue during elicitation of extensive CPTs (Das, 2004), and 
over-confidence (Speirs-Bridge et al., 2010). When learning a BN from 
data, the quality of the model is limited by the quality and amount of 
data available (Hamilton et al., 2015b). Because of such challenges, 
making BN modelling more accessible will require not only tools such as 
gBay, but also training and capacity building among potential users. 

Although the code of gBay is published, it is based on the proprietary 

Netica API (Norsys, 2010). In addition, the platform is not designed for 
BN development, and requires users to upload their own BNs in the.dne 
format, as developed in Netica, GeNIe (BayesFusion, 2017), or a similar 
BN software. Netica is currently the most commonly used BN software in 
the ecosystem service modelling community (P�erez-Mi~nana, 2016), and 
to our knowledge, no open source software currently offers a graphical 
interface for BN development with comparable functionalities, 
including the integration of discrete and continuous nodes, learning 
from data, and sensitivity analyses. The development of such an open 
source software would be an important step towards increasing the 
accessibility and transparency of BN modelling. 

4.4. Implications for environmental management and landscape planning 
processes 

Our case studies on ecosystem service mapping and land-use decision 
modelling demonstrated the use of gBay for spatial BNs, incorporating 
focal (neighbourhood) effects and zonal boundary conditions. Ac-
counting for such spatial interactions can help to reduce uncertainties, 
improve model realism, and take into account knowledge at different 
scales or organizational levels. 

High uncertainties in ecosystem services maps limit their usability as 
a support for decision-makers (Andrew et al., 2015; Schulp et al., 2014). 
In the case of the avalanche protection service (section 3.1.1), consid-
ering neighbourhood effects between pixels in potential avalanche 
release zones reduces overall uncertainty, by excluding areas that are 
too small to produce an avalanche release. However, due to the fuzzy 
geographical area calculation algorithm, the corrected release proba-
bility is also reduced in large areas of low P(release), which could lead to 
neglecting large releases that occur only under very extreme conditions. 
Thus, adding the area condition likely reduces false positives (i.e. in-
creases the specificity of detecting release areas), but may also lead to 
more false negatives (some release areas may be excluded). Higher 
levels of specificity in detecting potential release areas may be useful to 
identify the forest patches that play the most important role in pre-
venting avalanche releases, which is important in prioritizing the 
management of these protection forests (Teich and Bebi, 2009). How-
ever, the purpose of hazard risk mapping, it is also important to consider 
releases that only occur in extreme snowfall conditions, with very low 
probabilities, although validation data on these extreme events is lack-
ing (Bühler et al., 2018). Better estimates of extreme scenarios could be 
achieved by running the BN for a scenario with high new snow, or 
choosing a low threshold for pixels to be considered part of a release 
area. 

In the land-use decision case study (section 3.1.2), taking into ac-
count boundary conditions offers a more regional perspective, where 
farmers decisions are limited by regulations. In other words, the more 
realistic representation limits the option space. The constrained model 
may be more useful for short-term forecasts of landscape development, 
under the assumption that boundary conditions will stay constant, while 
unconstrained, exploratory models can better represent the whole range 
of possible futures (Maier et al., 2016; Rounsevell and Metzger, 2010). 
Modelling more extreme scenarios may be useful to clearly observe the 
impacts of different scenarios of agricultural policy and farmers’ char-
acteristics, and may offer a wider perspective on potential solutions in 
landscape planning processes. Hence, combining both perspectives (i.e. 
with and without boundary conditions) and observing the differences 
between them can yield additional insights. In our case study, the 
comparison demonstrates how strongly the decision-making of farmers 
at their plot level is constrained by larger-scale regulations. 

In both cases studies, the appropriate choice of method (e.g. 
considering boundary conditions or not) and the interpretation of results 
will depend on the needs of decision-makers, which highlights the need 
to involve stakeholders and decision-makers in the modelling process 
(Voinov and Bousquet, 2010). Tools such as gBay can contribute to the 
flexibility and accessibility of modelling socio-ecological systems over 
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time and space, and thus have the potential to support decision-makers 
in environmental management and landscape planning. 

Software availability 

Name: gBay (Bayesian Networks with geo-data). 
Developed by: Orencio Robaina, Enrico Celio, Ana Stritih, Sven-Erik 

Rabe (ETH Zürich, PLUS). 
Availability: online at gbay.ethz.ch, free for non-commercial use. 
Software requirements: Netica (Norsys) or similar software to create 

Bayesian Networks. 
Programming language: Web interface in HTML/Javascript, back- 

end in C using the Netica API, Python to support intermediate process-
ing scripts. 

Source code: https://github.com/ethzplus/gbay. 
Instructions and examples available at wiki.gbay.ethz.ch. 
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APPENDIX A 

Python scripts 

In order to account for spatial interactions and processes and different scales, users can implement a Python script in gBay. In order to be 
compatible with gBay, the uploaded script file needs to implement a function named ’process’ with the following definition: 

process(GDALDatasetH dataset, list nodes_data, int iteration). 
The inputs to the process function are:  

- GDALDatasetH dataset: contains the metadata of the spatial data being processes (e.g. raster spatial extent, pixel size and projection). gBay uses 
GDAL to operate with spatial data.  

- list nodes_data: contains the data of the nodes that are used as inputs for the geoprocessing script. The node data is stored as a python dictionary 
with three keys:  
o name: <str>name of the node  
o type: <int> type of the node (PY_DISCRETE/PY_CONTINUOUS (PY_DISCRETE if omitted)  
o data: <list> list of probabilities (between 0 and 100) of each state for each raster cell or object.  

- int iteration: the number of the current iteration, which can be used if some inputs should be modified over time. 

The ‘process’ function should return a list of nodes with the updated node likelihoods if the output node is discrete, or node values if the node is 
continuous. 

The python script should import the node_utils python module (which contains functions to validate the output and to read and write node in-
formation), as well as other packages used by the script (e.g. gdal, scipy). 

gBay stores the probabilities of the nodes selected by the user as to be used by the python script, creates the nodes_data list and, runs the ‘process’ 
function. Then, it runs a function to validate whether the output complies with the nodes_data format, and if it does, it will set the node probabilities as 
returned by the function. This happens at the beginning of the processing and at the end of each iteration. In case the results are not validated (e.g. the 
data types are incompatible, or total probability does not add up to 100%), or in case an error occurs in the execution of the script, gBay will print out 
the error message and ignore the output data. 

It may also occur that the results are correctly formatted, but invalid form the BN perspective, e.g. when trying to set a probability of a state that 
would be impossible according to the node’s CPT and the evidence set on its parent. In this case, gBay will print out an error message from Netica. 

Example 

Besides the factors affecting future land cover described in Fig. 1, the transition of meadows to forest may also be affected by the distance to the 
nearest forest patch. If a node “Distance_forest” is added to the network, its values can be calculated based on the input land cover map directly in gBay 
using a python script.   
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APPENDIX B 

Bayesian Network for avalanche protection 

To model the provision of avalanche protection, we used a model adapted from Stritih et al. (2019), see Figure B.1. The model was modified to 
account for neighbourhood effects in the avalanche release process, where a pixel is only accounted as a potential avalanche release if it is part of a 
sufficiently large release area. We used a Python script to calculate fuzzy release areas based on release probabilities, as illustrated below. This led to 
lower uncertainty in the definition of release areas and in the total provision of avalanche protection (see Table B.2). 

. (continued).  
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Fig. B.1. Bayesian Network used to model the provision of avalanche protection, adapted from Stritih et al. (2019). The BN uses inputs (indicated with a thicker 
frame) from remote sensing and avalanche data to infer about the ecosystem structure and processes, which determine the detrainment (snow braking in the forest 
during an avalanche) and prevention functions. These functions are combined to express the total level of avalanche protection provision. The orange arrow indicates 
where a Python geoprocessing script is used to calculate the size of avalanche release areas from per-pixel release probabilities. 

Fuzzy area calculation 

The raster (Figure B.2) shows the probability P(release) of each pixel belonging to a release area. A fuzzy release area size is calculated for the pixel 
shown in red. First, the area is calculated for different threshold probabilities α, where every pixel where P(release) � α is considered part of the release 
area. This results in a different size of release area for each probability (Table B.1), from which a cumulative probability distribution can be derived (in 
this case, the release area is between 4 and 19 pixels). Based on this probability distribution, we can calculate the probabilities of the area belonging to 
a size class (Figure B.3).

Fig. B.2. Example raster of P(release).   
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Fig. B.3. Resulting cumulative probability distribution of area (black line) and the probability distribution of area in classes (1–5, 5–10, 10–15, 15–20 pixels).   

Table B.1 
Area calculation for different α-values.  

Threshold probability (α) Area 

0.05 19 
0.1 19 
0.2 18 
0.3 14 
0.4 10 
0.5 9 
0.6 7 
0.7 6 
0.8 6 
0.9 5 
0.95 4  

Results: Uncertainty of total provision and release probability with and without accounting for release area size 

Table B.2 
Mean uncertainty in total provision of avalanche protection and release probability across the whole study area, expressed in coefficient of 
variation (CV, only for continuous nodes) and entropy index, with and without the correction for release area size (neighbourhood effect).   

without neighbourhood correction with neighbourhood correction 

Node CV (%) Uncertainty CV (%) Uncertainty 

Provision 95 0.089 87 0.083 
Release  0.29  0.19  

APPENDIX C 

The “roll-back mechanism” to implement boundary conditions for land-use change 

In order to implement boundary conditions in the land-use change model (a minimum limit of extensive, intensive and medium-intensive land use 
to support the number of cattle in the region), a Python script was implemented in gBay at the end of every iteration. The script checks the number of 
extensive, medium-intensive and intensive agriculture cells, and if the frequency is below the defined minimum, it converts cells which have the 
highest probability of being in those categories back to their previous probability distribution (“rolled-back”), until the minimum frequency agri-
culture has been reached. In case not enough cells of medium-intensive agriculture are available to convert back to intensive agriculture (due to the 
minimum limit in this land use category), cells from a third category (e.g. forest) are changed back to medium-intensive, and medium-intensive cells 
are changed back to intensive, in a “double roll-back”. The mechanism is illustrated in Figure C.1. 
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Fig. C.1. Representation of the roll-back mechanism to ensure that the minimum frequencies of Land use 1 and 2 are maintained. During the first iteration of the 
land-use change BN, LU1 is converted to LU2 and LU2 changes to LU3. However, if the frequency of LU1 and LU2 drops below the minimum limit, the roll-back 
mechanism is implemented to revert cells back to their previous probability distribution, until the minimum is reached. 

The conversion matrix (Table C.1) shows how many cells have been transferred to other land-use categories due to the enforced conversion limits, 
in the production-oriented scenario for iterations (time steps) 2 and 3. In both the hill and mountain region, certain parcels were rolled back. In the hill 
region, the number in brackets show how cells were initially rolled back from “other” to intensive and in the following from intensive to medium- 
intensive to fulfil the restrictions (double roll-back).  

Table C.1 
Rollback mechanism induced by Python script made explicit for the production-oriented scenario in iteration 2 and 3.  

ITERATION 2 

production-oriented source land-use category  

Region: Hill extensive med-intensive intensive other SUM 

target land-use category extensive    54 54 
med-intensive  797 147 944 
intensive    (112) 0 
other       

Region: Mountain extensive med-intensive intensive other SUM 

target land-use category extensive    9 9 
med-intensive    0 
intensive     0 
other       

ITERATION 3 
Region: Hill extensive med-intensive intensive other SUM 
target land-use category extensive    54 54 

med-intensive  112 1400 1512 
intensive    (112) 0 
other       

Region: Mountain extensive med-intensive intensive other SUM 

target land-use category extensive     0 
med-intensive 69544  5558  75102 
intensive     0 
other       
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