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Abstract

Citizen science is a promising tool for the collection of environmental data because it
allows data to be collected at many more locations than individual scientists could cover.
The citizen science project CrowdWater aims to collect hydrological data using a smart-
phone app but does not require any physical installations in the stream or the ground.
With the app, citizens can collect water level class data using a virtual staff gauge, sub-
mit streamflow estimates, report a qualitative soil moisture class, or report the state of
intermittent streams or plastic pollution. This thesis focuses on the water level class and
streamflow estimates.

I investigated the motivations of the citizen scientists that contributed to CrowdWater
and compared it to citizen scientists who contributed to the Naturkalender project using
an online questionnaire. Naturkalender is an Austrian citizen science project that uses
a similar app as CrowdWater and focuses on the collection of phenological observations
of indicator plant and animal species. Citizen scientists who contribute to the projects
are mainly driven by their desire to contribute to science, help society and to protect the
environment, as well as to learn something new. While most CrowdWater participants
agreed that their motivations to engage in the project are also fulfilled by participation,
most Naturkalender participants agreed that enjoyment and learning something new
were also being fulfilled by their participation. While the enjoyment aspect was not a
major reason to join the projects, it was a main reason to continue contributing to both
projects. This is encouraging for the further collection of crowd-based water level class
observations.

The quality of crowd-based streamflow and water level class observations were first
assessed in a survey along nine streams in Switzerland. The results showed that water
level classes were easier to estimate and had fewer and smaller errors than the streamflow
estimates. The quality of the crowd-based water level class observations obtained with
the CrowdWater app was also assessed by comparing them to measured water levels. The
correlation between the water level class observation and the water level measurements
was very good when the staff was gauge well placed. The correlation was better when
the observations were made by individual citizen scientists using the app, rather than
multiple citizen scientists who were asked to contribute using signs. Some of the dedicated
citizen scientists contributed more than one observation per week.

A modelling study, using synthetic streamflow time series based on the errors from the
survey showed that these data are not useful for calibrating the hydrological model HBV-
light because the errors are too large. Model calibration with synthetic water level class
time series based on errors from the survey, however, showed that these data are valuable
because they led to a significantly better model performance compared to simulations
using random parameter sets that represent a situation without any data. The model
performance was little affected by errors or the number of water level classes that were
used but depended on the number of observations and the timing of the observations
throughout the year.

This thesis thus shows that citizens are willing to participate in hydrological data
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collection, that the quality of these data are good and that these data are useful for the
calibration of hydrological models. Therefore, crowd-based water level class observations
are a promising source of data for catchments where otherwise no information or very
little information on streamflow is available. These data could potentially be used for
the calibration of models that can be used for flood warning or to predict the effects of
droughts.



Plain Language Summary

Data and information on the amount of water in streams are important for the manage-
ment of our water resources. Streamflow data can be used to predict floods or help to
regulate the withdrawal of water from rivers during dry periods. Because the continuous
collection of this data is associated with considerable cost and effort, such data are often
not up-to-date or not available at all for many regions around the world. In addition,
the global number of active monitoring stations has decreased in recent years.

One way to collect data in regions where no data is otherwise available is citizen
science. The citizen scientists in the CrowdWater project use a smartphone app to
collect data on water levels in rivers. The information is read from a virtual yardstick
with water level classes in combination with a photo of the river.

The greatest motivation for many of the citizen scientists to participate, was the
hoped-for contribution to research. Other important motivators were to contribute to
environmental protection, to learn something new and to help society. Not all of these
motivations were fulfilled by participating for all the citizen scientists surveyed, but many
stated that they enjoyed participating and that by participating they acted according to
their values and beliefs.

Surveys of passers-by showed that it is very difficult for citizen scientists to estimate
the streamflow directly or via an estimated width, average depth and flow velocity of a
river. Estimating water level classes on the basis of the virtual yardstick proved to be
easier and the streamflow quantities calculated from it were more accurate.

The comparison of time series of water level class estimates from citizen scientists who
contributed either via the CrowdWater app or with forms deposited on fixed mailboxes,
showed that the data collected with the app is of higher quality. This was due to the
larger number of individuals who contributed for one location, while the majority of
contributions to a time series in the app were made by a single contributor.

The streamflow estimates from the passers-by surveys were subject to very large un-
certainties and therefore proved to be too imprecise for the calibration of hydrological
models. The water level class observations, on the other hand, proved to be potentially
useful to calibrate hydrological models when no other measured discharge data are avail-
able. These results show that the water level class estimation approach has the potential
to generate valuable data where no other data are available and thereby to improve the
management of water resources in such regions.

III



Zusammenfassung

Daten und Informationen über Fliessgewässer sind wichtig für die Verwaltung unserer
Wasserressourcen. So ermöglichen beispielsweise Abflussdaten aus Flüssen die Vorher-
sage von Hochwassern oder helfen, die Entnahme von Wasser aus Flüssen während Trock-
enperioden sinnvoll zu regulieren. Weil die kontinuierliche Erfassung dieser Daten mit
erheblichen Kosten und Aufwand verbunden ist, sind solche Daten vielerorts auf der
Welt nicht aktuell oder gar nicht verfügbar. Zudem nahm die globale Anzahl der aktiven
Messstellen in den letzten Jahren ab.

Eine Möglichkeit, um Daten in Regionen zu sammeln, wo sonst keine Daten vorhan-
den sind, ist der Ansatz der Citizen Science (deutsch Bürgerwissenschaften). Dieser
Ansatz setzt auf den Miteinbezug von Privatpersonen in die Forschung. Die Citizen
Scientists im Projekt CrowdWater sammeln mittels einer Smartphone App Daten zum
Wasserstand in Flüssen. Die Informationen werden in Klassen von einer virtuellen Mess-
latte auf einem Foto des Flusses von den Citizen Scientists abgelesen und mit einem
neuen Foto hochgeladen.

Den erhofften Beitrag, den die Citizen Scientists mit ihrer Teilnahme zur Forschung
leisten konnten, war für viele die grösste Motivation mitzumachen. Weitere wichtige
Motivatoren waren, einen Beitrag zum Umweltschutz zu leisten, etwas Neues zu lernen
und der Gesellschaft zu helfen. Durch die Teilnahme wurden nicht alle diese Motivationen
bei allen befragten Citizen Scientists erfüllt, jedoch gaben viele an, dass sie Spass bei der
Teilnahme haben und dass sie mit ihrer Teilnahme entsprechend ihrer Überzeugungen
handeln.

Befragungen von Passantinnen und Passanten zeigten, dass es für Citizen Scientists
sehr schwer ist, den Abfluss direkt oder via Schätzungen der Breite, der mittlere Tiefe
und der Fliessgeschwindigkeit eines Flusses zu bestimmen. Das Schätzen von Wasser-
standsklassen anhand der virtuellen Messlatte erwies sich als einfacher und die daraus
errechneten Abflussmengen als genauer.

Der Vergleich von Zeitreihen von Wasserstandsklassen-Beobachtungen von Citzen Sci-
entists, die mit der CrowdWater App oder mit Formularen an fix installierten Briefkästen
beitrugen, zeigte eine bessere Datenqualität der mit der App gesammelten Daten. Grund
hierfür war die grössere Anzahl an Einzelpersonen, die mittels Formularen an einer Stelle
schätzten, während in der App mehrheitlich dieselbe Person Beobachtungen einer Stelle
machte.

Die Abflussschätzungen aus den Befragungen der Passanten waren mit sehr grossen
Unsicherheiten behaftet und erwiesen sich deshalb als zu ungenau für die Kalibration
von hydrologischen Modellen. Die Beobachtungen der Wasserstandsklassen hingegen er-
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wiesen sich als potenziell nützlich, um hydrologische Modelle zu kalibrieren, wenn sonst
keine gemessenen Abflussdaten vorhanden sind. Diese Ergebnisse zeigen, dass der Ansatz
der Wasserstands-Klassen-Beobachtungen das Potential, hat wertvolle Daten zu gener-
ieren, wo sonst keine Daten vorhanden sind. Damit wird eine bessere Verwaltung von
Wasserressourcen auch in solchen Regionen ermöglicht.
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1
Introduction

1.1 Importance of hydrological data

Hydrological data contain valuable information on water resources and their variations
in the annual cycle. Streamflow records, for example, can be used to quantify current
surface water resources and changes over time. Hydrological data are also crucial for
the management of water resources (Gilbert, 2010), e.g. to allocate water resources
for a growing population (Paper I), to avoid uncontrolled release of wastewater (Davids
et al., 2018), optimize water releases for hydropower production (Kundzewicz, 1997),
ensure sufficient water for cooling of nuclear power plants (Kirkwood, 1982), sustainable
water withdrawals for agriculture and other industrial uses, as well as for planning flood
or drought protection and prevention measures (Buytaert et al., 2014). It is useful for
scientific and planning purposes to compare historic and recent data to identify systematic
shifts and trends in hydrological processes (Milly et al., 2015; Kundzewicz, 2004) and
to ultimately allow the modelling of future changes (Hannah et al., 2011). In many
regions of the world, however, hydrological and meteorological instruments to obtain
these data are scarcely deployed or maintained (Hannah et al., 2011; Sivapalan, 2003).
Areas where data are lacking are often also the areas that are most vulnerable to extreme
hydrological conditions and events (Walker et al., 2016). The lack of available data,
furthermore, results in uncertain predictions about global trends in streamflow, and
the occurrence of floods and drought (Stocker et al., 2013). This is illustrated for the
availability of streamflow gauge data from the global runoff database in 1.1, although
there are more existing streamflow gauging stations with up-to-date records around the
world than shown on this map. As pointed out by Hannah et al. (2011), the access
to the measurements of other researchers or to official national-scale data sets is often
limited due to various reasons, such as fear of misuse, national data policy, lack of time,
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2 CHAPTER 1. INTRODUCTION

awareness, knowledge or willingness to share. Therefore, many catchments are or can be
viewed as either ungauged (Hrachowitz et al., 2013) or as no longer gauged (Hannah et al.,
2011). Hence, further efforts are needed to achieve robust and reliable baseline data and
predictions in developing countries (Hrachowitz et al., 2013), particularly where the need
for water is greatest and in mountainous regions and the arctic were most freshwater
sources are located (World Water Assessment Programme, 2003) but access is often
difficult. Developing countries often rely on non-governmental organisations to build up
measurement networks, but as gauging networks remain cost- and labour intensive, the
money is often after a few years redirected to more pressing issues, such as disaster relief
(Hannah et al., 2011).

Figure 1.1: The number of runoff stations in the Global Runoff Database. The colour
specifies the year of the last available measurement that was archived. The data were
obtained in November 2019 from the Global Runoff Data Base: www.bafg.de and the
base map was obtained from naturalearthdata.com using R.

There is a great demand for hydrological data that is freely accessible and simple to
acquire, even in remote areas. Streamflow is still very hard to observe with a sufficient
spatial and temporal resolution (Paper I) because gauging stations are expensive to
construct and maintain. Existing alternative options include remote sensing (Smith et al.,
1996), low-cost sensors (Peña et al., 2017), smartphone cameras (Le Coz et al., 2016) and
webcams as suggested in van Meerveld et al. (2017). Citizen science has the potential to
provide data in areas were no measurement infrastructure is available (Buytaert et al.,
2014).
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1.2 Citizen science

The Oxford English Dictionary1 defines citizen science as

scientific work undertaken by members of the general public, often in collab-
oration with or under the direction of professional scientists and scientific
institutions

and a citizen scientist as

a member of the general public who engages in scientific work, often in col-
laboration with or under the direction of professional scientists and scientific
institutions; an amateur scientist

Several attempts have been made to characterise the practices in citizen science
projects and the degree of involvement of the citizen scientists in the projects: Bon-
ney et al. (2009) divided projects into the three categories

• contributory: citizen scientists contribute data

• collaborative: the project is designed by scientists and citizen scientists help ana-
lyzing the data or are involved in the further design of the project

• co-created: citizen scientists and scientists work together, even in the project design
phase

According to Strasser et al. (2018), this categorisation implies that projects that involve
participants more in the design of the project, are to be preferred over projects that rely
on citizen scientists for data collection only. To improve the categorisation scheme, Shirk
et al. (2012) expanded the three categories by two other categoriese:

• contractual: researchers try to answer questions that were raised by the public

• collegial: contributions of e.g. amateur astronomers or birders who often make
substantial contributions to their field

They stated that the five categories represent a spectrum where all categories are equiv-
alent. Later, Haklay (2013) defined four levels of involvement:

• crowdsourcing: citizen scientists as sensors

• distributed intelligence: citizens as basic interpreters

• participatory science: participation in problem definition and data collection

• extreme: collaborative science - problem definition, data collection and analysis

1www.oed.com (accessed: 09.01.2020)
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However, according to Strasser et al. (2018), these categorisations have a political agenda
and aim to increase citizen empowerment. To avoid a political agenda, Strasser et al.
(2018) proposed a new typology to characterise practices in citizen science:

• sensing (e.g. bird sightings)

• computing (e.g. by "donating" computing power)

• analyzing (e.g. online projects for image analysis or classification)

• self-reporting (e.g. of illness symptoms for medical studies)

• making (e.g. an open laboratory for citizen science)

A similar characterisation of the practices in citizen science was published in the White
Paper on Citizen Science in Europe by Serrano Sanz et al. (2014), where the practices
in citizen science are described as equivalent models of citizen engagement (examples my
own, Figure 1.2):

• pooling of resources (e.g. by "donating" computing power)

• data collection (e.g. making water level class observations)

• analysis tasks (e.g. identification of species)

• serious games (e.g. gamified data collection)

• participatory experiments (e.g. citizens can conduct experiments with the help of
scientists)

• grassroots activities (e.g. a research project started by citizens to assess the water
quality in local households)

• collective intelligence (e.g. making use of the "wisdom of the crowd")

Serrano Sanz et al. (2014) do not explain the categories in further detail, but most
categories overlap with those of Strasser et al. (2018). The categories Serious Games and
Collective Intelligence refer to the use of the "wisdom of the crowd", such as in online
games were multiple people classify the same image (e.g. Strobl et al. (2019)). This
category might be implicitly included in the analyzing category of Strasser et al. (2018).

These different categorisation schemes all show that there are many ways that citizens
and researchers can collaborate to solve problems that were defined by scientists or the
public.
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Figure 1.2: The spectrum of models of citizen engagement in citizen science projects
in the White Paper on Citizen Science in Europe (Serrano Sanz et al., 2014). The
different models are not explicitly explained in Serrano Sanz et al. (2014) but the
graphic demonstrat the variability of engagement options that exist in citizen science
projects. Adapted from Serrano Sanz et al. (2014).
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History of citizen science and existing projects

Involving citizens at different stages of research is not a new phenomenon. The Swedish
meteorologist Tor Bergeron collected snow depth observations (Bergeron, 1949) and rain-
fall measurements using simple rain gauges (Bergeron, 1960). The data were sent by the
citizens using postcards. One of the oldest (since 1900!) and still ongoing projects is
the Audubon Christmas Bird Count, where every year around Christmas citizen sci-
entists count birds (Meehan et al., 2019). However, there are even older examples of
research that have characteristics of citizen science: in Japan, Aono & Omoto (1993) and
Taguchi (1939) reconstructed the date of the cherry tree blossoming from old diaries and
chronicles that date back to the 9th century.

Recent developments in smartphones and internet technologies, such as social media
platforms offer new and exciting opportunities to include the public into research, for
instance, by using crowd-based or volunteered geographic information (Capineri et al.,
2016; Haklay, 2013), such as the analysis of tweets to determine the extent of earthquakes
(Crooks et al., 2013). In hydrology, there are several flood related projects that rely
on crowdsourcing or volunteered geographic information (See, 2019) from social media
data, such as e.g. Twitter data (Arthur et al., 2018) or the PetaJakarta.org2 project in
Indonesia where people submit images and locations of floods and can at the same time
ask for help (Ogie et al., 2019). Similar projects in Argentina, France and New Zealand
ask citizens to send in videos and photographs from floods (Le Coz et al., 2016).

Other projects rely on more deliberate online participation of citizens. For example,
GalaxyZoo3 (Raddick et al., 2013) aims to identify shapes of galaxies by letting citizens
compare a large number of images. The goal of the project Foldit4 (Curtis, 2015) is to
explore the numerous possibilities of protein folding.

There are also multiple outdoor projects that rely on the use of modern technology.
For example the Austrian Naturkalender5 project asks participants to collect phenological
information, for instance, to document shifting start times of the blossoming of different
plant species (Paper II). A very successful example of an environmental citizen science
project is the Collaborative Community Rain, Hail, and Snow Network6 in the United
States (CoCoRaHS; Reges et al. (2016), where citizens buy simple rain gauges and report
the rainfall amounts that they measure. Other examples of projects that involve more
coordinated outdoor activities with citizen scientists include the collection of information
on snow cover disappearance in the Pacific Northwest of the United States (Dickerson-
Lange et al., 2016), the Great Pollinator Project7, where citizens reported bee landings
on designated plant species to assess the ecosystem quality for bees in New York City
(Domroese & Johnson, 2017), and the project HydroCrowd were volunteers (mainly
students) collected 280 water samples on a single day in Germany (Breuer et al., 2015).

2name changed to https://petabencana.id/ (accessed: 21.04.2020)
3www.galaxyzoo.org (accessed: 09.01.2020)
4https://fold.it (accessed: 09.01.2020)
5www.naturkalender.at (accessed: 09.01.2020)
6www.cocorahs.org (accessed: 09.01.2020)
7www.greatpollinatorproject.org (accessed: 09.01.2020)
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Other applications aim at monitoring of water quality in lakes, streams, rivers, wells,
ponds, and wetlands (Conrad & Hilchey, 2011), e.g., by measuring water reflectance and
turbidity with a smartphone camera in the HydroColor app8 (Leeuw & Boss, 2018).

Citizen science in hdrology

Since 2014 there has been an increase in citizen science-based studies in hydrology (Njue
et al., 2019). Njue et al. (2019) report that out of all citizen science projects that aim
at either the collection of water quality data, water level data, rainfall data or a mix of
those, 63% are water quality related projects. Stepenuck & Genskow (2017) report that
there are 345 such volunteer monitoring programs in the United States alone. Amongst
the new projects there are also some water level and streamflow related projects. In
CrowdHydrology9, a project in the US (Lowry et al., 2019; Lowry & Fienen, 2013),
passers-by read water levels from staff gauges in streams and submit them via text
messages. Other projects with the same approach are Cithyd10 in Italy and Weeser et al.
(2018) in Kenya11. Weeser et al. (2018) showed that reimbursement for the costs of text
messages increased participation rates and that the quality of water level observations
read from physical staff gauges was reasonably good. Smartphones4Water12 is a project
in Nepal (Davids et al., 2017) that tested several simple streamflow measurement methods
for citizens. Even though the approaches of the above projects worked quite well, they
are not easily scalable as it is still costly and requires significant effort and time to install
staff gauges or signposts at multiple sites. This PhD-thesis focuses on the CrowdWater
project13, which follows an approach that is similar to geo-caching and allows for an
easier up-scaling of measurement in space to contribute to the collection of hydrological
data in regions where such data are scarce.

Motivation

The main motivations for people to join citizen science projects are to contribute to sci-
ence and to protect the environment, as well as the feeling to belong to a community
(Alender, 2016; Curtis, 2015; Raddick et al., 2013). The project’s topic plays an impor-
tant role as well because identification with the project’s topic is important (Rey-Mazón
et al., 2018; Frensley et al., 2017). Citizen scientists either want to learn something new
(Domroese & Johnson, 2017) or help to solve issues that the project addresses (Johnson
et al., 2014). These main motivations are often very similar in citizen science projects.
However, there are only a few studies in Europe (e.g. Land-Zandstra et al., 2016) and
none, that we are aware of, in Switzerland or Austria that address the motivations of
citizen scientists. Therefore, Chapter 3 (and Paper II) investigates the motivations of

8http://misclab.umeoce.maine.edu/research/HydroColor.php (accessed: 09.01.2020)
9www.crowdhydrology.com (accessed: 09.01.2020)

10www.cithyd.com (accessed: 09.01.2020)
11www.uni-giessen.de/hydro/hydrocrowd_kenya (accessed: 09.01.2020)
12www.smartphones4water.org (accessed: 09.01.2020)
13www.crowdwater.ch (accessed: 09.01.2020)
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CrowdWater participants and compares them to the motivations of participants of an
Austrian citizen science project called Naturkalender.

1.3 The CrowdWater project

1.3.1 Introduction

The CrowdWater project started in 2016 and the smartphone application CrowdWater
| SPOTTERON (hereafter referred to as the CrowdWater app) was launched in early
2017. The goal of the project is to develop a tool to collect hydrological information for
hydrological models that can be used for flood warnings and other water management
applications. Citizen scientists are asked to contribute pictures of streams and estimates
of water level classes (WL-classes) based on a virtual staff gauge (Paper I, Seibert et al.
2019), to determine the state of temporary streams (Kampf et al., 2018), to estimate soil
moisture based on qualitative classes (Rinderer et al., 2012), or to map plastic pollution
in, and along streams in collaboration with The Ocean Cleanup14. Citizen scientists are
encouraged to take repeated measurements at the same locations to obtain time series for
these locations. The app functionalities for soil moisture, temporary streams and plastic
pollution are described in other publications Kampf et al. (2018); Seibert et al. (2019);
Rinderer et al. (2012). In this thesis, I focus on WL-class and streamflow estimates.
Therefore the approach of the virtual staff gauge is explained here in more detail but see
also Paper I.

1.3.2 Virtual staff gauge approach

The basic idea behind the approach to observe WL-classes is that it is usually possible
to identify a number of features in a stream or on the stream bank, such as rocks, that
allow ranking of the water levels (i.e., “below this tree but above that rock”). While such
WL-class observations are not as precise as continuous water level observations from a
staff gauge (i.e., no millimetre resolution) and provide more qualitative information such
as “the water level is very low” or “there is a flood event,” they can be quite informative
for hydrological modelling (van Meerveld et al., 2017). The challenge is to allow a simple
identification of the different WL-classes, without the need for lengthy verbal descriptions.
A picture is helpful in this respect but needs to be amended by a scale. For this, we use
the virtual staff gauge approach (Figure 1.3). In practice, this means that the citizen
scientist takes the following steps:

• The user chooses a suitable location along a stream and identifies it on a map in
the smartphone app.

• The user takes a picture of the streambank (perpendicular to the flow direction
and as level as possible, to minimize contortion of the view). There should be some

14www.theoceancleanup.com (accessed: 09.01.2020)
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reference in the picture, such as a bridge or stones and ideally, the picture is taken
during low flow conditions.

• An image of a yardstick with ten classes is digitally inserted into the picture as a
virtual staff gauge. The user can move this virtual staff gauge in the image and
scale it so that it is level with the current water level and covers the expected
stream level variations.

Figure 1.3: An example reference image with the virtual staff gauge inserted in it, taken
in Chosica, a village located upstream and east of Lima in Peru. Photo taken by Re-
nato Gazzola. CrowdWater Spot: spotteron.com/crowdwater/spots/21414 (accessed
09.01.2020).

This reference picture with the virtual staff gauge allows anyone who visits the site
at a later time to estimate the WL-class by comparing the current water level to the
features on the photo and the virtual staff gauge (e.g., the water level has changed and
is now above a certain rock). More specifically, the user compares the current water
level with the reference picture with the staff gauge in the app, takes a new picture of
the stream, selects the current WL-class on the horizontal staff gauge (Figure 1.4) and
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submits the new observation to the data server. For details on the design of the virtual
staff gauge the reader is referred to Paper I.

When repeated observations are submitted for the same location, this results in a
time series of water level class observations. It is important to note that the user ob-
serves and enters the WL-class; the new picture is only used for documentation. While
automated image recognition could be valuable, at this point we rely on human eyes and
interpretation to avoid issues related to the exact location and angle when the picture
is taken. The pictures, however, allow data quality control. We have developed the
CrowdWater game as an approach to use these pictures for crowd-based quality control
of the WL-class data (Strobl et al., 2019).

Typical errors in placing the virtual staff gauge are related to the size of the virtual
staff gauge, its placement, and the angle of the photograph. These mistakes affect about
10% of the more than 500 reference pictures that were made by the time Paper I was
written. Staff gauge placement or size problems could be due to users not having read
the available instruction material or not fully understanding the concept. Other issues
are not directly related to setting up a virtual staff gauge site but still affect the results,
e.g., it is less useful if users create new measurement sites in, or close to, a location where
another spot already exists than when they update the existing spot or start a new site
on a different river.

1.3.3 Number of participating citizen scientists and contributions

The smartphone application is designed to become a social network, where users can
follow each other, like, comment and share contributions. These functions have however,
so far not been used widely by the participants. Most of the social interaction in the
CrowdWater app occurs between the project team and citizen scientists via the com-
ments function or by personal communication via e-mail. Only in rare cases do citizen
scientists comment on other observations. The CrowdWater project has so far mainly
been advertised via social media (Facebook, Twitter, and Instagram) and in our pri-
vate and work-related networks (e.g., presentations at conferences, schools and science
fairs, articles in university newsletters and magazines, a press release by the University
of Zurich etc.). Most of the advertisement and outreach for the CrowdWater project fo-
cused on German speaking citizens, hence most data have been collected in Switzerland
and Austria. However, observations can – and have been made – around the globe. Since
the value of the data is still subject to research, communication regarding the potential
use of the data for flood warning systems has been done rather carefully. By the time of
writing this thesis in January 2020 there were 580+ participants who contributed at least
one observation for one of 2’700+ unique spots. In total, there were 10’900+ contribu-
tions (Figure 1.5) of which 5’200+ were water level observations, 900+ were soil moisture
observations, 4400+ were intermittent stream observations, and 400+ were observations
for plastic pollution.
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Figure 1.4: Screenshot of the CrowdWater app of the screen for entering a new water
level class observation. The observed water level class can be entered by clicking
on the number in the horizontal staff gauge. Uploading a new photo is optional
but encouraged. Streamflow estimates can be made when the Advanced options are
selected.
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Figure 1.5: Cumulative number of contributions to the CrowdWater project. Figure
generated by the CrowdWater dashboard on crowdwater.ch/dashboard. Accessed:
15.01.2020



2
Scope of the thesis and research questions

2.1 Scope of the thesis and research questions

The approach to use citizen science for the collection of hydrological data is not new.
However, the approach that is used in the CrowdWater project, particularly the use of
crowd-based estimates of streamflow and WL-class estimates with virtual staff gauges in
the reference images (Paper I) has not been evaluated before. This thesis focuses on this
part of the CrowdWater project, although I also participated in the development of the
measurements for the other variables in the app. This thesis mainly contributes to the
knowledge on the motivation of participants in environmental citizen science projects by
asking respondents what motivated them initially to join CrowdWater and Naturkalender
and how these initial motivations were fulfilled by their participation. The hydrological
side of the thesis contributes to the knowledge on the accuracy and the value of hydrolog-
ical data that are collected in a simple manner by comparing the estimates to measured
data and by investigating the information content of crowd-based streamflow and WL-
class estimates for hydrological model calibration. More specifically the thesis addresses
the following research questions:

1. What motivates the participants of CrowdWater and Naturkalender to
join these projects and in how far are these motivations fulfilled by par-
ticipation? In an online questionnaire, I asked participants of the citizen science
projects CrowdWater and Naturkalender what had motivated them initially to join
these projects and which of these motivations had been fulfilled by their participa-
tion. The data were evaluated based on two different frameworks on motivation in
citizen science and volunteering from the literature and are described in Chapter 3
and Paper II.

13
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2. How good are streamflow and water level class estimates by citizen sci-
entists? This question was addressed in two different studies: a survey at the
start of the CrowdWater project when the number of actual data submissions was
very small and an analysis of the data collected using the CrowdWater app and
forms near multiple streams. In 16 field surveys at the start of the project, we
tested three simple methods to estimate water quantities in streams that could
potentially be used in a citizen science project and do not require any equipment.
We asked passers-by at 10 streams in the greater area of Zurich in Switzerland to
estimate the streamflow directly or via width, average depth and flow velocity. Ad-
ditionally, we asked them to estimate the water level class by comparing the current
water level to a reference image with a virtual staff gauge. We then compared the
estimates of citizens to measured streamflow quantities to compare their accuracy.
This is work is described in Chapter 4.2 and Paper III. In the second study, we
compared the crowd-based time series of water level classes with water levels that
were measured in the vicinity. We did this for nine measurement locations where
data were collected with the CrowdWater app and twelve field stations where peo-
ple could report the water level class on paper forms. This work is described in
Chapter 4.3 and in Paper IV.

3. What is the potential value of crowd-based streamflow and WL-class
time series for hydrological model calibration? The error distributions of the
streamflow and water level class estimates from the surveys (Paper III) were used
to create synthetic streamflow (Paper V) and water level class (Paper VI) datasets
that have uncertainties that are typical for citizen science data. I sub-sampled
these datasets to create synthetic datasets with different temporal resolutions that
represent scenarios with different contribution times and frequencies ranging from
hourly estimates to one estimate per month. We calibrated the hydrological model
HBV-light with these datasets for six (Paper V) and four (Paper VI) catchments
in Switzerland and evaluated the performance of the model for different years by
comparing the simulated streamflow with the observed streamflow. The citizen
science-like streamflow and water level class observations were considered to be
valuable for hydrological model calibration if the validation performance for the
model calibrated with this data was better than that of model runs with random
parameter sets. The results for these studies are described in Chapter 5 (and Paper
V and Paper VI).



3
What motivates citizen scientists to contribute to

the CrowdWater and Naturkalender projects?

3.1 Introduction

It is important to understand the different motivations of participants in citizen science
in order to attract participants and to lower the hurdles for sustained participation. The
motivations that drive people to participate in citizen science and what people gain from
participation are, however, complex (Strasser & Haklay, 2018; Thornhill et al., 2019;
West & Pateman, 2016). The main motivations to join citizen science projects, reported
so far, are to contribute to science and to protect the environment, as well as the commu-
nity aspect (Alender, 2016; Curtis, 2015; Raddick et al., 2013). However, many studies
so far focused on a single project and used only one classification scheme to analyse the
results. The use of different approaches and surveys to assess the motivations of partici-
pants, the different schemes to classify the motivations with different levels of detail, and
the substantial differences in the projects make it difficult to compare the results of the
different studies on motivations to participate in citizen science projects. We aimed to
expand the knowledge on the motivation of citizen scientists by comparing the motiva-
tions of participants in two projects: CrowdWater and Naturkalender (English: Nature’s
Calendar). Naturkalender is a smartphone based, environmental project based in Aus-
tria and aims to document the phenology of indicator plant species and the occurrence of
indicator animal species to detect potential changes in response to climate change. The
two projects have, so far, mainly recruited participants from western European countries
(most of the participants come from Switzerland and Austria). The comparison of the
motivations to participate in the two projects enables a more explicit focus on how the
project topic, thematic content and outreach activities affect the motivations of the par-

15
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ticipants because the projects are similar in terms of the visual design of the app, the way
data are transmitted, and cultural background of the participants. The full description
of the study can be found in Paper II and a simplified graphical summary is given in
Figure 3.1.

Figure 3.1: A simplified illustration of the questions posed and the answers given in
the online questionnaire on motivation in Paper II. Design by: University of Zurich,
Information Technology, MELS/SIVIC, Tara von Grebel

3.2 Methods

To assess the motivations of participants in the projects, we invited about 400 people,
who had registered for the CrowdWater newsletter by e-mail, and additionally used
the push-message service in both apps to fill out the questionnaire. The questionnaire
contained 29 statements that were based on the scientific literature on motivation in
citizen science (Levontin et al., 2018). The statements give potential reasons for why
people joined a citizen science project. We used these statements in the first part of the
questionnaire to ask what motivated people to join the projects – the engagement part.
For the second part of the questionnaire, the fulfilment part, we rephrased most of the
statements to ask whether these motivations were fulfilled by the participation in the
project. Answers were given on a Likert scale with five options that were translated in
numbers: don’t agree at all = 1, slightly disagree = 2, undecided = 3, slightly agree = 4,
fully agree = 5. We received answers that we could use for the study from 54 CrowdWater
participants and 36 Naturkalender participants. We classified the statements according
to the scheme of Batson et al. (2002), which was adapted by Beza et al. (2017) and is
hereafter referred to as the Batson-scheme, to obtain an overview of the broad categories
of motivation. Additionally, we used the scheme of Schwartz et al. (2012), which was
adapted for citizen science projects and recently published in a questionnaire by Levontin
et al. (2018), hereafter referred to as Schwartz-scheme, to gain more detailed insights
for the entire spectrum of motivations (see Figure 2 in Paper II). We chose these two
frameworks because they cover the broadest range of potential motivations. A full list
of the statements and the categories of the two frameworks can be found in Paper II.
We used the paired Wilcoxon signed rank test to test the significance of the differences
between the median response to the statements regarding the motivations for initial
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(a) CrowdWater App (b) Naturkalender App

Figure 3.2: Screenshots of the CrowdWater (a) and the Naturkalender app (b), with on
the top row of the second panel of each screenshot the social media features (from
left to right the like button and counter, the speech bubble that allows users to
comment on the observation (with the counter next to it), and the sharing button
to share contributions on Facebook, Twitter and Google+. More information on the
app design can be found in Paper I, Seibert et al. (2019) and spotteron.net (accessed:
09.01.2020). Figure from Paper II.

.
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engagement and the fulfilment of these motivations by participating in the projects. We
used the Mann-Whitney U-test to test the significance of the differences in the median
response for the different subgroups of respondents (i.e. CrowdWater vs. Naturkalender
participants, super-users who contribute on average at least once per week vs. occasional
participants, and the different age groups).

3.3 Results

Participants of the CrowdWater and Naturkalender projects mainly joined the projects
to contribute to science, satisfy their interest in science and technology, protect nature,
contribute to the well-being of society, learn something new, and be physically active
(Figure 3.3).

Not all the initial motivations were fulfilled by participating in the projects (Figure
3.4). The respondents of both projects, for instance, agreed significantly less that their
continued involvement was driven by a motivation to contribute to society (universalism,
societal concern) and socialising with other people (security and belongingness) although
these aspects motivated them to join the projects. On the other hand, fun and enjoy-
ment (hedonism) were not the primary motivation to become involved in the projects but
were essential motivators for continued participation. Respondents from Naturkalender
were more motivated by enjoyment, learning (self-direction) and being outdoors and the
physical activity (stimulation) than the CrowdWater respondents. Most of the fun and
learning experience probably came from the social interaction and the information on
plants and animals included in the Naturkalender app. Such a learning aspect was not
available for CrowdWater, which probably explains why for CrowdWater respondents
the primary motivation for continued participation was similar to the engagement moti-
vations: help with research (universalism, research), protection of nature (universalism,
nature) and acting according to their values and beliefs (tradition).

3.4 Conclusions and implications

From a combination of the findings in Paper II and the literature, we could draw the
following conclusions and recommendations for involving citizen scientists in research
projects:

• It appears that people are more likely to contribute to a project over extended
time periods if they have shared values with the project’s goal (e.g. protection of
the environment). The level of interest increases if projects tackle problems that
impact the every-day life of participants (Frensley et al., 2017). One could argue
that everyone, and thus also Naturkalender participants, is affected by climate
change and people can observe the effects in their backyard. For CrowdWater,
the local relevance of the stream observations is less evident because the data are
not linked to any forecasts (yet). The motivation to participate in CrowdWater
might change, once the project is more frequently used in other countries with fewer
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Figure 3.3: Percentage of respondents who chose one of the five levels of agreement to statements regarding initial engagement
that belong to the motivational categories of Batson et al. (2002) (top five rows) and Schwartz et al. (2012) for CrowdWater
(left) and Naturkalender (right). For the categories marked with an asterisk (*) the median response for the CrowdWater
and Naturkalender participants was significantly different. The values next to the categories indicate the percentage of
respondents who don’t agree (left; don’t agree at all and rather don’t agree), are undecided (middle) and agree (right;
rather agree and fully agree). The categories are sorted by decreasing percentage of agreement for the respondents of the
CrowdWater project. Figure from Paper II.
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gauging stations and/or locations where people are more exposed to water-related
hazards.

• Participants need to be interested in the topic of the project and the activities
involved. They often have an interest in science or technology. For online projects,
the motivation to participate in a project is mainly to contribute to science (Curtis,
2015; Raddick et al., 2013). For Naturkalender, it seems that many participants are
plant (and animal) enthusiasts. The agreement to the statement "I am interested
in the topic of this project" was very high for respondents for both projects, similar
to the findings of Hobbs & White (2012) for two wildlife observation projects.

• Social media elements are beneficial for online projects (Nov et al., 2014) to create
social networks and allow people to comment on the contributions of others. This
could help to form a self-organizing community that ensures data quality (Serret
et al., 2019). This is in line with self-determination theory, according to which the
ability to make competent actions and decisions autonomously leads to enhanced
self-motivation (Ryan & Deci, 2000). In Naturkalender, social interactions enable
participants to help others and therefore provide teaching and learning experiences
for the participants without requiring effort by the project administrators. In
CrowdWater this feature is not used extensively, perhaps this is related to the lack
of options to share knowledge and learn something new.

• The importance of learning new things has been reported in multiple studies (e.g.
Hobbs & White, 2012; Johnson et al., 2014). For Naturkalender, self-direction was
the category with the second highest agreement (average: 86% agreement) in the
fulfilment part, whereas for CrowdWater it was only ranked 6th (66% agreement).
CrowdWater offers information about hydrology on the homepage and links to an
online course called “Water in Switzerland”. However, so far it appears that these
options are rarely used, possibly due to them being mentioned on the homepage,
rather than within the app. Thus, opportunities for learning are limited compared
to Naturkalender, where users profit from the expertise of other participants and
informative content on plant and animal species inside the app. For successful
projects, there should be an easily accessible possibility to extend one’s knowledge
about a topic and to learn new things.

• People need to enjoy their participation. This can be achieved by providing more
choices and options for participating, as it is the case in Naturkalender compared
to CrowdWater, but also by giving users more competences (e.g. more rights for
advanced users) as proposed in the self-determination theory (Ryan & Deci, 2000).
The option to give selected users the right to edit contributions of other users exists
in the CrowdWater app, but has not been used so far.

• The super-users were in general older than the occasional participants. This is
common for other projects as well (Sheppard et al., 2017; Wright et al., 2015). It
might therefore be an effective strategy to focus recruitment on people above the
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age of 50. This was to some extent unexpected because both projects use modern
apps, which might be less intuitive for some older people. On the other hand, once
the habit is established, older people are more likely to contribute for extended
periods (Sheppard et al., 2017; Venkatesh et al., 2012).

• Participants of the newer CrowdWater project were considerably more motivated to
join by social pressure (conformity), i.e., because they were asked to help with the
project. This might be true for many projects that have just started and still rely
on families, friends or acquaintances to participate in (and promote) the project.
People who were motivated to join by a perceived social pressure may help a project
in the beginning but later tend to quit. Naturkalender participants were motivated
more to join because of their interest in the project topic, in combination with a
willingness to share their expertise on the topic.

• The introduction of gamification elements increases the competitive element (Nov
et al., 2014) and projects might reach new audiences (Bowser et al., 2013b) but
this might also decrease the intrinsic motivation of participants (Thiel & Fröhlich,
2017) or cause participants to make low-quality contributions in order to get more
points (Bowser et al., 2013a). Thus, gamification should be applied cautiously and
potential negative consequences should be evaluated beforehand. The respondents
of this survey agreed relatively little with competitive categories (achievement,
face). Whether people did not like the existing leader board, or if it was not
enough to trigger these motivations, remains to be investigated.

Implications for CrowdWater

For the future of CrowdWater, it is important to recruit participants that contribute over
longer periods and can thus collect long time series. Therefore, groups of people who
are interested in, or affected by water need to be identified. Such groups could then be
moderated by a member of the same group, by e.g. giving that person more rights in the
app. Adding more options to contribute easily and frequently might lower the barriers
for contribution. Furthermore, adding informative content to the app that contributes
to the learning experience of the participants could recruit or retain participants that
are motivated by self-direction. The learning experience could be further intensified by
providing more feedback on contributions from the project administration, as well as
from other users in the comment sections of the app. Sharing research results would
probably help the participants relate their contributions to research and thereby fulfil
expectations related to helping research and in turn help to enhance participation and
retention rates.
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Figure 3.4: The average percentage of respondents that agreed to the statements that be-
long to the different categories for the motivations for initial engagement (orange) and
fulfilment (purple) for CrowdWater (left) and Naturkalender (right). Empty circles
indicate insignificant (p>0.05) changes in the median response for initial engagement
and fulfilment; filled symbols indicate significant changes. Asterisks indicate categories
for which the median response for fulfilment for the CrowdWater and Naturkalender
participants was significantly different (see Figure 3.3 for the statically significant dif-
ferences in agreement for initial engagement). The categories are sorted by decreasing
agreement for the CrowdWater respondents in the engagement part. Figure from
Paper II.
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What is the accuracy of crowd-based streamflow

and water level class estimates?

4.1 Introduction

Determination of the accuracy of citizen science data before starting a citizen science
project ensures that the data collected are sufficiently accurate for the purpose of the
project. It furthermore avoids unnecessarily burdening citizens with tasks that result in
data that are in hindsight of limited value due to data accuracy issues. We therefore
conducted 16 field surveys at the start of the CrowdWater project in 2016 and 2017
(i.e. before the smartphone app was released in Spring 2017) to determine what types
of parameters related to streamflow citizens can estimate accurately and to assess if
streamflow or WL-classes are estimated more accurately. The full description of the
study can be found in Paper III and a simplified graphical summary is given in Figure
4.1.

We conducted a second study on the accuracy of WL-class estimates that were col-
lected with the CrowdWater app between spring 2017 and fall 2019 and with paper forms
between fall 2016 and fall 2019. These crowd-based WL-class estimates were contributed
by independent and non-supervised citizen scientists. Thus, this study extends the find-
ings of Paper III where the experts were present. We selected nine locations where citizen
scientists independently contributed data with the CrowdWater app and twelve locations
where they could use paper forms and letter boxes. For all these locations, which were
distributed across Switzerland and Austria, ‘true’ water level measurements from official
agencies, ourselves or other research groups were available in the vicinity. Furthermore,
we studied the temporal patterns of the contribution by citizens and discuss experiences
from the two different approaches (app and forms) for data collection used within the
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CrowdWater project. The full description of the study can be found in Paper IV and a
short summary is given in Figure 4.2.

Figure 4.1: A graphical summary of Paper III depicting the street surveys with passers-
by. The comic illustrates that water level classes are easier to estimate than stream-
flow for citizen scientists. Design by: University of Zurich, Information Technology,
MELS/SIVIC, Tara von Grebel

Figure 4.2: A graphical summary of Paper IV showing the different seasons when citizen
scientists contributed to the app spots and the pen-and-paper stations and the dif-
ference in data quality between the two approaches. Design by: University of Zurich,
Information Technology, MELS/SIVIC, Tara von Grebel

4.2 Field surveys

4.2.1 Methods

The aim of the surveys was to obtain a sufficient number of streamflow estimates for
a specific stream on a specific day (our aim was 30 participants per survey to assure
statistical significance; Field et al., 2013). The CrowdWater project aims to collect ob-
servations for the same stream at multiple times, but here we collected multiple estimates
at (almost) the same time for the assessment of the accuracy of the estimates and we
assumed that the streamflow remained constant during the survey. We thereby could
assess the accuracy of the estimates compared to a nearby measurement for the same
stream which was assumed to be correct. We conducted 16 field surveys where we asked
517 citizens to estimate the streamflow, as well as the average width, depth and velocity
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of the stream, and the WL-class. For the surveys, we selected 10 locations (Table 4.1, for
more details see Table 1 and Fig. S1 of Paper III), where we expected enough people to
pass by and to have time for the survey. We used a logistically simple sampling strategy,
whereby we personally approached passers-by (similar to Breuer et al. 2015) and asked
if they would complete the 5-minute survey (i.e., we did not use a targeted approach to
capture responses of a representative group of citizens). No data were collected on the
percentage of passers-by who participated, but we estimate that about every third per-
son we approached agreed to participate in the survey. In addition, we asked high-school
(Magliasina) and university students (Chriesbach, Glatt and Limmat) to fill out the sur-
vey during excursions. All surveys took place between October 2016 and September
2017. In total, we received 517 complete surveys: 372 passers-by, 61 participants from a
geography bachelor student excursion (Glatt and Chriesbach), 40 from a high-school stu-
dent excursion (Magliasina) and 44 from a summer school for PhD students from fields
ranging from physics to social sciences (Limmat; Table 1). During the group excursions,
we emphasized the need for individual estimates and limited discussions between the
students for the duration of the survey. Participants were first asked to estimate the
streamflow directly. For this direct estimate, we asked them to estimate the flow in
m3/s, or in L/s for the very small streams. After this initial guess of the streamflow, we
explained to the participants that it is possible to estimate the individual factors (width,
mean depth and flow velocity) and to derive the streamflow by multiplying these values.
The participants were then asked to estimate the average width, mean depth and veloc-
ity of the stream. We also asked participants to estimate the WL-class: the participants
compared the current water level with a printed photo of the same stream (taken at an
earlier time) with the virtual staff gauge with 10 WL-classes as it is used in the Crowd-
Water app (Paper I). We converted the WL-classes into streamflow ranges to make the
accuracy of WL-class estimates comparable to the accuracy of streamflow estimates: For
the stream locations with a nearby gauging station of the Swiss Federal Office for the
Environment (FOEN; Sihl, Limmat, Aare), the classes of the virtual staff gauge were
converted to a metric value by determining the stream depth that corresponded to each
WL-class (i.e., mid-point and upper and lower water level for each class). We used the
FOEN rating curve to convert these water levels to a streamflow estimate. For the sites
where no rating curve was available (Hornbach, Irchel, Schanzengraben and Töss), addi-
tional measurements of the stream profile and water surface slope (estimated based on
the slope of the streambed) were used to estimate the streamflow for each WL-class using
the Manning-Strickler formula (Manning, 1891). This curve was fitted to the streamflow
measured on the day of the surveys by adjusting the roughness coefficient within pre-
defined boundaries based on the streambed material. Since the WL- classes represent a
range of values rather than just one value, the streamflow was not only calculated for
the centre value of the class, but also the class boundaries to obtain the possible range of
streamflow values. The estimates from Chriesbach, Glatt and Magliasina were excluded
from this analysis (101 of the 517 estimates) because the relevant data were not collected
at the time of the surveys.
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Figure 4.3: Screenshot of the CrowdWater app at the Salzach in Salzburg, where most
contributions were made by the one user (Karin Ebermann). The image labelled
Original shows the virtual staff gauge and the image labelled This update shows a
later contribution with the same WL-class. Right: A pen-and-paper station at the
official gauging station Kleine Emme – Werthenstein of the Swiss Federal Office for the
Environment (in the background of the image) where 45 different citizens contributed
observations. Note the reference image with the virtual staff gauge on the lower left
of the sign.

4.2.2 Results

As expected, estimation of the individual streamflow factors with width, mean depth
and flow velocity led to more accurate streamflow estimates than the direct estimates of
streamflow (Figure 4 in Paper III). The main reason for this difference was the unfamil-
iarity of the participants with the units of m3/s for the direct estimates. However, there
was still a large spread in the streamflow estimates based on the individual factors, as
especially the depth was hard to estimate. In Figure 4.4(a) the spread in the estimated
streamflow is shown for the medium sized rivers. These rivers are selected here, because
the resulting error distribution from this study was used for Paper V.

The WL-classes were estimated correctly by about half of the participants (48%) and
most of the remaining participants (40%) were off by only one class. There were only
a few outliers: 13% of participants had an error of two classes or more (Figure 4.4(b)).
The largest overestimation was six classes and the largest underestimation was three
classes. These errors likely occurred due to a misunderstanding of the method. The
WL-class estimates were especially accurate for smaller streams where the streambank
on the opposite side of the stream, where the virtual staff gauges were located in the
photo, were close to the participant (Figure 5 in Paper III). One of the very small streams
(Irchel) had a poorly placed staff gauge. The image was taken looking down onto the



4
.2

.
F
IE

L
D

S
U

R
V

E
Y

S
27

Table 4.1: (adapted) Information on the streams where the field surveys took place. Size classes XS: ≤ 1 m3/s; S: >1–50
m3/s, M: >50–200 m3/s and L: >200 m3/s. Survey dates are given as dd.mm.yyyy. A map with the survey locations is
given in the supplementary material of Paper II (Fig. S1).

Stream Size No. of
survey

Date n participants Streamflow
[m3/s]

Approx. dis-
tance to virtual
staff gauge [m]

Comments

Chriesbach (Zurich) XS 29.09.2017 30 0.381 5 BSc students: no direct streamflow estimates
Hornbach (Zurich) XS 19.02.2017 33 0.1341 8
Irchel (Zurich) XS 11.03.2017 25 0.011 1
Glatt (Zurich) S 29.09.2017 31 2.82 11 BSc students: no direct streamflow estimates
Magliasina (Magliaso) S 28.04.2017 40 163 14 High school students: no stream level class estimates
Schanzengraben (Zurich) S 01.04.2017 31 2.61 16
Sihl (Zurich) S 1 18.02.2017 33 73 32 Low flow

2 26.07.2017 31 283 High Flow
Töss (Winterthur) S 12.03.2017 35 92 29 Interpolation between three nearby stations for refer-

ence value
Limmat (Zurich) M 1 29.10.2016 38 593 7 No streamlevel class estimates

2 08.04.2017 27 833

3 02.06.2017 31 1073

4 09.07.2017 44 753 PhD students, low flow
5 13.11.2017 31 2223 High flow

Aare (Brugg) L 1 07.01.2017 27 1083 53 Low flow
2 10.05.2017 30 3893 High flow

1Streamflow data were obtained using salt dilution gauging.
2Streamflow data were obtained from the Office of Waste, Water, Energy and Air of Canton Zurich (WWEA; hydrometrie.zh.ch)
3Streamflow data were obtained from the Swiss Federal Office of the Environment (FOEN; hydrodaten.admin.ch)
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stream rather than horizontally from the height of the water level, which distorted the
virtual staff gauge relative to the wall behind the stream, which made it more difficult
to read. The accuracy of the WL-class estimates was better for the Limmat than for the
Aare, even though they have similar widths (50 and 52m) and were the widest streams in
the study. At the Limmat the virtual staff gauge was placed on a bridge pillar which was
relatively close to the observer, whereas at the Aare it was placed on the opposite bank.
From this we conclude that the virtual staff gauge, or rather the reference structures
which are needed to select the WL-class should be close to the observer and that the
placement of the virtual staff gauge is important.

(a) (b)

Figure 4.4: (a) Fit of the normal distribution to the frequency distribution of the log
transformed relative streamflow estimates (ratio of the estimated streamflow and the
measured streamflow) for the medium sized streams. This error distribution was used
in Paper V. Figure from Paper V.
(b) Distribution of the errors in the WL-class estimates (i.e., the difference between
the reported WL-class and the actual WL-class, as determined by experts) from field
surveys for nine different locations. This error distribution was used in Paper VI. The
virtual staff gauge used in the survey had ten classes. Figure from Paper VI

.

4.3 Real CrowdWater data

4.3.1 Methods

We selected nine locations in Austria and in Switzerland where multiple crowd-based
WL-class estimates from the CrowdWater app were made (hereafter referred to as spots)
and measured water level data were available for more than one year (Figure 2 of Paper
IV). The spots had between 46 and 505 contributions at the time of this study in October
2019. We also installed signs with reference images (Figure 4.3) at twelve different stream
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locations in Switzerland (Figure 3 of Paper IV). On the signs, passers-by were asked to
write the observed WL-class onto a form and to leave the form in a letterbox. These
stations are hereafter referred to as pen-and-paper stations and had between 23 and
202 contributions. An overview of the different locations and the type of water level
measurements is given in Table 1 of Paper IV. We assessed the agreement between the
observed WL-class data and measured water levels using the Kendall rank correlation
coefficient (Kendall, 1990). Even though the water level measurement stations can be
considered well maintained, errors in the stage measurements cannot be fully excluded,
e.g. Horner et al. (2018) found errors in water level measurements in the order of 4 to
12% at six gauging stations in France. However, such inaccuracies are beyond the scope
of this study and therefore the water level measurements are considered to be error-free.
We furthermore analysed the contribution times to see whether more observations were
submitted during summer vs. winter or during weekend vs. weekdays. We also checked
in which percentiles of the measured water levels the crowd-based WL-class observations
were made to determine if measurements are also made during high flow conditions.

4.3.2 Results

Accuracy

WL-class observations made with the CrowdWater app by citizen scientists correspond
well with measured water levels (Figure 4.5). Even though the results of such WL-class
data are not perfect and class boundaries are often fuzzy, the estimated WL-classes from
the app are in good accordance with measured water levels. The observed WL-classes
for the pen-and-paper stations did not correspond as well with measured water levels as
the contributions for the app spots (Figure 4.6).

Which water levels are covered?

Our results furthermore show that our citizen scientists in the app often observed high and
low flows. Hence, it can be expected that dedicated citizen scientists make observations
even when the weather conditions are rather harsh and that some are ambitious to catch
exceptional water levels. The main contributor to the spot at the Alp in Einsiedeln
(stealthreporter ; with 32% of the observations at times when the water level was above
the 90th percentile of all water level measurements) stated:

“The other day, I left the house again because it rained, to observe some high
flows.”

For the pen-and-paper stations there were fewer contributions at high flows but rather
more at low flows. This indicates that people contributed more during periods with
pleasant weather conditions, probably because they did not deliberately go outdoors to
contribute stream observations.
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Figure 4.5: Correlation between WL-class observations and measured water levels for nine app stations. τ is the correlation
coefficient of the Kendall test, and p the corresponding p-value. ncontrib is the number of contributions for the spot
and npart the number of individual participants who contributed observations for this spot. The dots are the individual
observations and the corresponding measured water level. The boxes show the same data but extend from the 25th to
the 75thpercentile and the whiskers extend to the 10th and 90th percentile. The black line inside the box represents the
median.
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Figure 4.6: Correlation between WL-class observations and measured water levels for the pen-and-paper stations. τ is the
correlation coefficient of the Kendall test, and p the corresponding p-value. ncontrib is the number of contributions for
the station and npart the number of individual participants who contributed to this station. The dots are the individual
observations and the corresponding measured water level. The boxes show the same data but extend from the 25th to
the 75thpercentile and the whiskers extend to the 10th and 90th percentile. The black line inside the box represents the
median.
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Timing of observations

Overall, the timing of observations was surprisingly equally distributed throughout the
times of the day, days of the week and the months (Figure 4.7). During the days the
contributions were rather focused on the early afternoon (pen-and-paper stations) and
the late afternoons (app-stations). The pen-and-paper stations had a higher percentage
of contributions on weekends, especially on Sundays compared to the app stations where
the contributions were more equally distributed throughout the week. We assume that
the contributions to the pen-and-paper stations were not part of the daily routines of
the citizen scientists but rather occurred when people passed by the stations by chance
(during e.g. a walk). Sundays, apparently, are the most likely days for people to be
on such walks or hikes. Maybe this is due to the fact, that in Switzerland most shops
are closed on Sundays and doing groceries, or other every-day activities is not possible
then. Amongst the citizen scientists who used the app, there were probably more com-
mitted people that planned their contributions as a part of their daily or weekly routine.
However, the contribution patterns vary across the spots (Figures S1 and S2 in Paper
IV), therefore it becomes unpredictable when a citizen scientist will contribute without
knowing more about their daily routines. Throughout the year there was only a slight
tendency for more contributions during the warmer months at both the pen-and-paper
and the app stations.

4.4 Conclusions and implications

The survey results showed that WL-classes are a suitable quantity to be estimated by
citizen scientists. The results also showed that the accuracy of streamflow estimates was
lower than the accuracy of WL-class estimates and that variations in the flow conditions
were not fully discernible in the streamflow estimates. In addition to being more accurate
than streamflow estimates, the WL-class estimation process is also very quick, which is a
big advantage for a citizen science project. It is assumed that offering a fast procedure to
document stream levels will encourage citizen observers to contribute data to a project
regularly (Eveleigh et al., 2014).

The results from Paper IV showed that citizen scientists can collect time series of
WL-classes that are in good accordance with measured water levels with the CrowdWa-
ter app and the virtual staff gauge approach. Observations with the CrowdWater app
lead to better results compared to the pen-and-paper stations. We assume that the lower
data quality for the pen-and-paper stations is related to the number of contributors and
their familiarity with the method. In the app, the data for each spot was mainly submit-
ted by a single person, whereas for the pen-and-paper station almost every contribution
was made by a new participant. Because the virtual staff gauge method largely depends
on human perception, different people might come to different conclusions for the same
reference image. We assume that our approach with the virtual staff gauge is harder to
understand than the approach of CrowdHydrology (Lowry et al., 2019) or of the project
in Kenia by Weeser et al. (2018) where water levels in e.g. centimetres are read from phys-
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Figure 4.7: The grey areas indicate the average percentage of contributions made at all app spots and pen-and-paper stations
in this study per time of the day (left), day of the week (middle), and per month (right). The plots for all individual
stations can be found in the supplemental material of Paper IV in the Figures S1 and S2.
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ical staff gauges. Therefore it might be beneficial for the virtual staff gauge approach, if
a few (or a single) dedicated contributors collect all the data. Even if a single contributor
had a bias (e.g. always estimating too low) this would result in a more consistent time
series than if many people with different biases and perceptions contributed observations
to the same station. It is very common for citizen science projects that the majority
of the contributions come from a small group of dedicated contributors (Eveleigh et al.,
2014; Lowry & Fienen, 2013; Sauermann & Franzoni, 2015). For example, in the Crowd-
Hydrology project, one participant walked past a particular station three to four times
a week, which led to this station having almost 10 times as many measurements as the
station with the next highest number of data submissions (Lowry & Fienen, 2013). This
highlights the extreme value of these dedicated contributors.

Another approach would be, that people at the pen-and-paper stations submit only a
photo by e-mail using their smartphones and then the WL-class could be estimated by a
collective effort, as e.g. in the CrowdWater-Game (Strobl et al., 2019). For the pen-and-
paper and for the app approach, increased interaction with the local population might
help to improve participation rates of individuals (Lowry et al., 2019). Potentially errors
could be reduced through training and information events. Loiselle et al. (2016) found
that citizen scientists who got to choose the site at which they contributed data to the
FreshWaterWatch project made more repeated measurements compared to participants
who were assigned to a station. Furthermore, they also found that if many people
contributed to the same stations, then the number of contributions by a single contributor
were smaller. This might to some extent be applicable to our setup as well. People who
see a sign by chance and decide to contribute feel less committed than those who actively
decide to contribute and setup their own observation locations in the app. We assume
that creating and maintaining own spots fosters feelings of autonomy and competence,
which are in combination with the relatedness of one’s own contributions to a broader
topic, the basic principles of self-determination theory (Deci & Ryan, 2000). The theory
says that the motivation to participate increases, the more the desire for autonomy,
competence and relatedness are fulfilled (Frensley et al., 2017). This might explain the
favourable behaviour of the citizen scientist who was so motivated to observe high flows
that he went out deliberately to do so when it rained.

The errors in the WL-class estimates could be smaller if the participants of the
pen-and-paper stations would have undergone some form of training e.g. with the
CrowdWater-Game (Strobl et al., 2019) or would have contributed multiple times to
gather more experience.

The results are encouraging for using citizen science in hydrology and demonstrate
that using a smartphone application for crowd-based WL-class observations is a promis-
ing approach. These findings provide an empirical basis to quantify the accuracy of
CrowdWater estimates and formed the basis for evaluating the potential value stream-
flow and WL-class observations for hydrological modelling (Paper V and Paper VI). It
remains to be investigated in what ways these CrowdWater timeseries of WL-classes have
the potential to complement traditionally measured streamflow time series besides their
use in hydrological models to obtain simulated streamflow (see Paper VI).
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Conclusions and implications for CrowdWater

The findings of Paper I, Paper III, Paper IV and the literature provide insights on
beneficial practices that increase the quality of CrowdWater spots and the value of the
resulting WL-class time series:

• The reference image with the virtual staff gauge should be taken preferably at low
flow, as more features remain visible that facilitate a comparison with reality for
the subsequent observations (Paper I).

• Distinct features in the reference image are necessary to identify changes. Vegeta-
tion can hinder a clear identification of these features (Paper I).

• The picture needs to be taken as level with the water surface as possible to avoid
distortion of the view (Paper III).

• Shorter distances between the observer and the location of the virtual staff gauge
and the reference structures have a positive impact on the quality of WL-class
estimates. On wider rivers it is therefore beneficial to use features in the stream as
e.g. bridge pillars (Paper III).

• Staff gauge size needs to be appropriately sized for water level fluctuations to catch
most of the variability as can be seen in e.g. the station Salzach Salzburg compared
to Urtene, Moosseedorf (Figures 2 and 7 in Paper IV).

• Dedicated citizen scientists are needed to obtain data for a range of flow conditions
(Paper IV).

• Feedback and visibility of participants’ contributions might help sustained par-
ticipation (Lowry et al., 2019). We assume that the app to some extent fulfils
these criteria by displaying all the contributions publicly compared to the simple
pen-and-paper stations. However, feedback on how the data are used and what
individual contributions add to scientific research needs to be communicated as
well (Eveleigh et al., 2014).



5
What is the value of crowd-based streamflow,

water level and WL-class data for hydrological

model calibration?

5.1 Introduction

Hydrological models are important tools to study the impacts of natural and anthro-
pogenic changes in a catchment. They can, furthermore, be used in water management
and for flood or drought forecasting. The application of such models usually requires
several years of precipitation, temperature and streamflow data for calibration, but these
data are only available for a limited number of catchments. Therefore, several studies
have addressed the question: how much data are needed to calibrate a model for a catch-
ment? Many of them concluded that a limited number of streamflow measurements can
be informative to sufficiently calibrate a hydrological model (Brath et al., 2004; Juston
et al., 2009; Perrin et al., 2007; Pool et al., 2017; Seibert & Beven, 2009; Seibert & Mc-
Donnell, 2015). Seibert & Vis (2016) and van Meerveld et al. (2017) investigated the
potential of water level and WL-class data respectively for hydrological model calibra-
tion. They found that water level data was informative for model calibration, especially
in humid catchments (Seibert & Vis, 2016) and that WL-class data also led to a better
model performance than model runs using random parameter sets (i.e., lower benchmark,
representing a situation without any data). Although the above studies had different foci
and used different model performance metrics their results are nevertheless encouraging
for the calibration of hydrological models for ungauged basins based on a limited number
of crowd-based streamflow, water level or WL-class observations. One aim of the Crowd-
Water project is to continue this line of research and to develop a methodology that allows
citizen scientists to collect data that is informative for hydrological model calibration.

36
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This chapter therefore summarises Paper V in which we investigated the potential value
of crowd-based streamflow estimates and Paper VI where we tested the potential value
of water level measurements and WL-class estimates. A simplified graphical summary of
the two papers is given in Figures 5.1 and 5.2

Figure 5.1: A simplified illustration of the findings in Paper V that depicts the streamflow
estimation via stream width, average stream depth and the flow velocity. In the last
image shows that the uncertainty in these estimates is too high to be directly informa-
tive for hydrological model calibration. Design by: University of Zurich, Information
Technology, MELS/SIVIC, Tara von Grebel

Figure 5.2: A simplified illustration of the findings in Paper VI that depicts the water
level class estimation with the virtual staff gauge. The last image shows that such
water level class estimates are informative for hydrological model calibration. Design
by: University of Zurich, Information Technology, MELS/SIVIC, Tara von Grebel

5.2 Methods

5.2.1 HBV-light model

The bucket-type, semi-distributed hydrological model HBV (Hydrologiska Byråns Vat-
tenavdelning; Lindström et al. 1997) was originally developed at the Swedish Meteo-
rological and Hydrological Institute (SMHI) by Bergström (1976). We used the ver-
sion HBV-light (Seibert & Vis, 2012). In this section the model variant, routines and
parameters (denoted by a leading P ) that were used for Paper V and Paper VI are



38 CHAPTER 5. VALUE OF CROWD-BASED DATA

explained (Table 5.1 and Figure 5.3). We used time series of measured precipitation,
temperature and potential evaporation (PE) with hourly resolution as input data. El-
evation zones (each 200 m) allowed representation of the increase in precipitation (via
the gradient-parameter PPCALT [%100m−1]), and the decrease in temperature (via the
gradient-parameter PTCALT [◦C100m−1]) with increasing elevation. We did not use any
vegetation zones or different aspects of the elevation zones. This separation allows to treat
precipitation as either rain or snow based on the adapted temperature in each elevation
zone. If the temperature was below the temperature threshold PTT [◦C], the precipi-
tation was considered to be snow and was corrected by the snowfall correction factor
PSFCF [−] to account for systematic errors in snow measurements and the evaporation
losses from the snow pack, which are not explicitly modelled. Snowmelt in each elevation
zone was calculated using a degree-day-factor PCFMAX [mm◦C−1h−1] (equation 5.1):

snowmelt = PCFMAX(T (t)− PTT ) (5.1)

where T (t) was the temperature at each time step and PTT the threshold for melt to
occur. Meltwater and rainfall are stored within the snowpack up to the exceedance of
the fraction PCWH [−], which is the maximum water equivalent of the snowpack. If
the temperature of the timestep ∆t was below PTT , the refreezing in the snowpack was
calculated using equation 5.2:

refreezing = PCFR ∗ PCFMAX(PTT − T (t)) (5.2)

where PCFR [−] is the coefficient of refreezing.
The sum of the liquid precipitation and melt water are either input I(t) to the soil

box of the corresponding elevation zone or are directly recharging R(t) the groundwater
in the upper groundwater box SUZ (Figure 5.3). This fraction depends on the previous
water content of the soil box SSOIL(t) and its largest possible value PFC [mm] (equation
5.3):

R(t)

I(t)
=

(

SSOIL(t)

PFC

)PBETA

(5.3)

where PBETA determines the relative contribution to runoff from rain and snowmelt. The
groundwater boxes SUZ and SLZ are lumped, i.e. there is only one box for the entire
catchment (Figure 5.3). The actual evaporation AE equalled PE if the water content
of the soil box divided by PFC is above PFP ∗ PLP [−], else a linear reduction is used
(equation 5.4):

AE = PE(t) ∗min

(

SSOIL(t)

PFC ∗ PLP

, 1

)

(5.4)

where PLP [−] is a threshold for the reduction of evaporation. PPERC [mmh−1] defines
the percolation of the upper groundwater box to the lower groundwater box (Figure 5.3).

Runoff Q from the groundwater boxes is computed as the sum of the three linear
outflow equations depending on whether SUZ is above a threshold value, PUZL [mm], or
not (equation 5.5).

Q1+2+3 = PK2 ∗ SLZ + PK1 ∗ SUZ + PK0 ∗max(SUZ − PUZL, 0) (5.5)
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Table 5.1: Description of the HBV-light parameters. Seibert & Vis (2012) and their
ranges used for calibration of the model.

Parameter Description Unit Min Max

Rescaling Parameters of Input Data

PCALT change in precipitation with elevation % 100m−1 5 15
TCALT change in temperature with elevation ◦C 100m−1 0.5 1.5

Snow and ice melt parameters

TT threshold temperature for liquid and
solid precipitation

◦C -3 1

CFMAX degree-day factor mm ◦C−1 h−1 0.06 10
SFCF snowfall correction factor − 0.4 1.6
CFR refreezing coefficient − 0.001 0.9
CWH water holding capacity of the snow stor-

age
− 0.001 0.9

Soil Parameters

PERC maximum percolation from upper to
lower groundwater storage

mm h−1 0 3

UZL threshold parameter mm 0 100
K0 storage (or recession) coefficient 0 h−1 0.001 0.5
K1 storage (or recession) coefficient 1 h−1 0.0001 0.2
K2 storage (or recession) coefficient 2 h−1 2.00E-06 0.005
MAXBAS length of triangular weighting function h 1 7
FC maximum soil moisture storage mm 50 550
LP soil moisture value above which actual

evapotranspiration AE reaches poten-
tial evapotranspiration PE

- 0.3 1

BETA shape factor for the function used
to calculate the distribution of rain
and snow melt being routed to the
soil box (SSOIL) or the groundwater
(SUZ), respectively

- 1 5
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Figure 5.3: The structure of the HBV-light model (adapted from Uhlenbrook et al., 1998).
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This outflow is then transformed by a triangular weighting function that is governed
by PMAXBAS [−] (equation 5.6) and results in the simulated streamflow Qsim for each
time step in [mmh−1].

Qsim(t) =

PMAXBAS
∑

i=1

c(i) ∗Q1+2+3(t− i+ 1),

where c(i) =

∫ i

i=1

2

PMAXBAS

−

∣

∣

∣

∣

u−
PMAXBAS

2

∣

∣

∣

∣

∗
4

P 2
MAXBAS

du

(5.6)

5.2.2 Data

In Paper V, we calibrated the HBV-model for six catchments in Switzerland. For Paper
VI, we used only four of these catchments because the performance of Allenbach and Riale
di Calneggia was bad due to issues with the rainfall and/or streamflow data, which led to
rainfall-runoff ratios >1 (the detailed rainfall-runoff ratios and catchment characteristics
can be found in Table 2 of Paper V, Table 1 of Paper VI and in Figure 5.4). All streamflow
and water level data were obtained from the FOEN. All rainfall and temperature data
were obtained from MeteoSwiss. For each of the catchments we selected a dry, a wet and
an average year within the period 2006-2014 based on the total summer streamflow for
model calibration and validation. The years were the same in both studies.

5.2.3 Creation of synthetic datasets

We fitted a continuous normal distribution to the logarithms of the streamflow estimates
relative to the measured streamflow (i.e., error distribution) for the medium sized streams
(Töss, Sihl and Schanzengraben in the Canton of Zurich and the Magliasina in Ticino;
n=136) from Paper III (Figure 4.4(a)). These medium sized streams had a similar
streamflow range at the time of the estimations of 2.6 – 28 m3/s as the mean annual
streamflow of 1.2 – 10.8 m3/s of the streams in the six catchments used for model
calibration in Paper V. We used this error distribution for streamflow together with the
observed streamflow time series to generate synthetic streamflow series that represent
the uncertainties of real crowd-based estimates for the six catchments of Paper V. This
representation of streamflow estimation accuracy allowed us to generate an uncertain
streamflow or water level class observation for every time step of the measured streamflow
data based on an empirically based probability.

Similarly, for the creation of synthetic WL-class time series we used a discontinuous
normal distribution that we fitted to the class errors for the WL-class estimates deter-
mined by us in Paper III (Figure 4.4(b)). For the creation of synthetic WL-class time
series we used time series of the measured water levels that we binned into 2-10, 15,
and 20 classes. We then generated random noise with the magnitudes and associated
likelihoods from the normal distribution for every time step on the WL-class time series
with 10 classes. As a result, 48% of all WL-class observation points were correct, roughly
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Figure 5.4: The catchments that were used in Paper V and Paper VI and their locations within Switzerland. The inset
graphs show the mean monthly precipitation (P), streamflow (Q), potential evaporation (PE) and temperature (T). The
catchments Allenbach and Riale di Calneggia were not used in Paper VI.
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40% of all classes were one class higher or lower than the correct class and roughly 13%
of the data points were more than one class off.

For both the streamflow and WL-class time series, we also generated time series
with smaller errors based on the same error distribution but with the standard deviation
divided by two and four. For every class and error magnitude, we then created time
series with fewer data points reflecting different scenarios of likely contribution times.
This resulted in uncertain streamflow and WL-class time series with Hourly, Weekly,
Daily, Monthly observations, two time series with measurements during weekends in the
period from March to August WeekendSpring or from May to October WeekendSummer
and every other day during the months of July, August, and September IntenseSummer.
Furthermore, we generated a scenario with 52 (Crowd52 ) and 12 (Crowd12 ) data points
per year, with a higher probability for contributions at times when we assumed that
people were more likely to be outdoors (i.e. most contributions in summer, only during
daylight, and outside working hours).

5.2.4 Model calibration and validation

Calibration procedure

For all the model calibrations with measured and synthetic streamflow, we used the
overall performance index (POA; Finger et al., 2011). The POA is the mean of the
Nash-Sutcliffe efficiency for the streamflow(Nash & Sutcliffe, 1970), the Nash-Sutcliffe
efficiency for the log-transformed streamflow, the mean absolute relative error, and the
volume error. For each calibration with water levels or WL-classes, we optimized the
Spearman rank correlation coefficient (Spearman, 1904) between the synthetic WL-class
data set and the simulated streamflow using a genetic optimization algorithm (Seibert,
2000). The advantage of using the Spearman rank correlation is that it does not require
any information on the rating curve for calibration based on water levels or WL-classes.
A good fit is obtained as along as simulated streamflow and observed water levels or WL-
classes go up and down simultaneously and therefore the dynamics are the same. The
assumption is, that the water balance is largely constrained by the precipitation inputs
(Seibert & Vis, 2016). To consider parameter uncertainty, the calibration was performed
100 times, which resulted in 100 parameter sets for each case. The parameter sets and
their ranges used for calibration can be found in Table 5.1. For each case, the preceding
year was used for the warm-up period. For the Crowd52 and Crowd12 time series, we
used 100 different random selections of times, whereas for the regularly spaced time series
the same times were used for each of the 100 calibrations. For the synthetic streamflow
data this resulted in a total number of 576 calibrations (6 catchments, 3 calibration
years, 4 error groups, 8 temporal resolutions) and for the synthetic WL-classes the total
number of calibrations was 3’564 (4 catchments, 3 calibration years, 9 different temporal
resolutions, 3 error magnitudes with 10 classes, and 11 class sizes without errors.
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Validation procedure

The model validation for all cases was performed using the POA based on the obtained
parameter sets from the calibration. The obtained parameter sets from the different
year characters were cross-validated with all three year characters each. The validation
performance of the model calibrated with one year of measured streamflow data served
as the upper benchmark (Seibert et al., 2018) and represented the best possible situation
with high resolution and high quality streamflow data. For the lower benchmark we
used 1000 randomly generated parameter sets, which represented a situation were no
streamflow data was available for model calibration.

5.3 Results

The results for the streamflow estimates and WL-class estimates differed: the effect of
errors was greater in the streamflow scenarios than for the WL-class scenarios (Figure
5.5). The impact of typical errors for citizen-science-based estimates of WL-classes on
the model performance was small. This is perhaps not surprising, as about half of the
WL-class estimates were still correct in the scenario with the largest errors. The errors
in streamflow data had a much larger impact because they were often larger than the
natural fluctuations in streamflow. These results indicate that streamflow estimates
from untrained citizens are not directly informative for model calibration. However, if
the errors are reduced, the estimates are informative and useful for model calibration
(see difference between large and medium errors in Figure 5.5). As expected, the model
performance increased when the number of streamflow estimates used for calibration
increased. The model performance was also better when the streamflow estimates were
more evenly distributed throughout the year (Figure 5.5).

The results of the calibrations using WL-class data in Paper VI indicate that on
average one WL-class observation per week for a one-year period (see Crowd52 scenario)
can significantly improve model performance compared to the situation without any
streamflow data. In fact, the validation performance for model parameters calibrated
with 52 WL-class observations was similar to the performance of the calibration with
precise water level measurements (as can be obtained from a water level logger; see
comparison water levels and WL-classes in Figure 5.5). Errors in the estimates (Figure
5.5) and the number of WL-classes (when at least four to five WL-classes were used) did
not influence the validation performance noticeably (Figure 5.6).

Although there was a general trend of increasing model performance with an increas-
ing number of observations, the timing of the observations within the year also had a
substantial effect on model performance. The validation performance for the model cal-
ibrated with Crowd52 data (i.e., with more observations in summer) was comparable to
the performance of the model calibrated with Hourly water level data, regardless of the
number of classes. On the other hand, the model validation performance of the model
calibrated with Weekly data was significantly worse than the performance of the model
calibrated with Hourly water level data, even when using 20 WL-classes. This is con-
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trary to the results for uncertain streamflow observations of Paper V, where Weekly data
resulted in a better model validation performance than Crowd52 data. For WL-class
estimates, it is probably beneficial to obtain observations that cover a larger variation
in streamflow magnitudes than for streamflow directly because it takes a relatively large
change in the actual water level (and thus also streamflow) to change one WL-class.

The results of Paper V indicate that streamflow estimates from untrained citizens are
not directly informative for model calibration. However, if the errors could be reduced,
the estimates are informative and useful for model calibration. As expected, the model
performance increased when the number of observations used for calibration increased.
The model performance was also better when the observations were more evenly dis-
tributed throughout the year. However, the results of Paper VI indicate that on average
one WL-class observation per week for a one-year period (see Crowd52 scenario) can sig-
nificantly improve model performance compared to the situation without any streamflow
data. Furthermore, the validation performance for model parameters calibrated with
WL-class observations was similar to the performance of the calibration with precise
water level measurements. The number of WL-classes did not influence the validation
performance noticeably when at least four WL-classes were used. The impact of typical
errors for citizen-science-based estimates of WL-classes on the model performance was
small.

5.4 Conclusions and implications

The results of WL-class simulations from Paper VI are encouraging for citizen science
projects because they suggest that the observations of water levels by citizens using
virtual or physical staff gauges for otherwise ungauged streams provide useful information
for model calibration. Although the validation performance of the model calibrated with
synthetic WL-class data with realistic frequencies for citizen science projects was not as
good as when streamflow data were used for calibration, the performance was comparable
to a calibration with data collected with water level loggers or physical staff gauges with
precise markings. Because the results of Paper VI showed, that collecting WL-class data
at different magnitudes of streamflow is beneficial for model calibration, there might be
a concern, that citizen scientists would only contribute data during favourable weather
conditions, and thus not make high flow observations. However, based on the results
of Paper IV it is realistic to expect that that citizen scientists also contribute during
high flows, even when the weather conditions are harsh. The WL-class observation
approach has the advantage of being easier to implement and more scalable because it
does not require any physical installations (and, thus, no special equipment, permits or
maintenance). We can therefore conclude that crowd-based WL-class time series and
also more precise water level time series (Weeser et al., 2019) can be useful to inform
hydrological models in regions where otherwise no data would be available, if on average
at least one observation is made per week for one year. Contrary, the results from the
calibration with synthetic streamflow estimates (Paper V) suggest that it is not useful to
have citizens estimate streamflows, unless their errors can be reduced by training. This
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Figure 5.5: Box plots of the model validation performance of the HBV-model calibrated with the data of Paper V and Paper VI
water level data with different temporal resolutions and the synthetic WL-class data (ten classes) with different temporal
resolutions and different errors, relative to the validation performance of the model calibrated with hourly streamflow data
(upper benchmark). The lower benchmark shown (in grey) is the median validation performance of the model run with
1000 random parameters. Note that there are no Daily scenarios for the streamflow simulations from Paper V. The grey
shading indicates a median model performance that is not significantly better than the lower benchmark (p>0.05). The
box extends from the 25th to the 75th percentile and the whiskers extend to the 10th and 90th percentile. The black line
inside the box represents the median. Numbers at the bottom indicate outliers with a relative POA<0.00. Note that the
boxes for the calibrations with streamflow are not the same as in Paper V because the data of the catchments Allenbach
and Riale di Calnegia were removed as they were not used for the calibrations with water levels and WL-classes.
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Figure 5.6: Box plots of the validation performance of the HBV-model calibrated with synthetic WL-class data (different
temporal resolutions and different numbers of WL-classes) relative to the performance of the model calibrated with hourly
streamflow data. The lower benchmark (in grey) represents the median performance of the model run with 1000 randomly
selected parameter sets. The grey background shading highlights the scenarios for which the median model performance
was not significantly better than for the lower benchmark. The filled squares at the top of the graph indicate cases
where the median validation performance for the model calibrated with WL-class data was significantly worse compared
to the calibration with water level data with the same temporal resolution (top row) and compared to the calibration with
continuous (hourly) water level data (second row); empty squares indicate no statistically significant difference based on
the one-sided paired Wilcoxon test. All scenarios led to a significantly worse model validation performance than calibration
with continuous streamflow data. The WL-classes were equally sized and assumed to be error free. The box extends from
the 25th to the 75th percentile and the whiskers extend to the 10th and 90th percentile. The black line inside the box
represents the median. Numbers at the bottom indicate outliers with a relative POA<0.00. Figure obtained from Paper
VI.
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suggests that it is more useful to focus the efforts of citizens on observations of WL-class
data, and when needed, to use models to convert these estimates into streamflow than
to ask them to estimate the streamflow directly.



6
Summary, discussion and suggestions for future

research

6.1 Motivation of citizen scientists

In Paper II, we showed the CrowdWater and Naturkalender participants mainly joined
the projects to contribute to science, to satisfy their interest in science and technology,
to protect nature, contribute to the well-being of society, learn something new, and to
be physically active. Fun and enjoyment were not the primary motivations to become
involved in the projects but were essential motivators for continued participation.

At the time of the survey, about half of the CrowdWater users agreed that social
pressure had led to their involvement in the project. This may have changed by now,
as many of the people who were active back then probably stopped participating. On
the other hand, many new participants joined and the number of participants with at
least one contribution has more than doubled since then (265 in October 2018 vs. 585
in January 2020). We assume that the motivations of CrowdWater participants are now
more similar the motivations of Naturkalender participants because the participant basis
is now dominated by people that we did not know before and that might therefore be
more self-motivated. Some CrowdWater participants contribute as part of their job or
their research and might, therefore, be motivated by more extrinsic motivations or by
pushing their career. The learning aspect, however, did not change in the two projects
and therefore the motivations related to learning might not change much. On the other
hand, with the new feature to document plastic pollution, more participants with the
desire to protect the environment and to help society might join.

49
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6.2 Hydrological research

In chapters 4 and 5 of this thesis, I showed that crowd-based WL-class time series ob-
tained with the virtual staff gauge approach can provide useful data in regions where
otherwise no data would be available. In Paper I, we showed that the majority of par-
ticipants understood the concept of the virtual staff gauge. Paper III demonstrated the
higher accuracy of WL-class estimates, especially also when compared to streamflow es-
timates. The results of Paper III allowed us to generate synthetic streamflow time and
WL-class time series with the uncertainties that can be expected if citizen scientists make
the observations. With these time series, we then investigated the potential of such data
for the calibration of hydrological models. The results of Paper V showed that stream-
flow estimates with uncertainties that are realistic for untrained citizen scientists, do not
provide any value compared to a situation without any data. However, if the errors could
be reduced, they might be informative for model calibration. The results of Paper VI
show that water level- or WL-class observations are useful for model calibration, com-
pared to a situation without any data, if at least one value per week over one year was
used for calibration. The models calibrated with water levels or WL-class estimates (even
with the largest errors) had a significantly higher validation performance compared to
a situation without any data. However, models calibrated with water level or WL-class
observations performed significantly worse than models that were calibrated with hourly
streamflow data. The results of Paper VI also showed that the benefits of having more
than four to five classes were negligible. The virtual staff gauge in the CrowdWater app
has ten classes. This allows WL-class estimates to be useful, even if citizen scientists
make the staff gauge too big to perfectly cover all water level fluctuations. Too small
virtual staff gauges, would not only make it harder to distinguish classes but would also
lead to missed information at flows higher or lower than the virtual staff gauge. However,
in the past years and to my knowledge, such a case has never occurred in the CrowdWater
app.

In Paper VI, we found that WL-class time series that were obtained via the app and
were submitted by mainly one person, were more consistent and in better agreement with
the measured water level data than the data that were obtained from the letterboxes and
were contributed by many different people. This suggests that the errors used in Paper VI
are perhaps too large and the median sized errors may be more representative. However,
the performance of the model calibrated with the WL-class data was insensitive to the
errors in the WL-class data and this is thus not likely to affect the results. However, if
the better data quality for estimates from a single person compared to a group of people
would also hold for the streamflow estimates, this finding could mean that the quality of
the streamflow time series may be better than estimated in Paper III and are perhaps
best represented by the results for the medium errors, if streamflow would always be
estimated by the same person. The personal estimation accuracy of individuals could
maybe even be improved by providing feedback on the accuracy of their estimates, if
estimates are made in the vicinity of gauging stations. In the app, the option to estimate
streamflow exists, but it is not promoted and hardly ever used. Therefore, we have no
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such time series and cannot confirm this assumption. If there is a constant bias for an
individual observer, one could also use Spearman ranks to calibrate the model, instead
of the common objective functions for calibration with streamflow like, e.g. the Nash-
Sutcliffe efficiency (Nash & Sutcliffe, 1970).

6.3 Recommendations

6.3.1 Future research directions

The potential of crowd-based data for model calibration could be studied for different
characteristics of the hydrograph, such as the timing of peaks, the representation of the
overall water balance or the simulation of high and low flows. This could be done by
comparing validation objective functions that describe the model performance for one
of these characteristics (e.g. the logarithmic Nash-Sutcliffe efficiency (Nash & Sutcliffe,
1970) for low flows).

The logical next step is to calibrate and validate hydrological models with real crowd-
based WL-class time series. Thereby further potential uncertainties could come into play,
which were not considered in Paper V and Paper VI like the placement of the virtual
staff gauge, the suitability of a location, the dynamics of the stream, timing of obser-
vations etc. Then also the potential of real crowd-based WL-class data for streamflow
forecasting should be examined. This would answer the question if real crowd-based
WL-class time series from the CrowdWater project are useful for water management and
natural hazard applications, such as flood or drought forecasting or hydropower produc-
tion. If such a study would show that streamflow predictions are possible based on this
data, the same approach could be applied in regions where otherwise no data would
be available. In that case, from a scientific point of view, there should be studies that
do a cost-benefit and effort-benefit analysis that compares WL-class observations and
streamflow measurements. The CrowdWater approach in combination with the app can
then promoted as a tool to facilitate data collection for interested stakeholders. If the
potential value of the CrowdWater-data for streamflow forecasting in regions without or
very little streamflow data is high, then it would become a valuable tool for agencies
that are operating with a low budget as well. Furthermore it could also be a valuable
tool for many grass-root movements (Seyfang & Smith, 2007) that wish to document,
for instance, unauthorized water withdrawals and or plastic pollution. This could either
be orchestrated by non-governmental or local organisations, either without the help of
scientists or in close collaboration with them. An example is the “Extreme Citizen Sci-
ence Group” at the University College in London that collaborates with marginalised
groups to identify local problems and helps to solve them by combining local and scien-
tific knowledge (Matthias et al., 2014). The app, therefore, has a the potential to become
a valuable tool for different projects that cover many of the different models of citizen
engagement of Serrano Sanz et al. (2014).
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6.3.2 CrowdWater app and management

The CrowdWater project had a successful start during the duration of my and Barbara
Strobl’s PhD. The technical backbone of the project is clearly the CrowdWater app.
Although the app offers already many helpful features, such as offline maps, liking,
sharing, flagging, following, push messages as well as checking and locking approved
contributions, the app and the admin-interface could still be improved. In particular, I
suggest that:

• The app incorporates the already planned extensions to enable the entry of actual
water levels from physical staff gauges, similar to the CrowdHydrology project
(Lowry et al., 2019) and the planned water quality feature.

• It would be beneficial if the push-messages could be sent to specific user groups.
These user groups could be defined by geographic region or alternatively, users
could subscribe to updates of a specific region or topic to get only the information
that is relevant and interesting to them. Then people could be informed about
local events, or interesting conditions that would be useful to observe.

• It is possible to define point locations or regions with a circle for certain events.
From a hydrology perspective, it might be beneficial to have the option to use more
complex geographic boundaries to e.g. map catchments where data is required by
using shapefiles.

• It would be helpful if it was possible to check & lock entire time series based on
the quality of the root spot (i.e. a well-placed virtual staff gauge in the case of
water level). The check & lock feature, so far, can only be applied to individual
contributions. Therefore, the green tick is no longer visible on the map after a new
observation has been uploaded.

• Adding learning opportunities might increase the motivation of citizen scientists,
as was shown in Paper II. Potential ideas are informative pop-ups (e.g. after each
contribution) with some facts about water or a stronger link to existing online
learning opportunities, such as the open online course on Water in Switzerland1.

• Once there are studies that prove that the virtual staff gauge approach leads to
valuable data that can be used for e.g. streamflow forecasts, the collaboration
with local community groups should be promoted. Once an organisations accepts
to use the CrowdWater app, more rights should be given to one or multiple local
admins, to distribute the workload of the quality control and to give the groups
more autonomy and thereby also to enhance their motivation according to the
self-determination theory (Ryan & Deci, 2000).

1https://edu-exchange.uzh.ch/courses/course-v1:UZH+Wasser_CH+2019_T1/ (accessed:
09.01.202)
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• The images of the CrowdWater game provide a valuable resource for machine learn-
ing approaches, e.g. to classify the images automatically. A machine learning model
would, however, have to be trained for each CrowdWater spot individually and a
large number of classified images would be necessary (i.e. >100 per class). An
alternative would also be to combine the classes from the app into larger groups
and e.g. distinguish only between low, normal and high flow. For such a model, less
images would probably be sufficient. Once such a model is trained and validated,
citizen scientists would only need to upload images and the classification step could
be dropped but it needs to be studied, whether this affects the motivation of citizen
scientists to contribute to the project. Alternatively, also automatic cameras could
then be used in spots where data is extremely valuable.

• The CrowdWater app can be promoted as a tool for data collection and also ver-
ification (in the CrowdWater Game). Therefore it can be used in many other
applications such as the Plastic Spotter2 project in the Netherlands, which already
uses the app to collect data on plastic pollution.

The management of the CrowdWater project and its community included many tasks:
the quality control of the app contributions, communication with participants, organis-
ing outreach activities at science fairs, teaching activities for school classes, collaboration
with official agencies to tests potential applications of the app, communication with the
winners of the monthly CrowdWater game and sending out prizes to them. The commu-
nication of the project was to a large extent done via e-mail and social media. Twitter,
Facebook and Instagram proved to be important communication channels for the project.
Facebook was very helpful at the start of the project to advertise it within our social
networks and to communicate with potential collaborators. Instagram was initially set
up for the communication with younger participants but turned out to be rather helpful
for the communication with collaborators on plastic pollution, such as Plasticspotter3.
Twitter was mainly used to communicate results, events or collaborations in our scientific
network. E-mail was used to communicate with individual citizen scientists and to send
out the newsletter. We, unfortunately, have no record of how efficient the communication
channels were for recruiting new participants. I expect that at least a 50% position could
be filled with the work that is needed to achieve the full potential of CrowdWater. Tasks
could also be expanded to regularly produce more labour intense content, such as videos
of project participants but also interviews with citizen scientists. It would, therefore, be
useful if funding bodies fund such positions. This would not only increase the visibility
of CrowdWater but would also help to promote citizen science and to simplify the access
to scientific knowledge via online media, especially for the younger generations.

2https://plasticspotter.nl/en (accessed: 25.03.2020)
3www.plasticspotter.nl (accessed: 09.01.202)
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Hydrological observations are crucial for decision making for a wide range of water

resource challenges. Citizen science is a potentially useful approach to complement

existing observation networks to obtain this data. Previous projects, such as

CrowdHydrology, have demonstrated that it is possible to engage the public in

contributing hydrological observations. However, hydrological citizen science projects

related to streamflow have, so far, been based on the use of different kinds of

instruments or installations; in the case of stream level observations, this is usually a staff

gauge. While it may be relatively easy to install a staff gauge at a few river sites, the need

for a physical installation makes it difficult to scale this type of citizen science approach

to a larger number of sites because these gauges cannot be installed everywhere or

by everyone. Here, we present a smartphone app that allows collection of stream level

information at any place without any physical installation as an alternative approach. The

approach is similar to geocaching, with the difference that instead of finding treasure-

hunting sites, hydrological measurement sites can be generated by anyone and at any

location and these sites can be found by the initiator or other citizen scientists to add

another observation at another time. The app is based on a virtual staff gauge approach,

where a picture of a staff gauge is digitally inserted into a photo of a stream bank or a

bridge pillar, and the stream level during a subsequent field visit to that site is compared

to the staff gauge on the first picture. The first experiences with the use of the app

by citizen scientists were largely encouraging but also highlight a few challenges and

possible improvements.

Keywords: citizen science, smartphone app, water level class, crowdsourcing, data collection

INTRODUCTION

Data on the quantity and quality of water are needed for appropriate water management decisions.
However, hydrology and water resources management are frequently restricted by limited data
availability, particularly in data-scarce regions with urgent water management issues (Mulligan,
2013). The decline of national hydrological and meteorological observation networks (Vörösmarty
et al., 2001; Fekete et al., 2012; Ruhi et al., 2018) is frustrating, especially in light of the current
local and global water-related challenges, and those ahead, such as adaptation to extreme events
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and securing water resources for a growing population.
Although new observation techniques, including remote
sensing, geophysical methods, and wireless sensor networks,
provide exciting opportunities for new data collection, central
hydrological variables, such as soil moisture or streamflow
remain difficult to observe with a sufficient spatiotemporal
resolution. Therefore, crowd-based data collection might be a
valuable complementary approach to collect data and overcome
data limitations (Buytaert et al., 2014).

The idea to include the public in hydrological and
meteorological data collection is by no means new. The
Swedish meteorologist Tor Bergeron asked the public through
appeals over radio and phone calls to measure snow depth
(Bergeron, 1949) and rainfall (Bergeron, 1960) and to mail their
observations on postcards. This resulted in much more detailed
maps than would have been possible with official station data
alone. It allowed the creation of a snow depth map for an area
of one degree square covering Uppland, Sweden based on 98
observations by volunteers rather than data from only 12 official
stations (Bergeron, 1949). For the rainfall observations, Bergeron
and his co-workers developed the Pluvius rain gauge as an
inexpensive alternative to existing, official gauges. While later
there were ∼800 of these gauges in other parts in Sweden,
for the initial surveys during 1953 about 150 gauges were
distributed in a ∼30 km by ∼30 km area around Uppsala,
Sweden (Bergeron, 1960). Both of these projects led to a better
understanding of the influence of topography and vegetation
on precipitation formation. Even though these early studies
were very successful, similar approaches remained rare due
to the logistical challenge to transmit and enter the collected
data in a common database. However, recent developments in
information and communication technology provide exciting
new opportunities for citizen-science based approaches using text
messages (Lowry and Fienen, 2013; Weeser et al., 2018), websites
(e.g., Stream Tracker1), apps (e.g., Teacher et al., 2013; Davids
et al., 2018; Kampf et al., 2018; Photrack2), data mining (Smith
et al., 2015; Li et al., 2018) or custom-designed wearable sensors
(e.g., Hut et al., 2016; smartfin3). However, as stated by Jerad
Bales, the Chief scientist for hydrology at the U.S. Geological
Survey, “Crowdsourcing water-information is in its infancy [. . .],
and there remain major issues of data quality and sustainability
(Lowry and Fienen, 2013). Nevertheless, the use of crowdsourcing
to report routine water data, as well as information on floods and
droughts, needs to be creatively explored” (Bales, 2014).

With a large number of contributions from citizens, the
CrowdHydrology project4 (Lowry and Fienen, 2013) has (and still
does) successfully demonstrated that it is possible to engage the
public in hydrological measurements by asking them to submit
stream level observations via text messages. A similar system
was implemented in Cithyd5. However, these approaches using
staff gauges (scaled measurement sticks in the water) restrict the

1http://www.streamtracker.org
2http://www.photrack.ch/mobile.html
3https://smartfin.org/
4http://www.crowdhydrology.com
5http://www.cithyd.com/it/

number of places where stream levels can be observed because
staff gauges cannot be installed everywhere and by everyone.
In mountainous streams, a stable installation is challenging even
for hydrologists, and often permits are required before a staff
gauge can be installed. Furthermore, if a physical installation
is possible, one might consider installing a stream level logger
instead of a staff gauge as these loggers have become less
expensive and more reliable in recent years. Instead, we propose
an approach where anyone can start a measurement location
and the observations can be taken anywhere and by anyone.
Our approach is similar to geocaching6, with the difference that
instead of treasure hunting sites, stream level observation sites
are established and can be revisited by other citizen scientists.
In this paper, we describe the virtual staff gauge approach,
highlight several design considerations, and discuss whether
people understand the concept. In another study (Strobl et al.,
2019), we found that most people can classify the water level
correctly by comparing it to a reference picture with a virtual staff
gauge. Here the focus was on how well people are able to “install”
a virtual staff gauge in the app, i.e., taking the reference picture
and placing the staff gauge in this picture.

VIRTUAL STAFF GAUGE

General Approach
The advantage of the virtual staff gauge approach is that it avoids
physical installations and makes the setup of new observation
sites fast and easy. The basic idea behind our approach for stream
level observations is that it is usually possible to identify a number
of features in a stream or on the streambank, such as rocks,
that allow ranking of the stream levels (i.e., “below this tree but
above that rock”). While such stream level class observations
are not as precise as continuous stream level observations from
a staff gauge (i.e., no millimeter resolution) and provide more
qualitative information such as “the water level is very low”
or “there is a flood event,” they can be quite informative for
hydrological modeling (van Meerveld et al., 2017). The challenge
is to allow easy identification of the different stream level classes,
without the need for lengthy verbal descriptions. A picture is
helpful in this respect but needs to be amended by a scale. For
this, we use the virtual staff gauge approach (see also Figure 1):

• The user chooses a suitable site along a stream and identifies
the location on a map in the smartphone app.

• The user takes a picture of the streambank (perpendicular
to the flow direction and as level as possible, to minimize
contortion of the view). There should be some reference in the
picture, such as a bridge or stones and ideally, the picture is
taken during low flow conditions.

• An image of a yardstick with a number of classes is digitally
inserted into the picture as a virtual staff gauge. The user can
move the inserted staff gauge in the image and scale it so that
it covers the expected stream level variations.

6https://www.geocaching.com/
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FIGURE 1 | Series of screenshots showing the insertion of the virtual staff gauge in the reference picture: (A) insert the image of the staff gauge in the reference

picture, (B) scale the inserted image, and (C) move the image so that the blue line matches the stream level in the picture.

FIGURE 2 | The horizontal version of the staff gauge at the “Update Spot” interface as selectable buttons to report the new water level class observation.

Design/author: Philipp Hummer, SPOTTERON Citizen Science, www.spotteron.net.

This reference picture with the virtual staff gauge allows
anyone who visits the site at a later time to estimate the stream
level class by relating the current stream level to the features

on the photo and the virtual staff gauge (e.g., the stream level
has changed and is now above a certain rock). For this update,
a simplified horizontal staff gauge design is used in the “Update
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FIGURE 3 | Example of a water level time series obtained using the CrowdWater app (River Salzach, Austria). The pictures for one runoff event (and the reference

picture) are shown as an example in the top row.

Spot” interface of the app (Figure 2) that shows the full range
of class bars for input. To update a spot and provide a new
observation of the stream level, the user compares the current
stream level with the reference picture with the staff gauge in
the app, takes a new picture of the stream, clicks on the current
stream level class on the horizontal staff gauge and submits the
new observation to the data servers. Over time, this results in a
time series of water level observations (Figure 3). It is important
to note, that the user observes and enters the water level; the
new picture is only used for documentation. While automated
image recognition could be valuable, at this point we rather
rely on human eyes and interpretation and avoid issues such
as the exact location and angle when the picture is taken. The
pictures, however, allow data quality control. We have recently
developed the CrowdWater game as an approach to use these

pictures for crowdbased quality control of the water level class
data (see “Game”7).

Design Considerations and Initial Tests
Several decisions on the design of the virtual staff gauge had
to be taken before implementation in the smartphone app.
Early on it was decided to use relative stream level classes
instead of numeric values in, for instance, centimeters, as
there is an obvious limitation in the resolution of stream-
level observations that can be achieved with a virtual staff
gauge. Translating the virtual staff gauge levels to absolute levels
would also make the “virtual installation” much more time
consuming as it would require observations of different heights.

7https://www.crowdwater.ch
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FIGURE 4 | Early version of the virtual staff gauge with regular (A) and

irregular (B) class sizes.

Absolute levels would also be site-specific, i.e., the offset would
vary largely from place to place. Fortunately, absolute levels
are not needed for the potential use in hydrological modeling
because the relative values provide important information on
the timing of streamflow responses (Seibert and Vis, 2016;
van Meerveld et al., 2017).

In an early test with university students, two different types
of staff gauges were tested. In addition to regular class sizes
(as ultimately implemented in the app), we also tested irregular
class sizes (Figure 4), but this idea was discarded because some
users found it confusing and because it did not allow for as much
flexibility as we had hoped.

FIGURE 6 | The three staff gauges available in the app. Their ideal application

depends on the flow condition of the river at the time that the reference

picture is taken. Design/author: Philipp Hummer, SPOTTERON Citizen

Science, www.spotteron.net.

Once we had decided to have a non-metric virtual staff
gauge with regular class sizes, we started to discuss the
implementation with SPOTTERON, which is the app company
hired to develop the CrowdWater app. During these discussions,
the focus was largely on how to make the app intuitive to
use. A clearly visible blue wave on the virtual staff gauge
was chosen to indicate the stream level at the time that the
reference picture was taken (Figure 5). During placement,
the citizen scientists will highlight the stream level in the
photo with the water line in the staff gauge (Figure 1). We
decided to use ten classes on the virtual staff gauge; this was
a compromise between simplicity, resolution, and usability.
Through the use of a negative and positive scale, we tried
to make the image even more intuitive, as a negative value

FIGURE 5 | Examples of well-placed virtual staff gauges on (A) the opposite stream bank, (B) a rock in the stream, and (C) a bridge pillar, showing the blue wave at

the stream level when the site was established and the positive and negative scale above and below the current stream level, respectively.
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FIGURE 7 | Various staff gauge designs. Design/author: Philipp Hummer,

SPOTTERON Citizen Science, www.spotteron.net.

would indicate a stream level below the level in the reference
picture and a positive value above it (Figure 6). The stream
level numbers and class bars follow a neutral black/white
scheme to utilize contrast between the sections but also maintain
secondary visual weight.

We recommend that citizen scientists initiate a new measure-
ment site during low flow conditions because the reference points
are better visible during low flow conditions and this enables
future users to better assess the situation for an update. However,
this might be a strong restriction in practice and we, therefore,
decided to allow insertion of virtual staff gauges also in photos
taken during situations with high stream levels. To use suitable
staff gauges for all flow conditions, we decided to offer three
different staff gauges to the user (Figure 6). The green staff
gauge is best suited for rivers with a low water level at the time
that the reference picture is taken, as it still has many positive
classes (i.e., above the blue wave) to record stream levels for
higher flow conditions. The yellow staff gauge is well suited for
when the reference picture is taken at average flow conditions,
and the red staff gauge is ideal for high flow conditions. The
red, yellow and green staff gauges were chosen because strong,
vibrant colors visually communicate not only a difference but

also a development over time, e.g., traffic lights signal different
states of movement.

Virtual Staff Gauge Implementation
The virtual staff gauge was implemented as a so-called
“sticker”. Stickers are a common practice in app design;
they use image- or vector-based content as overlays in
photos that are taken on a smartphone. They are mainly
used in messenger tools, such as WhatsApp or Facebook
Messenger to add additional information or emotions to images.
Positioning and transformation are usually done by multi-
touch gestures for scaling, placement, and rotation. In this
case the sticker has to be moved so that the staff gauge is
aligned with the streambank or bridge pillar and the blue line
is located at the water level (Figure 1). By adopting such
a rather well-known input method, the use of the app is
more intuitive and, thus, optimizes usability. Obviously, using
an established technique also had technical advantages for
the implementation.

In practice, the placement of the staff gauge can happen
on bright or dark, blurry or clear, high- or low-saturation
pictures, taken by the users on all kinds of smartphone models
and cameras. Therefore, various designs for the virtual staff
gauges were tested on different backdrop images and directly
on smartphone screens (Figures 7, 8). To ensure that the staff
gauge is visible in various conditions, we used additional soft
shadows to enhance the edge contrast, but still let the staff
gauge immerse itself into the picture as part of the scenery. We
furthermore decided to strengthen the visual representation of
the areas above and below the stream level by using a blue hue
for all class bars below the water level and making them slightly
transparent (Figures 6–8).

TEST OF THE APP IN PRACTICE

CrowdWater App
The virtual staff gauge was implemented in the CrowdWater
smartphone app. The app was first launched for iOS and

FIGURE 8 | Staff gauge design variants in different environments. Design/author: Philipp Hummer, SPOTTERON Citizen Science, www.spotteron.net. Note that the

virtual staff gauges were not scaled nor placed correctly (see Figure 1).
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FIGURE 9 | Screenshot of an intro slide that appears when the app is opened

for the first time. These can be re-watched anytime. The goal is to quickly

provide the most important information on the basic functionalities of the app.

Android in March 2017; there have been several updates
of the app since its initial launch. The app was promoted
on the CrowdWater homepage (see Footnote 7), through
Facebook, Twitter, Instagram, LinkedIn, and ResearchGate posts,
as well as on the CrowdWater YouTube channel and at
several conferences.

When starting the app, the user has to browse through a
number of intro-slides that explain the basic functionalities and
the interface of the app. Among them is the sticker function
of the virtual staff gauge (Figure 9). Additional guidance on
how to use the app in the form of texts, pictures and videos
are provided on the project homepage and in an explanatory
YouTube video8.

8https://www.youtube.com/watch?v=3ag4sHWf0yg

TABLE 1 | Collection of errors made by app-users grouped into broader error

categories and frequency of occurrence.

Frequency of

Error type occurrence

Staff gauge size

problem

Staff gauge too big +++

Staff gauge too small +

Staff gauge placement

problem

Wrong angle +++

Staff gauge not on the water surface +++

Unsuitable location Lack of reference structure for stream

level identification

++

Structure hidden by vegetation or snow +

Unclear which structure to use +

River bank too far away ++

Poor image quality +

Site not easily accessible .

No suitable site for staff gauge

placement available

.

Changes in the rating curve +

Multiple measurement sites at (almost)

the same location

+

Testing (e.g., beer glasses, not a river,

out of a train, etc.)

++

+++: occasional = more than 10 times; ++: seldom = 5–10 times; +: rare: less

than 5 times; . : not quantifiable.

Typical Mistakes
While users seem to understand the approach used in the
CrowdWater app in general, there were also a number of
recurrent mistakes related to the staff gauge placement or
size. These mistakes affect about 10% of the more than 500
reference pictures (Table 1). Staff gauge placement or size
problems could be due to users not having read the available
instruction material or not fully understanding the concept.
Some other issues are not directly related to setting up a
virtual staff gauge site but still affect the results, e.g., it
is less useful if users create new measurement sites in, or
close to, a location where another spot already exists than
when they update the existing spot or start a new site on a
different river.

Staff Gauge Placement Problem

The most common mistake was related to the placement
of the virtual staff gauge. Some users took pictures in the
direction of the flow (instead of perpendicular to the flow,
see example in Figure 10). This makes it almost impossible
to place a virtual staff gauge that allows subsequent level
observations because clear reference features are usually missing
on these pictures. Another placement related issue occurs
when the blue wave of the staff gauge is not located at
the water surface in the reference picture. This means that
the stream level of the reference picture is not at zero,
which could lead to confusion for other users when updating
the spot later on.

Staff Gauge Size Problems

In a number of cases, the size of the staff gauge was suboptimal.
This may be either because people do not realize that they

Frontiers in Earth Science | www.frontiersin.org 7 April 2019 | Volume 7 | Article 70
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FIGURE 10 | Examples of misplaced virtual staff gauges: (A) The picture was taken in the upstream direction instead of perpendicular to the flow direction, which

makes it impossible to estimate subsequent stream level changes, (B) The virtual staff gauge is so large that it is unlikely that the water level will reach different

classes and is therefore improbable to obtain an approximate representation of the stream hydrograph, (C) The small virtual staff gauge can show small changes in

the stream level, but cannot represent very high flows as anything above a medium flow falls into the highest class.

can resize the size of the staff gauge or do not understand
why it is useful to rescale the staff gauge. The perfect staff
gauge size is however, somewhat subjective and might to some
degree depend on the specific research question and data
needs for a site.

In our instruction material, we show the optimal case where
the highest class of the staff gauge reaches up to the level of the
highest in-bank flow. This may, however, be hard to imagine
for citizen scientists and is probably also not considered when
users place their first virtual staff gauge. Staff gauges that are
too large are not only unrealistic (i.e., the stream level is very
unlikely to rise into the highest classes) but this also reduces
the variation in future observations because it is less likely that
a change in stream level is large enough to reach the next
class. There were also a few cases where the staff gauge was
too small. A small staff gauge can make it hard to determine
the class of the current stream level because the differences
between the classes are too small. It also makes it hard to
document very high or very low flows. Furthermore, finding
the location of the measurement site can be challenging when
users take a very detailed (zoomed-in) picture of the reference
structure. This issue was more common for small staff gauges
and could probably be solved by implementing an option to
add an overview photo that shows the general location of the
reference structure.

Unsuitable Location

An obvious problem are pictures that lack references for level
identification or pictures where a staff gauge was not inserted

in the picture. Optimal conditions to place a virtual staff
gauge, such as a vertical wall on the opposite river bank
or a vertical structure like a rock or bridge pillar in the
river, are sometimes hard to find. At least in some cases,
the reason for problematic pictures could also be that the
rivers were not easily accessible or had no suitable reference
features but people still wanted to take a picture to establish a
measurement site. Another problem is that in some locations
the vegetation growth obscures features on the river bank
that were visible when the reference picture was taken (e.g.,
in winter when there was no vegetation). This makes it
nearly impossible to compare stream levels properly. Reference
pictures with snow can also make it difficult to assess the
stream level later on.

On wide rivers, it is difficult to place a reasonably sized staff
gauge at the opposite river bank and still observe changes in
stream levels. Furthermore, in these cases, the quality of the
pictures is often low due to zooming. This problem can be solved
at locations with an instream structure (such as a bridge pillar)
and placing the staff gauge along a pillar.

Changes due to erosion or sedimentation are another
issue. In these cases stream levels are not a reliable
indicator of streamflow. Our dataset contains one site
where the riverbed changed quite drastically due to
deposited sediment. Because the reference structure
(a concrete wall next to a bridge) stayed in place,
approximately the same flow meant a different stream level
class compared to the situation in the reference picture
taken before the sediment was deposited. The solution
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to this problem would be to archive the reference picture and
create a new one.

CONCLUDING REMARKS

In this paper, we presented a new citizen science approach
based on virtual staff gauges that allow crowd-based stream level
observations along any stream. The advantage of this approach
is that no physical installations are needed, which makes the
approach fully scalable, as it is easy and quick for anyone to set
up a new measurement site or contribute an observation to an
existing site. As discussed in this paper, during development and
testing of the virtual staff gauge approach, we identified several
issues that required modifications in the original design. Further
app developments and better guidance for app users on how to
set up a virtual staff gauge site will reduce the number of incorrect
sites in the future. Despite these challenges, the first experiences
from using the virtual staff gauge approach are encouraging and
show that this approach can be useful to collect stream level data
at many locations by citizen scientists.

In the first year since launching the smartphone app,
numerous measurement sites have been set up. On 3. September
2018, 2431 observations had been submitted by 218 users. For 79
of the 675 sites, more than five updates on the stream level class
had been submitted. The collected data have a limited resolution
due to the use of stream level classes and are sometimes spotty
in time. However, previous work using synthetic data indicates
that such data are still informative to constrain hydrological
models. Time series of precipitation and temperature are more
likely to be available than those of streamflow. The observed
stream level class data can, thus, be used in combination with
these time series to generate modeled streamflow time series. The
potential value of such data has been evaluated based on subsets
of existing data. These studies have indicated the value of water
level class data for model calibration (van Meerveld et al., 2017);

uncertain streamflow estimates were less informative (Etter
et al., 2018). The water level data collected in the CrowdWater
project are publicly available, and we expect them also to be
used for other uses, be it for research, flood protection or
leisure activities.

While our current focus is on measurement sites in
Switzerland, the app can be, and is already, used worldwide.
For developing and evaluating the value of the data obtained
with the virtual staff gauge approach countries with a relative
wealth of stream data, such as Switzerland, are favorable, but we
anticipate that, once developed and tested, the approach will be
most beneficial in regions where data are scarce.
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Why Do People Participate in 1 

Environment-Focused Citizen Science 2 

Projects? 3 

Simon Etter, Barbara Strobl, Jan Seibert, H. J. (I lja) van Meerveld, Kai Niebert 4 

Key Findings:  5 

• The motivation of participants in two environment-focused citizen science projects was 6 

evaluated using an online questionnaire. The results were classified using two categorizations 7 

of motivations for citizen science projects from the literature. 8 

• An interest in science and the project’s topic were the main motivations to join for participants 9 

of both projects. 10 

• Participants of CrowdWater were more motivated by conformity than participants of 11 

Naturkalender. 12 

• For participants of Naturkalender the activities matched previous experiences. They wanted 13 

to share their knowledge and experience and more frequently highlighted the fun aspect for 14 

their initial participation than participants of the CrowdWater project. 15 

• Participants in the 50-59 age group were most motivated by breaking their everyday routine, 16 

being outside, learning something new and challenging themselves. Participants in the other 17 

age groups were most motivated by contributing to science. 18 

• Feedback to participants can be provided by project administrators and also by other users 19 

through social media elements. 20 

  21 
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Abstract 22 

We investigated the motivations of participants in two environment-focused citizen science projects 23 

using an online questionnaire. The two projects, CrowdWater and Naturkalender (English: Nature’s 24 

Calendar), aim to collect data on water and phenology, respectively, and use similar smartphone apps. 25 

Our questions focused on both the motivations for initial engagement and in how far these are fulfilled 26 

by participating in the citizen science projects. For the questionnaire, we used a set of statements 27 

based on responses to open questions from the citizen science and volunteering literature. The 28 

questionnaire was sent to all participants of the projects. The answers were analysed based on two 29 

different categorisation schemes. We found that the motivations to participate in the projects were 30 

similar for the two projects but there were also some differences. The main motivations for becoming 31 

engaged in the projects were to contribute to science, to improve the wellbeing of society and to 32 

protect nature. The CrowdWater participants were in general more motivated by conformity (i.e., 33 

being asked to participate or social pressure) than the Naturkalender participants. Participants of the 34 

Naturkalender project and participants in the 50-59-year age group of both projects agreed most to 35 

enjoying their participation and learning something new. Super-users, i.e., users who participate at 36 

least once per week, were motivated more by contributing to science and the competitive elements 37 

of the projects than the occasional participants. Many of the participants who joined because they 38 

were asked directly and felt obliged to do so, submitted only a few observations. Based on the results 39 

of this study and previous studies reported in the literature, we recommend that to improve 40 

engagement and retention of participants, projects should aim to find people who are already 41 

interested in the topic, have a related hobby, or are affected by the problem that the project tries to 42 

solve. Furthermore, it is beneficial if feedback to participants is provided by project administrators or 43 

other participants (e.g. using social media elements). 44 

  45 
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1 Introduction  46 

The number of citizen science projects is growing rapidly (Irwin, 2018). For all projects it is important 47 

to lower the hurdles for sustained participation (Domroese and Johnson, 2017). This includes designing 48 

projects that meet people’s interest and communicating with the participants. Engagement in citizen 49 

science projects depends strongly on motivational factors (Phillips et al., 2019). Understanding these 50 

factors is, thus, important for project managers. However, the motivations of people to participate in 51 

citizen science and how people benefit from participation are complex and require more research 52 

(Haklay, 2018; Thornhill et al., 2019; West and Pateman, 2016). The attitudinal construct of motivation 53 

has been used in different contexts, such as learning of students (Martin, 2007) and volunteerism (Bell 54 

et al., 2008). Phillips et al. (2018) define motivation as “a form of goal setting to achieve a behaviour 55 

or result” but also state that the term motivation has not been used consistently in the field of citizen 56 

science. They, furthermore, argue that many studies that claim to report citizen’s motivations, actually 57 

report reasons to participate (e.g., the desire to help science) instead of the psychological underpin-58 

nings of behaviour (e.g., “because it makes me feel good”). For this manuscript, we adopt the definition 59 

of Phillips et al. (2018), which also includes reasons to participate. We consider motivations and rea-60 

sons equally important for the successful management of citizen science projects.  This is in line with 61 

other studies on motivations or reasons of citizen scientists (Hobbs and White, 2012; Raddick et al., 62 

2010). 63 

The main motivations to join citizen science projects, reported so far, are to contribute to science and 64 

to protect the environment, as well as to be part of a specific community (Alender, 2016; Curtis, 2015; 65 

Raddick et al., 2013). Johnson et al. (2014) used open questions that were sent by e-mail to participants 66 

in two conservation projects in Bangalore, India, to ask for the primary motivations to participate, but 67 

also used focus groups and asked the staff about the motivations of their volunteers. The primary 68 

motivations reported in their study were ‘to protect wildlife’, ‘to give something back to society’ and 69 

‘to learn something about wildlife’, but also ‘to spend time in nature’. In the online project Galaxy Zoo, 70 

Raddick et al. (2010) used three experts to identify 12 categories of motivation based on interviews 71 
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and open questions. In a follow-up study, these categories were then rated on a Likert-scale and 72 

extended with new categories from open questions based on a survey with 11’000 participants; 73 

‘contributing to science’ was the primary motivation for almost 40% of the Galaxy Zoo (Raddick et al., 74 

2013).   75 

In the growing body of literature on the motivation of citizen scientists, there are different ways to 76 

classify and summarize motivations based on quantitative surveys or interviews (i.e., different 77 

categorization schemes). The theoretical background on motivation in the field of citizen science has 78 

often been drawn from psychology and/or the literature on volunteering. Actually, before being called 79 

‘citizen science’, many of these projects were labelled ‘volunteering-projects’ (Roy et al., 2012) and 80 

citizen scientists can often be considered volunteers in a scientific project. For example, West and 81 

Pateman (2016) brought together several theories from the volunteering literature (Clary and Snyder, 82 

1999; Finkelstien, 2009; Locke et al., 2003; Penner, 2002) to describe the factors that influence 83 

participation in citizen science. They used, for instance, intrinsic and extrinsic motivation (Finkelstien, 84 

2009) as two overarching categories, which contained the six categories of the ‘functional approach to 85 

volunteering’ by Clary and Snyder (1999). Frensley et al. (2017), used the psychology-grounded self-86 

determination theory, which is based on the three psychological needs of competence, relatedness, 87 

and autonomy (Ryan and Deci, 2000a), to categorize and explain participants' motivations in the 88 

Virgina Master Naturalist programme (http://www.virginiamasternaturalist.org). Alternatively, Beza 89 

et al. (2017) manually extracted seven motivational factors from the citizen science literature and 90 

grouped them according to the framework of motivations that lead to community involvement of 91 

Batson et al. (2002), which consists of five motives: altruism, collectivism, principlism, intrinsic egoism, 92 

and extrinsic egoism (see also section 1.2.1). Finally, Levontin et al. (2018) conducted a more 93 

comprehensive literature study on the motivations in a multitude of citizen science projects and 94 

reformulated the answers from these studies into 58 statements. These statements were then 95 

grouped into 16 categories of personal values1, which encompass the entire spectrum of human 96 

 
1 Version of the questionnaire published in March 2018 (see supplemental materials). 
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motivation defined by Schwartz et al. (2012) (see also section 2.3.2).  97 

Most studies focus on a single project and use only one scheme to classify the results. The different 98 

approaches and surveys to assess the motivations of participants, the different schemes to classify the 99 

motivations with different levels of detail, and the substantial differences in the projects make it 100 

difficult to compare the results of the different studies on motivations to participate in citizen science 101 

projects. Here, we aim to expand the knowledge on the motivation of citizen scientists by comparing 102 

two smartphone-based, environment and outdoor focused projects in Europe: CrowdWater 103 

(www.crowdwater.ch, Kampf et al., 2018; Seibert et al., 2019b, 2019a) and Naturkalender 104 

(www.naturkalender.at). Both projects use smartphone apps based on the SPOTTERON platform 105 

(www.spotteron.net) and are available for Android and iOS. The aim of the CrowdWater project is to 106 

collect hydrological data, such as water levels, soil moisture and the status of temporary streams. The 107 

Naturkalender project (English: Nature's Calendar) focuses on documenting the phenology of indicator 108 

species and changes related to climate change. The two projects have, so far, mainly recruited 109 

participants from western European countries (most of the participants come from Switzerland and 110 

Austria). The comparison of the motivations to participate in the two projects enables a more explicit 111 

focus on how the project topic, thematic content and outreach activities affect the motivations of the 112 

participants because the projects are similar in terms of the visual design of the app, the way data are 113 

transmitted, and the cultural background of the participants. The goals of this study were (i) to identify 114 

the motivations of citizens to join the CrowdWater or Naturkalender projects and to see whether these 115 

motivations were fulfilled by their participation, (ii) to determine if the main motivations to participate 116 

differ for the different demographic groups or between participants who contribute frequently and 117 

those who contribute occasionally, and (iii) to contribute to the understanding of motivations to 118 

participate in citizen science projects in general. We classified the statements in the questionnaire 119 

according to the scheme of Batson et al. (2002), which was adapted by Beza et al. (2017) and is 120 

hereafter referred to as “Batson-scheme”, to obtain an overview of the broad categories of motivation. 121 

Additionally, we used the scheme of Schwartz et al. (2012), which was adapted for citizen science 122 
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projects and recently published in a questionnaire by Levontin et al. (2018), hereafter referred to as 123 

“Schwartz-scheme”, to gain more detailed insights for the entire spectrum of motivations.  124 

1.1 The CrowdWater and Naturkalender projects  125 

We investigated the motivations of participants in two smartphone-based citizen science projects, 126 

CrowdWater and Naturkalender, which both focus on the environment. The smartphone applications 127 

(hereafter referred to as ‘apps’) for both projects were developed in close collaboration with 128 

SPOTTERON, an Austrian company specialised in the development and maintenance of apps for citizen 129 

science projects. Each app user can start observations at a new spot and contribute observations to 130 

existing spots (i.e., those started by other users) to obtain a time series of observations. The apps 131 

include social media functions that enable interaction between participants, such as following other 132 

participants, commenting, and liking contributions (Figure 1).  133 

      134 

Figure 1 Screenshots of the CrowdWater (left) and the Naturkalender app (right), with on the top row of the 135 
second panel the social media features (from left to right the like button and counter, the speech bubble that 136 
allows users to comment on the observation (with the counter next to it), and the sharing button to share 137 
contributions on Facebook, Twitter and Google+. More information on the app design can be found in  Seibert et 138 
al. (2019a, 2019b) and spotteron.net. 139 
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1.1.1 CrowdWater 140 

The CrowdWater project (www.crowdwater.ch) started in 2016; the app was launched in early 2017. 141 

The goal of the project is to develop a tool to collect hydrological information for models that can be 142 

used for flood warning and other water management applications. Citizen scientists are asked to 143 

contribute pictures of streams and to estimate water level classes based on a virtual staff gauge 144 

(Seibert et al., 2019b, 2019a), or to estimate soil moisture based on qualitative classes (Rinderer et al., 145 

2012), or to determine the state of temporary streams (Kampf et al., 2018). Citizen scientists are 146 

encouraged to make repeated observations at a location to obtain time series for that location. 147 

Observations can – and have been made – around the globe. However, most of the advertisement and 148 

outreach activities so far focused on German speaking citizens; hence most observations have been 149 

made in Switzerland and Austria.  150 

Social interaction in the CrowdWater app occurs mainly between the project team and citizen 151 

scientists via the comments function or by personal communication via e-mail. Only in rare cases do 152 

citizen scientists comment on each other’s observations. The CrowdWater project has so far mainly 153 

been advertised via social media, our private and work-related networks (e.g., presentations at 154 

conferences, schools and science fairs, articles in university newsletters and magazines, etc.). Since the 155 

value of the data is still subject to research, communication regarding the potential use of the data 156 

(e.g. for flood warning systems) has been done very carefully. At the end of October 2018, when the 157 

questionnaire was closed, there were 265 users who contributed at least one observation via the 158 

CrowdWater app; there were on average 132 contributions per month between February 2017 and 159 

October 2018. 160 

1.1.2 Naturkalender 161 

Naturkalender (in English: Nature’s Calendar) (www.naturkalender.at) is a citizen science project that 162 

aims to document the phenology of several indicator plant species throughout the year, to record the 163 

behaviour of wild animals, and to document winter phenomena, e.g. the presence or absence of snow 164 

cover. By observing the start of, for instance, leaf development or the return of birds from their winter 165 
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habitats, the project aims to assess the influence of climate change on flora and fauna. Citizen scientists 166 

can report the state of plant growth and behaviour and presence of birds, butterflies and bees on a 167 

map that covers the entire globe. However, most contributions have been made in Austria. The data 168 

collected using the app are included in the Pan European Phenology Project PEP725-database 169 

(www.pep725.eu). Naturkalender started in 2014 and was first called “NaturVerrückt”. The project 170 

consists of multiple apps focusing on different parts of Austria 171 

(www.naturkalender.at/regionalprojekte). We sent the questionnaire to the users of all Naturkalender 172 

apps and for brevity refer to them as the Naturkalender App.  173 

The Naturkalender app contains a lot of information about plant species and birds, butterflies and 174 

bees. Compared to the CrowdWater community there is more communication between participants 175 

in Naturkalender. Many observations are commented on by different users, and users help each other 176 

with the identification of species. At the time that the questionnaire closed, there were 642 users who 177 

provided at least one contribution; there were on average 422 contributions per month between April 178 

2015 and October 2018. 179 

1.2 Frameworks 180 

The two frameworks used in this study differ in their origins and foci: The Batson-scheme was designed 181 

to describe motivations for community-involvement, while the Schwartz scheme was originally de-182 

signed as a model of human values. Schwartz (1992) defined values as overarching goals that vary in 183 

importance and that serve as guiding principles in the life of a person. These, therefore, have a strong 184 

influence on the motivations of individuals. The Batson-scheme has already been used for citizen sci-185 

ence projects (Beza et al., 2017), whereas the Schwartz-scheme had not been used for motivations in 186 

citizen science when this study was conducted. The combined use of two frameworks allows interpre-187 

tation of more differentiated results from the same set of questions. For instance, the Batons-scheme 188 

explicitly distinguishes between egoistic and non-egoistic motivations. As can be seen later, the cate-189 

gories of the Batson-scheme represent the individual statements in a category more reliably. In con-190 

trast, the Schwarz-categories provide more detailed insights, but the results are overall less reliable.  191 
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1.2.1 Batson-Framework 192 

Batson et al. (2002) offer a framework to classify motivations for community engagement based on 193 

four categories: egoism, altruism, principlism and collectivism. Egoism describes the motivation of a 194 

person who seeks primarily his/her own benefit in doing something. The actions taken might still serve 195 

the community or the greater good, e.g. volunteering in a citizen science project in order to be able to 196 

include that in one’s résumé. Altruism is defined as the motivation to fulfil someone’s needs and is 197 

mostly motivated by the feeling of empathy towards the other person. An example is to volunteer in 198 

a citizen science project to help researchers with their work. Collectivism is the motivation to increase 199 

the welfare of a group, e.g. by measuring and reporting lead pollution in tap water of the local 200 

community, as in Pieper et al. (2018). Principlism is defined as the motivation to uphold some moral 201 

principle(s), like justice or the conservation of wildlife (Batson et al., 2002). 202 

The framework of Batson et al. (2002) has been applied to citizen science by Beza et al. (2017). They 203 

combined it with the framework of Ryan and Deci (2000a) to distinguish intrinsic egoism (egoism, 204 

intrinsic) focused on a person's satisfaction (e.g., fun or interest in sharing information) and 205 

extrinsically motivated egoism (egoism, extrinsic) that aims to achieve a desirable and separate 206 

outcome (e.g. expecting something in return). We chose this framework because it provides a good 207 

overview of the motivations of the participants with relatively simple and easily interpretable 208 

categories. The attribution of the statements used in the survey to these five categories can be found 209 

in Table S1.  210 

1.2.2 Schwartz-Framework 211 

To use the findings of questionnaires on motivation to improve the design of citizen science projects, 212 

it is beneficial to use a framework that encompasses the entire spectrum of motivations and enables 213 

a more detailed assessment of the motivations. Schwartz et al. (2012) developed a framework of 19 214 

basic values based on the values described by Schwartz (1992). These values express the guiding prin-215 

ciples in a person's life and form the base of the person’s decisions. The values are distributed in a 216 

circular continuum (Figure 2) with the four dimensions: self-enhancement (improving oneself) and its 217 



Resubmitted to Citizen Science: Theory and Practice on April 17th, 2020 

10 

 

counterpart self-transcendence (investing in other people/things), conservation (preserving the status 218 

quo) and its counterpart openness to change (Schwartz, 1992). Levontin et al. (2018) adapted this 219 

framework slightly to make it suitable for citizen science projects. This resulted in 16 values (as of 220 

March 2018), which are, hereafter, referred to as categories. The attribution of the statements used 221 

in the survey to these 16 categories can be found in   222 
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Table S2.  223 

 224 

Figure 2 The circular continuum of personal values from Schwartz et al. (2012) adapted using the category names 225 
of the questionnaire designed by Levontin et al. (2018) for citizen science projects. All categories in bold font in 226 
the inner circle and their subcategories (in italic) reflect one or multiple statements in the questionnaire used in 227 
this study. The description of the categories can be found in Table S2. 228 

 229 

2 Methods 230 

2.1 Questionnaire 231 

In the first part of the questionnaire, the engagement part, we aimed to identify the motivations of 232 

citizen scientists that led to their engagement in either the CrowdWater or Naturkalender projects. 233 

Based on the definition of motivations of Phillips et al. (2018), we interpreted the motivations to 234 

become engaged in a project as goals that can potentially be fulfilled by participation. In the second 235 

part of the questionnaire, the fulfilment part, we aimed to see which of these initial motivational goals 236 

were fulfilled by participation in the projects. Some of the statements in the fulfilment part are related 237 

to the construct of (self-)efficacy, which refers to a person’s belief of being capable to learn specific 238 
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things or to perform particular actions (Bandura, 1997; e.g. “By doing this activity I can help others”). 239 

However, not all the statements overlap with the above definition (e.g. “This activity is fun for me” or 240 

“This activity increased my social status”). Therefore, we use the term fulfilment throughout the text, 241 

even when it refers to efficacy. We selected 29 of the 58 statements of the questionnaire that was 242 

developed during a citizen science COST action workshop2 in Latvia in March 2018, and published by 243 

Levontin et al. (2018), e.g. “I participate in the project because I want to do something meaningful (see 244 

Supplementary Material 1 for the questionnaire). We asked the participants in how far they agreed 245 

with these statements based on a five-point Likert-scale with the options “don’t agree at all”, “rather 246 

don’t agree”, “undecided”, “rather agree”, “fully agree”. Most statements were rephrased to make 247 

them more suitable for the fulfilment part. It was, however, not possible to rephrase all of them in a 248 

meaningful way. This was for example the case for the statements of the categories conformity (trying 249 

to act in a way that does not harm or upset anyone and fulfils social expectations or norms (Schwartz 250 

et al., 2012).) and power, resources (maintaining or achieving social status and prestige by controlling 251 

or acquiring resources; Schwartz et al., 2012). Furthermore, to avoid confusion we decided to leave 252 

out “I enjoy this activity” in the engagement part because we assumed that participants of 253 

CrowdWater were very unlikely to have participated in hydrological data collection before initial 254 

participation in the project and thus cannot reliably state that they already enjoyed this activity before 255 

participating in the project.   256 

An invitation to fill out the online questionnaire on surveymonkey.com (in English and German) was 257 

sent to all participants of the two projects on August 8th, 2018 with push messages in the apps and by 258 

e-mail to the 400 people who had registered for the CrowdWater newsletter at that time. Only the 259 

participants of the CrowdWater project were reminded by a second push message on August 22nd, 260 

2018.  261 

 
2 https://cs-eu.net/news/workshop-report-wg-4-motivation-participants-citizen-science-projects 
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2.2 Analyses 262 

We classified the statements in the questionnaire using the categories of the Batson-framework (Table 263 

S1) and those of the Schwartz-framework (  264 
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Table S2). For each statement, we determined the percentage of respondents who agreed (i.e., those 265 

who chose “rather agree” or “fully agree”) with the statement. We also determined the average per-266 

centage of respondents who agreed with the different statements in each category of either the Bat-267 

son or Schwartz framework. For categories with more than two statements, we used Cronbach’s alpha 268 

(Cronbach, 1951) to assess the consistency of the agreement to the different statements in a category 269 

(i.e. a reliability analysis). For the categories with only two statements, we used the Spearman-Brown 270 

coefficient (Eisinga et al., 2013). To avoid a lengthy questionnaire and due to the inability for some 271 

statements to be used in the engagement or the fulfilment part, there were several categories in the 272 

Schwartz-categorisation that had only one statement per category. For the categories with only one 273 

statement, the calculation of a reliability (or consistency) score is not possible, nor necessary. 274 

To determine the statistical significance of differences in the agreement with statements, the answers 275 

to the statements in the questionnaire were converted into numbers from 1 to 5: 1 for “don’t agree at 276 

all”, 2 for “slightly disagree”, 3 for “undecided”, 4 for “slightly agree” and 5 for “fully agree”. We used 277 

the paired Wilcoxon signed rank test to test the significance of the differences in the median response 278 

to the statements regarding the motivations for initial engagement and the fulfilment of these 279 

motivations by participating. We used the Mann-Whitney U-test to test the significance of the 280 

differences in the median response for different subgroups of respondents (e.g. CrowdWater vs. 281 

Naturkalender participants, super-users vs. occasional participant, the different age groups, etc.). We 282 

used a significance value of 0.05 for all analyses.  283 

 284 

3 Results  285 

3.1 Number of Responses and Demographics 286 

We received 101 responses, but only 90 could be used in this study. We excluded answers from people 287 

who never contributed to the project (some of the people who subscribed to the CrowdWater 288 

newsletter had never used the app), incomplete questionnaires, as well as answers from people who 289 
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work for one of the projects or SPOTTERON. Of the 90 questionnaires with complete responses, 54 290 

were submitted by CrowdWater participants and 36 by Naturkalender participants. 291 

Based on the 400 emails and 265 active participants in CrowdWater and 642 in Naturkalender, we 292 

estimate a response rate of about 8%. This number is, however, highly speculative as people might 293 

have uninstalled the app before we sent the push message. Furthermore, people who had installed 294 

the app but had never contributed might have received the invitation but were not counted by us. 295 

Based on Israel (1992), the number of responses in each project, and the comparison with the assumed 296 

number of active participants (265 in CrowdWater and 642 in Naturkalender), this survey is a 297 

convenience sample. 298 

We have no data to determine the representativeness of the respondents for the participants in the 299 

projects but assume that they either represent the participants or include more frequent users. Most 300 

of the respondents (n=25) were in the 30-39 age group. There was a gender balance for the 301 

respondents (54% female vs 46% male) but it is unknown to what extent this reflects the participants 302 

in the projects because neither of the projects records the gender of the participants. For many 303 

environment-related volunteering or citizen science projects (Geoghegan et al., 2016; Raddick et al., 304 

2013; Wright et al., 2015) and outdoor projects (Alender, 2016; Land-Zandstra et al., 2016a) there is a 305 

slight overrepresentation of male participants (often between 50 and 60 %). On the other hand Land-306 

Zandstra et al. (2016b) report that more females participated in the Dutch flu-tracker project (55%) 307 

and Pandya and Dibner (2018) report that, by the end of 2017, 65% of the user profiles on the citizen 308 

science platform SciStarter (scistarter.org) were created by females. Based on our experience, the 309 

distribution of female and male participants is fairly balanced. Furthermore a study in Switzerland 310 

indicated that gender is not a significant indicator of interest in citizen science (Füchslin et al., 2019). 311 

Table 1 Number of respondents by gender and age group and number of super-users and occasional participants 312 
for the two projects. Super-users are users who said that they contribute at least one observation per week. 313 

 Gender Project Frequency of contribution 
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Age group Female Male CrowdWater Naturkalender Super-users Occasional 

participants 

<18 3 1 3 1 1 3 

21-29 12 4 13 3 1 15 

30-39 13 12 18 7 7 18 

40-49 6 7 9 4 4 9 

50-59 10 9 7 12 11 8 

60+ 8 4 4 8 6 6 

not stated 1 0 1 1 0 

Total 52 37 54 36 31 59 

 314 

We classified respondents who stated that they contribute to the projects at least weekly as super-315 

users (n=31, Table 1) and all other users as occasional participants. There were 14 super-users for 316 

CrowdWater and 17 for Naturkalender (Table 2). Eleven out of the 31 super-users (35%) were between 317 

50-59 years old.  318 

Table 2 Number (and percentage) of respondents that are super-users and occasional participants for the 319 
CrowdWater and Naturkalender projects. 320 

 Super-users Occasional participants 

CrowdWater 14 (26%) 40 (74%) 

Naturkalender 17 (47%) 19 (53%) 

Total 31 (34%) 59 (66%) 

3.2 Consistency of the results for the different categories 321 

The consistency of the agreement to the different statements in a category (i.e., the reliability of the 322 

category) can be considered “good” or “acceptable” for all Batson categories (Cronbach’s alpha > 0.7; 323 

George and Mallery, 2003) with more than two statements (Figure S1). The category altruism, which 324 

only included two statements, had a Spearman-Brown score of 0.64 for the engagement part and 0.53 325 
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for the fulfilment part, which indicates a ”questionable” and a “poor” consistency but is still somewhat 326 

acceptable according to George and Mallery (2003).  327 

For nine out of the 16 Schwartz-categories the Cronbach’s alpha or Spearman-Brown-score was higher 328 

than 0.5 for the engagement part and it was higher than 0.5 for seven out of 14 categories in the 329 

fulfilment part. For the Schwartz categories with three statements (the maximum number of state-330 

ments per category), the Cronbach’s alpha was larger than 0.5, except for the category power, domi-331 

nance (maintaining social status and prestige by controlling and dominating other people; 0.44) in the 332 

engagement part and achievement (achieving goals according to social standards and thereby demon-333 

strating competence; 0.48) in the fulfilment part (the explanations in parentheses are based on 334 

Schwartz et al., 2012). According to the Spearman-Brown test, the reliability for the two-statements in 335 

the categories, benevolence, caring (improving or preserving the wellbeing of people that are relevant 336 

in one’s everyday life; 0.48), face (security and power by avoiding humiliation and maintaining a good 337 

reputation; 0.34), and stimulation and routine break (doing exciting and new things that might also 338 

challenge oneself; -0.47) in the engagement part was poor. For the fulfilment part, the reliability for 339 

the categories benevolence, caring (0.23), self-direction (independent exploring, learning and being 340 

creative; 0.46), and universalism, nature (upholding the value of nature and protecting it; 0.41) was 341 

poor. Even though, the reliability analysis indicates that not all categories can be considered a reliable 342 

representation for all the statements in the category, we still describe the results of the questionnaire 343 

mainly per category, rather than per statement, to highlight the main results. For the categories with 344 

low reliability, we also report the agreement for the individual statements. 345 

3.3 Motivations for Initial Engagement in CrowdWater and Naturkalender 346 

The median agreement to statements was significantly higher for the Naturkalender respondents for 347 

both initial engagement (median 4 – “rather agree” for Naturkalender vs. 3 – “undecided” in 348 

CrowdWater) than for the CrowdWater respondents. Altruism was the main motivational factor 349 

according to the Batson-scheme to join CrowdWater (i.e., it was the factor with the highest average 350 

agreement; 82%), whereas for Naturkalender it was principlism (89%; Figure 3; see Figures Figure S2 351 
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and Figure S3 for the agreement to the individual statements). The order of the categories with the 352 

highest average agreement didn't differ between the two projects for any of the other categories. 353 

However, Naturkalender respondents agreed significantly more with the Batson categories egoism-354 

intrinsic, collectivism, and principlism than the CrowdWater respondents (all p-values<0.01). 355 

The four Schwartz-categories with the highest average agreement were the same for CrowdWater  and 356 

Naturkalender, but the average agreement was again higher for the Naturkalender respondents than 357 

the CrowdWater respondents (Figure 3; see Figures Figure S4 and Figure S5 for the agreement to the 358 

individual statements). These top categories were (with explanation according to Schwartz et al., 359 

2012): universalism, help with research (upholding the value of science and support it; 90% agreement 360 

for CrowdWater vs 94 % for Naturkalender), followed by universalism, nature (83 vs 94 %), self-361 

direction (81 vs 88 %) and universalism, societal concern (appreciating the value of society, protect and 362 

improve it 78 vs 85 %). For the categories for which the average agreement was lower, the order of 363 

agreement differed somewhat between the CrowdWater and Naturkalender respondents (Figure 3). 364 

The CrowdWater respondents agreed significantly more to statements related to conformity (47 vs. 365 

17 %, p<0.01) and stimulation and routine break (42 vs. 24%; p=0.02) than Naturkalender respondents. 366 

CrowdWater respondents agreed significantly less with statements related to universalism-teaching 367 

(upholding the value of teaching and sharing experiences;; 53 vs. 70 %; p=0.02), security and 368 

belongingness (safety by feeling connected to a community; 34 vs. 50 %; p<0.01) and stimulation-being 369 

outside and active (49 vs. 80 %; p<0.01). 370 
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 371 

Figure 3 Percentage of respondents who chose one of the five levels of agreement to statements regarding initial 372 
engagement that belong to the motivational categories according to Batson et al. (2002) (top five rows) and 373 
Schwartz et al. (2012) for CrowdWater (left) and Naturkalender (right) . For the categories marked with an 374 
asterisk (*), the median response for the CrowdWater and Naturkalender respondents were significantly 375 
different. The values next to the categories indicate the percentage of respondents who don't agree (left; don't 376 
agree at all and rather don't agree), are undecided (middle) and agree (right; rather agree and fully agree). The 377 
categories are sorted by decreasing percentage of agreement for the respondents of the CrowdWater project. 378 
Figures Figure S2-Figure S5in the supplemental material show the percentage of agreement for the individual 379 

statements in each category. .  380 

 381 

3.4 Fulfilment of Motivations in CrowdWater and Naturkalender 382 

The top motivational factors that were fulfilled by participating in the projects according to the Batson-383 

scheme were altruism, principlism and egoism-intrinsic for both the CrowdWater and Naturkalender 384 

respondents (Figure 4; see Figures Figure S6 and Figure S7). Even though for principlism the average 385 

agreement was 81 % for both projects, the median response for the Naturkalender respondents was 386 

significantly higher due to the larger percentage of Naturkalender respondents who fully agreed with 387 

these statements (37 % for CrowdWater vs. 23 % for Naturkalender, p=0.02). Naturkalender 388 

respondents also agreed significantly more to motivation factors in the egoism-intrinsic category, again 389 

due to a higher percentage of respondents who fully agreed with these statements (21 % for 390 

CrowdWater vs. 33 % for Naturkalender respondents, p<0.01). These differences can be attributed to 391 

the very high agreement (92 % or more) of the Naturkalender respondents to the statements “By 392 

contributing to this project I can share my knowledge and experiences”, “I enjoy this activity”, “This 393 
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activity taught me new skills or new knowledge” and “This activity is fun for me”. 394 

Compared to the motivations for initial engagement of the Naturkalender respondents, a significant 395 

decrease was observed in the median responses to the statements in the categories altruism (p<0.01), 396 

collectivism (p=0.04) and principlism (p<0.01), and a significant increase for the category egoism-397 

intrinsic (p=0.02). The CrowdWater respondents agreed significantly less with the categories 398 

collectivism (p<0.01) and egoism-extrinsic (p=0.02) compared to the agreement for initial engagement. 399 

The average agreement with the statements in the categories universalism-help with research and 400 

universalism-nature in the Schwartz’s scheme remained high after initial participation for the 401 

respondents of both projects (Figure 4; see Figures Figure S8 and Figure S7). The median agreement 402 

for the statements in the categories hedonism (experience pleasure and enjoyment physically or 403 

mentally; Schwartz et al., 2012) and achievement increased significantly after participation for both 404 

projects (all p-values<0.01). For Naturkalender respondents, hedonism was the category with the 405 

highest agreement (it was ranked 9th in the engagement part; Figure 3). Significantly fewer 406 

CrowdWater respondents agreed to statements related to hedonism (p<0.01), so that it was the 4th 407 

ranked category based on the percentage of agreement (Figure 4). The category with the second 408 

highest agreement for Naturkalender respondents was self-direction because 97% of the respondents 409 

agreed with the statement “This activity taught me new skills or knowledge”. For the CrowdWater 410 

respondents, the agreement to this category was much lower (67 % agreement, ranked 6th) and also 411 

much lower than for the initial engagement (81 % agreement, ranked 3rd). The median response for 412 

self-direction was 4 (rather agree) for both projects but the percentage of respondents who fully 413 

agreed with the statement “This activity taught me new skills or knowledge” was much lower for 414 

CrowdWater respondents than for the Naturkalender respondents (18 vs. 34 %), which made the 415 

difference statistically significant (p<0.01). 416 

The average agreement to the statements in the category tradition (upholding traditional principles, 417 

values, and customs of a culture or religion; Schwartz et al., 2012) increased compared to the initial 418 
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motivation for engagement for the CrowdWater respondents (becoming the category with the third 419 

highest agreement, although the difference in the median response for initial engagement and 420 

fulfilment was not statistically significant; p=0.11). For Naturkalender respondents, the average 421 

agreement for this category barely changed compared to the agreement for initial motivations. The 422 

agreement in the following categories decreased significantly compared to the initial engagement: 423 

self-direction (CrowdWater only, p<0.01), universalism-societal concern (both projects, both p-424 

values<0.01), stimulation, being outside and active (Naturkalender only, p<0.01), security and 425 

belongingness (both projects, both p-values<0.01), and face (both projects, both p-values<0.01). The 426 

three categories for which the average agreement was the lowest were face, security and 427 

belongingness and power, dominance for both projects (Figure 4).  428 

 429 

Figure 4 The average percentage of respondents that agreed to the statements that belong to the different 430 
categories for the motivations for initial engagement (orange) and fulfilment (purple) for CrowdWater (left) and 431 
Naturkalender (right). Empty circles indicate insignificant (p>0.05) changes in the median response for initial 432 
engagement and fulfilment; filled symbols indicate significant changes. Asterisks indicate categories for which 433 
the median response for fulfilment for the CrowdWater and Naturkalender respondents was significantly different 434 
(see Figure 3 for the statically significant differences in the agreement for initial engagement). The categories are 435 
sorted by decreasing percentage of agreement for the CrowdWater respondents in the engagement part. Figures 436 
S5-S9 in the supplemental material show the percentage of agreement for the individual statements per category. 437 

 438 

3.5 Super-Users vs. Occasional Participants 439 

For the initial engagement, the super-users agreed significantly more to statements related to egoism-440 
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intrinsic and principlism in the Batson-scheme than the occasional participant (68 vs. 58% and 86 vs. 441 

83%, respectively (p<0.01 for both); Figure S10). For the categories in the Schwarz-scheme, the super-442 

users agreed significantly more than the occasional users to universalism-help with research (93 vs 443 

91%; p<0.01) and self-direction (88 vs. 82%; p=0.04), stimulation-being outside and active (72 vs. 55%; 444 

p<0.01) and security and belongingness (50 vs 34%; p<0.01).  445 

There were also some differences among super-users and occasional participants within the projects: 446 

For the CrowdWater project, the occasional participants were significantly more motivated to join the 447 

project by conformity than the super-users (56 vs. 22%, p=0.03). The difference between the occasional 448 

participants in Naturkalender and the occasional users in Naturkalender was also significant (56 vs. 449 

13%, p<0.01). For the Naturkalender project, there was no significant difference in the median 450 

response for the statements related to conformity for the super-users and occasional participants (21 451 

vs. 13%, p=0.80). 452 

The agreement to statements related to the fulfilment of the motivations was generally higher for 453 

super-users than for the occasional participants, but the ranking of the categories to which the 454 

respondents agreed most was very similar. The differences in the median response of the super-users 455 

and occasional participants were statistically significant for the same categories as for the initial 456 

engagement (i.e., egoism-intrinsic and principlism (Batson-scheme), universalism-help with research, 457 

self-direction, stimulation-being outside and active, and security and belongingness (Schwarz-458 

scheme)), but for the fulfilment super-users also agreed significantly more to statements related to 459 

power, dominance (27 vs. 18%, p<0.01) and achievement (40 vs. 30%, p=0.01).  460 

3.6 Age 461 

In the fulfilment part, the respondents younger than 50 agreed most to statements related to altruism 462 

(83-88%) and second most to statements related to principlism (79-88%), whereas the 50-59-year old 463 

respondents agreed most with statements in the egoism, intrinsic (78%) and principlism (78%) 464 

categories. The respondents above 60 years agreed most to statements in the principlism category 465 
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(77%). 466 

For the fulfilment part, the age group 50-59 was the only group that agreed most to the category 467 

hedonism (89%) in the Schwartz-scheme. In contrast, respondents in the other age groups agreed most 468 

to universalism, help with research or universalism, nature. Furthermore, the respondents in the 50-469 

59 age group agreed significantly more to statements related to stimulation, being outside and active 470 

(71%, p=0.01; doing exciting, new and challenging things in the outdoors and being physically active; 471 

Schwartz et al., 2012) than the respondents in all other age groups combined (49-71%). On average, 472 

the respondents in the 50-59 age group also agreed more than other age groups to statements in 473 

stimulation, being outside and active for the initial engagement (84 %, vs 68 % or less for the other age 474 

groups). 475 

4 Discussion 476 

4.1 Limitations of the Study 477 

The reliability of the grouping of the statements into the categories of Batson et al. (2002) was 478 

satisfactory but the reliability was poor for several categories in the Schwartz-scheme. We removed 479 

some statements due to a necessary trade-off between a lengthy questionnaire and more statements 480 

per category in order to be able to include questions regarding the engagement and fulfilment. This 481 

probably impacted the reliability of the categories, and it remains necessary to test if the reliability of 482 

the categories is higher for different projects, other geographic settings or with a different selection of 483 

statements.  484 

The convenience sample is also a limiting factor of this study. The respondents might not fully 485 

represent all participants in CrowdWater and Naturkalender. More engaged participants, for instance, 486 

may have been more likely to fill in the questionnaire. Furthermore, biases like the social desirability 487 

bias (Furnham, 1986), where people give answers that are not necessarily true but that they think are 488 

socially more desirable, cannot be excluded entirely either. However, impersonal and anonymous 489 

distribution of questionnaires (as in this study) reduces this social desirability bias (Nederhof, 1985). 490 
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We, therefore, assume that the results from the questionnaire provide useful information on the main 491 

motivations to initially participate and to continue participating in the CrowdWater and Naturkalender 492 

projects. 493 

4.2 Motivations for Initial Engagement 494 

We evaluated to which extent the motivations of the participants to join the CrowdWater and 495 

Naturkalender projects agreed with the motivational factors mentioned in the peer-reviewed 496 

literature (Levontin et al., 2018). The similar order of the percentage of agreement for the motivations 497 

to engage in CrowdWater and Naturkalender suggests that people had similar expectations prior to 498 

participation. The participants of both projects expected to contribute to science, to protect nature, 499 

to learn something new, but also to satisfy their interest in the topic, and to address social concerns. 500 

This is in line with Alender (2016), who found similar motivations for participants of eight water quality 501 

monitoring projects in the US. De Vries et al. (2019) reported, based on a literature review across 502 

multiple projects in the natural sciences and health, that helping science is an important motivation as 503 

well. To help science or help with research was also a main motivation for online projects, such as 504 

Foldit (Curtis, 2015) and Galaxy Zoo (Raddick et al., 2013), for aerosol monitoring (Land-Zandstra et al., 505 

2016), and for flu reports using smartphones (Land-Zandstra et al., 2016b).  506 

The high agreement to motivations related to universalism, nature for Naturkalender and CrowdWater 507 

suggests that protecting the environment is an important issue for the participants. For environment-508 

related citizen science projects the topics or issues addressed by the project, or protecting the 509 

environment in general, are often important motivational factors (Alender, 2016; Hobbs and White, 510 

2012; Johnson et al., 2014; Ryan et al., 2001). For example, Hobbs and White (2012) found that for 511 

several British wildlife-conservation projects, the interest in wildlife and the contribution to wildlife 512 

conservation were the two main motivations to join the projects.  513 

Land-Zandstra et al. (2016b) found that learning, fun or socializing were weak motivators to become 514 

involved in the flu-tracker project. We could confirm this for fun (hedonism) and socializing (security 515 
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and belongingness) for Naturkalender and CrowdWater, but not for learning (self-direction). A reason 516 

for this discrepancy could be that there were probably few learning opportunities for participants of 517 

the flu-tracker project because they only report flu symptoms (Land-Zandstra et al., 2016b). In 518 

Naturkalender, participants can learn about phenology and in CrowdWater to a lesser degree about 519 

fluctuations in water levels in the observed streams. In this respect, the difference between 520 

CrowdWater, where other than deliberately observing hydrological changes there is no learning 521 

involved, and Naturkalender, where participants learn to identify particular species, is interesting. The 522 

difference in the agreement that learning (self-direction) was a motivation to join the project for the 523 

two projects was small (81% for CrowdWater vs. 88% for Naturkalender), suggesting that participants 524 

for both projects wanted to learn something. The difference in the agreement that the projects fulfilled 525 

the learning motivation was indeed much larger (66% for CrowdWater and 86 % for Naturkalender 526 

(86 %). 527 

Socialising aspects, i.e., meeting new people were not a strong motivator, which might be due to their 528 

app-based character of the CrowdWater and Naturkalender projects. Participants typically have no 529 

opportunity to meet each other. We agree with the assumption of Land-Zandstra et al. (2016b) that 530 

the type of project makes a difference in this case, namely whether the project offers opportunities to 531 

learn and also if they are based on (real-world) social interactions.  532 

4.3 Differences in How Far the CrowdWater and Naturkalender Projects Fulfilled the 533 

Expectations 534 

4.3.1 Learning, Teaching and Social Interactions 535 

The significantly higher agreement to stimulation, being outside and active for the Naturkalender 536 

respondents than the CrowdWater respondents suggests that Naturkalender participants value being 537 

outdoors, in nature and doing a physical activity more than CrowdWater participants. Based on the 538 

multitude of existing animal or plant phenology projects that involve volunteers (Beaubien and 539 

Hamann, 2011; Fuccillo et al., 2015), we assume that activities in the Naturkalender project are more 540 
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aligned to hobbies than the observation of hydrological variables in the CrowdWater project. This 541 

assumption is also supported by the fact that Naturkalender respondents agreed significantly less to 542 

stimulation and routine break as a motivation for engagement and especially the higher agreement to 543 

the statement “I was doing this activity anyways” than the CrowdWater respondents. This indicates 544 

that some respondents of the Naturkalender project were already participating in similar activities as 545 

part of a hobby and, therefore, did not join the project to do something completely new but instead 546 

were able to share their knowledge. The higher agreement to universalism, teaching as a motivator 547 

for the initial engagement of Naturkalender respondents indeed indicates that participants in 548 

Naturkalender value sharing their knowledge more or had more knowledge to share than the 549 

CrowdWater participants. Teaching opportunities in the Naturkalender project include helping other 550 

participants with species identification via comments in the app. The much more extensive use of the 551 

social media features in the Naturkalender app than the CrowdWater app, reflects the fulfilment of 552 

this motivation.  553 

The opportunities for teaching are directly related to the opportunities for learning, which is likely why 554 

learning (self-direction) was the category with second highest agreement for fulfilment for the 555 

Naturkalender respondents (although, the agreement that the project fulfilled this criterion was 556 

significantly less than the agreement that learning was a motivator to initially join the project). This 557 

matches the findings of Rotman et al. (2012), who stated that motivations like personal interest and 558 

curiosity were the most influential factors for continued participation in environment-related projects, 559 

such as Biotracker (http://www.birds.cornell.edu/citscitoolkit/projects/biotracker-nsf-project/), 560 

which collects images of tree leaves to develop an automatic species recognition application and is 561 

thus topic-wise closely related to Naturkalender. In Naturkalender, participants can acquire new 562 

knowledge about plant and animal species from information in the app and the comments of other 563 

participants; the CrowdWater app does not provide such information, which is likely why the 564 

agreement with statements in the self-direction category was much lower for the CrowdWater 565 

respondents. CrowdWater offers information about hydrology on the homepage and links to an online 566 
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course called “Water in Switzerland”. However, so far it appears that these options are rarely used, 567 

possibly due to them being mentioned on the homepage, rather than in the app. Thus, opportunities 568 

for learning in CrowdWater are limited compared to Naturkalender, where users profit from the 569 

expertise of other participants. 570 

According to Serret et al. (2019), tools and features that help participants to form a network can be 571 

the basis for a self-organized community, where participants correct each other and share their 572 

experience. Even though the comment boxes provide such opportunities for teaching and learning, the 573 

low agreement to security and belongingness for both the CrowdWater and Naturkalender 574 

respondents indicates that comments in the app do not fulfil the motivation to socialise with like-575 

minded people enough. However, it also has to be noted that this was not an important motivation to 576 

join in the first place. The two projects are, in that perspective, more similar to other smartphone-577 

based projects, like e.g. flu-tracker (Land-Zandstra et al., 2016b) or online projects (Nov et al., 2014) 578 

that do not lead to real-world interaction.  579 

4.3.2 Enjoyment, Fun and Conformity 580 

Respondents of both projects agreed significantly more to the fun part (hedonism) being fulfilled than 581 

it being a motivation to join the project initially. This indicates that although the participants did not 582 

join the projects for the fun factor, they continue to participate because they (also) enjoy it. Reasons 583 

for the higher agreement to enjoyment as a motivator for the Naturkalender respondents than the 584 

CrowdWater respondents might be the fact that in the Naturkalender app, there are many more 585 

options and locations where one can report observations of plants, animals and winter phenomena. 586 

In the CrowdWater app, the observations are restricted to streams and rivers and soil moisture 587 

measurements can be taken only at unpaved locations. Therefore, we assume that more potential 588 

locations to contribute and more data entry options, together with more virtual social interaction, 589 

increase fun and enjoyment, and thereby the overall motivation for participation.  590 

For the CrowdWater project, the occasional participants were significantly more motivated by 591 
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conformity than the super-users. The higher agreement to conformity for the CrowdWater 592 

respondents could be explained by the fact that the CrowdWater app had been available for only 17 593 

months prior to the launch of the survey. The first contributions for Naturkalender were made 41 594 

months prior to the start of the survey. Therefore, at the time of the survey, CrowdWater probably still 595 

relied more on the immediate social network of the project administrators. Naturkalender attracted 596 

many participants through press releases and outreach events. These participants obviously feel less 597 

obliged to participate. From the higher agreement to conformity for the occasional participants in 598 

CrowdWater than the super-users, we conclude that asking people, particularly friends, colleagues or 599 

family members, to participate leads to a light form of social pressure for people who would otherwise 600 

not be motivated to participate. This might lead to increased participation in the beginning of the 601 

project but if people don’t find something rewarding in the project, e.g. a fun component or a learning 602 

outcome, they might soon stop contributing, even though they agree that helping science, society or 603 

protecting nature are worthwhile. Although motivations to make the world a better place, make 604 

scientific knowledge available to the public and to contribute to the future of humanity (universalism, 605 

societal concern) were important motivators to join both projects, they were probably too ambitious 606 

to be fulfilled for some participants.  607 

4.4 Super-Users and Their Motivations 608 

The median age of the super-users (50-59 age group) was higher than for the occasional participants 609 

(30-39 years; Table 1). Many other projects report that the majority of participants are 30 years or 610 

older (Alender, 2016; Beza et al., 2017; Land-Zandstra et al., 2016b; Pandya and Dibner, 2018). 611 

Although the small number of respondents per age group does not allow us to draw many conclusions 612 

related to the age of the participants, the hint of older people being more intrinsically (egoism, 613 

intrinsic) motivated is interesting. A high degree of intrinsic motivation of participants is desirable for 614 

citizen science projects because it leads to more and better contributions (Deci and Ryan, 2000). This 615 

is largely because most citizen science projects cannot offer any compensation for the contributions. 616 

Based on the high agreement to hedonism, self-direction and stimulation, being outside and active, we 617 
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assume that the projects fulfil some of the intrinsic motivations for participants in the 50-59  age group 618 

by providing an opportunity to go outdoors and be physically active as part of a regular routine. In a 619 

study among 8245 US citizens above the age of 65, Szanton et al. (2015) found that physical activities 620 

were chosen as the favourite leisure activity across all income and racial groups. In the Community 621 

Collaborative Rain, Hail, and Snow Network (CoCoRaHS), older participants reported rainfall 622 

observations more timely, reliably and over longer periods, and some participants even reported to 623 

have incorporated their measurements into their daily routines (Sheppard et al., 2017). Venkatesh et 624 

al. (2012) report that older people are more likely to stick to established habits, which might also 625 

explain their higher contribution.  626 

The significantly higher agreement of super-users to achievement and power, dominance than 627 

occasional participants for the statements related to fulfilment indicates that the super-users feel that 628 

their contributions are seen and valued. This might motivate them to contribute more than others 629 

(Nov et al., 2014). There might be a self-energising mechanism here: participants who contribute more, 630 

will probably also have received more likes, “Thank You”-comments, recognition and feedback by the 631 

project administrators, which then encourages them to contribute more (de Vries et al., 2019). This 632 

leads to their “dominance” over other participants in terms of the number of contributions (e.g., a high 633 

place on the leader-boards). However, the agreement to statements related to these competitive 634 

categories was rather low. It remains unclear if this was due to the low level of gamification, which at 635 

the time of the survey consisted only of a simple leader board, or if the respondents did not want any 636 

competition. Whether increased gamification increases the agreement to these motivations as 637 

proposed in Nov et al. (2014), therefore, remains to be investigated. 638 

 639 

4.5 Recommendations for Successful Citizen Science Projects 640 

All citizen science projects depend on dedicated participants; communication with the right target 641 

audiences is key to success (Parrish et al., 2018). Therefore, it is essential to identify target groups by 642 
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characterising the motivations of potential participants, and particularly the super-users. Although this 643 

depends on the project (including the topic and tasks involved), some general conclusions can be made 644 

based on the findings from our survey and those reported in the literature.  645 

• It appears that people are more likely to contribute to a project over extended time periods, 646 

if they have shared values with the project's goal (e.g. protection of the environment; see also 647 

relatedness to a topic in self-determination theory; Ryan and Deci, 2000b). Moreover, the level 648 

of interest increases if projects tackle problems that impact the every-day life of participants 649 

(Frensley et al., 2017), such as a local issue of the community (e.g. PublicLab; Rey-Mazón et al., 650 

2018). One could argue that everyone, and thus also Naturkalender participants, is affected by 651 

climate change and people can observe the effects in their backyard. For CrowdWater, the 652 

local relevance of their stream observations was less evident because the data are not linked 653 

to any forecasts (yet). Furthermore, people may expect the government to be responsible for 654 

flood or drought forecasting and water management. The motivation to participate in 655 

CrowdWater might be different in other countries where people are more exposed to flood 656 

hazards.  657 

• Participants need to be interested in the topic of the project and the activities involved. They 658 

often have an interest in science or technology. For online projects, the motivation to 659 

participate in a project is mainly to contribute to science (Curtis, 2015; Raddick et al., 2013). 660 

The agreement to the statement “I am interested in the topic of this project” was very high for 661 

respondents for both projects, similar to the findings of Hobbs and White (2012) for two 662 

wildlife observation projects. For Naturkalender, it seems that many participants are plant 663 

(and animal) enthusiasts. For such groups, a public media campaign seems useful to attract 664 

participants. Platforms where people can search for projects according to their hobbies can 665 

also increase participation.  666 

• For successful projects, there should be an easily accessible possibility for learning and to 667 

extend one’s knowledge about a topic. The importance for citizen scientists to be able to learn 668 
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new things has been reported in multiple studies (e.g. Hobbs and White, 2012; Johnson et al., 669 

2014).  670 

• People need to enjoy their participation. Thus, the activities need to be fun. This can possibly 671 

be enhanced with more options to participate (i.e., more choices and options to contribute).  672 

• Social media elements are beneficial for online projects (Nov et al., 2014) to create social 673 

networks and allow people to comment on the contributions of others. This could help to form 674 

a community and ensure data quality (Serret et al., 2019). In Naturkalender, social interactions 675 

enable participants to help others and, therefore, provide teaching and learning experiences 676 

for the participants without requiring effort by the project administrators. This can be 677 

enhanced by giving users more competences (e.g. more rights for advanced users). This is in 678 

line with self-determination theory, according to which the ability to make competent actions 679 

and decisions autonomously and having the possibility to relate the project’s topic to one’s 680 

own interests leads to enhanced self-motivation (Ryan and Deci, 2000b). 681 

• In this study, the super-users were in general older than the occasional participants. This is 682 

common for other projects as well (Sheppard et al., 2017; Wright et al., 2015). It might, 683 

therefore, be an effective strategy to focus recruitment on people above the age of 50. Once 684 

the habit is established, older people are more likely to contribute for extended periods 685 

(Sheppard et al., 2017; Venkatesh et al., 2012).  686 

• Public platforms with available projects for interested people (e.g. scistarter.org) might be 687 

helpful for people who look for projects to participate. However, people are unlikely to search 688 

for an activity that they don’t know, like observing water levels. Therefore, proactive and 689 

targeted social media marketing based on specific personal profiles and offline advertisements 690 

in local outdoor-based organisations, (e.g. bird-observers or dog-communities) or newspapers 691 

is still beneficial to reach a larger number of people.  692 

• Respondents of the newer CrowdWater project were considerably more motivated to join by 693 

social pressure (conformity), i.e., because they were asked to help with the project. This might 694 
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be true for many projects in an early phase that still rely on family, friends or acquaintances to 695 

participate and promote the project. People who were motivated to join by a perceived social 696 

pressure may help a project in the beginning but later tend to contribute less or quit. We 697 

assume that Naturkalender participants were motivated more to join because of an interest in 698 

the project topic, in combination with a willingness and ability to share their expertise on the 699 

topic, which might indicate a perceived higher self-efficacy as defined by Phillips et al. (2018). 700 

• The introduction of gamification elements increases the competitive element (Nov et al., 2014) 701 

and might attract new participants (Bowser et al., 2013a) but this might also decrease the 702 

intrinsic motivation of participants (Thiel and Fröhlich, 2017) or cause participants to make 703 

low-quality contributions in order to get more points (Bowser et al., 2013b). Thus, gamification 704 

should be applied cautiously and potential negative consequences should be evaluated 705 

beforehand. The respondents of this survey were not very motivated by competitive elements 706 

(low agreement for achievement, face). Whether they did not like the existing leader board, 707 

or if it was not enough to trigger these motivations, remains to be investigated. 708 

 709 

5 Conclusions 710 

In this study, we used a questionnaire based on the citizen science literature to study the motivations 711 

that drive people to participate in citizen science projects and also reformulated the statements to 712 

investigate in how far their participation fulfilled these motivations. Participants of the CrowdWater 713 

and Naturkalender projects mainly joined the projects to contribute to science, to satisfy their interest 714 

in science and technology, to protect nature, contribute to the wellbeing of society, learn something 715 

new, and to be physically active. Not all of these initial motivations were fulfilled by participating in 716 

the projects. The respondents of both projects, for instance, agreed significantly less that their 717 

continued involvement was driven by a motivation to contribute to society (universalism, societal 718 

concern) and socialising with other people (security and belongingness) than they agreed on these 719 
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aspects motivating them to join the projects in the first place. On the other hand, fun and enjoyment 720 

(hedonism) were not the primary motivations to become involved in the projects, but were essential 721 

motivators for continued participation. Roughly a third of all super-users (i.e., respondents 722 

contributing at least once a week) were 50-59 years old. This group of participants was most 723 

intrinsically motivated by enjoyment, learning and being physically active and outdoors, whereas 724 

participants in the other age groups valued the contribution they could make to science most. 725 

Respondents from the Naturkalender project were more motivated by enjoyment, learning (self-726 

direction) and being outdoors and the physical activity (stimulation) than the CrowdWater 727 

respondents. Most of the fun and learning experience probably came from the social interaction and 728 

the information on plants and animals included in the Naturkalender app. Such a learning aspect was 729 

not available for CrowdWater, which probably explains why for CrowdWater respondents the primary 730 

motivation for continued participation were similar to the motivations for initial engagement: help 731 

with research (universalism, research), protection of nature (universalism, nature) and acting according 732 

to their values and beliefs (tradition).  733 
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8 Supplemental Material  917 

Table S1 Categories according to Batson et al. (2002) and the corresponding statements from the questionnaire of Levontin et al. (2018). The statements for the fulfilment were 918 

adapted from those in the engagement part. 919 

Category Potential Motivations for Engagement Potentially Fulfilled Motivational goals 

Altruism I want to make scientific knowledge accessible to the 

public  

By contributing to this project I can make scientific 

knowledge accessible to the public 

I do this activity because I am happy to help By doing this activity I can help others 

Collectivism It's a nice family activity  By contributing to this project I get to have some good 

times with my family 

I want to contribute to the future of humanity  By contributing to this project I can contribute to the 

future of humanity 

I want to make the world a better place  By contributing to this project I can make the world a 

better place 

It's a teaching opportunity  Participating in this project provided me a teaching 

opportunity 

I want to contribute to science  This activity helped me to contribute to science 

I want to contribute to the knowledge about this topic  By contributing to this project I can contribute to the 

knowledge about this topic 

Egoism 

extrinsic 

Volunteering makes me feel important Volunteering in this project makes me feel important 

Other people I know are participating  - 

Other people think positively about my contribution to 

this project 

- 

I am seeking fame I can satisfy my need for fame by doing this activity 

I was requested to participate by somebody  - 

I want to be part of this volunteers' community - 

I want to receive recognition I can get recognition for participating in this project 

I want to socialize with other people  This project is an opportunity to socialize with other 

people 

I want to enhance my reputation This activity helps me to enhance my reputation 

I expect something in return  - 

I want to meet people with similar interests  By participating in this project, I meet people with similar 

interests 
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I want to gain social status This activity increased my social status 

I like to compete with others I can compete with others in this project 

Egoism 

intrinsic 

I want to spend time in nature By participating in this project I get to spend more time 

in nature 

I am interested in the topic of this project  - 

I want to learn new skills or new knowledge This activity taught me new skills or knowledge 

I am interested in science and technology. This activity satisfies my interest in science and 

technology 

This activity is related to another hobby I have R  - 

I want to have fun This activity is fun for me 

- I enjoy this activity 

I want to do something meaningful This activity is meaningful 

I want to do some physical activity  By participating in this project I am physically active 

I want to share my knowledge and my experience By contributing to this project I can share my knowledge 

and experiences 

I want to spend more time outdoors By participating in this project I get to spend more time 

outdoors 

I strive to challenge myself  This activity challenged myself 

Principlism My beliefs and/or my values motivated me to 

participate. 

Helping with this project is according to my beliefs 

and/or my values 

I want to contribute to conservation  By contributing to this project I can contribute to 

conservation 

I want to raise public awareness of this topic By contributing to this project I can raise public 

awareness of this topic 

  920 
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Table S2 Categories according to Schwartz et al. (2012) and the corresponding statements from the questionnaire of Levontin et al. (2018).  921 

Categories  Conceptual definition*  Potential Motivations for 

Engagement 

Potentially Fulfilled 

Motivational goals 

Achievement Personal success through 

demonstrating competence 

according to social standards 

Achieving goals according to social 

standards and thereby 

demonstrating competence. 

I am seeking fame 

I want to do something 

meaningful 

I like to compete with others 

This activity is meaningful 

I can compete with others in 

this project 

I can satisfy my need for 

fame by doing this activity 

Benevolence, caring Preservation and enhancement of 

the welfare of people with whom one 

is in frequent personal contact 

Improving or preserving the 

wellbeing of people that are relevant 

in one’s everyday life. 

It's a nice family activity  

I do this activity because I am 

happy to help 

By doing this activity I can 

help others 

By contributing to this 

project I get to have some 

good times with my family 

Conformity Trying to act in a way that does not 

harm or upset anyone and fulfils 

social expectations or norms  

Other people I know are 

participating  

I was requested to participate 

by somebody 

- 

Face Security and power by avoiding 

humiliation and maintaining a good 

reputation. 

 

Other people think positively 

about my contribution to this 

project 

I want to enhance my 

reputation 

This activity helps me to 

enhance my reputation 

Hedonism Experience pleasure and enjoyment 

physically or mentally  

I want to have fun I enjoy this activity 

This activity is fun for me 

Power, Dominance Maintaining social status and prestige 

by controlling and dominating other 

people.  

Volunteering makes me feel 

important 

I want to receive recognition 

I want to gain social status 

I can get recognition for 

participating in this project 

Volunteering in this project 

makes me feel important 

This activity increased my 

social status 

Power, resources Maintaining or achieving social status 

and prestige by controlling or 

acquiring resources 

I expect something in return - 
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Security and 

belongingness 

Safety by feeling connected to a 

community 

I want to be part of this 

volunteers' community 

I want to socialize with other 

people  

I want to meet people with 

similar interests 

By participating in this 

project, I meet people with 

similar interests 

This project is an 

opportunity to socialize with 

other people 

Self-direction Independent exploring, learning and 

being creative 

I want to learn new skills or 

new knowledge 

I am interested in the topic of 

this project  

I am interested in science and 

technology. 

This activity satisfies my 

interest in science and 

technology 

This activity taught me new 

skills or knowledge 

Stimulation and routine 

break 

Doing exciting, and new things that 

might also challenge oneself 

This activity is related to 

another hobby I have R 

I strive to challenge myself 

This activity challenged 

myself 

Stimulation, being 

outside and active 

Doing exciting, and new things that 

might challenge oneself in the 

outdoors and being physically active. 

I want to spend time in nature 

I want to do some physical 

activity  

I want to spend more time 

outdoors 

By participating in this 

project I am physically 

active 

By participating in this 

project I get to spend more 

time in nature 

By participating in this 

project I get to spend more 

time outdoors 

Tradition Upholding traditional principles, 

values, and customs of a culture or 

religion 

My beliefs and/or my values 

motivated me to participate. 

Helping with this project is 

according to my beliefs 

and/or my values 

Universalism, help with 

research 

Upholding the value of science and 

support it. 

I want to contribute to science  

I want to contribute to the 

knowledge about this topic 

By contributing to this 

project I can contribute to 

the knowledge about this 

topic 

This activity helped me to 

contribute to science 
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Universalism, nature Upholding the value of nature and 

protecting it. 

I want to contribute to 

conservation  

I want to raise public awareness 

of this topic 

By contributing to this 

project I can raise public 

awareness of this topic 

By contributing to this 

project I can contribute to 

conservation 

Universalism, societal 

concern 

Appreciating the value of society, 

protect and improve it 

I want to contribute to the 

future of humanity  

I want to make scientific 

knowledge accessible to the 

public  

I want to make the world a 

better place 

By contributing to this 

project I can contribute to 

the future of humanity 

By contributing to this 

project I can make the world 

a better place 

By contributing to this 

project I can make scientific 

knowledge accessible to the 

public 

Universalism, teaching Upholding the value of teaching and 

sharing experiences. 

It's a teaching opportunity  

I want to share my knowledge 

and my experience 

By contributing to this 

project I can share my 

knowledge and experiences 

Participating in this project 

provided me a teaching 

opportunity 

* adapted from Schwartz et al. (2012)922 
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 923 

Figure S1 Results of the reliability analysis of the categories and the corresponding statements using Cronbach's alpha (Cronbach, 1951) in dark blue and Spearman-Brown (Eisinga 924 
et al., 2013) in light blue for the categories with two statements. A score could not be calculated for the categories that consist of only one item (no bars). The numbers at the end 925 
of the bars indicate the number of statements in the category.926 
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 927 

Figure S2 The agreement to the statements for initial engagement for the CrowdWater project grouped per 928 
category of Batson et al. (2002) (in bold font).  929 
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 930 

Figure S3 The agreement to the statements for initial engagement for the Naturkalender project grouped per 931 

category of the Batson-scheme (shown in bold). 932 
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 933 

Figure S4 The agreement to the statements for initial engagement for the CrowdWater project grouped per 934 
category of the Schwartz-scheme (in bold font).  935 
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 936 

Figure S5 The agreement to the statements for initial engagement for the Naturkalender project of the Schwartz-937 

scheme. 938 

  939 
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 940 

 941 

Figure S6 Agreement of CrowdWater participants to the statements related to how their initial motivations were 942 

fulfilled by participation in the in the project grouped per category of the Batson-scheme.  943 
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 944 

Figure S7 Agreement of Naturkalender participants to the statements related to how their initial motivations 945 
were fulfilled by participation in the in the project grouped per category of the Batson-scheme. 946 
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 947 

Figure S8 Agreement of CrowdWater participants to the statements related to how their initial motivations were 948 

fulfilled by participation in the in the project grouped per category of the Schwartz-scheme. 949 
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 950 

Figure S9 Agreement of Naturkalender participants to the statements related to how their initial motivations 951 

were fulfilled by participation in the in the project grouped per category of the Schwartz-scheme.  952 

 953 
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 954 

Figure S10 Comparison of the percentage of super-users and occasional participants who agree to the different 955 
statements on motivations for engagement (orange) and whether these are fulfilled by participating in the project 956 
(purple). Significant differences in the median agreement for engagement and fulfilment are shown in solid cir-957 
cles; insignificant differences by open circles The graph elements are sorted by decreasing agreement to the cat-958 
egories in the engagement part in CrowdWater project to enable comparison with Figure 4. The asterisks in the 959 
y-axis labels indicates a significant difference between the super-users and the occasional participants. 960 

 961 



You are invited to participate in this survey because you are part of at least one of the citizen

science projects on the SPOTTERON-platform (www.spotteron.net).

I will distribute 10 "Hydrosommelier-Bottles" randomly between all participants who completed

the survey. In the end of the survey you are asked to enter your e-mail adress in case you want

to to sign up for the list of potential recipients. 

This survey is part of my PhD thesis at the University of Zurich, Switzerland. I work in the

CrowdWater project and am trying to find out more about what motivates people to participate in

citizen science projects. In this survey I will ask you some questions in the form of statements.

Please answer them on a scale from “don’t agree at all” to “fully agree”, depending on how well

the statements apply to you. 

In the first part (questions 5-11) you are asked about the reasons you chose to participate in one

or multiple citizen science projects on the SPOTTERON platform. If you participated in more than

one project, please choose the one to which you contributed first. Please don’t consider if your

expectations have been fulfilled in the first part. 

In the second part (questions 12-17) you are asked whether or not you agree to statements

about how well the expectations have been met for participating in the project in the first place.

While doing so, please consider how you feel about participating in the citizen sciene project

today.

It would be very helpful if you could answer four short questions about yourself at the end. 

 

Your answers will be recorded and stored anonymously. It will take about 10 minutes to fill in the

survey.

Thank you very much for your help!

Simon Etter

(simon.etter@geo.uzh.ch)

Thank you very much for your time!

Citizen Science Motivation EN
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1. Please create your personal code to enable the comparison with a potential follow-up study. The

code consists of the first two letters of your mothers first name, the first two letters of your fathers first

name and the numbers of the day of your birth date. 

Example: 

Mothers First Name: Anita

Fathers First Name: Robert

Birthday: 01.02.1980

Example personal Code: AnRo01

*

2. In which of the SPOTTERON-based projects do or did you participate? (Multiple answers are

possible)?

*

CrowdWater

Naturkalender ZAMG

Naturkalender NÖ

Naturkalender Steiermark

Roadkill

Forschen im Almtal

GLOBAL2000 Naturputzer

StreetArt

Waldrapp

Was geht ab?

Fågelbär

GEFABE

Fjällkalendern

other project

3. When did you join the project?

Days ago

Weeks ago

Months ago

in the second half of 2017

in the first half of 2017

in 2016

in 2015

before 2015

4. How often do you contribute to the project?

more than once a day

once a day

every few days

weekly

every few weeks

monthly

less than monthly

I contributed only a few times (1-3 times)

I have never contributed

2



What made you decide to participate in a citizen science project?

Citizen Science Motivation EN

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

I want to learn new skills

or new knowledge

Volunteering makes me

feel important

Other people I know are

participating

It's a nice family activity

Other people think

positively about my

contributions to this

project

5. Why did you join the citizen science project?*

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

I want to contribute to

the future of humanity

I want to spend time in

nature

I want to make scientific

knowledge accessible

to the public

I am seeking fame

I am interested in the

topic of this project

6. Why did you join the citizen science project?*

3



 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

I am interested in

science and technology.

I was requested to

participate by

somebody

This activity is related to

another hobby I have

I want to make the world

a better place

It's a teaching

opportunity

7. Why did you join the citizen science project?*

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

I want to have fun

I want to be part of this

volunteers' community

My beliefs and/or my

values motivated me to

participate.

I want to receive

recognition

I want to do something

meaningful

8. Why did you join the citizen science project?*

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

I want to contribute to

science

I do this activity

because I am happy to

help

I want to do some

physical activity

I want to socialize with

other people

I want to share my

knowledge and my

experience

9. Why did you join the citizen science project?*
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don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

I want to spend more

time outdoors

I want to contribute to

conservation

I strive to challenge

myself

I want to enhance my

reputation

I expect something in

return

10. Why did you join the citizen science project?*

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

I want to meet people

with similar interests

I want to raise public

awareness of this topic

I want to gain social

status

I like to compete with

others

I want to contribute to

the knowledge about

this topic

11. Why did you join the citizen science project?*

5



How have your expectations been fulfilled by the participation in the project?

Citizen Science Motivation EN

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

By contributing to this

project I can raise public

awareness of this topic

By contributing to this

project I can contribute

to the knowledge about

this topic

By contributing to this

project I can share my

knowledge and

experiences

By participating in this

project I am physically

active

This activity helped me

to contribute to science

12. How have your expectations about participating in the project been fulfilled?*

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

This activity helps me to

enhance my reputation

By contributing to this

project I can contribute

to the future of humanity

I can get recognition for

participating in this

project

Volunteering in this

project makes me feel

important

I enjoy this activity

13. How have your expectations about participating in the project been fulfilled?*
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don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

By contributing to this

project I can make the

world a better place

Helping with this project

is according to my

beliefs and/or my

values

This activity challenged

myself

This activity increased

my social status.

This activity satisfies my

interest in science and

technology.

14. How have your expectations about participating in the project been fulfilled?*

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

This activity is

meaningful

By participating in this

project, I meet people

with similar interests.

this project is an

opportunity to socialize

with other people

By participating in this

project I get to spend

more time in nature

Participating in this

project provided me a

teaching opportunity

15. How have your expectations about participating in the project been fulfilled?*
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don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

I can compete with

others in this project

This activity taught me

new skills or knowledge

I can satisfy my need for

fame by doing this

activity

By contributing to this

project I can make

scientific knowledge

accessible to the public

By doing this activity I

can help others.

16. How have your expectations about participating in the project been fulfilled?*

 
don't agree at

all

rather don't

agree undecided rather agree fully agree

don't know/not

applicable

By contributing to this

project I get to have

some good times with

my family.

By participating in this

project I get to spend

more time outdoors

By contributing to this

project I can contribute

to conservation of the

environment

This activity is fun for

me

17. How have your expectations about participating in the project been fulfilled?*

8



Thank you for participating to this survey.

Citizen Science Motivation EN

18. What is you gender?

male

female

other/prefer not to answer

19. What is your age?

Below 18

18-20

21-29

30-39

40-49

50-59

Above 60

other (please state)

20. What is the highest degree of education you have completed?

Less than primary school

Primary school

Secondary school level

High school / Matura

Bachelor

Master/Diploma

Promotion/PhD/Doctorate

21. What is your country of residence?

22. Do you have comments about the questionnaire and/or the project?

9



E-mail adress:

23. Are you interested in the "Hydrosommelier - Bottle" or the result of this study?

Please add my e-mail adress to the list of potential

recipients of a "Hydrosommelier-Bottle".

I am interested in receiving information about the outcomes

of this study.

For feedback and questions, you can contact me directly: simon.etter@geo.uzh.ch

For more information about my PhD work: www.crowdwater.ch

10



Sie wurden angefragt an dieser Umfrage teilzunehmen, da Sie Teil von mindestens einem der

Citizen Science Projekte auf der SPOTTERON-Plattform (www.spotteron.net) sind.

Ich werde unter allen Teilnehmern, die die Umfrage abschliessen 10 "Hydrosommelier-Flaschen"

verteilen. Um teilzunehmen, haben sie am Ende der Umfrage die Möglichkeit ihre E-Mail Adresse

anzugeben. 

 

Die Umfrage ist Teil meiner Doktorarbeit an der Universität Zürich. Ich arbeite am Projekt

CrowdWater und erforsche unter anderem die Motivation von Citizen Scientists. In der

nachfolgenden Umfrage stelle ich Ihnen einige Fragen in Form von Statements, die Sie auf einer

Skala von 1 (stimme überhaupt nicht zu) bis 5 (stimme vollständig zu) bewerten müssen, je

nachdem wie gut oder schlecht diese auf Sie zutreffen.

 

Im ersten Teil (Fragen 5-11) werden Sie nach den Gründen gefragt, weshalb Sie sich zur

Teilnahme bei einem oder mehreren Citizen Science Projekten auf der SPOTTERON-Plattform

entschieden haben. Falls Sie an mehreren Projekten teilnehmen, wählen Sie bitte dasjenige, zu

welchem Sie als erstes beigetragen haben. Bitte berücksichtigen Sie im ersten Teil nicht, ob Ihre

Erwartungen erfüllt wurden.

 

Im zweiten Teil (Fragen 12-17) werden Sie dann gefragt, wie gut diese Erwartungen erfüllt

wurden, die sie möglicherweise an das Projekt hatten. Sie können auch angeben wie fest sie

einem Punkt zustimmen, wenn Sie diese Erwartung anfangs nicht hatten. Berücksichtigen Sie

dafür, was Sie heute empfinden.

 

Sie würden mir sehr helfen, wenn Sie am Ende vier kurze Fragen zu Ihrer Person beantworten

würden.

 

Ihre Antworten werden anonym erfasst und abgespeichert. Die Umfrage dauert ca. 10 Minuten.

Vielen Herzlichen Dank für Ihre Hilfe!

Simon Etter

(simon.etter@geo.uzh.ch)

Danke, dass Sie sich die Zeit nehmen!

Citizen Science Motivation
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1. Um eine Verknüpfung dieses Fragebogens mit einer Folgestudie zu ermöglichen, bitten wir Sie einen

persönlichen Code zu erstellen. Dieser besteht aus uns unbekannten Parametern die keine

Rückschlüsse auf ihre Person zulassen: Die ersten zwei Buchstaben des Vornamens ihrer Mutter und

ihres Vaters und die zweistellige Nummer des Tages von ihrem Geburtsdatum.

Beispiel: 

Vorname Mutter: Anita

Vorname Vater: Walter

Geburtsdatum: 01.02.1980

Beispiel für den persönlichen Code: AnWa01

*

2. In welchem SPOTTERON Projekt nehmen Sie Teil (mehrere Antworten möglich)?*

CrowdWater

Naturkalender ZAMG

Naturkalender NÖ

Naturkalender Steiermark

Roadkill

Forschen im Almtal

Global 2000 DRECKSPOTZ

StreetArt

Waldrapp

Was geht ab?

Fågelbär

GEFABE

Fjällkalendern

anderes Projekt

3. Wann sind Sie dem Projekt beigetreten?

vor ein paar Tagen

vor Wochen

vor Monaten

in der zweiten Hälfte vom Jahr 2017

in der erste Hälfte vom Jahr 2017

im Jahr 2016

im Jahr 2015

vor 2015

4. Wie oft tragen sie zum Projekt bei?

mehr als einmal täglich

einmal täglich

alle paar Tage

wöchentlich

alle paar Wochen

monatlich

weniger als monatlich

Ich habe nur wenige Male beigetragen (1-3 Mal)

Ich habe noch nie beigetragen

2



Wieso haben Sie sich zur Teilnahme an einem Citizen Science Projekt entschieden?

Citizen Science Motivation

 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Ich will neue

Fähigkeiten oder

Wissen erlernen.

Durch Freiwilligenarbeit

fühle ich mich wichtig.

Andere Leute, die ich

kenne, machen mit.

Ich will eine schöne Zeit

mit der

Familie/Freunden

verbringen.

Andere Leute denken

positiv über mein

Beitragen zu diesem

Projekt.

5. Was war der Grund für Ihre Teilnahme am Projekt?*

3



 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Ich möchte zur Zukunft

der Menschheit

beitragen.

Ich will Zeit in der Natur

verbringen.

Ich möchte

wissenschaftliches

Wissen der

Allgemeinheit verfügbar

machen.

Ich strebe nach Ruhm.

Mich interessiert das

Thema dieses Projekts.

6. Was war der Grund für Ihre Teilnahme am Projekt?*

 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Ich interessiere mich für

Wissenschaft und

Technik.

Jemand hat von mir

verlangt an diesem

Projekt teilzunehmen.

Diese Aktivität ist mit

einem Hobby verwandt,

das ich bereits habe.

Ich möchte die Welt zu

einem besseren Ort

machen.

Es ist eine Gelegenheit

andern etwas

beizubringen.

7. Was war der Grund für Ihre Teilnahme am Projekt?*

4



 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Ich will Spass haben.

Ich will Teil dieser

Gemeinschaft von

Freiwilligen sein.

Mein Glaube und/oder

meine Werte haben

mich zur Teilnahme

motiviert.

Ich möchte

Anerkennung erhalten.

Ich will etwas

Bedeutsames machen.

8. Was war der Grund für Ihre Teilnahme am Projekt?*

 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Ich möchte zur

Wissenschaft beitragen.

Ich mache diese

Aktivität, weil ich gerne

helfe.

Ich möchte physisch

aktiv sein.

Ich möchte unter die

Leute kommen.

Ich möchte mein

Wissen und meine

Erfahrung teilen.

9. Was war der Grund für Ihre Teilnahme am Projekt?*

 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Ich möchte mehr Zeit

draussen verbringen.

Ich möchte zum

Umweltschutz

beitragen.

Ich strebe danach mich

selbst herauszufordern.

Ich will meinen Ruf

verbessern.

Ich erwarte etwas als

Gegenleistung.

10. Was war der Grund für Ihre Teilnahme am Projekt?*
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stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Ich möchte Leute mit

ähnlichen Interessen

treffen.

Ich möchte das

öffentliche Bewusstsein

für dieses Thema

erhöhen.

Ich möchte meinen

sozialen Status

verbessern.

Ich messe mich gerne

mit andern.

Ich möchte zum Wissen

über dieses Thema

beitragen.

11. Was war der Grund für Ihre Teilnahme am Projekt?*

6



Wie wurden ihre Erwartungen durch die Teilnahme am Projekt erfüllt?

Citizen Science Motivation

 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Durch die Teilnahme

am Projekt kann ich das

öffentliche Bewusstsein

über dieses Thema

verbessern.

Durch die Teilnahme an

diesem Projekt kann ich

zum Wissen über

dieses Thema

beitragen.

Durch die Teilnahme an

diesem Projekt kann ich

mein Wissen und meine

Erfahrungen teilen.

Durch die Teilnahme an

diesem Projekt bin ich

physisch aktiv.

Diese Aktivität hilft mir

zur Wissenschaft

beizutragen.

12. Wurden die folgenden Punkte durch die Teilnahme am Projekt erfüllt?*

7



 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Diese Aktivität hilft mir

meinen Ruf zu

verbessern.

Durch das Beitragen

zum Projekt kann ich

etwas für die Zukunft

der Menschheit tun.

Ich erhalte

Anerkennung für meine

Beiträge zum Projekt.

Durch die freiwillige

Arbeit in diesem Projekt

fühle ich mich wichtig.

Ich geniesse diese

Aktivität.

13. Wurden die folgenden Punkte durch die Teilnahme am Projekt erfüllt?*

 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Durch das Beitragen zu

diesem Projekt kann ich

die Welt zu einem

besseren Ort machen.

Durch das Helfen in

diesem Projekt handle

ich entsprechend

meines Glaubens

und/oder meiner Werte.

Diese Aktivität fordert

mich heraus.

Durch diese Aktivität

kann ich meinen

sozialen Status

verbessern.

Durch mein Beitragen

zum Projekt, kann ich

mein Interesse in

Wissenschaft und

Technik befriedigen.

14. Wurden die folgenden Punkte durch die Teilnahme am Projekt erfüllt?*

8



 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Diese Aktivität ist

bedeutsam.

Durch die Teilnahme

am Projekt treffe ich

Leute mit ähnlichen

Interessen.

Dieses Projekt gibt mir

die Möglichkeit unter

die Leute zu kommen.

Durch die Teilnahme an

diesem Projekt kann ich

mehr Zeit in der Natur

verbringen.

Die Teilnahme an

diesem Projekt gibt mir

die Möglichkeit andern

etwas beizubringen.

15. Wurden die folgenden Punkte durch die Teilnahme am Projekt erfüllt?*

 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Ich kann mich im

Projekt mit anderen

messen.

Durch diese Aktivität

habe ich neue

Fähigkeiten oder neues

Wissen erlangt.

Ich kann mein Streben

nach Ruhm durch

meine Teilnahme in

diesem Projekt

befriedigen.

Durch die Teilnahme an

diesem Projekt, kann

ich wissenschaftliches

Wissen der

Öffentlichkeit

zugänglich machen.

Durch diese Aktivität

kann ich andern helfen.

16. Wurden die folgenden Punkte durch die Teilnahme am Projekt erfüllt?*

9



 
stimme

überhaupt nicht

zu

stimme eher

nicht zu unentschieden stimme eher zu

stimme

vollständig zu

Weiss

nicht/keine

Angabe

Durch das Beitragen

zum Projekt kann ich

eine schöne Zeit mit der

Familie/mit Freunden

verbringen.

Durch die Teilnahme an

diesem Projekt, kann

ich mehr Zeit draussen

verbringen.

Durch die Teilnahme an

diesem Projekt kann ich

zum Umweltschutz

beitragen.

Diese Aktivität macht

mir Spass.

17. Wurden die folgenden Punkte durch die Teilnahme am Projekt erfüllt?*

10



Vielen Dank für Ihre Teilnahme!

Citizen Science Motivation

18. Was ist ihr Geschlecht?

Männlich

Weiblich

andere/keine Angabe

19. Wie alt sind Sie?

Unter 18

18-20

21-29

30-39

40-49

50-59

Über 60

Sonstiges (bitte angeben)

20. Was ist der höchste Bildungsgrad, den Sie bisher erlangt haben?

Weniger als Grundschule/Primarschule/Volksschule

Primarschule/Grundschule

Sekundarschulabschluss

Matura bzw. Abitur

Bachelor

Master/Diplom

Promotion/PhD/Doktorat

21. In welchem Land leben Sie?

22. Haben Sie Kommentare bezüglich dieses Fragebogens oder des Projekts?

11



E-Mail Adresse:

23. Sind sie interessiert an einer "Hydrosommelier"-Flasche oder an den Resultaten dieser Studie?

Bitte fügen Sie meine E-Mail Adresse zur Liste der

potentiellen Empfänger einer "Hydrosommelier"-Flasche

hinzu.

Ich möchte über die Resultate dieser Studie informiert

werden.

Für Feedback und Fragen können Sie sich direkt an mich wenden: simon.etter@geo.uzh.ch

Für weitere Infos bezüglich meiner Doktorarbeit: www.crowdwater.ch

12
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SPECIAL ISSUE: HYDROLOGICAL DATA: OPPORTUNITIES AND BARRIERS

Accuracy of crowdsourced streamflow and stream level class estimates

Barbara Strobl a, Simon Etter a, Ilja van Meerveld a and Jan Seibert a,b

aDepartment of Geography, University of Zurich, Zurich, Switzerland; bDepartment of Aquatic Sciences and Assessment, Swedish University
of Agricultural Sciences, Uppsala, Sweden

ABSTRACT

Streamflow data are important for river management and the calibration of hydrological models.
However, such data are only available for gauged catchments. Citizen science offers an alternative
data source, and can be used to estimate streamflow at ungauged sites. We evaluated the
accuracy of crowdsourced streamflow estimates for 10 streams in Switzerland by asking citizens
to estimate streamflow either directly, or based on the estimated width, depth and velocity of the
stream. Additionally, we asked them to estimate the stream level class by comparing the current
stream level with a picture that included a virtual staff gauge. To compare the different estimates,
the stream level class estimates were converted into streamflow. The results indicate that stream
level classes were estimated more accurately than streamflow, and more accurately represented
high and low flow conditions. Based on this result, we suggest that citizen science projects focus
on stream level class estimates instead of streamflow estimates.
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1 Introduction

Streamflow data are important for many aspects of river

management, including water allocation and the reduction

of flood hazards. Streamflow data are also important for

the calibration of hydrologicalmodels to predict floods and

droughts or the impacts of climate change. Most hydro-

logical models need at least a certain amount of data to be

properly “tuned” to a particular catchment (Beven 2012).

Three important aspects define the usability of

streamflow data: accuracy, spatial coverage and tem-

poral resolution. Conventional streamflow gauging sta-

tions can provide detailed information with high

accuracy and temporal resolution, but the spatial cov-

erage is limited. While data from gauging stations are

considered accurate, the data can still contain substan-

tial errors due to sensor errors, interpolation and extra-

polation of the rating curve and cross-section

instability (McMillan et al. 2012). Typical relative

errors for streamflow are ±50–100% for low flows and

±10–20% for medium or high flows (still within the

streambank) (McMillan et al. 2012). Similar values

were derived by Westerberg et al. (2011), who men-

tioned rating curve related errors of −60% to +90% for

low flows and ±20% for medium to high flows.

The temporal resolution of gauging stations is often

high. However, due to financial and logistic con-

straints, only a few sites have a gauging station, hence

the spatial coverage is limited. Furthermore, these sta-

tions may not be installed at representative locations or

might miss certain types of catchments, especially small

headwater streams (Kirchner 2006, Bishop et al. 2008).

Also relatively few measurement stations are located in

developing countries. Thus, for many catchments there

are no streamflow data available for water management

decisions or model calibration.

Although new wireless sensor network technology

provides the possibility to expand the measurement

networks, the reality is that, due to budget cuts, obser-

vation networks often shrink rather than expand

(Kundzewicz 1997, Ruhi et al. 2018). For example,

Ruhi et al. (2018) showed that between 1947 and

2016 the number of streamgauges in river basins in

the USA decreased by 21%.

Several studies have focused on the minimum num-

ber of measurements required to properly calibrate

a hydrological model (Perrin et al. 2007, Juston et al.

2009, Seibert and Beven 2009, Seibert and McDonnell

2015, Vis et al. 2015) and have shown that even a few

streamflow measurements can vastly improve the per-

formance of a model (Pool et al. 2017). While employ-

ees of agencies responsible for national or regional

gauging station networks could perhaps take a limited

number of additional measurements at a few ungauged

streams, it is impossible for them to take measurements

CONTACT Barbara Strobl barbara.strobl@geo.uzh.ch
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at all ungauged streams. An interesting alternative to

obtaining streamflow data for more streams is to ask

citizen scientists or citizen observers to collect stream-

flow data.

Citizen science has been used in numerous environ-

mental studies to obtain data with a much higher

spatial resolution than is otherwise possible

(Dickinson et al. 2010, Tulloch et al. 2013, Aceves-

Bueno et al. 2017, Hadj-Hammou et al. 2017) and has

been used to obtain hydrological data as well (Buytaert

et al. 2014). For example, citizen science data have been

used to fill in spatial and temporal gaps in water quality

and stream level data series (Lowry and Fienen 2013,

Hadj-Hammou et al. 2017) and to obtain groundwater

level data across large areas (Little et al. 2016). Citizen

science could therefore be a complementary approach

to collect the stream level and streamflow data that are

needed for hydrological model calibration, particularly

for the many streams that are currently ungauged. In

order to involve as many citizens in data collection as

possible and to obtain data for remote areas,

approaches are needed to collect these data with very

little time and effort and without special equipment.

Despite their potential to complement existing data

sources, citizen science data are not without challenges;

in particular, the accuracy of crowdsourced data is often

discussed (Engel and Voshell 2002, Haklay 2010, See

et al. 2013, Aceves-Bueno et al. 2017). Several studies

have examined the accuracy of crowdsourced hydrolo-

gical data (Turner and Richter 2011, Rinderer et al.

2012, 2015, Lowry and Fienen 2013, Peckenham and

Peckenham 2014, Breuer et al. 2015, Le Coz et al.

2016, Little et al. 2016, Weeser et al. 2018). Lowry and

Fienen (2013) found promising results in terms of the

accuracy of stream level data from participants who read

the level from a staff gauge in a stream close to a hiking

path. The root mean square error (RMSE) of the crowd-

sourced stream level data was approximately 5 mm,

which was almost as good as that of pressure transducer

data. They concluded that the level of accuracy “is

encouraging since no training was given to the citizen

scientists” (Lowry and Fienen 2013, p. 155). In a similar

study by Weeser et al. (2018) in Kenya, data collected by

citizens were comparable to those of conventional data

loggers, although they had a low temporal resolution.

Little et al. (2016) provided volunteers with equipment

to measure the water level in their own wells. They

found that the absolute difference of the well readings

ranged from 2 to 11 mm and concluded that “commu-

nity-based groundwater monitoring provides an effective

and affordable tool for sustainable water resources man-

agement” (Little et al. 2016, p. 317). Peckenham and

Peckenham (2014) analysed groundwater quality data

collected by students and concluded that the accuracy

varied, but “it is possible to make precise and accurate

measurements consistent with the methods specifications”

(Peckenham and Peckenham 2014, p. 1477).

However, these previous hydrological citizen science

studies are not easily scalable to many sites because

they require the installation of staff gauges or other

instrumentation. Therefore, it is useful to also develop

and test citizen science approaches to collect stream-

flow or stream level data that do not require equipment

or the installation of staff gauges, but these new citizen

science tasks should be designed “with the skill of the

citizens in mind” (Aceves-Bueno et al. 2017, p. 287). It

is likely that many citizens who frequently pass by

streams notice high and low flows throughout the

seasons. These frequently visited locations could be

turned into locations for streamflow or stream level

class observations if citizens can accurately estimate

streamflow or stream level classes.

Testing the accuracy of citizen science data before

starting a citizen science project is crucial for every

citizen science project. This ensures that the data

collected are sufficiently accurate for the purpose of

the project and avoids unnecessarily burdening citi-

zens with tasks that result in data that are in hindsight

of limited value due to data accuracy issues. The

objective of this study was, therefore, to determine

what types of parameters related to streamflow citi-

zens can estimate accurately. We asked 517 citizens to

estimate both the streamflow and stream level class

and assessed whether one can be estimated more

accurately than the other by calculating the corre-

sponding streamflow for each stream level class esti-

mate. Accuracy is defined here as the difference

between the estimated value and the measured value,

as well as the frequency of extreme outliers. The

specific research questions for this study were:

(1) How well can stream level class, streamflow and

the different factors of streamflow (width, depth,

flow velocity) be estimated by citizens?

(2) To what extent do stream size and flow conditions

affect the accuracy of the crowdsourced data?

2 Methodology

2.1 Basic approach and study sites

We conducted 16 field surveys where we asked people

to estimate the streamflow, as well as the average width,

depth and velocity of the stream, and the stream level

class. For the surveys, we selected 10 locations (Table 1;

see also Supplementary material, Fig. S1) where we
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expected enough people to pass by and have time for

the survey. We divided the streams into four different

size classes (XS, S, M, L) based on the mean annual

streamflow, and, when long-term time series were not

available, based on the available measurements:

● XS (Chriesbach, Hornbach and Irchel): ≤1 m3/s,
● S (Glatt, Magliasina, Schanzengraben, Sihl and

Töss): >1–50 m3/s,
● M (Limmat): >50–200 m3/s, and
● L (Aare): >200 m3/s.

To analyse whether the flow conditions affect the

accuracy of the estimates, surveys were conducted

under high and low flow conditions for three streams:

Aare (L), Limmat (M) and Sihl (S).

The aim of the surveys was to get a sufficient num-

ber of streamflow estimates for a specific stream on

a specific day (our aim was 30 participants per survey

to assure statistical significance; Field et al. 2013). We

therefore used a logistically simple sampling strategy,

whereby we personally approached passers-by (similar

to Breuer et al. 2015) and asked if they would complete

the 5-minute survey (i.e., we did not use a targeted

approach to capture responses of a representative

group of citizens). No data were collected on the per-

centage of passers-by who participated, but we estimate

that about every third person we approached agreed to

participate in our survey. In addition, we asked high-

school (Magliasina) and university students

(Chriesbach, Glatt and Limmat) to fill out the survey

during excursions. All surveys took place between

October 2016 and September 2017. In total, we

received 517 complete surveys: 372 passers-by, 61 par-

ticipants from a university geography bachelor student

excursion (Glatt and Chriesbach), 40 from a high-

school student excursion (Magliasina) and 44 from

a summer school for PhD students from fields ranging

from physics to social sciences (Limmat) (see Table 1).

During the group excursions we emphasized the need

for individual estimates and limited discussions

between the students for the duration of the survey.

The age distribution of all 517 participants corre-

sponds to that of the inhabitants of Zurich (where

most field surveys were conducted), although there

were fewer participants over the age of 60 (13% of

the participants vs 19% of the population in Zurich;

see Supplementary material, Fig. S2(c) and (d))

(Statistik Stadt Zürich 2017). Also a large number

of participants were university educated, roughly

48% compared to 16% of the population in Zurich

(Fig. S2(b)) (Statistik Stadt Zürich 2017). There was

an almost equal split between male and female par-

ticipants (Fig. S2(a)).

Table 1. Information on the streams where the field surveys took place. Size classes XS: ≤1 m3/s; S: >1–50 m3/s, M: >50–200 m3/s
and L: >200 m3/s. A map with the survey locations is given in the Supplementary material (Fig. S1). Survey dates given as dd.mm.
yyyy.

Stream Size Date of
survey

No. of
participants,

n

Streamflow
(m3/s)

Source for measured
streamflow*

Approx. distance to
virtual staff gauge (m)

Comments

Chriesbach
(Zurich)

XS 29.09.2017 30 0.38 Salt dilution 5 BSc students: no direct
streamflow estimates

Hornbach
(Zurich)

XS 19.02.2017 33 0.134 Salt dilution 8

Irchel (Zurich) XS 11.03.2017 25 0.01 Salt dilution 1
Glatt (Zurich) S 29.09.2017 31 2.8 WWEA, station: 533 11 BSc students: no direct

streamflow estimates
Magliasina
(Magliaso)

S 28.04.2017 40 16 FOEN, station: 2461 14 High-school students: no stream
level class estimates

Schanzen-graben
(Zurich)

S 01.04.2017 31 2.6 Salt dilution 16

Sihl (Zurich) S 1 18.02.2017 33 7 FOEN, station: 2176 32 Low flow
2 26.07.2017 31 28 High flow

Töss (Winterthur) S 12.03.2017 35 9 WWEA, stations: 518,
520 and 581

29 Interpolation between three
nearby stations for reference
value

Limmat (Zurich) M 1 29.10.2016 38 59 FOEN, station: 2099 7 No stream level class estimates
2 08.04.2017 27 83
3 02.06.2017 31 107
4 09.07.2017 44 75 PhD students Low flow
5 13.11.2017 31 222 High flow

Aare (Brugg) L 1 07.01.2017 27 108 FOEN, station: 2016 53 Low flow
2 10.05.2017 30 389 High flow

* The measured streamflow data were obtained from the Federal Office of the Environment (FOEN; http://hydrodaten.admin.ch/), the Office of Waste, Water,
Energy and Air of Canton Zurich (WWEA; www.hydrometrie.zh.ch/) or by salt dilution gauging (Salt dilution).
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2.2 Streamflow estimation

Participants were first asked to estimate the streamflow

directly. For this direct estimate, we asked them to

estimate the flow in m3/s, or in L/s for the very small

streams (XS). This directly estimated streamflow value

is referred to as Qdirect. This task, understandably,

proved to be difficult for some participants because

streamflow quantification was difficult and they were

unfamiliar with the units. A few participants refused to

answer this question, even with a bit of prompting.

Some decided to guess, even though they thought it

was unlikely to be a realistic value and others deduced

on their own that they could estimate the width, mean

depth and flow velocity to get an approximate value.

After this initial guess of the streamflow, we

explained to the participants that it is possible to esti-

mate the individual factors (width, mean depth and

flow velocity) and to derive the streamflow by multi-

plying these values (Equation (1)). The participants

were then asked to estimate the average width, mean

depth and velocity of the stream. We also asked them

to classify the streambed material. Equation (1) was

used to calculate the streamflow using these factors:

Qfactor ¼ w � d � v � k (1)

where Qfactor is the estimated streamflow (m3/s), w is

the estimated width (m), d is the estimated mean depth

(m), v is the estimated surface flow velocity (m/s) and

k is the correction factor to obtain the average velocity

from the surface velocity. While some participants still

found the quantification difficult, they were more

familiar with these units, compared to m3/s or L/s.

Often a value of 0.85 is used for the correction factor

k (Welber et al. 2016); but it can also be estimated

using the logarithmic velocity distribution (Prandtl-

von Kármán equation) for turbulent flow based on

the surface flow velocity, grain size and stream depth

(Dingman 2015). This calculated factor for the mean

flow velocity varied for the different estimates of the

participants (even for the same stream). For two-thirds

of all estimates, the calculated velocity factor was not

within the typical range of 0.71–0.95 (Welber et al.

2016) due to an unrealistic ratio between the estimated

average water depth and estimated streambed rough-

ness. Values lower than 0.71 were adjusted to 0.71

(52% of estimates) and values over 0.95 were adjusted

to 0.95 (1% of estimates). When no estimate for

streambed roughness was available (this happened

only occasionally, except for the entire field survey at

Magliasina), the typical velocity correction factor of

0.85 was used (including the participants at

Magliasina this corresponds to 13% of all estimates).

During the university excursion at the Glatt and

Chriesbach, we did not ask for direct stream estimates

because most geography bachelor students would likely

have applied the indirect estimation method (Qfactor)

because of lectures on streamflow during their

education.

To assess the accuracy of crowdsourced streamflow

data, the streamflow estimates were compared to mea-

sured streamflow data. Streamflow was measured

before or after the surveys (Chriesbach, Hornbach,

Irchel and Schanzengraben) or obtained from official

gauging station data when these were located near the

survey location (Aare, Limmat, Magliasina and Sihl,

stations of the Swiss Federal Office for the

Environment (FOEN); Glatt and Töss, stations of the

Office of Waste, Water, Energy and Air of Canton

Zurich (WWEA)) (see Table 1). The methods for the

reference measurements for width, mean depth and

flow velocity depended on the size and accessibility of

the river. These measurements included direct mea-

surements for width and depth with measurement

tapes, data on the stream cross-section from FOEN

for width and depth (when available), an estimate of

the width of the river from Google Maps for wide

rivers (Aare and Limmat) and the stick method for

flow velocity. Even though these measurements are

likely also affected by errors, they were assumed to be

the “true” data to which the citizen science estimates

could be compared. We assumed that the uncertainty

for the measured values is 10% for streamflow (Pelletier

1988), 0.5% for width and 1–3% for depth (Herschy

1971) and roughly 10% for flow velocity (based on our

own measurements).

2.3 Stream level class estimation

We also asked participants to estimate the stream level

class. Stream level refers to the height of the water in

a stream. A stream level class means that this height is

expressed on a discrete scale of classes, rather than on

a continuous scale. Stream level class data only pro-

vide information about whether the stream level is

higher or lower than previously, but earlier studies

have shown that stream level class data are useful for

hydrological model calibration (van Meerveld et al.

2017). Thus, the participants were not asked to esti-

mate the stream level in centimetres but to estimate

the stream level class. The participants compared the

current stream level with a photo of the same stream

(taken at an earlier time) with a digitally inserted staff

gauge with 10 level classes (Fig. 1, also Supplementary

material, Section S2). The staff gauge was scaled so
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that the highest class represented the highest in bank

flood level and the lowest class represented the likely

lowest stream level. The height of the classes is arbi-

trary and varied for each location, depending on the

size of the river and how the virtual staff gauge was

placed in the picture. A small staff gauge would have

a higher resolution, but the stream level for very high

and low flows may be above or below the staff gauge,

whereas a large staff gauge would imply a lower reso-

lution of the observations as the stream level would

fluctuate across fewer classes. In this study we tried to

place the staff gauges so that the staff gauge covered

both high and low in bank flows. The number of

classes was a compromise between resolution and

usability. A larger number of classes provides higher

resolution data but also makes it more difficult (or

even impossible) for participants to determine the

stream level class. Based on a previous model, study

model calibration results do not improve much when

more than five stream level classes are used (van

Meerveld et al. 2017). The number of 10 classes was

chosen to ensure observable stream level fluctuations

even in cases where the virtual staff gauge is placed so

that some classes are never or very rarely reached. The

correct stream level class value was determined by us

by carefully choosing appropriate references and indi-

vidually (but unanimously) deciding on the correct

stream level class.

For the Limmat, results are given for all five field

surveys for streamflow, but stream level class esti-

mates are given for only four surveys because

a slightly different virtual staff gauge was used for

the first survey.

2.4 Data analyses

To be able to compare the accuracy of the streamflow

estimates for different streams, relative estimates

(in percent) were calculated by dividing the streamflow

estimate by the measured value (i.e., considered true

value). A value of 100% corresponds to a perfect esti-

mate, smaller values represent an underestimation and

larger values represent an overestimation. The quality

of the data was then assessed by statistical measures,

such as the interquartile range and median. In addi-

tion, we determined the number of outliers as they are

likely disinformative for model calibration (Beven and

Westerberg 2011) and can be worse than having no

data. Even though filters can be used to remove outliers

in citizen science data, in practice, it may be difficult to

filter out all outliers. All relative estimates below 50%

and above 150% were considered to be outliers.

For comparison between streamflow and stream

level class estimates, stream level classes and the

errors in this classification were converted to an

equivalent streamflow (m3/s), named Qlevel in the

remainder of the manuscript. For the stream locations

with a nearby FOEN gauging station (Sihl, Limmat,

Aare), the classes of the virtual staff gauge were con-

verted to a metric value by determining the stream

depth that corresponded to each stream level class

(i.e., mid-point and upper and lower stream level for

each class) and using the FOEN rating curve to con-

vert these stream levels to a streamflow estimate. For

the sites where no rating curve was available

(Hornbach, Irchel, Schanzengraben and Töss), addi-

tional measurements of the stream profile and water

Figure 1. Example of a virtual staff gauge in the pictures used for the surveys at Limmat (left) and Schanzengraben (right).
Photographs taken on 29.06.2016 when the streamflow was 165 m3/s (Limmat) and on 05.01.2017 (unknown streamflow;
Schanzengraben). For the dates and the flow conditions during the surveys see Table 1.
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surface slope (estimated based on the slope of the

streambed) were used to estimate the streamflow for

each stream level class using the Manning-Strickler

formula (Manning 1891). This curve was fitted to

the streamflow measured on the day of the surveys

by adjusting the roughness coefficient within prede-

fined boundaries based on the streambed material.

The roughness coefficient used for the Manning-

Strickler formula introduces some subjectivity and

thereby likely increases the uncertainty of the conver-

sion of the stream level class to streamflow compared

to FOEN rating curve measurements. Since the stream

level classes represent a range of values rather than

just one value, the streamflow was not only calculated

for the centre value of the level class, but also the class

boundaries to obtain the possible range of streamflow

values. The estimates from Chriesbach, Glatt and

Magliasina were excluded from this analysis (101 of

the 517 estimates) because the relevant data were not

collected at the time of the surveys.

The differences in the median relative estimates for

the different stream size classes were tested for signifi-

cance using the Kruskal-Wallis test with the post hoc

procedure based on Dunn (1964). Differences in the

median relative streamflow estimates between high and

low flow conditions were tested for significance using

the Mann-Whitney test. A p-value of 0.05 was used for

all statistical tests, unless otherwise indicated.

3 Results

3.1 Streamflow estimates

Although there was a large spread in the streamflow

estimates, the median values were surprisingly close to

the measured streamflow (Figs 2 and 3). Across all sur-

veys the median of the direct streamflow estimates

(Qdirect) was closer to the measured value than the esti-

mate based on the factors (Qfactor) (median relative esti-

mates of 93 and 80%, respectively, when all surveys were

analysed together). However, the interquartile range was

smaller for the streamflow calculated from the estimated

factors (the first and third quartiles were, respectively, 26

and 309% for Qdirect and 39 and 172% for Qfactor; Fig. 3),

meaning that the streamflow estimates were closer to the

measured value for the estimates based on the factors.

Figure 2. Scatter plots showing the spread of Qdirect (left) and Qfactor (right) for each field survey. The data points are colour-coded
according to the stream size: from left to right, XS to L are red, orange, light blue and dark blue, respectively. ▴: median estimated
streamflow per survey; solid and dashed (red) line: the 1:1 line with the 10% uncertainty band. The number at the top of the graph
indicates the number of extreme outliers (1–6, not shown).
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The differences between the median estimates of

Qdirect and Qfactor were statistically significant (p <

0.05) for three out of the 14 surveys with both Qdirect

and Qfactor estimates, but not for all surveys combined

(Fig. 3). Of these three surveys, two had a median

estimate for Qdirect that was closer to the measured

value. The interquartile range was smaller for Qfactor

for two of the three surveys.

3.2 Streamflow factor estimates

There were also numerous outliers for the relative esti-

mates of width, mean depth and flow velocity (Fig. 4).

The median relative estimates for the width, depth and

flow velocity were all significantly different from each

other (Fig. 4). The width was generally underestimated

(median relative estimate of 75%, and third quartile of

95% when all stream surveys were analysed together), the

mean depth was generally overestimated (median rela-

tive estimate of 126% when all stream surveys were

analysed together), while the median flow velocity was

surprisingly accurate (median relative estimate of 100%

when all stream surveys were analysed together).

However, the interquartile range suggests that width

can be estimated most accurately (interquartile range of

relative estimates from 57 to 95% when looking at all

surveys together), and mean depth (interquartile range of

relative estimates from 86 to 180%) and flow velocity

(interquartile range of relative estimates from 57 to

143%) can be estimated less accurately. The percentage

of relative estimates below 50% or above 150% shows the
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same pattern, with width having fewer outliers (26%)

than flow velocity (39%) and mean depth (41%) (Fig. 4).

3.3 Stream level class estimates

About half of the participants (48%) selected the correct

stream level class and most of the remaining participants

(40%) were off by only one class. There were only a few

outliers (13% of participants had an error of two classes

or more; the total does not add to 100% due to round-

ing) (Fig. 5(a)). The largest overestimation was six

classes and the largest underestimation was three classes.

These errors likely occurred due to a misunderstanding

of the method.

3.4 Comparison of stream level class and

streamflow estimates

To allow comparison of the streamflow and stream

level class estimates, the latter were translated into

corresponding streamflow values. These calculated

streamflow values had a narrower interquartile range

than the streamflow estimates based on the factors

(67–157% compared to 30–163% for Qlevel and Qfactor,

Figure 4. Box plots of the relative estimates of width, mean depth and flow velocity for each stream size class and all streams
together. Median relative estimates of width, mean depth and flow velocity of all surveys combined were significantly different
(indicated by different upper case letters), whereas between stream size classes they were mostly similar (same lower case letters).
The solid red line (100%) indicates that the estimate is the same as the measured value; dashed red lines indicate the 5% (width
and mean depth) and 10% (flow velocity) uncertainty bands. The numbers above and below the box plots indicate the number of
outliers not shown. Note the log scale.
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respectively, when all estimates are compared together)

and also had fewer outliers (see Fig. 6). Only 39% of

the streamflow estimates derived from the stream level

class estimates (compared to 66% for Qfactor) were

significantly overestimated (relative estimate > 150%)

or underestimated (relative estimate < 50%).

Furthermore, only 3% of the estimates were more

than a factor of 10 “off target” (compared to 11% for

Qfactor). Even when taking the uncertainty in stream-

flow for the upper and lower stream level class bound-

aries into account (Fig. 7), the stream level class

estimates resulted in streamflow values that were

more accurate and had fewer outliers than those deter-

mined from the estimated width, mean depth and flow

velocity.

Only for the small-sized streams was the interquartile

range for streamflow calculated from stream level classes

larger than the streamflow determined from the esti-

mated width, depth and flow velocity (Fig. 6). When

taking a closer look at the surveys for the different

streams, it is clear that mainly the first survey at the

Sihl and partly the survey at the Töss caused the large

variation in the estimated streamflow from the stream

level class data (see Supplementary material, Fig. S3).

3.5 Effect of stream size on streamflow and stream

level class estimates

3.5.1 Streamflow

When estimating streamflow directly (Qdirect), partici-

pants made larger relative errors for the small streams

(S; first to third quartile of relative estimates: 55–542%),

than for the XS (19–112%), M (23–233%) and

L (14–134%) streams. However, general statements on

the effect of stream size on the accuracy of streamflow

estimates are difficult to make because there were signifi-

cant differences within each size class as well (Fig. 3).

The interquartile range of the Qfactor estimates was

significantly smaller for the small (first to third quartile

of relative estimates: 49–175%) and medium (27–117%)

streams compared to Qdirect (Fig. 6). The Qfactor estimates

were less accurate for XS (interquartile range: 47–293%)

and L (17–226%) streams than for S and M streams. For

the XS streams this difference is largely based on the

estimates from Irchel, where direct streamflow estimates

were more accurate than those derived from the esti-

mated factors. For the Hornbach (another XS stream),

there was no significant difference between the median

relative estimates ofQdirect andQfactor (for the Chriesbach
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there was no directly estimated streamflow data). The

reasons for this different pattern in the Irchel stream are

unknown, but could be due to the lower streamflow in the

Irchel stream (0.01 m3/s) compared to the Hornbach

(0.13 m3/s).

3.5.2 Stream level classes

Stream level class estimates were also analysed accord-

ing to the distance between the participants and the

virtual staff gauge, because the distance was not always

related to the stream size. For the Limmat the virtual

staff gauge was positioned on a bridge pillar rather

than the opposite streambank (Fig. 1).

The stream level class estimates were generally more

accurate if the staff gauge was closer to the observer

(Fig. 5). For a distance of 0–10 m, 53% of participants

selected the correct stream level class, while 35%

selected a stream level that was only one class away.

For a distance of 10–20 m, no one selected a stream

level class more than one class from the true value, and

73% of the participants selected the correct class, while

for a distance of 20–30 m, 32% of participants were

correct and 45% were one class away. For a distance of

50–60 m, 30% of participants chose the correct stream

level class and 60% a neighbouring stream level class

(Fig. 5(b)). This is not surprising, as, in cases where the
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virtual staff gauge is far away, it is more difficult to

discern the stream level class and the reference, such as

stones or other helpful objects, on the streambank.

3.6 High vs low flow estimates

One issue with hydrological data based on citizen science

is the accuracy of the estimated streamflow, but another

issue is whether changes in these estimates reflect differ-

ences in streamflow over time. Comparison of the esti-

mated streamflow values for the Limmat, Sihl and Aare

shows that the median estimated streamflow (Qfactor) was

higher when the flow was higher, but the differences

were not sufficient to fully reflect the increased stream-

flow (Fig. 8) and were not significant for the Aare (Fig. 8

(b) and (c)). For the Limmat there were significant

differences between the surveys, but these differences

did not correspond fully to the measured values, as

participants underestimated both high and low flow

and the differences of estimates between the surveys

were seemingly random regardless of high or low flow

(Fig. 8(a)).

The variations in streamflow were better represented

by the streamflow derived from the stream level class

estimates (Qlevel; Fig. 8(d)–(f)), for which the median

estimated streamflow was indeed significantly higher

when the flow was higher for seven out of eight surveys.

The exception is the median streamflow for the survey

on June 2017 at the Limmat, for which the median

estimated streamflow (Qlevel) was not significantly differ-

ent from the median estimated streamflow during the

July and April 2017 surveys, although the first and third

quartiles were higher than for the July and April 2017

surveys (see Table 2 and Fig. 8(d)). The variation in

streamflow is therefore better represented by streamflow

derived from stream level class estimates than by stream-

flow derived by the factors.

4 Discussion

4.1 Can citizens estimate streamflow accurately?

The results of the streamflow estimation surveys

demonstrated the “wisdom of the crowd” effect

(Surowiecki 2004, Nielsen 2011) as the median esti-

mates were close to the measured values. However, in

practice there will be, at a certain location, only one or

at most a few estimates for a certain point in time, so
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for hydrological citizen science projects focusing on

streamflow the accuracy of the individual estimates is

more important than the accuracy of the median

estimate.

As expected, estimation of the individual streamflow

factors (width, mean depth and flow velocity) led to

more accurate streamflow estimates than the direct

estimation of streamflow. The reduction in the number

of extreme outliers for estimates based on the stream-

flow factors is likely due to the more intuitive units in

which the estimates have to be given. For non-scientists

the unit cubic metres per second (m3/s) is difficult to

visualize and not easy to relate to everyday experiences.

Width and depth in metres (m) and flow velocity in

metres per second (m/s) are easier to visualize and

estimate for most people. The unit litres per second

(L/s) is likely more tangible (as one knows the volume

of a litre from drink containers and can estimate how

long it takes to fill a bottle or a bucket). This might

explain why, for the very small Irchel stream, direct

streamflow estimates were more accurate than the

streamflow derived from the estimated width, depth

and velocity, which included the multiplication of

three different types of error. For the Hornbach,

another very small stream, there was no significant

difference between Qdirect and Qfactor, possibly because

it had more streamflow than can fit in a bucket in

a second.

The direct streamflow estimates for the Aare (L)

were also surprisingly accurate. After the survey, we

learned that there used to be a digital display of the

current streamflow at the FOEN gauging station, close

to the location of our surveys. That display was

dismantled before our survey, but it is possible that

some participants walked by this site regularly and had

a “ballpark” value for the streamflow of the Aare in the

back of their minds. Nevertheless, based on our dataset,

estimating the streamflow factors rather than the

streamflow directly is especially suitable for small and

medium streams. It is, however, also important to note

that, within the same stream size class, the accuracy of

estimates varied for each stream, and even the accuracy

of the estimates for the same stream location can vary

for different flow conditions (Figs 3 and 8). There was

no clear pattern in the relative streamflow estimates

(Qfactor or Qlevel) to suggest that either low or high

flows are more accurately estimated (see Fig. 8 and

Table 2; also supplementary Fig. S4).

Many participants estimated the flow velocity fairly

accurately if they threw a twig or leaf into the stream,

as we suggested, or even just watched something like

a bubble in the stream pass by. The differences between

these approaches could not be quantified, as it was not

documented who chose which approach.

Even though width and mean depth are measured in

the same units, width could be estimated more accu-

rately than mean depth. This is consistent with a study

by Wahl (1977), in which trained participants mea-

sured both the width and depth of a stream, but mea-

sured width with more consistency than depth. In our

case this is likely due to the refraction of light in water,

as well as the inability to see the bottom of the stream

because the water is murky or deep, which was the case

for the Sihl at high flow (S), Limmat at high flow (M)

and both surveys for the Aare (L). Also in some cases –

Hornbach (XS), Irchel (XS), Glatt (S), Sihl (S), Töss (S)

Table 2. Descriptive statistics of the streamflow derived from the estimated width, mean depth and flow velocity (Qfactor; m
3/s) (and

relative estimate, %) and the stream level classes for the Aare, Limmat and Sihl for different flow conditions.

Streamflow, Qfactor (m
3/s)

(relative Qfactor, %)
Stream level class

Stream Date Measured Percentile Measured Percentile

25% 50% 75% 25% 50% 75%

Sihl 18.02.2018 7 5 9 26 0 0 1 1
(100) (66) (127) (365)

26.07.2018 28 11 21 46 1 2 2 3
(100) (39) (76) (163)

Limmat 29.10.2016 59 31 48 86
(100) (53) (81) (146)

08.04.2017 83 22 60 111 –2 –2 –1 –1
(100) (27) (73) (134)

02.06.2017 107 26 54 78 –1 –1 –1 0
(100) (24) (51) 72)

09.07.2017 75 9 32 49 –2 –2 –1 –1
(100) (12) (42) (66)

13.11.2017 222 53 120 296 1 1 1 2
(100) (24) (54) (133)

Aare 07.01.2017 108
(100)

47
(44)

128
(118)

404
(374)

0 –1 0 1

10.05.2017 389 51 182 684 4 3 3 4
(100) (13) (47) (176)

HYDROLOGICAL SCIENCES JOURNAL 13



and Limmat (M) – it was feasible to pace the width

along a bridge, in order to gain a better estimate, which

made the width estimates more accurate; of course this

could not be done for depth. According to Gibson and

Bergman (1954), distance estimation can be trained

and constant over- and underestimation of distances

can be improved.

Training is implemented in many citizen science

projects to ensure high-quality data (Bonney et al.

2009, Haklay et al. 2010, See et al. 2013, Stepenuck

and Genskow 2017). Participants in our survey received

no training, had no prior experience and (presumably)

only estimated streamflow and its factors once. The

effect of a one-time training was tested for some citizen

science projects (Crall et al. 2013, Rinderer et al. 2015)

and has been shown to improve the data-collection

ability of the participants. Training options for our

study could be in the form of online tutorial videos, or

a list of well-known streams and their range in stream-

flow to indicate approximate numbers for streamflow, as

well as width, depth and flow velocity. If participants

can improve the accuracy of their estimates and the

number of outliers can be reduced sufficiently, stream-

flow estimates might be usable for hydrological model

calibration (Etter et al. 2018). Further research will test

the applicability of quality control methods, such as

outlier detection and the effect of training on the accu-

racy of streamflow estimates.

The inaccuracies of the streamflow estimates should

be seen in light of the rating curve errors that are

included in conventional measurements, which have

a range of ±20% for medium to high flows and sub-

stantially higher errors ranging from −60 to +90% for

low flows (McMillan et al. 2012). Only 29 and 63% of

the Qdirect estimates were within ±20 and ±90% of the

measured streamflow value, respectively. For the Qfactor

estimates, the respective values were 15 and 73%.

Ensuring, and possibly improving, the accuracy of

the crowdsourced data is an important aspect in any

citizen science project. The inaccurate estimates of

streamflow might be excluded from analyses by quality

control methods. A comprehensive overview of data

validation methods in the field of citizen science, such

as expert review, photo submission or automatic filter-

ing, is provided by Wiggins et al. (2011), and many of

these methods are likely also applicable to crowd-

sourced hydrological estimates.

Video imagery is an alternative way to estimate

streamflow. These methods have great potential, espe-

cially for more accurately determining flow velocities

(Bradley et al. 2002, Tsubaki et al. 2011, Lüthi et al.

2014, Le Coz et al. 2016, Tauro et al. 2018) and have

benefits, such as being more objective and possibly

allowing a higher accuracy than visual streamflow esti-

mates. By using advanced and sophisticated technol-

ogy, they also create a curiosity factor that can motivate

people. However, there are also some limitations of

these approaches in citizen science projects. Issues

include light requirements, camera restrictions and

the need for initial in situ channel measurements as

a reference (Lüthi et al. 2014). To encourage more

participants to join a citizen science project, we were

interested to keep the “installation” of new sites and the

observation approach as easy as possible. The visual

estimates used in this study are easier to apply for

many citizens and, thus, can potentially be used to

provide more observations. The different methodolo-

gies complement each other and different methods

might be most suitable for different locations, partici-

pant groups or observation goals. Tauro et al. (2018)

express a similar opinion: “Reconciling and comple-

menting observations from such an abundant pool of

methodologies, devices and platforms is the ultimate goal

of the research community towards an improved under-

standing of hydrological processes” (Tauro et al. 2018,

p. 187). Many of the current limitations in video ima-

gery will likely be resolved in the future, making this

approach a more usable alternative for streamflow or

stream level estimates. A possibility in the future might

also be to develop a virtual staff gauge in an augmented

reality setting, thereby facilitating participants’ stream

level class estimates.

4.2 Can citizens estimate stream level classes

accurately?

Stream level classes were introduced to simplify the

stream level estimation task for the participants. In

theory we could have also asked participants to esti-

mate a metric value above or below some fixed point.

However, the depth estimates (Fig. 4) for Qfactor suggest

that this approach would lead to estimates with a low

accuracy. The high accuracy of stream level class esti-

mates and the small number of outliers (i.e., estimates

that are more than one class off target) indicate that

this is a suitable parameter for citizen science projects.

The major benefits of the virtual staff gauge approach

is that estimates can be done quickly and that relative

variations in stream level can be estimated with small

uncertainties, but, on the down side, they also have

a lower resolution. A participant can be no more than

10 classes off target (which never happened; 0.7% of

participants were four classes off and <0.5% of partici-

pants were five or six classes off).

Participants only needed to compare the current

stream level to a previous stream level using structures,
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streambanks or stones as a reference. If the virtual staff

gauge is well placed (i.e., there is a suitable structure on

the stream bank or in the stream), the participant only

needs to look for the reference and then determines the

corresponding stream level class. In general, the vast

majority of participants had no problem understanding

the concept and estimated the stream level class cor-

rectly; outliers in the estimated stream level classes

were very rare. However, there were also a few clearly

wrong stream level class estimates, which might suggest

a misunderstanding of the concept by some partici-

pants. The two most extreme overestimations were

both at the Limmat, the most extreme underestima-

tions at the Aare. Most participants (49%) underesti-

mated the stream level class at the Aare. The reasons

are unknown, but potentially this could be attributed to

a staff gauge placement during an exceptionally low

stream level (less than a 2-year low according to official

measurements; BAFU 2017), meaning that the zero

value was already very low. This might have confused

participants as they may have thought that the staff

gauge represents the average streamflow condition.

The stream level class estimates were especially

accurate for smaller streams where the opposite stream

banks, at which the virtual staff gauges were located in

the photo, were close to the participant. The Limmat is

a wider stream, but was an exception as the virtual staff

gauge was placed on a bridge pillar, which was rela-

tively close to the observer. This is most likely the

reason why the stream level class estimates for the

Limmat were more accurate than for the Aare (the

only stream where the references for the virtual staff

gauge were 50–60 m away from the participant), even

though the widths of the actual streams were similar

(50 and 52 m, respectively). This shows that, for stream

level class estimates, the placement of the virtual staff

gauge is important. One of the very small streams

(Irchel) had a poorly placed staff gauge (the image

was taken looking down onto the stream rather than

horizontally from the height of the stream level, which

distorted the virtual staff gauge relative to the wall

behind the stream) and made it more difficult to

read. The median relative estimate for Qlevel for the

Irchel stream was 12%, whereas the median relative

estimate for Qlevel for all surveys was 101%.

Several studies have examined the accuracy of crowd-

sourced data (Haklay et al. 2010, Crall et al. 2011, See

et al. 2013, Isaac and Pocock 2015, Tye et al. 2016,

Aceves-Bueno et al. 2017, Mengersen et al. 2017), men-

tioning case studies such as OpenStreetMaps, where

Volunteered Geographic Information (VGI) data are

collected online and verified by other participants

(Haklay et al. 2010), and discussing issues such as

presence-only data for crowdsourced species classifica-

tion (Isaac and Pocock 2015, Tye et al. 2016, Mengersen

et al. 2017). While hydrological studies have also dis-

cussed crowdsourced data accuracy (Turner and Richter

2011, Rinderer et al. 2012, 2015, Lowry and Fienen 2013,

Peckenham and Peckenham 2014, Breuer et al. 2015, Le

Coz et al. 2016, Little et al. 2016, Weeser et al. 2018),

most of these studies looked at crowdsourced measure-

ments rather than estimates (Lowry and Fienen 2013,

Peckenham and Peckenham 2014, Little et al. 2016,

Weeser et al. 2018). While others, such as Turner and

Richter (2011), looked at class estimates, they mainly

looked at two class options (wet or dry stream), but

unfortunately do not mention data accuracy apart

from the fact that participants were trained for consis-

tency. Rinderer et al. (2012, 2015), who also looked at

classed data, analysed participants’ ability to estimate

relative soil moisture classes and found that, in one

case study, 95% of participants were no more than one

class off (Rinderer et al. 2012), and in another study

with various groups, 81–93% of the participants were no

more than one class off (Rinderer et al. 2015). However,

as far as we are aware, our study is the first to address

the accuracy of participants’ estimates of stream level

classes.

In addition to being more accurate, the stream level

class estimation process is also very quick, which is

a big advantage for a citizen science project. It is

assumed that offering a fast procedure to document

stream levels will encourage citizen observers to con-

tribute data to a project regularly (Eveleigh et al. 2014).

It is very common for citizen science projects that the

majority of the contributions come from a small group

of high contributors (Lowry and Fienen 2013, Eveleigh

et al. 2014, Sauermann and Franzoni 2015). For exam-

ple, in the CrowdHydrology project, one participant

walked past a particular station three to four times

a week, which led to this station having almost 10

times as many measurements as the station with the

next highest number of data submissions (Lowry and

Fienen 2013). This highlights the extreme value of

these high contributors and shows that it is important

to be able to take measurements quickly.

4.3 Are citizens likely to observe variations in

streamflow?

Having data for high and low flows, or relative varia-

tions in streamflow is crucial in order to determine

how a stream reacts to precipitation, snowmelt events

or long periods without rainfall, and for hydrological

model calibration. Hence, it is important to know if

crowdsourced data can properly reflect such variations
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in streamflow and whether the accuracy of the data

depends on the flow conditions. The results from the

surveys suggest that the temporal dynamics in stream-

flow will be relatively poorly represented by citizen-

based streamflow estimates. For two of the three

streams (Sihl and Aare), the median streamflow was

overestimated at low flows and underestimated at high

flows, which indicates insufficient adjustment of the

streamflow estimates to the variation in flow condi-

tions. For the Limmat, the significant difference in

the streamflow estimates does not seem to correspond

to the differences in the measured streamflow (Fig. 8

(a)–(c)). This is partly due to the problem that width

(and to a lesser degree velocity) estimates were more

accurate compared to depth estimates (Fig. 4). As long

as a high flow stays within the streambank, the width of

the streams in our survey does not vary significantly

between low and high flows. Thus, the majority of the

variation in flow conditions is due to the variation in

depth, which was most difficult to estimate.

During the surveys we did not ask the same persons

to estimate the flow during high and low flow condi-

tions. The results for an individual who reports the

streamflow at different times may be different, because

the participant might consistently over- or underesti-

mate the flow and therefore the relative variations

might be more accurate than indicated by our results

(Rinderer et al. 2015). Thus, further research is needed

to determine if the streamflow dynamics are better

described by the streamflow estimates when the major-

ity of the contributions for a particular stream are

made by one (or a few) active citizen(s) (Lowry and

Fienen 2013).

The high and low flow patterns are better reflected

in the stream level class estimates, with the median

flow derived from these estimates (Qlevel) being signifi-

cantly different between high and low flows for all

streams. For the Limmat, the post hoc tests showed

a significant difference between the high flow and all

other survey campaign estimates. This underlines the

benefits of collecting stream level class estimates, par-

ticularly for model calibration (see additional discus-

sion below).

4.4 Should citizen science projects focus on

streamflow or stream level class estimates?

The reduction of the number of outliers in the stream-

flow estimates calculated from the stream level class

data (Qlevel) compared to the direct streamflow esti-

mates (Qdirect) and streamflow estimates based on the

streamflow factors (Qfactor) can partly be explained by

the limited number of potential entries for the virtual

staff gauge (i.e., participants can only choose one out of

10 available classes for the stream level estimate). For

Qdirect and Qfactor, participants were able to state any

value for their estimates, even values that are physically

impossible for a particular stream. Hence, with regard

to the reduction of outliers, estimating stream level

classes seems advantageous for citizen science projects.

Additionally, our results suggest that stream level class

estimates appear to be better suited to represent varia-

tions in flow conditions. Thus, the results of this study

suggest that citizen science projects should focus on

stream level class estimates instead of streamflow esti-

mates, although this needs to be tested for different

climatic, geographical and socio-economic settings.

However, it should be noted that part of the differ-

ence in accuracy for the stream level class estimates

and streamflow estimates is due to the difference

between relative and absolute values. For our approach,

it would be impractical to use classes for streamflow

estimates, as we would need many classes, or the reso-

lution of the data would be very low (i.e., the flow for

a given stream is likely to always be within the same

class). However, as mentioned above, lists of well-

known streams, giving their streamflow range to indi-

cate orders of magnitude for the expected streamflow,

as well as width, depth and flow velocity, could be

provided to make it easier for citizens to make the

estimates and to improve the accuracy of the estimates.

One of the disadvantages of the stream level classes

is that each class represents a range of potential stream-

flow values, rather than one specific value. If

a participant estimates that the stream level is in class

two, it is unclear whether that means the upper, middle

or lower part of the class. The other disadvantage is

that these estimates do not provide information on

streamflow volumes. However, the usability of stream

level class data for hydrological model calibration was

tested by van Meerveld et al. (2017), who showed that

stream level class data can be used to calibrate a simple

bucket-type hydrological model, and suggested that

simple hydrological models can be used to convert

stream level class data to time series of streamflow.

The value of stream level data for hydrological model

calibration, especially for humid catchments, was

demonstrated recently by Seibert and Vis (2016). The

value of crowdsourced stream level data (photographs

of a fixed staff gauge) together with rainfall and flood

observations was also shown by Starkey et al. (2017).

They used community-based observations of rainfall

(manual raingauges), river levels (manual staff gauge)

and flood-related evidence (anecdotes, photographs or

videos) alongside traditional information (tipping

bucket raingauge, official raingauge measurements, six

16 B. STROBL ET AL.



pressure transducers for water level measurements and

flow gauging for the discharge-rating curve), in order

to fill spatial and temporal gaps in hydrometric data for

a 42 km2 catchment in the UK to improve a physically-

based, spatially-distributed catchment model

(SHETRAN). Etter et al. (2018) calibrated a bucket-

type model with synthetic crowdsourced streamflow

data with different degrees of error (including errors

that are comparable to those observed in this study)

and different temporal resolutions, and indeed found

that such streamflow estimates do not contain suffi-

cient information to improve the model compared to

random parameter sets. However, they also showed

that, if the standard deviation of the log-normal dis-

tribution that was used to describe the errors of crowd-

sourced streamflow estimates could be reduced by

a factor of two, one estimate per week would lead to

a significant improvement in the model simulations.

5 Conclusion

We asked 517 citizens to estimate streamflow directly

and indirectly by estimating the stream width, depth

and flow velocity. We also asked them to estimate

the stream level class. The survey results allowed us

to quantify the accuracy of the estimates and are,

thus, a basis for evaluating the potential value of

citizen science based estimates of streamflow and

stream level classes. The median estimated stream-

flow values were close to the measured streamflow,

but there were also many outliers, and the variations

in the flow conditions were not fully discernible in

the streamflow estimates. The stream level class esti-

mates, which were converted into streamflow values

for comparison, had far fewer outliers and were sig-

nificantly different for the different flow conditions.

Stream level class estimates also seemed to be

quicker and easier to estimate and are thus consid-

ered preferable for citizen science approaches.

Hydrological models can then be parameterized

based on these stream level class estimates to obtain

streamflow time series. The study was conducted in

Switzerland and, while we do not expect significant

differences, we recommend testing the accuracy of

citizen science based estimates of streamflow and

stream level classes in different climatic, geographical

or socio-economic settings and for rivers with differ-

ent sizes.
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S1 Map with the survey locations 

 

Figure S1. (a) Map of Switzerland showing the location of all 10 survey locations and 

(b) map of the greater Zurich area, showing the location of the nine field surveys around 

Zurich. For details of the surveys, see Table 1 in the main article. Background map from 

OpenStreetMap. 



3 

 

S2 Example of the forms used for the surveys (Limmat) 
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S3 Participant demographic 

 

Figure S2. (a) Gender, (b) education and (c) age distribution of the participants, and (d) 

age distribution in the city of Zurich for comparison (Data source: Statistik Stadt Zürich 

2017). 
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S4 Relative stream level class estimates for small sized streams 

 

Figure S3. Relative stream level class estimates for small streams, converted into 

streamflow using the midpoint of each level class for each estimate. Red lines indicate 

the measured streamflow and the dashed red line indicates the 10% uncertainty 

associated with the measured streamflow. The boxplot shows the high variability in the 

estimates for Sihl_1 and Töss. 
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S5 Relative streamflow estimates during high and low flow 

 

Figure S4. Boxplots of the relative estimates of streamflow based on the estimated 

width, mean depth and flow velocity (Qfactor) for surveys under different flow conditions 

at the Limmat, Aare and Sihl. Red lines indicate the measured streamflow and the 

dashed red line indicates the 10% uncertainty associated with the measured streamflow. 

For details on the flow conditions during the surveys, see Table 1 in the main article. 
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Key Points 10 

- Changes in stream water levels observed by citizens based on virtual staff gauges agreed well 11 

with measured changes in water levels 12 

- Observation uncertainties depended mainly on the placement of the virtual staff gauge 13 

- Data collected by individual observers using a smartphone app were of higher quality than 14 

those collected by multiple observers using paper forms 15 

Abstract 16 

Crowd-based hydrological observations can supplement existing monitoring networks and allow data 17 

collection in regions where otherwise no data would be available. In the citizen science project 18 

CrowdWater, repeated water level observations using a virtual staff gauge approach result in time 19 

series of water level classes. To investigate the quality of these observations, we compared the water 20 

level class data from nine locations where citizen scientists reported multiple observations using a 21 

smartphone app and at twelve other locations where signposts were set up to ask citizens to record 22 
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observations on a form that could be left in a letterbox, with the nearest measured water levels from 23 

the same stream. The results indicate that the quality of the data collected with the app was higher 24 

than for the forms. A possible explanation is that for each app location, most contributions were made 25 

by a single person, whereas at the locations of the forms almost every observation was made by a new 26 

contributor. On average, more contributions were made between May and September than during the 27 

other months. Observations were submitted for a range of flow conditions, with a higher fraction of 28 

high flow observations for the data collected with the app. Overall, the results are encouraging for 29 

citizen science approaches in hydrology and demonstrate that the smartphone application with its 30 

virtual staff gauge is a promising approach for crowd-based water level class observations.  31 

1 Introduction 32 

Hydrometric networks provide basic information for water management (Mishra and Coulibaly, 2009). 33 

However, in many regions of the world, the hydrological measurement infrastructure is limited or 34 

poorly maintained (Hannah et al., 2011; Sivapalan, 2003). These areas often coincide with areas that 35 

are vulnerable to extreme conditions and events (Walker et al., 2016) and where data would thus be 36 

highly beneficial. One possibility to overcome this data limitation is to involve the public in hydrological 37 

observations using citizen science approaches. Citizen science can provide data at many more locations 38 

than official agencies are able to do, and thereby can complement the data from official monitoring 39 

networks. Examples are the citizen observatories WeSenseIt (www.wesenseit.com; Lanfranchi et al., 40 

2014), GroundTruth2.0 (https://gt20.eu) and SCENT (https://scent-project.eu). Citizen science projects 41 

can potentially also collect data in regions where otherwise no data are available to allow calibration 42 

of models, data-based measures for protection, or warning systems against water-related natural 43 

hazards. Some of the existing examples of citizen science projects that collect streamflow or water 44 

level data for ungauged streams are CrowdHydrology (Lowry et al., 2019), a project in Kenya (Weeser 45 

et al., 2018), CitHyd (www.cithyd.com, Balbo & Galimberti, 2016) in Italy, SmartPhones4Water in Nepal 46 

(www.smartphones4water.org; Davids et al., 2017) and CrowdWater (www.crowdwater.ch; Seibert et 47 
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al., 2019). The CrowdWater project uses a smartphone application (hereafter referred to as “app”) to 48 

collect information on water level changes in streams using a virtual staff gauge (Seibert et al., 2019). 49 

As a first test, Strobl et al. (2019a) asked passers-by at ten river locations in Switzerland to estimate 50 

both the streamflow and the water level class (hereafter shortened to WL-class) based on the virtual 51 

staff gauge approach and quantified the errors of these estimates. These errors were then used to 52 

create synthetic streamflow and WL-class time series in two model studies to explore the potential 53 

value of such data for model calibration (Etter et al., 2018; 2020). The studies showed that the 54 

estimates of streamflow were not accurate enough to be informative for hydrological model 55 

calibration but that WL-class estimates significantly improved model performance compared to the 56 

situation without any data. The study assumed one observation per week on average for calibration, 57 

which resulted in simulations, that were almost as good as those obtained using continuous water 58 

level data (i.e., data that could be obtained from a water level logger).  59 

In this study, we evaluate the quality of WL-class data collected at real CrowdWater locations. Between 60 

April 2017 and September 2019, more than 4475 WL-class observations were made with the app 61 

(Figure S1). These observations were made at more than 816 locations, including 26 locations with 62 

more than 30 repeated observations. The accuracy of these data may be different from the previous 63 

study (Strobl et al., 2019a), where the experts were physically present. The data were collected over a 64 

one-year period or more (rather than one day) and, thus, cover a much wider range in water levels. In 65 

other words, the data analysed in this study are real data that were collected by citizen scientists in 66 

the CrowdWater project. We used data from nine locations where data were collected with the 67 

CrowdWater app and twelve locations where observations were collected using paper forms and 68 

letterboxes. There was a wider range in the way that the virtual staff gauges were set-up because all 69 

app spots (except A5) were initiated by real citizen scientists; the reference images with the virtual 70 

staff gauges at the pen-and-paper locations were created by ourselves. For all locations, measured 71 

water level data were available from either the same location or a nearby site on the same stream. 72 

Furthermore, we analysed when the observations were submitted to see whether there is temporal 73 
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bias in these data (e.g., whether observations are only made on certain days or only during low flow 74 

periods or cover the entire range of conditions).  75 

2 Methods 76 

2.1 Virtual staff gauge approach 77 

The CrowdWater project started in April 2016 and the app was released in April 2017. As of September 78 

2019, about 373 different citizen scientists had reported 4475 WL-class observations with the app 79 

(Figure 1). Citizen scientists can either start their own time series of water level observations or 80 

contribute to the time series at an existing observation location (hereafter referred to as “spot”, 81 

because in the app they are called spots). All existing spots are displayed on a map in the app (Figure 82 

1a). For each new spot a photograph of the stream is taken perpendicularly to the flow direction. The 83 

citizen scientist then inserts a virtual staff gauge with ten classes onto the picture. The size of the staff 84 

gauge can be adjusted to the size of the stream, and the staff gauge needs to be moved so that the 85 

class zero is aligned with the  water level in the picture (Seibert et al., 2019). Subsequent observations 86 

of the WL-class are made with the help of the virtual staff gauge by comparing the current water level 87 

with the virtual staff gauge in this reference picture using the features on the opposite side of the 88 

stream, or bridge pillars and stones as a reference (Figure 1, Seibert et al., 2019).  89 

[Figure 1 here] 90 

2.2 Study locations and water level data 91 

We selected nine existing spots in Austria and Switzerland where water levels were measured by 92 

agencies or research groups at a nearby location (<21 km away; median: 0.2 km away) in the same 93 

stream (Figure 2; Table 1). The selected spots had at least one year of data by October 2019 and at 94 

least 45 or more contributions (ranging from 46 for spot A8, Rhine – Sevelen to 505 for Spot A2 95 

Königseeache – Hallein). Furthermore, at twelve locations in Switzerland we installed signposts (Figure 96 

1d) with reference images with the virtual staff gauge (Figure 2). On the signposts, we asked people to 97 
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take a form, to record the WL-class, and to leave the form in the letterbox. We also asked the 98 

participants to record the date and time and whether they had participated in the CrowdWater project 99 

before. These stations are hereafter referred to as “pen-and-paper stations”. Two of the twelve pen-100 

and-paper stations (P8 and P12) had a slightly different virtual staff gauge design than the one used in 101 

the app because they were installed early in the project and still had a prototype of the virtual staff 102 

gauge. Stations P1 and P4 are located at the same site as app spots A5 and A7, respectively, and have 103 

the same reference image. At P4 the staff gauge was set by us, but at A7 a citizen scientists created 104 

the spot. However, the largest difference between the app and the pen-and-paper stations was the 105 

number of citizen scientists who contributed to the observations for each station. The percentage of 106 

observations made by the citizen scientist who reported the most observations for a particular location 107 

varied between 74 and 100% for the app spots, and between <1 and 2% for the pen-and-paper stations, 108 

except for P4 (Limmat – Zürich; where 20% of the observations were submitted by the same person). 109 

Thus, for each app-spot, the majority of the observations were made by the same citizen scientist, 110 

whereas for the pen-and-paper stations almost every observation was made by a different person. The 111 

number of contributions for the selected app spots and pen-and-paper stations was similar (one 112 

observation every 1.2 to 11.6 days for the app spots (average: 5.3) vs an observation every 1.9 to 15.3 113 

(average: 8.9) days for the pen–and-paper stations). 114 

[Figure 2 here] 115 

[Table 1 here] 116 

2.3 Comparison of WL-class observations and measured water levels 117 

The app automatically records the date and time of each observation. For the pen-and-paper stations, 118 

the observers were asked to record the local time on the paper form. This allowed us to compare the 119 

reported WL-class with the measured water level at the time of observation to assess the quality of 120 

the WL-class data. The water level was not always measured at exactly the same location as the WL-121 

class observation but for the analysis only the timing of the variations in the water level needs to be 122 
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the same. Each WL-class corresponds to a range of actual water levels but we do not know this range 123 

for each WL-class and location. Therefore, we created box-plots of the measured water levels at the 124 

time of the WL-class observation for each reported WL-class and compared them visually. In the 125 

perfect case, a higher reported WL-class should always correspond to a higher water level and each 126 

WL-class covers a fixed range of measured water levels (i.e., the ranges for the measured water levels 127 

for each WL-class do not overlap). We used a Kruskal-Wallis test to check whether there were 128 

significant differences between the water levels attributed to the individual WL-classes for each app 129 

spot and pen-and-paper station. Since this test showed that there were significant differences 130 

between the WL-classes for all locations, we used a Bonferroni posthoc test to compare the water 131 

levels of all class observations with each other. For this analysis, we checked which combinations of 132 

classes were significantly different but excluded WL-classes with fewer than five observations. The 133 

results were then grouped by the distance between the two tested classes.  134 

We, furthermore, used the Kendall rank correlation coefficient, also called Kendall’s τ (Kendall, 1990) 135 

to determine the correlation between all WL-class observations and the measured water levels. We 136 

chose the Kendall rank correlation instead of the Spearman rank correlation because it is considered 137 

to be more robust for data that includes many ties (Croux and Dehon, 2010), which is the case for WL-138 

class observations. We used the Mann-Whitney U-test to compare the median Kendall’s τ for the app 139 

spots and the pen-and-paper stations to assess whether the data quality for the two methods was 140 

similar or not. 141 

2.4 Contribution times 142 

Citizen science data can be biased in time (Courter et al., 2013). For example, citizen scientists may be 143 

more inclined to record observations during sunny periods when water levels are low. This affects the 144 

value of these data for hydrological model calibration (S. Etter et al., 2020). We, therefore, also 145 

analysed the date and time of the WL-class observations. In particular, we analysed how the 146 

observation frequencies varied throughout the year, during a week, and with the time of the day. 147 



To be resubmitted to Hydrological Processes after moderate revisions before May 31, 2020. 

7 

Furthermore, we compared the distribution of the measured water levels at the time of the crowd-148 

based WL-class observations to the distribution of the water level data for the entire study period 149 

(Table 1) to see if the citizen scientist observations covered the range of high and low flow conditions. 150 

More specifically, we determined the percent of citizen observations that were above the 90th 151 

percentile and below the 10th percentile of the measured water levels. 152 

3 Results 153 

3.1 Data quality 154 

For the app spots, a higher WL-class generally coincided with a higher measured water level, although 155 

different WL-classes were chosen for similar water levels so that the range of measured water levels 156 

for WL-classes overlapped (Figure 3). Kendall’s τ varied between 0.65 and 0.90 (with p<0.01), except 157 

for A9 (Urtene – Moosseedorf) for which Kendall’s τ was 0.45 (Figure 3). For the pen-and-paper 158 

stations, the correlation between the WL-class and measured water levels was poorer, with Kendall’s 159 

τ values ranging between 0.05 and 0.57 (Figure 4). These Kendall’s τ values were significantly lower 160 

than for the app spots (p<0.01; Figure 5). The overlap in the measured water levels for the observations 161 

for each WL-class was much larger for the pen-and-paper stations than the app-spots (Figure 3 and 162 

Figure 4). The Kruskal-Wallis and Bonferroni test result suggested that WL-classes that were further 163 

apart more often had significantly different median water levels (Table S1) and that this was more 164 

pronounced for the app data than the pen-and-paper data (cf. Figure 3, Figure 4).  165 

[Figure 3 here] 166 

[Figure 4 here] 167 

[Figure 5 here] 168 

3.2 Contribution Times 169 

On average, observations for the app spots were made throughout the daylight hours, although there 170 

was a tendency for more observations during the afternoons (Figure 6). On average most contributions 171 
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were made around 5pm but the differences between the spots were notable (Figure S2). Only some 172 

observations at the Limmat in Zurich (A7) were made outside the daylight hours (Figure S2). 173 

Observations were reported on both weekdays and weekends. However, there were significantly 174 

fewer contributions on Saturdays than the other days (on average 11% of all observations, whereas 175 

for all other days the average percentage varied between 14 and 16%; p=0.046; Figure 6). Most WL-176 

class observations were submitted during the warmer months of the year, i.e., between May and 177 

September (the average percentage of contributions per month varied between 10 and 11% for the 178 

May to September period, compared to 5 to 8% for the other months).  179 

At the pen-and-paper stations, most observations were submitted in the early afternoon (Figure 6). 180 

Furthermore, most contributions were received on Sundays (30% of all contributions; Figure 6 and 181 

Figure S3), followed by Saturdays (16%). Only 9 to 12% of the observations were submitted on the 182 

other days. Most observations were submitted in summer: more than 10 % of the observations were 183 

submitted for each month between May and August (except for July with 9.8 %), compared to 4 to 9% 184 

for the remaining months. 185 

[Figure 6 here] 186 

3.3 Range of WL-class observations 187 

For the app spots, between 8 and 32% of the contributions (average: 16%) were submitted when the 188 

measured water level was above the 90th percentile; between 1 and 16% (average: 7%) of the 189 

observations were submitted when the measured water level was below the 10th percentile (Figure 190 

S4). At the pen-and-paper stations, observations were recorded less often during high water levels 191 

than for the app stations: between 0 and 20% of the observations (average: 11%) were made during 192 

times that the water level was above the 90th percentile. Between 0 and 23% of the observations 193 

(average: 9%) were submitted when the measured water level was below the 10th percentile (Figure 194 

S5).  195 
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4 Discussion 196 

4.1 What is the quality of WL-class observations? 197 

The WL-class observations made by citizen scientists with the CrowdWater app corresponded well with 198 

the measured water levels. Even though the results of such time series are not perfect and class 199 

boundaries are somewhat fuzzy, the estimated WL-classes from the app are well correlated with 200 

measured water levels. In some cases, a smaller staff gauge could have led to a higher resolution of 201 

the WL-class data in the spots A1, and A4 to A9. We assume that a similar number of covered classes 202 

as in A2 and A3 would not have decreased the data quality because A2 and A3 have the highest values 203 

for Kendall’s τ (0.96 and 0.90). These results are thus encouraging for the CrowdWater project.  204 

The observed WL-classes in the pen-and-paper stations did not correspond as well with the measured 205 

water levels as for the app spots. Even for the location at the Limmat in Zürich (P4) with 202 206 

contributions made by 194 participants, the Kendall’s τ is relatively low compared to the same spot in 207 

the app (A7) with only 73 contributions made by six participants (0.50 vs 0.71). The same is true for 208 

the Alp in Einsiedeln where we received 23 contributions made by 23 participants in P1 and 47 209 

contributions by 8 participants in A5 (τ = 0.39 vs 0.69) and both stations had the exact same reference 210 

image. Furthermore, the differences between the individual classes were less often significant for the 211 

pen-and-paper stations than the app spots.  212 

Strobl et al. (2019a) found, based on over 500 WL-class estimates using the same virtual staff gauge 213 

during surveys at ten rivers, that only 13% of the reported observations were more than one class off 214 

from the correct class (as determined by experts). Our results here are similar with respect to the very 215 

few outliers (Figure 3 and Figure 4). To some degree, errors in the use of the virtual staff gauge are to 216 

be expected because the water level is compared to the reference image by the citizen scientists. If 217 

the background on which the staff gauge is inserted is distorted, the comparison of reference 218 

structures to the WL-classes on the virtual staff gauge becomes more difficult (Seibert et al., 2019), 219 

especially when the water surface is not flat due to waves (e.g. A3) or if the riverbed is not clearly 220 
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defined (e.g. in P2). Because previous choices of WL-classes at similar water levels were not easily 221 

visible in the app (i.e., only when one scrolls through the different observations) and not at all for the 222 

forms, the citizen scientists had few or no photos of similar conditions available to aid their decision 223 

on which WL-class to choose. Also, the virtual staff gauge approach is harder to understand than the 224 

approach of CrowdHydrology (Lowry et al., 2019) or the project in Kenya by Weeser et al. (2018) where 225 

water levels are read from physical staff gauges in, for instance, centimetres. This may contribute to 226 

poorer data quality for the novice contributors, and may explain the lower correlation with the 227 

measured water levels for the pen-and-paper contributions. Hence, the difference in data quality 228 

between the two approaches can be explained by the number of novice contributors: In the app, the 229 

data for each spot were mainly collected by a single dedicated person. If, the main contributor for an 230 

app spot has a constant bias (e.g., always estimating the water level too high), the time series would 231 

still be consistent. Since the virtual staff gauge approach largely builds on human perception, mistakes 232 

and less consistent results are more likely if there are many different contributors, especially if they 233 

are novice contributors. Furthermore, the different citizen scientists for the pen-and-paper stations 234 

likely all had a different bias. An alternative approach for the pen-and-paper stations could be that 235 

people at the pen-and-paper stations submit photographs of the actual situation to a server and then 236 

the WL-class can be estimated by a collective effort in, for instance, an online game. This is already 237 

possible for the app data (Strobl et al., 2019b). 238 

The fuzzy separation of WL-classes based on measured water levels might also have other reasons 239 

than errors by the contributors. Even though the water level measurement stations can be considered 240 

well-maintained, errors in the stage measurements can not be entirely avoided. Horner et al. (2018) 241 

found errors in water level measurements in the order of 4 to 12% at six gauging stations in France. 242 

This indicates that the measured water levels, which are treated as error-free in this study, might 243 

contribute to the fuzziness of the class borders. Furthermore, the locations where the water levels 244 

were measured, were not at exactly the same location as the spots in the CrowdWater app (Table 1) 245 

and we did not correct for potential differences in the timing of water level variations. However, 246 
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Kendall’s τ was not correlated with the distance between the stations. The low Kendall’s τ (0.45) at A9 247 

(Urtene - Mooseedorf) might be explained by the small variations in water levels due to the presence 248 

of a regulated lake upstream from the station. The measured water levels were also influenced by a 249 

wastewater treatment plant, from which water entered the stream between the CrowdWater spot 250 

and the water level gauging station.  251 

4.2 What are the characteristics of good spots for WL-class data observations? 252 

Evaluation of the reference pictures and virtual staff gauges for the spots used in this study, allows us 253 

to draw some conclusions on the characteristics of spots that are likely to lead to good data. These 254 

are: 255 

• The staff gauge size needs to be appropriate for the water level fluctuations, so that the 256 

variability in water levels spans several WL-classes (as an example we refer to the results for 257 

station A3 (Salzach – Salzburg) and A9 (Urtene – Moosseedorf; Figure 3). 258 

• Distinct features in the reference image are necessary to accurately identify changes in the 259 

water level. Vegetation can hinder the identification of these features and as this can block the 260 

view of reference features during certain seasons (see e.g. A6 in Figure 2 and Figure 3; Seibert 261 

et al., 2019). 262 

• For each spot, the data are contributed by one or few dedicated citizen scientists who feel 263 

responsible for the spot (see section 4.1).  264 

4.3 When do citizen scientists contribute WL-class observations? 265 

The WL-class observations were surprisingly uniformly distributed throughout the year, week and 266 

daylight hours. The contributions for the pen-and-paper stations were higher on weekends, especially 267 

on Sundays compared to the app stations, where the contributions were distributed more uniform 268 

throughout the week. The higher percentage of contributions on weekends for the pen-and-paper 269 

stations can be explained by the fact that these are opportunistic contributions when people saw the 270 

signposts (e.g., during a walk) and spontaneously decided to contribute. In two studies on citizen 271 
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science reports of bird sightings such a “weekend-bias” was found to be stronger in Europe (Sparks et 272 

al., 2008) than the United States (Courter et al., 2013). Based on our data and own observations, 273 

Sunday seems to be the most likely day for people to be on such walks or hikes.  274 

We assume that for the app spots used in this study, the contributors were more committed citizen 275 

scientists who included the submission of their observations as a part of a more regular routine (e.g., 276 

while going on a regular walk after work on the way to shops or walking the dog). One example is the 277 

small peak at 5 pm in the app stations, which might indicate that people contribute after work. 278 

However, this peak was influenced by the many contributions at A6 (Dünnern Balsthal) during this 279 

hour, for which almost 60% of the contributions were made between 5 and 6 pm. However, the 280 

contribution patterns varied notably between spots (Figure S2 and Figure S3), implying that it is hard 281 

to predict when dedicated citizen scientists will contribute. 282 

The pen-and-paper stations received many responses when they were located at frequented paths, 283 

but people rarely contributed more than once. Potential reasons could be that people were only once 284 

at this location (i.e., during a one-time trip) or because they did not realise that multiple observations 285 

are helpful or because they missed feedback on their contribution. Feedback and visibility of 286 

participants contributions might lead to more sustained participation (Lowry et al., 2019). The app 287 

provides feedback to some extent by displaying all the contributions publicly. However, feedback on 288 

how the data are used and what individual contributions add to scientific research need to be 289 

communicated outside the app.   290 

Loiselle et al. (2016) found that citizen scientists of the project FreshWaterWatch tended to make more 291 

repeated measurements if they get to choose the site for which they wanted to contribute data, 292 

compared to when stations were assigned to them. Furthermore, they also found that if many people 293 

contributed to the same stations, then the absolute number of contributions by a single contributor 294 

was smaller. This might to some extent be applicable to our study as well: People who see a signpost 295 

by chance and decide to contribute but feel less committed because there are potentially many others 296 
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who could contribute than those who actively set up their own spot with the app and also can then 297 

check if there are other people contributing. Based on personal conversations with the main 298 

contributors to spots A2 and A4 and a motivation survey (Etter et al., in review), we assume that 299 

creating and maintaining own spots serves the needs for autonomy and competence. These are, in 300 

combination with the relatedness of one’s own contributions to a broader topic, the needs to be 301 

fulfilled to foster self-determined and intrinsically motivated activism (Tiago et al., 2017) according to 302 

self-determination theory (Deci and Ryan, 2000). Frensley et al. (2017) argued that the motivation to 303 

participate in volunteering is increased if these three feelings are met. This would then lead to citizens 304 

who are motivated to observe high flows, and deliberately go out to do so. On the other hand, the 305 

pen-and-paper approach may lead to more interaction with the local population or a more diverse 306 

group of citizen scientists (Lowry et al., 2019). 307 

4.4 Do the WL-class observations cover the entire range of water levels? 308 

Our results show that the citizen scientists who use the app observed high and low flow conditions. In 309 

other words, the concern that the distribution of observed WL-classes might be biased to average or 310 

low flow conditions, or are otherwise fundamentally different from the long-term “true” distribution 311 

could not be confirmed. For the spot at the Alp in Einsiedeln (A5), 32% of the contributions were made 312 

at times when the water level was above the 90th percentile. The main contributor for this spot stated 313 

in a personal conversation: “The other day, I left the house again because it rained, to catch some high 314 

flows.” Thus, a citizen scientist who is particularly interested in high or low flows might provide data 315 

that contains information on extreme conditions as well.  316 

For the pen-and-paper stations there were fewer contributions at high flows but rather more at low 317 

flows. This suggests that people who did not deliberately go outdoors to participate in the project are 318 

more likely to be outside and take time to submit their observations during periods with pleasant 319 

weather conditions. Therefore, to obtain observations over the entire range of water level conditions, 320 



To be resubmitted to Hydrological Processes after moderate revisions before May 31, 2020. 

14 

it may be more beneficial to find dedicated citizen scientists than to catch the attention of many 321 

different citizen scientists. 322 

5 Conclusions 323 

The analysis shows that citizen scientists who use the CrowdWater app, were able to collect time series 324 

of WL-class data that are in good accordance with measured water levels (i.e., high correlation and 325 

few outliers). Observations for a spot submitted via the CrowdWater app by one or a few citizen 326 

scientists were of higher quality than the data from many different participants at the pen-and-paper 327 

stations. The uncertainties within the WL-classes could be due to mistakes of the citizen scientists but 328 

also due to the distance between the CrowdWater spots and the official gauging stations, as well as 329 

measurement errors.  330 

The timing of the majority of the contributions for the app spots varied from site to site. The 331 

contributions with the app were made throughout the daylight hours but more frequently from May 332 

to September. Perhaps more importantly, the citizens submitted observations for all stream levels, 333 

including high water levels. The results are encouraging for citizen science in hydrology and 334 

demonstrate that with a smartphone app, dedicated volunteers can submit high quality water level 335 

class observations.  336 
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9 Figures 425 

 426 

Figure 1 Screenshot of the CrowdWater app showing the locations of existing spots on the map by 01.02.2019 427 
(a), a screenshot showing the location of an existing spot, the reference picture with the virtual staff gauge and 428 
a photo of the current situation (b), a larger reference picture with the virtual staff-gauge (c), and a photo of the 429 
pen-and-paper station at the gauging station Kleine Emme – Werthenstein in Switzerland (P3) (d). In b, the image 430 
labelled “original” shows the reference picture with the virtual staff gauge (same image as in c) and the image 431 
labelled “This update” shows the new observation. Note also the reference image in the lower left of the signpost 432 
in d. 433 

 434 
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 435 

Figure 2 Reference images with the virtual staff gauges for the app spots and pen-and-paper stations used in this 436 
study and their locations in Austria and Switzerland. Labels starting with “A” refer to app stations, labels starting 437 
with “P” refer to pen-and-paper stations. Note that the red and white staff gauges (in P8 and P12) are an early 438 
version of the staff gauge used in the app (Seibert et al., 2019). 439 

 440 

  441 

 442 

 443 

.444 
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 445 
Figure 3 Boxplots of the measured water levels at the time of a WL-class observation for each of the nine app spots. The box indicates the 25th to 75th percentile, the line the 446 
median, and the whiskers extend to the 5th and the 95th percentile. The dots (jittered) represent individual observations. τ is the correlation coefficient of Kendall's τ test, p the 447 
corresponding p-value. ncontrib is the number of contributions (total number of dots), and npart the number of participants who contributed to the observations. 448 
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 449 

Figure 4 Boxplots of the measured water level at the time of a WL-class observation for each of the twelve pen-and-paper stations. The box indicates the 25th to 75th percentile, 450 
the line the median, and the whiskers extend to the 5th and the 95th percentile. The dots (jittered) represent individual measurements. τ is the correlation coefficient of Kendall's 451 
τ test, p the corresponding p-value ncontrib is the number of contributions (total number of dots), and npart the number of participants who contributed to the observations.452 
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 453 

Figure 5 Frequency distribution of the Kendall’s τ for the relation between the WL-class observations and the measured 454 
water levels for the nine app spots (orange) and twelve pen-and-paper stations (purple) analysed in this study 455 
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 456 

 457 

Figure 6 Rose diagrams showing the average percentage of contributions for all nine app-spots (top) and pen-and-paper stations (bottom) analysed in this study for each time of 458 
the day (left), day of the week (middle), and month of the year (right). The results for each individual app spot can be found in supplemental material in Figure S2 and for the pen-459 
and-paper stations in Figure S3. 460 

  461 
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Tables 462 

Table 1 Names and coordinates (decimal degrees N and E)  of the app spots and pen-and-paper stations used in this study, the location of the water level measurements, the 463 
number of observations, the number of contributors, the correlation between the WL-class observations and the measured water levels (Kendall's ) and the corresponding p-464 
values. The water level data were obtained from the state departments of hydrology of Niederösterriech (Amt der Niederösterreichischen Landesregierung – Abteilung für 465 
Hydrologie und Geoinformation; NOE) and Salzburg (German: Amt der Salzburger Landesregierung – Abteilung Wasser; ASL), the Bavarian Hydrological Service 466 
(Gewässerkundlicher Dienst Bayern; GKD), the Swiss Federal Office for the Environment (FOEN), the Departments of Hydrometry for two Swiss cantons, or our own 467 
measurements using Keller DCX-22 pressure sensors and water levels measured by the École Polytechnique Fédérale de Lausanne (EPFL) using TruTrack WT-HR 1000 water level 468 
loggers.  469 
 470 

Number Station Name Observation 

period 

Coordinates 

WL measure-

ments [N, E] 

Source 

water 

level data 

Coordinates 

WL-class 

observations 

[N, E] 

Distance 

between WL 

and WL-class 

locations [km] 

Number of 

obser-

vations  

Number of 

partici-

pants  

Kendall’s 
τ  

p-value 

App spots in Austria 

A1 
Kleine Erlauf - 
Wieselburg 

30.03.2018 – 
02.08.2019 

48.1273, 
15.1330 

NOE 48.1255, 
15.1292 

0.3 73 1 0.78 <0.01 

A2 
Königseeache - 
Hallein 

05.01.2018 – 
10.09.2018 

47.6458, 
13.0303 

GKD 47.7261, 
13.0650 

9.3 505 4 0.86 <0.01 

A3 
Salzach - Salzburg 26.08.2018 – 

21.09.2019 
47.7982, 
13.0539 

ASL 47.7896, 
13.0686 

1.5 245 3 0.90 <0.01 

App spots in Switzerland 

A4 
Aare - Zollikofen 10.09.2017 – 

30.04.2019 
46.9333, 
7.4480 

FOEN 46.9904, 
7.4508 

6.4 172 2 0.80 <0.01 

A5 
Alp-Einsiedeln 29.11.2017 – 

30.05.2019  
47.1508, 
8.7393 

FOEN 47.1277, 
8.7432 

2.6 47 8 0.69 <0.01 

A6 
Dünnern-Balsthal 19.06.2018 – 

22.06.2019 
47.3022, 
7.6975 

Canton of 
Solothurn 

47.3034, 
7.6950 

0.2 149 1 0.67 <0.01 

A7 
Limmat-Zürich 05.05.2017 – 

17.02.2019 
47.3908, 
8.5257 

FOEN 47.3919, 
8.5233 

0.2 73 6 0.71 <0.01 

A8 
Rhein-Sevelen 26.05.2018 – 

11.06.2019 
47.3067, 
9.5710 

FOEN 47.1301, 
9.5114 

20.2 46 2 0.65 <0.01 
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A9 
Urtene 
Moosseedorf 

21.06.2018 – 
27.06.2019 

47.0728, 
7.5426 

Canton of 
Bern 

47.0301, 
7.5116 

5.3 113 1 0.45 <0.01 

Pen-and-paper stations (all in Switzerland) 

P1 
Alp - Einsiedeln 10.03.2018 – 

01.11.2018 
47.1508, 
8.7393 

FOEN 47.1277, 
8.7432 

2.6 23 23 0.39 0.02 

P2 
Kleine Emme – 
Emmen 

30.04.2018 – 
30.05.2019 

47.0706, 
8.2773 

FOEN 47.0706, 
8.2773 

0.0 28 28 0.05 0.74 

P3 
Kleine Emme – 
Werthenstein 

28.04.2018 – 
30.05.2019 

47.0349, 
8.0685 

FOEN 47.0349, 
8.0681 

0.0 45 45 0.47 <0.01 

P4 
Limmat – Zürich 22.05.2017 – 

15.06.2018 
47.3906, 
8.5254 

FOEN 47.3918, 
8.5234 

0.2 202 194 0.50 <0.01 

P5 
Ova da Fuorn – 
Swiss national Park 

12.08.2017 – 
21.10.2017 

46.6551, 
10.1900 

FOEN 46.6568, 
10.1927 

0.3 36 35 0.21 0.10 

P6 
Sellenbodenbach – 
Neuenkirch 

04.05.2018 – 
24.05.2019 

7.1128, 8.2102 FOEN 7.1128, 8.2102 0.0 26 26 0.08 0.61 

P7 
Sihl – Sihlhölzli 11.05.2017 – 

21.07.2018 
47.3678, 
8.5262 

FOEN 47.3690, 
8.5280 

0.2 80 76 0.24 0.01 

P8 
Sihl – Sihlwald 16.10.2016 – 

12.05.2019 
47.3678, 
8.5262 

FOEN 47.2714, 
8.5566 

11.0 128 118 0.50 <0.01 

P9 
Wigger – Zofingen 03.05.2018 – 

21.05.2019 
47.2836, 
7.9350 

FOEN 47.2836, 
7.9354 

0.0 25 24 0.47 <0.01 

P10 
Dorfbach – 
Küsnacht 

30.11.2017 – 
26.12.2018 

47.3126, 
8.6338 

pressure 
sensor 

47.3126, 
8.6333 

0.0 34 31 0.57 <0.01 

P11 
L’Avancon de Nant 
– Vallon de Nant 

04.05.2018 – 
26.06.2019 

46.2315, 
7.1019 

water level 
logger 

46.2316, 
7.1022 

0.0 70 70 0.29 <0.01 

P12 
Tomenbach – 
Sihlwald 

28.01.2018 – 
22.04.2019 

47.2678, 
8.5460 

pressure 
sensor 

47.2684, 
8.5476 

0.1 50 47 0.21 0.06 

471 
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 472 

10 Supplemental Material 473 

 474 

Figure S1 Cumulative number of water level class observations submitted via the CrowdWater app. Figure obtained from 475 
crowdwater.ch/dashboard. Accessed: 16.02.2020. 476 

 477 
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 478 

Figure S2 Distribution of the time of all contributions for the individual app spots used in this study (lines) and the average 479 
for all spots (grey area, as reported in Figure 6): day of week (a), week of year (b), month of year (c) and hour of day (d).  480 

 481 
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 482 

Figure S3 Distribution of the time of all contributions for the individual pen-and paper stations used in this study (lines) 483 
and the average for all spots (grey area, as reported in Figure 6): day of week (a), week of year (b), month of year (c) and 484 
hour of day (d). Note that the weekly (b) and monthly (c) distributions are not plotted for stations for which less than 1 485 
year of data were available.486 
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 487 

Figure S4 The fraction of time that the water level was equal or exceeded (i.e. water level duration curve) at the official gauging stations (black lines) and the water level at the 488 
time of a WL-class observation submitted via the app (blue points). Both datasets cover the same period, i.e. the first and the last considered WL-class observations. 489 
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 490 

 491 

Figure S5 The fraction of time that the water level was equal or exceeded (i.e. water level duration curve) at the official gauging stations (black lines) and the water level at the 492 
time of a WL-class observation submitted at a pen-and-paper station (blue points). Both datasets cover the same period, i.e. the first and the last considered WL-class observations. 493 
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Table S1 The fraction of significant class differences per app spot and pen-and-paper station based on the adjusted p-values from the Bonferroni test. The column names indicate 494 
the distance between classes (i.e. class 1 and 2 are  1 class apart, whereas class 1 and 3 are 2 classes apart). Note that the different spots and stations have different numbers of 495 
classes and therefore different distances could be covered in this analysis. Only WL-classes with five or more observations were included. 496 

Distance between classes 1 2 3 4 5 6 7 8 9 10 11 

 Fraction of classes with significant differences with given distance 

App spots 

A1 Kleine Erlauf - Wieselburg 1 1          

A2 Königseeache - Hallein 0.1 0.56 0.75 0.86 1 1 1 1 1 1  

A3 Salzach - Salzburg 0 0 0.56 0.88 0.86 0.83 1 1 1 1 1 

A4 Aare - Zollikofen 1 1 1         

A5 Alp - Einsiedeln 1 1          

A6 Dünnern - Balsthal 0.50 0.5 0 1        

A7 Limmat - Zürich 0.67 1 1         

A8 Rhein - Sevelen 0.50 1          

A9 Urtene - Moosseedorf 1 1          
 Mean 0.64 0.78 0.66 0.91 0.93 0.92 1 1 1 1 1 
 Median 0.67 1 0.75 0.88 0.93 0.92 1 1 1 1 1 

Pen-and-paper stations 

P1 Alp - Einsiedeln 0           

P2 Kleine Emme - Emmen 0 0          

P3 Kleine Emme - Werthenstein 0.50 1          

P4 Limmat - Zürich 0.50 0.67 1 1        

P5 Ova da Fuorn - SNP 0 0 0         

P6 Sellenbodenbach - Neuenkirch 0           

P7 Sihl - Sihlhölzli 0.50 1          

P8 Sihl - Sihlwald 0.25 0.33 1 1        

P9 Wigger – Zofingen 1           

P10 Dorfbach - Küsnacht 0 1 1         

P11 L'Avancon de Nant – V. d. N. 0 0 0 0.50 1 1      

P12 Tomenbach - Sihlwald 1           

 Mean 0.31 0.50 0.60 .83 1 1      

 Median 0.12 0.50 1 1 1 1      

 497 
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Abstract. Previous studies have shown that hydrological
models can be parameterised using a limited number of
streamflow measurements. Citizen science projects can col-
lect such data for otherwise ungauged catchments but an
important question is whether these observations are infor-
mative given that these streamflow estimates will be uncer-
tain. We assess the value of inaccurate streamflow estimates
for calibration of a simple bucket-type runoff model for six
Swiss catchments. We pretended that only a few observations
were available and that these were affected by different lev-
els of inaccuracy. The level of inaccuracy was based on a
log-normal error distribution that was fitted to streamflow es-
timates of 136 citizens for medium-sized streams. Two addi-
tional levels of inaccuracy, for which the standard deviation
of the error distribution was divided by 2 and 4, were used as
well. Based on these error distributions, random errors were
added to the measured hourly streamflow data. New time se-
ries with different temporal resolutions were created from
these synthetic streamflow time series. These included sce-
narios with one observation each week or month, as well
as scenarios that are more realistic for crowdsourced data
that generally have an irregular distribution of data points
throughout the year, or focus on a particular season. The
model was then calibrated for the six catchments using the
synthetic time series for a dry, an average and a wet year. The
performance of the calibrated models was evaluated based on
the measured hourly streamflow time series. The results in-
dicate that streamflow estimates from untrained citizens are
not informative for model calibration. However, if the errors
can be reduced, the estimates are informative and useful for
model calibration. As expected, the model performance in-

creased when the number of observations used for calibra-
tion increased. The model performance was also better when
the observations were more evenly distributed throughout the
year. This study indicates that uncertain streamflow estimates
can be useful for model calibration but that the estimates by
citizen scientists need to be improved by training or more
advanced data filtering before they are useful for model cali-
bration.

1 Introduction

The application of hydrological models usually requires sev-
eral years of precipitation, temperature and streamflow data
for calibration, but these data are only available for a lim-
ited number of catchments. Therefore, several studies have
addressed the question: how many data points are needed to
calibrate a model for a catchment? Yapo et al. (1996) and
Vrugt et al. (2006), using stable parameters as a criterion for
satisfying model performance, concluded that most of the in-
formation to calibrate a model is contained in 2–3 years of
continuous streamflow data and that no more value is added
when using more than 8 years of data. Perrin et al. (2007),
using the Nash–Sutcliffe efficiency criterion (NSE), showed
that streamflow data for 350 randomly sampled days out of a
39-year period were sufficient to obtain robust model param-
eter values for two bucket-type models, TOPMO, which is
derived from TOPMODEL concepts (Michel et al., 2003),
and GR4J (Perrin et al., 2003). Brath et al. (2004), using
the volume error, relative peak error and time-to-peak er-
ror, concluded that at least 3 months of continuous data were

Published by Copernicus Publications on behalf of the European Geosciences Union.
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required to obtain a reliable calibration. Other studies have
shown that discontinuous streamflow data can be informative
for constraining model parameters (Juston et al., 2009; Pool
et al., 2017; Seibert and Beven, 2009; Seibert and McDon-
nell, 2015). Juston et al. (2009) used a multi-objective cal-
ibration that included groundwater data and concluded that
the information content of a subset of 53 days of streamflow
data was the same as for the 1065 days of data from which the
subset was drawn. Seibert and Beven (2009), using the NSE
criterion, found that model performance reached a plateau
for 8–16 streamflow measurements collected throughout a 1-
year period. They furthermore showed that the use of stream-
flow data for one event and the corresponding recession re-
sulted in a similar calibration performance as the six highest
measured streamflow values during a 2-month period.

These studies had different foci and used different model
performance metrics, but nevertheless their results are en-
couraging for the calibration of hydrological models for un-
gauged basins based on a limited number of high-quality
measurements. However, the question remains: how infor-
mative are low(er)-quality data? An alternative approach to
high-quality streamflow measurements in ungauged catch-
ments is to use citizen science. Citizen science has been
proven to be a valuable tool to collect (Dickinson et al., 2010)
or analyse (Koch and Stisen, 2017) various kinds of envi-
ronmental data, including hydrological data (Buytaert et al.,
2014). Citizen science approaches use simple methods to en-
able a large number of citizens to collect data and allow local
communities to contribute data to support science and envi-
ronmental management. Citizen science approaches can be
particularly useful in light of the declining stream gauging
networks (Ruhi et al., 2018; Shiklomanov et al., 2002) and to
complement the existing monitoring networks. However, cit-
izen science projects that collect streamflow or stream level
data in flowing water bodies are still rare. Examples are the
CrowdHydrology project (Lowry and Fienen, 2013), Smart-
Phones4Water in Nepal (Davids et al., 2018) and a project in
Kenya (Weeser et al., 2018), which all ask citizens to read
stream levels at staff gauges and to send these via an app or
as a text message to a central database. Estimating stream-
flow is obviously more challenging than reading levels from
a staff gauge but citizens can apply the stick or float method,
where they measure the time it takes for a floating object
(e.g. a small stick) to travel a given distance to estimate the
flow velocity. Combined with estimates for the width and
the average depth of the stream, this allows them to obtain a
rough estimate of the streamflow. However, these streamflow
estimates may be so inaccurate that they are not useful for
model calibration. It is therefore necessary to not only eval-
uate the requirements of hydrological models in terms of the
amount and temporal resolution of data, but also in terms of
the achievable quality by the citizen scientists before starting
a citizen science project.

The effects of rating curve uncertainty on model calibra-
tion (e.g. McMillan et al., 2010; Horner et al., 2018) and

the value of sparse datasets (Davids et al., 2017) have been
quantified in recent studies. However, the potential value of
sparse datasets in combination with large uncertainties (such
as those from crowdsourced streamflow estimates) has not
been evaluated so far. Therefore, the aim of this study was
to determine the effects of observation inaccuracies on the
calibration of bucket-type hydrological models when only
a limited number of observations are available. The spe-
cific objectives of this paper are to determine (i) whether the
streamflow estimates from citizen scientists are informative
for model calibration or if these errors need to be reduced
(e.g. through training) to become useful and (ii) how the tim-
ing of the streamflow observations affects the calibration of
a hydrological model. The latter is important for citizen sci-
ence projects, as it provides guidance on whether it is useful
to encourage citizens to contribute streamflow observations
during a specific time of the year.

2 Methods

To assess the potential value of crowdsourced stream-
flow estimates for hydrological model calibration, the
HBV (Hydrologiska Byråns Vattenbalansavdelning) model
(Bergström, 1976) was calibrated against streamflow time se-
ries for six Swiss catchments, as well as for different subsets
of the data that represent citizen science data in terms of er-
rors and temporal resolution. Similar to the approach used in
several recent studies (Ewen et al., 2008; Finger et al., 2015;
Fitzner et al., 2013; Haberlandt and Sester, 2010; Seibert and
Beven, 2009), we pretended that only a small subset of the
data were available for model calibration. In addition, vari-
ous degrees of inaccuracy were assumed. The value of these
data for model calibration was then evaluated by comparing
the model performance for these subsets of data to the perfor-
mance of the model calibrated with the complete measured
streamflow time series.

2.1 HBV model

The HBV model was originally developed at the Hydrol-
ogiska Byråns Vattenbalansavdelning unit at the Swedish
Meteorological and Hydrological Institute (SMHI) by
Bergström (1976). The HBV model is a bucket-type model
that represents snow, soil, groundwater and stream routing
processes in separate routines. In this study, we used the ver-
sion HBV-light (Seibert and Vis, 2012).

2.2 Catchments

The HBV-light model was set up for six 24–186 km2 catch-
ments in Switzerland (Table 1 and Fig. 1). The catchments
were selected based on the following criteria: (i) there is lit-
tle anthropogenic influence, (ii) they are gauged at a single
location, (iii) they have reliable streamflow data during high
flow and low flow conditions (i.e. no complete freezing dur-
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Table 1. Characteristics of the six Swiss catchments used in this study. For the location of the study catchments, see Fig. 1. Long-term
averages are for the period 1974–2014, except for Verzasca for which the long-term average is for the 1990–2014 period. Regime types are
classified according to Aschwanden and Weingartner (1985).

Catchment Murg Guerbe Allenbach Riale Mentue Verzasca
di Calneggia

Gauging station Waengi Belp Adelboden Cavergno, Yvonand La Lavertezzo,
(FOEN station (2126) Mülimatt (2232) Pontit Mauguettaz Campiòi
number) (2159) (2356) (2369) (2605)

Area (km2) 79 117 29 24 105 186

Elevation Min 465 522 1297 885 445 490
(m a.s.l.) Max 1035 2176 2762 2921 927 2864

Regime type Pluvial- Pluvial- Nival-alpin Nival- Pluvial- Nivo-pluvial-
inférieur superieur méridional jurassien méridional

Min–max Dry year 0.29–1.61 0.44–1.93 0.40–2.48 0.13–3.22 0.22–2.37 0.16–2.92
Pardé Average year 0.58–2.16 0.61–1.65 0.39–2.44 0.09–2.84 0.23–2.66 0.23–3.17
coefficients Wet year 0.34–1.69 0.42–2.14 0.32–2.12 0.10–3.48 0.35–2.39 0.26–2.64

Long-term 0.68–1.34 0.77–1.39 0.35–2.70 0.14–2.70 0.46–1.57 0.23–2.22

Annual Dry year 0.72 0.37 0.86 1.301 0.41 0.98
runoff : Average year 0.55 0.48 1.731 1.381 0.52 0.66
rainfall Wet year 0.56 0.54 0.78 0.98 0.50 1.321

ratio Long-term 0.56 0.57 0.94 1.061 0.38 0.9

Long-term mean 1.84 2.75 1.23 1.43 1.64 10.76
annual streamflow
(m3 s−1)

Weather stations Aadorf- Plaffeien, Adelboden Robiei Mathod, Acquarossa,
Taenikon, Bern- Pully Cimetta,
Hörnli Zollikofen Magadino,

Piotta

1In Verzasca, Allenbach and Riale die Calneggia there are some streamflow : rainfall ratios > 1 because the weather stations are located outside the catchment and
precipitation is highly variable in alpine terrain.

ing winter and a cross section that allows accurate streamflow
measurement at low flows) and (iv) there are no glaciers. The
six selected catchments (Table 1) represent different stream-
flow regime types (Aschwanden and Weingartner, 1985).
The snow-dominated highest elevation catchments (Allen-
bach and Riale di Calneggia) have the largest seasonality
in streamflow, i.e. the biggest differences between the long-
term maximum and minimum Pardé coefficients, followed by
the rain- and snow-dominated Verzasca catchment. The rain-
dominated catchments (Murg, Guerbe and Mentue) have the
lowest seasonal variability in streamflow (Table 1). The mean
elevation of the catchments varies from 652 to 2003 m a.s.l.
(Table 1). The elevation range of each individual catchment
was divided into 100 m elevation bands for the simulations.

2.3 Measured data

Hourly runoff time series (based on 10 min measurements)
for the six study catchments were obtained from the Fed-
eral Office for the Environment (FOEN; see Table 1 for the

gauging station numbers). The average hourly areal precipi-
tation amounts were extracted for each study catchment from
the gridded CombiPrecip dataset from MeteoSwiss (Sideris
et al., 2014). This dataset combines gauge and radar precipi-
tation measurements at an hourly timescale and 1 km2 spatial
resolution and is available for the time period since 2005.

We used hourly temperature data from the automatic mon-
itoring network of MeteoSwiss (see Table 1 for the stations)
and applied a gradient of −6 ◦C per 1000 m to adjust the tem-
perature of each weather station to the mean elevation of the
catchment. Within the HBV model, the temperature was then
adjusted for the different elevation bands using a calibrated
lapse rate.

As recommended by Oudin et al. (2005), potential evap-
otranspiration was calculated using the temperature-based
potential evapotranspiration model of McGuinness and Bor-
dne (1972) using the day of the year, the latitude and the
temperature. This rather simplistic approach was considered
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Figure 1. Location of the six study catchments in Switzerland.
Shading indicates whether the catchment is located on the north
or south side of the Alps. See Table 1 for the characteristics of the
study catchments.

sufficient because this study focused on differences in model
performance relative to a benchmark calibration.

2.4 Selection of years for model calibration and

validation

The model was calibrated for an average, a dry and a wet year
to investigate the influence of wetness conditions and the
amount of streamflow on the calibration results. The years
were selected based on the total streamflow during summer
(July–September). The driest and the wettest years of the
period 2006–2014 were selected based on the smallest and
largest sum of streamflow during the summer. The average
streamflow years were selected based on the proximity to the
mean summer streamflow for all the years 1974–2014 (1990–
2014 for Verzasca). For each catchment the years that were
the 2nd-closest to the mean summer streamflow for all years,
as well as the years with the second lowest and second high-
est streamflow sum were chosen for model calibration (see
Table 2). We did this separately for each catchment because
for each catchment a different year was dry, average or wet.
For the validation, we chose the year closest to the mean sum-
mer streamflow and the years with the lowest and the highest
total summer streamflow (see Table 2). We used each of the
parameter sets obtained from calibration for the dry, average
or wet years to validate the model for each of the three val-
idation years, resulting in nine validation combinations for
each catchment (and each dataset, as described below).

Figure 2. Fit of the normal distribution to the frequency distribution
of the log-transformed relative streamflow estimates (ratio of the
estimated streamflow and the measured streamflow).

2.5 Transformation of datasets to resemble citizen

science data quality

2.5.1 Errors in crowdsourced streamflow observations

Strobl et al. (2018) asked 517 participants to estimate stream-
flow based on the stick method at 10 streams in Switzer-
land. Here we use the estimates for the medium-sized streams
Töss, Sihl and Schanzengraben in the Canton of Zurich
and the Magliasina in Ticino (n = 136), which had a sim-
ilar streamflow range at the time of the estimations (2.6–
28 m3 s−1) as the mean annual streamflow of the six streams
used for this study (1.2–10.8 m3 s−1). We calculated the
streamflow from the estimated width, depth and flow ve-
locities using a factor of 0.8 to adjust the surface flow ve-
locity to the average velocity (Harrelson et al., 1994). The
resulting streamflow estimates were normalised by dividing
them by the measured streamflow. We then combined the
normalised estimates of all four rivers and log-transformed
the relative estimates. A normal distribution with a mean of
0.12 and a standard deviation of 1.30 fits the distribution of
the log-transformed relative estimates well (standard error of
the mean: 0.11, standard error of the standard deviation: 0.08;
Fig. 2).

To create synthetic datasets with data quality character-
istics that represent the observed crowdsourced streamflow
estimates, we assumed that the errors in the streamflow esti-
mates are uncorrelated (as they are likely provided by differ-
ent people). For each time step, we randomly selected a rel-
ative error value from the log-normal distribution of the rel-
ative estimates (Fig. 2) and multiplied the measured stream-
flow with this relative error. To simulate the effect of training
and to obtain time series with different data quality, two ad-
ditional streamflow time series were created using a standard
deviation divided by 2 (standard deviation of 0.65) and by 4
(standard deviation of 0.33). This reduces the spread in the
data (but does not change the small systematic overestima-
tion of the streamflow), so large outliers are still possible,
but are less likely. To summarise, we tested the following
four cases.
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Table 2. The calibration years (second most extreme and second closest to average years) and validation years (most extreme and closest to
average years) for each catchment. The numbers in parentheses are the ranks over the period 1974–2014 (or 1990–2014 for Verzasca).

Year Murg Guerbe Allenbach Riale di Mentue Verzasca
character Calneggia

Calibration

Wet 2007 (3) 2007 (2) 2007 (4) 2009 (11) 2014 (7) 2011 (4)
Dry 2013 (8) 2011 (8) 2009 (11) 2012 (8) 2010 (4) 2013 (5)
Average 2008 (6) 2008 (17) 2013 (7) 2013 (2) 2006 (6) 2007 (7)

Validation

Wet 2014 (1) 2014 (1) 2014 (1) 2008 (9) 2007 (1) 2008 (1)
Dry 2009 (7) 2013 (5) 2012 (9) 2006 (5) 2009 (3) 2010 (4)
Average 2011 (4) 2006 (13) 2011 (6) 2011 (1) 2013 (2) 2006 (4)

– No error: the data measured by the FOEN, assumed to
be (almost) error-free, the benchmark in terms of qual-
ity.

– Small error: random errors according to the log-normal
distribution of the snapshot campaigns with the standard
deviation divided by 4.

– Medium error: random errors according to the log-
normal distribution of the surveys with the standard de-
viation divided by 2.

– Large error: typical errors of citizen scientists, i.e. ran-
dom errors according to the log-normal distribution of
errors from the surveys.

2.5.2 Filtering of extreme outliers

Usually some form of quality control is used before citi-
zen science data are analysed. Here, we used a very sim-
ple check to remove unrealistic outliers from the synthetic
datasets. This check was based on the likely minimum and
maximum streamflow for a given catchment area. We de-
fined an upper limit of possible streamflow values as a func-
tion of the catchment area using the dataset of maximum
streamflow from 1500 Swiss catchments provided by Scher-
rer AG, Hydrologie und Hochwasserschutz (2017). To ac-
count for the different precipitation intensities north and
south of the Alps, different curves were created for the catch-
ments on each side of the Alps. All streamflow observations,
i.e. modified streamflow measurements, above the maximum
observed streamflow for a particular catchment size includ-
ing a 20 % buffer (Fig. S1), were replaced by the value of the
maximum streamflow for a catchment of that size. This af-
fected less than 0.5 % of all data points. A similar procedure
was used for low flows based on a dataset of the FOEN with
the lowest recorded mean streamflows over 7 days but this
resulted in no replacements.

Table 3. Weights assigned to specific seasons, days and times of
the day for the random selection of data points for Crowd52 and
Crowd12. The weights for each hour were multiplied and nor-
malised. We then used them as probabilities for the individual hours.
For times without daylight the probability was set to zero.

Variable Weight

Season

December–February 2
March–May/September–November 6
June–August 10

Day

Saturdays–Sundays 3
Monday–Friday 1

Time

Times when people have breaks 06:00–08:00, 3
12:00–13:00,
17:00–21:00

Times with daylight in winter 08:00–16:00 1
(December–February)

Times with daylight in spring/fall 07:00–19:00 1
(March–May/September–November):

Times with daylight in summer 06:00–21:00 1
(June–August)

Other times (depending on season) 0

2.5.3 Temporal resolution of the observations

Data entries from citizen scientists are not as regular as data
from sensors with a fixed temporal resolution. Therefore, we
decided to test eight scenarios with a different temporal res-
olution and distribution of the data throughout the year to
simulate different patterns in citizen contributions.

– Hourly: one data point per hour (8760 ≤ n ≤ 8784, de-
pending on the year).
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– Weekly: one data point per week, every Saturday, ran-
domly between 06:00 and 20:00 (52 ≤ n ≤ 53).

– Monthly: one data point per month on the 15th of the
month, randomly between 06:00 and 20:00 (n = 12).

– IntenseSummer: one data point every other day from
July until September, randomly between 06:00 and
20:00 (∼ 15 observations per month, n = 46).

– WeekendSummer: one data point each Saturday and
each Sunday between May and October, randomly be-
tween 06:00 and 20:00 (52 ≤ n ≤ 54).

– WeekendSpring: one data point on each Saturday and
each Sunday between March and August, randomly be-
tween 06:00 and 20:00 (52 ≤ n ≤ 54).

– Crowd52: 52 random data points during daylight (in or-
der to be comparable to the Weekly, IntenseSummer,
WeekendSummer and WeekendSpring time series).

– Crowd12: 12 random data points during daylight (com-
parable to the Monthly data).

Except for the hourly data, these scenarios were based on
our own experiences within the CrowdWater project (https:
//www.crowdwater.ch, last access: 3 October 2018) and in-
formation from the CrowdHydrology project (Lowry and
Fienen, 2013). The hourly dataset was included to test the
effect of errors when the temporal resolution of the data
is optimal (i.e. by comparing simulations for the models
calibrated with the hourly FOEN data and those calibrated
with hourly data with errors). In the two scenarios Crowd52
and Crowd12, with random intervals between data points,
we assigned higher probabilities for periods when people
are more likely to be outdoors (i.e. higher probabilities for
summer than winter, higher probabilities for weekends than
weekdays, higher probabilities outside office hours; Table 3).
Times without daylight (dependent on the season) were al-
ways excluded. We used the same selection of days, includ-
ing the same times of the day for each of the four different
error groups, years and catchments to allow comparison of
the different model results.

2.6 Model calibration

For each of the 1728 cases (6 catchments, 3 calibration years,
4 error groups, 8 temporal resolutions), the HBV model was
calibrated by optimising the overall consistency performance
POA (Finger et al., 2011) using a genetic optimisation algo-
rithm (Seibert, 2000). The overall consistency performance
POA is the mean of four objective functions with an opti-
mum value of 1: (i) NSE, (ii) the NSE for the logarithm of
streamflow, (iii) the volume error and (iv) the mean abso-
lute relative error (MARE). The parameters were calibrated
within their typical ranges (see Table S1 in the Supplement.).

To consider parameter uncertainty, the calibration was per-
formed 100 times, which resulted in 100 parameter sets for
each case. For each case, the preceding year was used for the
warm-up period. For the Crowd52 and Crowd12 time series,
we used 100 different random selections of times, whereas
for the regularly spaced time series the same times were used
for each case.

2.7 Model validation and analysis of the model results

The 100 parameters from the calibration for each case were
used to run the model for the validation years (Table 2). For
each case (i.e. each catchment, year, error magnitude and
temporal resolution), we determined the median validation
POA for the 100 parameter sets for each validation year. We
analysed the validation results of all years combined and for
all nine combinations of dry, mean and wet years separately.

Because the focus of this study was on the value of limited
inaccurate streamflow observations for model calibration, i.e.
the difference in the performance of the models calibrated
with the synthetic data series compared to the performance
of the models calibrated with hourly FOEN data, all model
validation performances are expressed relative to the aver-
age POA of the model calibrated with the hourly FOEN data
(our upper benchmark, representing the fully informed case
when continuous high quality streamflow data are available).
A relative POA of 1 indicates that the model performance
is as good as the performance of the model calibrated with
the hourly FOEN data, whereas lower POA values indicate a
poorer performance.

In humid climates, the input data (precipitation and tem-
perature) often dictate that model simulations can not be too
far off as long as the water balance is respected (Seibert et al.,
2018). To assess the value of limited inaccurate streamflow
data for model calibration compared to a situation without
any streamflow data, a lower benchmark (Seibert et al., 2018)
was used. Here, the lower benchmark was defined as the me-
dian performance of the model ran with 1000 random param-
eters sets. By running the model with 1000 randomly chosen
parameter sets, we represent a situation where no streamflow
data for calibration are available and the model is driven only
by the temperature and precipitation data. We used 1000 dif-
ferent parameter sets to cover most of the model variabil-
ity due to the different parameter combinations. The Mann–
Whitney U test was used to evaluate whether the median POA

for a specific error group and temporal resolution of the data
was significantly different from the median POA for the lower
benchmark (i.e. the model runs with random parameters). We
furthermore checked for differences in model performance
for models calibrated with the same data errors but differ-
ent temporal resolutions using a Kruskal–Wallis test. By ap-
plying a Dunn–Bonferroni post hoc test (Bonferroni, 1936;
Dunn, 1959, 1961), we analysed which of the validation re-
sults were significantly different from each other.
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The random generation of the 100 crowdsourced-like
datasets (i.e. the Crowd52 and Crowd12 scenario) for each
of the catchments and year characteristics resulted in time
series with a different number of high flow estimates. In or-
der to find out whether the inclusion of more high flow val-
ues resulted in a better validation performance, we defined
the threshold for high flows as the streamflow value that was
exceeded 10 % of the time in the hourly FOEN streamflow
dataset. The Crowd52 and Crowd12 datasets were then di-
vided into a group that had more than the expected 10 % high
flow observations and a group that had fewer high flow obser-
vations. To determine if more high flow data improve model
performance, the Mann–Whitney U test was used to compare
the relative median POA of the two groups.

3 Results

3.1 Upper benchmark results

The model was able to reproduce the measured streamflow
reasonably well when the complete and unchanged hourly
FOEN datasets were used for calibration, although there
were also a few exceptions. The average validation POA was
0.61 (range: 0.19–0.83; Table 4). The validation performance
was poorest for the Guerbe (validation POA = 0.19) because
several high flow peaks were missed or underestimated by
the model for the wet validation year. Similarly, the valida-
tion for the Mentue for the dry validation year resulted in a
low POA (0.23) because a very distinct peak at the end of the
year was missed and summer low flows were overestimated.
The third lowest POA value was also for the Guerbe (dry val-
idation year) but already had a POA of 0.35. Six out of the
nine lowest POA values were for dry validation years. Vali-
dation for wet years for the models calibrated with data from
wet years resulted in the best validation results (i.e. highest
POA values; Table 4).

3.2 Effect of errors on the model validation results

Not surprisingly, increasing the errors in the streamflow data
used for model calibration led to a decrease in the model per-
formance (Fig. 4). For the small error category, the median
validation performance was better than the lower benchmark
for all temporal resolutions (Fig. 4 and Table S2). For the
medium error category, the median validation performance
was also better than the lower benchmark for all scenarios,
except for the Crowd12 dataset. For the model calibrated
with the dataset with large errors, only the Hourly dataset
was significantly better than the lower benchmark (Table 5).

3.3 Effect of the data resolution on the model

validation results

The Hourly measurement scenario resulted in the best val-
idation performance for each error group, followed by the

Weekly data, and then usually the Crowd52 data (Fig. 4).
Although the median validation performance of the models
calibrated with the Weekly datasets was better than for the
Crowd52 dataset for all error cases, the difference was only
statistically significant for the no error category (Fig. 5).

The validation performance of the models calibrated with
the Weekly and Crowd52 datasets was better than for the sce-
narios focused on spring and summer observations (Week-
endSpring, WeekendSummer and IntenseSummer). The me-
dian model performance for the Weekly dataset was signifi-
cantly better than the datasets focusing on spring and sum-
mer for the no, small and medium error groups. The me-
dian performance of the Crowd52 dataset was only signifi-
cantly better than all three measurement scenarios focusing
on spring or summer for the small error case (Fig. 5). The
model validation performance for the WeekendSummer and
IntenseSummer scenarios decreased faster with increasing
errors compared to the Weekly, Crowd52 or WeekendSpring
datasets (Fig. 4). The median validation POA for the mod-
els calibrated with the WeekendSpring observations was bet-
ter than for the models calibrated with the WeekendSummer
and IntenseSummer datasets but the differences were only
significant for the small, medium and large error groups. The
differences in the model performance results for the observa-
tion strategies that focussed on summer (IntenseSummer and
WeekendSummer) were not significant for any of the error
groups (Fig. 5).

The median model performance for the regularly spaced
Monthly datasets with 12 observations was similar to the me-
dian performance for the three datasets focusing on summer
with 46–54 measurements (WeekendSpring, WeekendSum-
mer and IntenseSummer), except for the case of large errors
for which the monthly dataset performed worse. The irregu-
larly spaced Crowd12 time series resulted in the worst model
performance for each error group, but the difference from the
performance for the regularly spaced Monthly data was only
significant for the dataset with large errors (Fig. 5).

3.4 Effect of errors and data resolution on the

parameter ranges

For most parameters the spread in the optimised parameter
values was smallest for the upper benchmark. The spread
in the parameter values increased with increasing errors in
the data used for calibration, particularly for MAXBAS (the
routing parameter) but also for some other parameters (e.g.
TCALT, TT and BETA). However, for some parameters (e.g.
CFMAX, FC, and SFCF) the range in the optimised param-
eter values was mainly affected by the temporal resolution
of the data and the number of data points used for calibra-
tion. It should be noted though that the changes in the range
of model parameters differed significantly for the different
catchments and the trends were not very clear.
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Table 4. Median and the full range of the overall consistency performance POA scores for the upper benchmark (hourly FOEN data). The
POA values for the dry, average and wet calibration years were used as the upper benchmarks for the evaluation based on the year character
(Figs. 6 and S2 in the Supplement); the values in the “overall median” column were used as the benchmarks in the overall median performance
evaluation shown in Fig. 4.

Calibration year Dry Average Wet Overall median

Validation wet year

Upper benchmark 0.63 0.65 0.66
(0.19–0.79) (0.36–0.8) (0.45–0.8)

Lower benchmark 0.34
(−0.02–0.47) Upper benchmark

Validation average year 0.61

Upper benchmark 0.59 0.61 0.53 (0.19–0.83)
(0.49–0.64) (0.45–0.78) (0.36–0.77)

Lower benchmark 0.36 Lower benchmark
(0.03–0.59) 0.34

Validation dry year (−0.02–0.59)

Upper benchmark 0.51 0.59 0.53
(0.35–0.71) (0.41–0.83) (0.23–0.74)

Lower benchmark 0.35
(0.09–0.52)

3.5 Influence of the calibration and validation year and

number of high flow data points on the model

performance

The influence of the validation year on the model perfor-
mance was larger than the effect of the calibration year
(Figs. 6 and S2). In general model performance was poor-
est for the dry validation years. The model performances of
all datasets with fewer observations or bigger errors than the
Hourly datasets without errors were not significantly better
than the lower benchmark for the dry validation years, except
for Crowd52 in the no error group when calibrated with data
from a wet year. However, even for the wet validation years
some observation scenarios of the no error and small er-
ror group did not lead to significantly better model valida-
tion results compared to the median validation performance
for the random parameters. Interestingly, the IntenseSummer
dataset in the no error group resulted in a very good perfor-
mance when the model was calibrated for a dry year and also
validated in a dry year compared to its performance in the
other calibration and validation year combinations. The me-
dian model performance was however not significantly bet-
ter than the lower benchmark due to the low performance for
the Guerbe and Allenbach (outliers beyond figure margins in
Fig. 6). The validation results for these two catchments were
the worst for all the no error–IntenseSummer datasets for all
calibration and validation year combinations.

For 13 out of the 18 catchment and year combinations,
the Crowd52 datasets with fewer than 10 % high streamflow

data points led to a better validation performance than the
Crowd52 datasets with more high streamflow data points.
For six of them, the difference in model performance was
significant. For none of the five cases where more high flow
data points led to a better model performance was the dif-
ference significant. Also when the results were analysed
by year character or catchment, there was no improvement
when more high flow values were included in the calibration
dataset.

4 Discussion

4.1 Usefulness of inaccurate streamflow data for

hydrological model calibration

In this study, we evaluated the information content of stream-
flow estimates by citizen scientists for calibration of a
bucket-type hydrological model for six Swiss catchments.
While the hydroclimatic conditions, the model or the calibra-
tion approach might be different in other studies, these results
should be applicable for a wide range of cases. However, for
physically based spatially distributed models that are usually
not calibrated automatically, the use of limited streamflow
data would probably benefit from a different calibration ap-
proach. Furthermore, our results might not be applicable in
arid catchments where rivers become dry for some periods of
the year because the linear reservoirs used in the HBV model
are not appropriate for such systems.
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Figure 3. Examples of streamflow time series used for calibration with small, medium and large errors and different temporal resolutions
(Weekly, Crowd52 and WeekendSpring) for the Mentue in 2010. Large error: adjusted FOEN data with errors resulting from the log-normal
distribution fitted to the streamflow estimates from citizen scientists (see Fig. 2). Medium error: same as large error, but the standard deviation
of the log-normal distribution was divided by 2. Small error: same as the large error, but the standard deviation of the log-normal distribution
was divided by 4. The grey line represents the measured streamflow, and the dots the derived time series of streamflow observations. Note
that especially in the large error category some dots lie outside the figure margins.

Streamflow estimates by citizens are sometimes very dif-
ferent from the measured values, and the individual estimates
can be disinformative for model calibration (Beven, 2016;
Beven and Westerberg, 2011). The results show that if the
streamflow estimates by citizen scientists were available at
a high temporal resolution (hourly), these data would still
be informative for the calibration of a bucket-type hydrologi-
cal model despite their high uncertainties. However, observa-
tions with such a high resolution are very unlikely to be ob-
tained in practice. All scenarios with error distributions that
represent the estimates from citizen scientists with fewer ob-
servations were no better than the lower benchmark (using
random parameters). With medium errors, however, and one
data point per week on average or regularly spaced monthly
data, the data were informative for model parameterisation.

Reducing the standard deviation of the error distribution by a
factor of 4 led to a significantly improved model performance
compared to the lower benchmark for all the observation sce-
narios.

A reduction in the errors of the streamflow estimates could
be achieved by training of citizen scientists (e.g. videos), im-
proved information about feasible ranges for stream depth,
width and velocity, or examples of streamflow values for
well-known streams. Filtering of extreme outliers can also
reduce the spread of the estimates. This could be done with
existing knowledge of feasible streamflow values for a catch-
ment of a given area or the amount of rainfall right before
the estimate is made to determine if streamflow is likely to
be higher or lower than for the previous estimate. More de-

www.hydrol-earth-syst-sci.net/22/5243/2018/ Hydrol. Earth Syst. Sci., 22, 5243–5257, 2018



5252 S. Etter et al.: Value of uncertain streamflow observations for hydrological modelling

Figure 4. Box plots of the median model performance relative to the upper benchmark for all datasets. The grey rectangles around the boxes
indicate non-significant differences in median model performance compared to the lower benchmark with random parameter sets. The box
represents the 25th and 75th percentile, the thick horizontal line represents the median, the whiskers extend to 1.5 times the interquartile
range below the 25th percentile and above the 75th percentile and the dots represent the outliers. The numbers at the bottom indicate the
number of outliers beyond the figure margins; n is the number of streamflow observations used for model calibration. The result of the hourly
benchmark FOEN dataset has some spread because the results of the 100 parameters sets were divided by their median performance. A
relative POA of 1 indicates that the model performance is as good as the performance of the model calibrated with the hourly FOEN data
(upper benchmark).

tailed research is necessary to test the effectiveness of such
methods.

Le Coz et al. (2014) reported an uncertainty in stage–
discharge streamflow measurements of around 5 %–20 %.
McMillan et al. (2012) summarised streamflow uncertainties
from stage–discharge relationships in a more detailed review
and gave a range of ±50 %–100 % for low flows, ±10 %–
20 % for medium or high (in-bank) flows and ±40 % for out-
of-bank flows. The errors for the most extreme outliers in
the citizen estimates are considerably higher, and could dif-
fer up to a factor of 10 000 from the measured value in the
most extreme but rare cases (Fig. 2). Even with reduced stan-
dard deviations of the error distribution by a factor of 2 or 4,
the observations in the most extreme cases can still differ by
a factor of 100 and 10. The percentage of data points that
differed from the measured value by more than 200 % was
33 % for the large error group, 19 % for the medium error
group and 4 % for the small error group. Only 3 % of the
data points were more than 90 % below the measured value
in the large error group and 0 % for both in the medium and
small error classes. If such observations are used for model
calibration without filtering, they are seen as extreme floods
or droughts, even if the actual conditions may be close to av-
erage flow. Beven and Westerberg (2011) suggest isolating
periods of disinformative data. It is therefore beneficial to

identify such extreme outliers, independent of a model, e.g.
with knowledge of feasible maximum and minimum stream-
flow quantities, as used in this study, with the help of the
maximum regionalised specific streamflow values for a given
catchment area.

4.2 Number of streamflow estimates required for

model calibration

In general, one would assume that the calibration of a model
becomes better when there are more data (Perrin et al., 2007),
although others have shown that the increase in model perfor-
mance plateaus after a certain number of measurements (Jus-
ton et al., 2009; Pool et al., 2017; Seibert and Beven, 2009;
Seibert and McDonnell, 2015). In this study, we limited the
length of the calibration period to 1 year because in practice it
may be possible to obtain a limited number of measurements
during a 1-year period for ungauged catchments before the
model results are needed for a certain application, as has been
assumed in previous studies (Pool et al., 2017; Seibert and
McDonnell, 2015). While a limited number of observations
(12) was informative for model calibration when the data un-
certainties were limited, the results of this study also suggest
that the performance of bucket-type models decreases faster
with increasing errors when fewer data points are available
(i.e. there was a faster decline in model performance with in-
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Figure 5. Results (p values) of the Kruskal–Wallis with Bonfer-
roni post hoc test to determine the significance of the difference in
the median model performance for the data with different temporal
resolutions within each data quality group (no error a, small error
b, medium error c, and large error d). Blue shades represent the p
values. White triangles indicate p values < 0.05 and white stars in-
dicate p values that, when adjusted for multiple comparisons, are
still < 0.05.

creasing errors for models calibrated with 12 data points than
for the models calibrated with 48–52 data points). This find-
ing was most pronounced when comparing the model perfor-
mance for the small and medium error groups (Fig. 4). These
findings can be explained by the compensating effect of the
number of observations and their accuracy because the ran-
dom errors for the inaccurate data average out when a large
number of observations are used, as long as the data do not
have a large bias.

4.3 Best timing of streamflow estimates for model

calibration

The performance of the parameter sets depended on the tim-
ing and the error distribution of the data used for model cal-
ibration. The model performance was generally better if the
observations were more evenly spread throughout the year.
For example, for the cases of no and small errors, the per-
formance of the model calibrated with the Monthly dataset
with 12 observations was better than for the IntenseSum-
mer and WeekendSummer scenarios with 46–54 observa-
tions. Similarly, the less clustered observation scenarios per-
formed better than the more clustered scenarios (i.e. Weekly
vs. Crowd52, Monthly vs. Crowd12, Crowd52 vs. Intens-
eSummer, etc.). This suggests that more regularly distributed
data over the year lead to a better model calibration. Juston

et al. (2009) compared different subsamples of hydrological
data for a 5.6 km2 Swedish catchment and found that includ-
ing inter-annual variability in the data used for the calibration
of the HBV model reduced the model uncertainties. More
evenly distributed observations throughout the year might
represent more of the within-year streamflow variability and
therefore result in improved model performance. This is good
news for using citizen science data for model calibration as it
suggests that the timing is not as important as the number of
observations because it is likely much easier to get observa-
tions throughout the year than during specific periods or flow
conditions.

When comparing the WeekendSpring, WeekendSummer
and IntenseSummer datasets, it seems that it was in most
cases more beneficial to include data from spring rather than
summer. This tendency was more pronounced with increas-
ing data errors. The reason for this might be that the Week-
endSpring scenario includes more snowmelt or rain-on-snow
event peaks, in addition to usually higher baseflow, and there-
fore contains more information on the inter-annual variability
in streamflow.

By comparing different variations of 12 data points to cal-
ibrate the HBV model, Pool et al. (2017) found that a dataset
that contains a combination of different maximum (monthly,
yearly etc.) and other flows in model calibration led to the
best model performance but also that the differences in per-
formance for the different datasets covering the range of
flows were small. In our study we did not specifically fo-
cus on the high or low flow data points, and therefore did not
have datasets that contained only high flow estimates, which
would be very difficult to obtain with citizen science data.
However, our findings similarly show that for model cali-
bration for catchments with seasonal variability in stream-
flow it is beneficial to obtain data for different magnitudes
of flow. Furthermore, we found that data points during rela-
tively dry periods are beneficial for validation or prediction
in another year and might even be beneficial for years with
the same characteristics, as was shown for the improved vali-
dation performance of the IntenseSummer dataset compared
to the other datasets when data from dry years were used for
calibration (Fig. 6).

4.4 Effects of different types of years on model

calibration and validation

The calibration year, i.e. the year in which the observations
were made, was not decisive for the model performance.
Therefore, a model calibrated with data from a dry year can
still be useful for simulations for an average or wet year.
This also means that data in citizen science projects can
be collected during any year and that these data are use-
ful for simulating streamflow for most years, except the dri-
est years. However, model performance did vary significantly
for the different validation years. The results during dry val-
idation years were almost never significantly better than the
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Figure 6. Median model validation performance for the datasets calibrated and validated both in a dry year and in a wet year. Each horizontal
line represents the median model performance for one catchment. The black bold line represents the median for the six catchments. The grey
rectangles around the boxes indicate non-significant differences in median model performance for the six catchments compared to the lower
benchmark with random parameters. The numbers at the bottom indicate the number of outliers beyond the figure margins. For the individual
POA values of the upper benchmark (no error–Hourly dataset) in the different calibration and validation years, see Table 4.

lower benchmark (Fig. S2). This might be due to the objec-
tive function that was used in this study. Especially the NSE
was lower for dry years because the flow variance (i.e. the de-
nominator in the equation) is smaller when there is a larger
variation in streamflow. Also, these results are based on six
median model performances, and therefore, outliers have a
big influence on the significance of results (Fig. S2).

Lidén and Harlin (2000) used the HBV-96 model by Lind-
ström et al. (1997) with changes suggested by Bergström
et al. (1997) for four catchments in Europe, Africa and
South America. They achieved better model results for wet-
ter catchments and argued that during dry years evapotran-
spiration plays a bigger role and therefore the model perfor-
mance is more sensitive to inaccuracies in the simulation of
the evapotranspiration processes. The fact that we used a very
simple method to calculate the potential evapotranspiration
(McGuinness and Bordne, 1972) might also explain why the
model performed less well during dry years.

The model parameterisation, obtained from calibration us-
ing the IntenseSummer dataset, resulted in a surprisingly
good performance for the validation for a more extreme dry
year for four out of the six catchments. For the two catch-
ments for which the performance for the IntenseSummer
dataset was poor (Guerbe and Allenbach), the weather sta-
tions are located outside the catchment boundaries. Espe-
cially during dry periods missed streamflow peaks due to
misrepresentation of precipitation can affect model perfor-

mance a lot. The fact that always one of these two catch-
ments had the worst model performance for all the no error–
IntenseSummer runs furthermore indicates that the July–
September period might not be suitable to represent char-
acteristic runoff events for these catchments. The bad per-
formance for these two catchments for the IntenseSummer–
no error run with calibration and validation in the dry year
resulted in the insignificant improvement in model perfor-
mance compared to the lower benchmark. Because the wet-
ness of a year was based on the summer streamflow, these
findings suggest that data obtained during times of low flow
result in improved validation performance during dry years
compared to data collected during other times (Fig. S2). This
suggests that if the interest is in understanding the streamflow
response during very dry years, it is important to obtain data
during the dry period. To test this hypothesis, more detailed
analyses are needed.

4.5 Recommendations for citizen science projects

Our results show that streamflow estimates from citizens are
not informative for hydrological model calibration, unless
the errors in the estimates can be reduced through training
or advanced filtering of the data to reduce the errors (i.e.
to reduce the number of extreme outliers). In order to make
streamflow estimates useful, the standard deviation of the er-
ror distribution of the estimates needs to be reduced by a fac-
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tor of 2. Gibson and Bergman (1954) suggest that errors in
distance estimates can be reduced from 33 % to 14 % with
very little training. These findings are encouraging, although
their tests covered distances larger than 365 m (400 yards)
and the widths of the medium-sized rivers for which the
streamflow was estimated were less than 40 m (Strobl et al.,
2018). Options for training might be tutorial videos, as well
as lists with values for the width, average depth and flow ve-
locity of well-known streams (Strobl et al., 2018). In order
to determine the effect of training on streamflow estimates,
further research has to be done because especially the depth
estimates were inaccurate (Strobl et al., 2018).

The findings of this study suggest the following recom-
mendations for citizen science projects that want to use
streamflow estimates:

– Collect as many data points as possible. In this study
hourly data always led to the best model performance.
It is therefore beneficial to collect as many data points
as possible. Because it is unlikely that hourly data are
obtained, we suggest to aim for (on average) one obser-
vation per week. Provided that the standard deviation
of the streamflow estimates can be reduced by a factor
of 2, 52 observations (as in the Crowd52 data series)
are informative for model calibration. Therefore, it is
essential to invest in advertisement of a project and to
find suitable locations where many people can poten-
tially contribute, as well as to communicate to the citi-
zen scientists that it is beneficial to submit observations
regularly.

– Encourage observations throughout the year. To further
improve the model performance, or to allow for greater
errors, it is beneficial to have observations at all types
of flow conditions during the year, rather than during a
certain season.

Observations during high streamflow conditions were in
most cases not more informative than flows during other
times of the year. Efforts to ask citizens to submit obser-
vations during specific flow conditions (e.g. by sending re-
minders to the citizen observers) do not seem to be very ef-
fective in light of the above findings. It is rather more bene-
ficial to remind them to submit observations regularly.

Instead of focussing on training to reduce the errors in the
streamflow estimates, an alternative approach for citizen sci-
ence projects is to switch to a parameter that is easier to es-
timate, such as stream levels (Lowry and Fienen, 2013). Re-
cent studies successfully used daily stream-level data (Seib-
ert and Vis, 2016) and stream-level class data (van Meerveld
et al. 2017) to calibrate hydrological models, and other stud-
ies have demonstrated the potential value of crowdsourced
stream level data for providing information on, e.g. baseflow
(Lowry and Fienen, 2013), or for improving flood forecasts
(Mazzoleni et al., 2017). However, further research is needed

to determine if real crowdsourced stream-level (class) data
are informative for the calibration of hydrological models.

5 Conclusions

The results of this study extend previous studies on the value
of limited hydrological data for hydrological model calibra-
tion or the best timing of streamflow measurements for model
calibration (Juston et al., 2009; Pool et al., 2017; Seibert and
McDonnell, 2015) that did not consider observation errors.
This is an important aspect, especially when considering cit-
izen science approaches to obtain streamflow data. Our re-
sults show that inaccurate streamflow data can be useful for
model calibration, as long as the errors are not too large.
When the distribution of errors in the streamflow data rep-
resented the distribution of the errors in the streamflow es-
timates from citizen scientists, this information was not in-
formative for model calibration (i.e. the median performance
of the models calibrated with these data was not significantly
better than the median performance of the models with ran-
dom parameter values). However, if the standard deviation of
the estimates is reduced by a factor of 2, then the (less) inac-
curate data would be informative for model calibration. We
furthermore demonstrated that realistic frequencies for cit-
izen science projects (one observation on average per week
or month) can be informative for model calibration. The find-
ings of studies such as the one presented here provide impor-
tant guidance on the design of citizen science projects as well
as other observation approaches.
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Supplemental Material 1 

Model parameters 2 

Table S1 Parameter ranges used for calibration of the HBV-model 3 

Parameter Descriptiona Unit Min Max 
Rescaling Parameters of Input Data 

PCALT change in precipitation with elevation % (100m)-1 5 15 

TCALT change in temperature with elevation °C (10m)-1 0.5 1.5 

Snow and ice melt parameters 

TT threshold temperature for liquid and solid precipitation °C -3 1 

CFMAX degree-day factor mmd-1°C-1 0.06 10 

SFCF snowfall correction factor - 0.4 1.6 

CFR refreezing coefficient -  0.001  0.9 

CWH water holding capacity of the snow storage - 0.001 0.9 

Soil Parameters 

PERC maximum percolation from upper to lower groundwater storage mm d-1 0  3 

UZL threshold parameter mm 0 100 

K0 storage (or recession) coefficient 0 d-1 0.001 0.5 

K1 storage (or recession) coefficient 1 d-1 0.0001 0.2 

K2 storage (or recession) coefficient 2 d-1 2E-06 0.005 

MAXBAS length of triangular weighting function H 1 7 

FC maximum soil moisture storage Mm 50 550 

LP soil moisture value above which actual evapotranspiration reaches potential 

evapotranspiration 

- 0.3 1 

Beta shape factor for the function used to calculate the distribution of rain and snow melt 

going to runoff and soil box, respectively 

- 1 5 

aa detailed description of the model parameters is given in (Seibert and Vis, 2012). 
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Significance of median model performance compared to the lower benchmark 5 

Table S2 Significance of the differences in median model performance for each temporal resolution and an error 6 
group compared to the lower benchmark (Mann-Whitney U-test). The p-values of the Kruskal-Wallis test for the 7 
within group variability in the lowermost row shows that the median model performance of the different error groups 8 
was significantly different. 9 

 No Error Small Error Medium Error Large Error 

Hourly <0.01 <0.01 <0.01 <0.01 

Weekly <0.01 <0.01 <0.01 0.75 

Crowd52 <0.01 <0.01 <0.01 0.40 

Monthly <0.01 <0.01 <0.01 0.03* 

Crowd12 <0.01 <0.01 0.11 <0.01* 

WeekendSpring <0.01 <0.01 <0.01 0.40 

WeekendSummer <0.01 <0.01 <0.01 0.46 

IntenseSummer <0.01 0.01 0.04 0.21 

Within error group <0.01 <0.01 <0.01 <0.01 

* These datasets result in significantly worse results than random parameters. 
 10 

  11 



3 

 

 

Extreme outlier removal for the northern and southern side of the Alps  12 

 

Figure S1 Relation between catchment area and maximum (a, b) and minimum (c, d) specific streamflow for 

catchments on the north (a, c) and south (b, d) of the Alps. The dashed light blue line is the Pareto front including 

the 20 % buffer. The red lines are the fitted logarithmic models used to find the maximum and minimum possible 

flow for each catchment. 

 



4 

 

 

 13 

Figure S2 Median model validation performance for all datasets used for calibration during the different validation periods. Each horizontal line represents the median model 14 
performance for one catchment. The black bold line represents the median for the six catchments. The grey rectangles around the boxes indicate non-significant differences in median 15 
model performance for the six catchments compared to the lower benchmark with random parameters. The numbers at the bottom indicate the number of outliers beyond the figure 16 
margins. For the individual POA values of the upper benchmark (no error – Hourly dataset) in the different calibration and validation years see Table 4. 17 
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Value of Crowd‐Based Water Level Class Observations
for Hydrological Model Calibration

S. Etter1, B. Strobl1, J. Seibert1,2, and H. J. Ilja van Meerveld1

1Department of Geography, University of Zurich, Zurich, Switzerland, 2Department of Aquatic Sciences and Assessment,

Swedish University of Agricultural Sciences, Uppsala, Sweden

Abstract While hydrological models generally rely on continuous streamflow data for calibration,

previous studies have shown that a few measurements can be sufficient to constrain model parameters.

Other studies have shown that continuous water level or water level class (WL‐class) data can be informative

for model calibration. In this study, we combined these approaches and explored the potential value of a

limited number of WL‐class observations for calibration of a bucket‐type runoff model (HBV) for four

catchments in Switzerland. We generated synthetic data to represent citizen science data and examined the

effects of the temporal resolution of the observations, the numbers of WL‐classes, and the magnitude of the

errors in the WL‐class observations on the model validation performance. Our results indicate that on

average one observation per week for a 1‐year period can significantly improve model performance

compared to the situation without any streamflow data. Furthermore, the validation performance for model

parameters calibrated with WL‐class observations was similar to the performance of the calibration with

precise water level measurements. The number of WL‐classes did not influence the validation performance

noticeably when at least four WL‐classes were used. The impact of typical errors for citizen science‐based

estimates of WL‐classes on the model performance was small. These results are encouraging for citizen

science projects where citizens observe water levels for otherwise ungauged streams using virtual or physical

staff gauges.

Plain Language Summary Normally, multiple years of streamflow measurements are used to

calibrate a hydrological model for a specific catchment so that it can be used to, for instance, predict

floods or droughts. Taking these measurements is expensive and requires a lot of effort. Therefore, such data

are oftenmissing, especially in remote areas and developing countries. We investigated the potential value of

water level class (WL‐class) data for model calibration. WL‐classes can be observed by citizens with the

help of a virtual ruler with different classes that is pasted onto a picture of a stream bank as a sticker (see

Figure 2). We show that one WL‐class observation per week for 1 year improves model calibration compared

to situations without streamflow data. Themodel results for theWL‐class observations were as good as precise

water level observations that require a physical staff gauge or continuous water level data measurements

that can be obtained from a water level sensor that is installed in the stream. However, the results were not as

good as when streamflow data were used formodel calibration, but these are more expensive to collect. Errors

in the WL‐class observations did in most cases not affect the model performance noticeably.

1. Introduction

Hydrological models are usually calibrated with continuous streamflow data acquired at gauging stations.

Such data sets are scarce, especially for remote regions and developing countries, even though people in

these areas are often affected by various kinds of water issues (Mulligan, 2013). Globally, hydrological obser-

vation networks are on the decline, mainly due to reduced financial resources (Kundzewicz, 1997).

Furthermore, access to available data is often restricted (Fekete et al., 2012). To collect data in ungauged

basins, citizen science approaches that use modern communication technology (i.e., smartphones) can be

helpful. Citizen science approaches can also incorporate local knowledge, for instance, for hazard assess-

ment (Sy et al., 2018) and help to raise public awareness of environmental issues (Lanfranchi et al., 2014).

However, the usefulness of citizen science data is often questioned due to the perceived lack of experience

of the volunteers (Cohn, 2008) and potential biases, such as location bias related to the population density

or temporal bias related to the timing of the observations (Kosmala et al., 2016). It is important to standar-

dize measurement protocols (Dickinson et al., 2012), e.g., by using smartphone applications, to evaluate the
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accuracy and value of the collected data, and to improve the measurement protocols iteratively when

needed. It is also useful to thoroughly examine the potential use of citizen science data before starting a

new project.

Publications that include citizen science projects focusing onwater quantity in streams are still rather scarce;

most publications on water related citizen science projects have focused on water quality (Buytaert et al.,

2014; Njue et al., 2019). Some recent examples of water quantity‐focused projects are the EU‐funded citizen

observatories that aim to complement data collection by authorities, such as WeSenseIt (www.wesenseit.

com; Lanfranchi et al., 2014), GroundTruth2.0 (https://gt20.eu), and SCENT (https://scent‐project.eu).

Projects that specifically focus on streamflow or water levels are CrowdHydrology in the United States

(Lowry et al., 2019; Lowry & Fienen, 2013), Smartphones4Water in Nepal (www.smartphones4water.org;

Davids et al., 2017), a project in Kenya (www.uni‐giessen.de/hydro/hydrocrowd_kenya; Weeser et al.,

2018), Cithyd in Italy (www.cithyd.com; Balbo & Galimberti, 2016), and CrowdWater (www.crowdwater.

ch; Seibert, Strobl, et al., 2019). The CrowdWater project aims to explore the value of citizen science data

and to collect water level class (WL‐class) data (Seibert, Strobl, et al., 2019), as well as qualitative data on soil

moisture and the state of temporary streams (Kampf et al., 2018; Seibert, van Meerveld, et al., 2019), and riv-

erine export of macro plastic. For observations of WL‐classes, virtual staff gauges with class markings are

inserted onto a photograph of the streambank, bridge pillar, or other features in the stream. These features

and the virtual staff gauge then serve as a reference to which later observations of the water level are com-

pared. Repeated observations result in time series of WL‐classes. However, these series are irregular in time

and potentially contain observation errors (Strobl et al., 2019a).

Several studies have examined the value of discontinuous streamflow data for the calibration of hydrological

models. For example, Pool et al. (2019) investigated the value of a limited number of streamflow measure-

ments for calibration of the HBV model (Bergström, 1976; Lindström et al., 1997) and found that 12 mea-

surements taken during a 1‐year period can lead to satisfying model simulations. Seibert and McDonnell

(2015) showed for the Maimai catchment in New Zealand that streamflow measurements throughout an

event or 10 observations during high flow periods provide as much information for model calibration as 3

months of continuous measurements. These model studies assumed error‐free streamflow measurements.

All measurements are affected by errors, and these can be considerable for streamflow measurements (par-

ticularly during high flows or low flows; McMillan et al., 2018), but for citizen science data, errors might be

particularly large (Aceves‐Bueno et al., 2017). This can significantly limit the value of the data. Therefore, we

previously investigated the value of streamflow data that included errors that are typical for citizen‐based

estimates of streamflow (Etter et al., 2018). We found that streamflow estimates from citizens, who did

not receive any form of training, did not improve model performance compared to a model with random

parameter sets. We concluded that either the errors in the streamflow estimates have to be reduced by some

form of training or that a quantity, that is easier to estimate, such as water levels or WL‐classes, should be

used (Strobl et al., 2019a). Water level measurements require the installation of a staff gauge. Citizens then

can read the water level from the staff gauge and report them via text messages or a smartphone application.

Previous studies have shown that this method works well and can provide useful and accurate data (Lowry

et al., 2019; Weeser et al., 2018). However, the installation of a staff gauge can be complicated in practice.

Beyond issues such as how to securely fix the gauge, permissions by local authorities might be required.

Obtaining permits can require time and effort and cause additional costs. WL‐class estimates, as used within

the CrowdWater project, do not require a physical staff gauge and are, thus, more scalable. However, the

data have a lower precision (and likely also lower accuracy) than readings from a staff gauge.

Continuous (e.g., daily) water level or WL‐class data can be informative for hydrological model calibration.

Seibert and Vis (2016) concluded that the use of daily water level data for model calibration results in a sur-

prisingly goodmodel performance, especially for humid catchments. For arid regions additional information

was necessary to achieve a good simulation. In another study, van Meerveld et al. (2017) showed that daily

WL‐class data are informative for hydrological model calibration as well, and that the performance of the

model calibrated with WL‐class data with at least five equally frequent classes was not much worse than a

model calibrated with water level data.

We aim to develop a methodology that is quick and easy to use for citizen scientists, while at the same time

being robust and informative for the calibration of hydrological models and to thereby extend the knowledge
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on the potential of crowdsourced data with different qualities as proposed in Weeser et al. (2019). We there-

fore investigated the potential value of discontinuous WL‐class data as these can be obtained by citizens

using synthetic data, which is a similar approach as in Etter et al. (2018). Our objectives were to (i) assess

the potential value of a few WL‐class observations at intervals that are realistic for citizen science projects,

for model calibration; (ii) assess the potential effect of likely errors in WL‐class observations on model per-

formance; and (iii) investigate the influence of the number of WL‐classes in combination with different

observation scenarios on model performance.

2. Methods

At the time of writing this paper, an insufficient number of repeated observations had been collected with

the CrowdWater App to determine the value of WL‐class data for model calibration. We, therefore, used syn-

thetic data (cf. Etter et al., 2018; Seibert & Vis, 2016; vanMeerveld et al., 2017), which is an efficient approach

to assess data requirements before making considerable efforts to collect the data (Christophersen et al.,

1993; Pool et al., 2019). First, we converted the water level time series for four Swiss catchments into WL‐

class time series. From these continuous data sets, we created time series with fewer data points representing

different observation scenarios and introduced errors that are typical for citizen estimates of WL‐classes

(Strobl et al., 2019a). We then used these synthetic data sets to calibrate a simple bucket‐type model, the

HBV model (Bergström, 1976; Lindström et al., 1997; Seibert & Vis, 2012). Finally, we used the calibrated

parameter sets to evaluate the model performance for the validation period by comparing it to the observed

streamflow. We compared the validation performance to the validation performance of the model calibrated

with the original (continuous, and assumed to be error free) streamflow data (upper benchmark), and the

validation performance of the noninformed case, where the model is run with random parameter sets

(lower benchmark).

2.1. Catchments

For this study, we selected four gauged catchments in Switzerland with different flow regimes (Aschwanden

& Weingartner, 1985). Streamflow measurements at the outlet of these catchments have good quality for

both high and low flow conditions and are unaffected by backwater issues. Furthermore, the catchments

are relatively little affected by anthropogenic influences and have no glaciers. The catchment areas range

from 79 to 186 km2 and the mean elevations range from 652 to 1,651 m a.s.l. (Table 1 and Figure 1).

2.2. HBV Model

We used the bucket‐type hydrological model HBV (Lindström et al., 1997), which was originally developed

at the Swedish Meteorological and Hydrological Institute (SMHI) by Bergström (1976). The HBVmodel con-

sists of routines for snow storage, soil water, and groundwater. In this study, we used the model implementa-

tion HBV‐light (Seibert & Vis, 2012). The catchments were divided into elevation zones, each covering a

band of 100 m, for which the snow, soil, and groundwater routines were computed individually.

2.3. Measured Data

Water level and streamflow time series were obtained from the Swiss Federal Office for the Environment

(FOEN). The 10‐min measurements were averaged to obtain hourly water level and streamflow time series.

Hourly areal precipitation sums were obtained from the CombiPrecip data set of MeteoSwiss (Sideris et al.,

2014). The data for the years 2011 and 2013 suggest an unrealistic high runoff‐rainfall ratio (>0.9) for the

Verzasca catchment and were, thus, excluded from all simulations. A possible reason is that the weather sta-

tions are located outside the catchment and that precipitation is highly variable in this alpine terrain.

Furthermore, the station data used in the CombiPrecip data set are not corrected for wind undercatch, which

can lead to errors of up to 40% in winter for windy locations in Switzerland (Sevruk, 1985).

The hourly temperature at the mean elevation of the catchment was calculated from data from nearby

weather stations (see Table 1 and Figure 1) using Thiessen polygons and a lapse rate of −6°C per 1,000 m.

Data gaps existed only in the hourly temperature datasets. The most extended gaps covered 5 days and were

filled with interpolated data. The potential evapotranspiration was calculated using the day of the year, the

latitude, and the temperature following the approach of McGuinness and Bordne (1972). We chose this sim-

ple model because more physically based potential evapotranspiration models would require more input

data, which are not available with a satisfying spatial resolution in alpine terrain.
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2.4. Selection of Years for Model Calibration and Validation

To obtain information on the influence of wetness conditions on the value of citizen science‐derived WL‐

class data for model calibration, we selected for each catchment an average, a dry and a wet year for model

calibration and validation. For the average year, we selected the two years within the 2006–2014 period (the

period with available hourly precipitation data at the time of the study) for which the total summer stream-

flow (July–September) was closest to the average summer streamflow for the 1974–2014 period. For the wet

and the dry year, we selected the two years with the highest and lowest streamflow sum during the summer,

respectively. For the calibration, we used the years that were second closest to the average, highest, or lowest

value; for the validation, we used the year that were closest to the average and the years with the highest and

lowest total streamflow during the summer (Table 1). Even though citizen science projects can obtain long‐

term data (e.g., the Audubon Christmas Bird Count has collected data for more than 100 years; Meehan

et al., 2019), we wanted to test the value of 1 year of citizen science‐derived WL‐class data for hydrological

modeling because in reality most studies do not have time to obtain more extended time series.

2.5. Synthetic Data

2.5.1. WL‐Class Time Series

We assume that theWL‐class observations are made at the catchment outlet. In order to determine the effect

of the number of classes, we split the water level records from the FOEN into 2 to 10, 15, and 20 classes,

resulting in 11 different WL‐class time series per catchment. TheWL‐classes could, for instance, be obtained

from a photograph of the stream with a sticker of a staff gauge added to it. The case with 10 classes corre-

sponds to the “virtual staff gauge” approach used in the CrowdWater app (Seibert, Strobl, et al., 2019; see

example in Figure 2). The class borders were set at equal water level intervals between the fifth and 95th per-

centile of the water level record for the period for which the rating curve did not change and included the

calibration years (Table 2). The cumulative frequency distribution of the water levels was approximately lin-

ear between the fifth and 95th percentile for all four catchments. Water levels below the fifth and above the

95th percentile would likely be below or above the virtual staff gauges set by the citizen scientists and were

assigned to the lowest and highest WL‐classes, respectively (Figure 4).

Table 1

Catchment Characteristics for the Four Swiss Catchments Used in This Study

Catchment Murg Guerbe Mentue Verzasca

Gauging station (FOEN station number) Waengi (2126) Belp, Mülimatt (2159) Yvonand, La

Mauguettaz (2369)

Lavertezzo,

Campiòi (2605)

Weather stations Aadorf‐Taenikon,

Hörnli

Plaffeien,

Bern‐Zollikofen

Mathod, Pully Acquarossa, Cimetta,

Magadino, Piotta

Area [km
2
] 79 117 105 186

Elevation [m a.s.l.] Min 465 522 445 490

Max 1,035 2,176 927 2,864

Regime Type
a

Pluvial‐inférieur Pluvial‐supérieur Pluvial‐jurassien Nivo‐pluvial‐

méridional

Min/Max Pardé coefficients 0.68/1.34 0.77/1.39 0.46/1.57 0.23/2.22

Mean annual streamflow Q [mm/y] 756 746 491 1,764

Mean annual precipitation P [mm/y] 1,343 1,319 1,287 2,014

Mean runoff ratio (Q/P) 0.56 0.57 0.38 0.88

July–September streamflow [mm] (calibration|validation)

Dry 90| 86 106| 94 26| 24 324| 307

Average 125| 149 202| 195 54| 62 417| 439

Wet 220| 228 308| 451 93| 187 670| 810

Annual runoff ratio (calibration| validation)

Dry 0.72| 0.54 0.37| 0.82 0.41| 0.41 0.98
b
| 0.71

Average 0.55| 0.43 0.48| 0.60 0.52| 0.65 0.66| 0.63

Wet 0.56| 0.54 0.54| 0.81 0.50| 0.52 1.32
b
| 0.73

Note. Long‐term annual averages were computed for the period 1974–2014, except for Verzasca for which the 1990–2014 period was used.
a
Regime types according to Aschwanden and Weingartner (1985).

b
For Verzasca the calibration years 2011 and 2013 have an unrealistic runoff‐rainfall ratio

(>0.9) and were therefore excluded from all simulations (see text).
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2.5.2. Observation Scenarios

We created water level and WL‐class time series for observation scenarios that differed in the number of

observations and the clustering of the observations throughout the year (Table 3). We used the same obser-

vation scenarios as Etter et al. (2018) for comparability. For the Crowd52 and Crowd12 scenarios, we

assigned higher probabilities to periods when people are more likely to be outdoors (i.e., a higher probability

for summer than winter, a higher probability for weekends than weekdays, and a higher probability outside

office hours; see Table 3 in Etter et al., 2018). This led to a larger number of observations during the summer

for the Crowd52 scenario than theWeekly scenario (median of 33 observations between May and September

for Crowd52 vs. 22 for Weekly) and for Crowd12 vs. the Monthly data (median of 8 for Crowd12 vs. 5 for

Monthly). In citizen science projects, the number of contributions will vary but based on our experience in

the CrowdWater project, we assume that these scenarios cover a wide range of plausible cases.

In addition to the scenarios of Etter et al. (2018), we added the daily resolution for comparability with the

results of van Meerveld et al. (2017). Daily data are not likely for citizen science projects but near‐daily data

are possible: In CrowdHydrology 347 observations per year were made in the location with most contribu-

tions (Lowry et al., 2019). The location with most contributions in CrowdWater receives on average one

Figure 1. Map of Switzerland showing the location of the four catchments and the weather stations used to derive the temperature data. For each catchment,

monthly average precipitation (P), streamflow (Q), temperature (T), and potential evapotranspiration (PET) are shown for the period 1974–2014, except for

Verzasca for which the period 1990–2014 was used.
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observation every 1.2 days and for the location shown in Figure 2 there was on average one observation every

3.2 days. The hourly water level data represent data from a water level logger, while hourly WL‐class data

could potentially be obtained from webcam images.

2.5.3. Adding Errors to the WL‐Class Time Series With 10 Classes

Citizen science‐derived data likely contain errors. We assessed the typical errors in WL‐class observations in

a series of field surveys (Strobl et al., 2019a). We analyzed 440 estimates of WL‐classes from citizens who

compared the water level in the stream that they were looking at to a photo of the same stream taken at

an earlier time with a sticker of a staff gauge with 10 classes added to it (the first photo in Figure 2 shows

Figure 2. Time series of WL‐class observations at the Aare river in Zollikofen, Switzerland, based on the virtual staff gauge inserted on the reference picture (left

picture in the upper row of the figure), which can then be used to estimate the water level class at the later dates (other pictures in the upper row). The entire time

series of observations for this location can be found online (https://www.spotteron.com/crowdwater/spots/141766). Note that this time series illustrates the

water level class data that can be observed by citizen scientists; we did not use this time series in themodeling described in this study. All photos were taken by Auria

Buchs.

Table 2

The Time Periods of the Water Level Records That Were Used to Determine the WL‐Class Boundaries and the Dry, Average,

and Wet Years Chosen for Model Calibration and Validation

Murg Guerbe Mentue Verzasca

Period used for class definition 1974–2014 1996–2009
a

1974–2014 1990–2013

Calibration years

Dry 2013 2011a 2010 2013

Average 2008 2008 2006 2007

Wet 2007 2007 2014 2011

Validation years

Dry 2009 2013 2009 2010

Average 2011 2006 2013 2006

Wet 2014 2014 2007 2008

Note. The rating curves did not change considerably during the selected time period to determine the WL‐class
boundaries.
a
For the Guerbe catchment, the dry calibration (2011) year occurred in a period after the rating curve changed so that
there was a systematic shift in the water level data. Therefore, the class borders were determined for this period sepa-
rately. For the validation period, we used streamflow data that were calculated with an adapted rating curve and there-
fore did not include this shift.

10.1029/2019WR026108Water Resources Research

ETTER ET AL. 6 of 17



an example). Nearly half (48%) of the participants chose the right class (as determined by experts) and 40%

were off by only one class (Strobl et al., 2019a). The errors (i.e., the difference between the reportedWL‐class

and the actual WL‐class as determined by experts) were approximately normally distributed (Figure 3). We

used these discrete class error probabilities to add random errors to each WL‐class data point for the scenar-

ios with 10 WL‐classes (Figure 4). The same probability of errors was used for all four watersheds and years.

In addition to this error, hereafter referred to as large error, we also created two time series with reduced

errors to consider possible benefits of training or error‐filtering (e.g., via reassessment of the WL‐class data

by multiple volunteers based on a comparison of images; Strobl et al., 2019b):

• Large error: Typical errors of citizen scientists, i.e., random errors according to the normal distribution of

errors from the survey of Strobl et al. (2019), as shown in Figure 3.

• Medium error: Random errors according to the normal distribution with the standard deviation divided

by two.

• Small error: Random errors according to the normal distribution with the standard deviation divided by

four.

• No error: The 10 classes based on water level measurements by the FOEN, which are considered to be

error‐free and the benchmark in terms of quality for WL‐class data.

2.6. Model Calibration

We calibrated the hydrological model for each of the synthetic data

series (nine different temporal resolutions, three error magnitudes

with 10 classes, and 11 class sizes without errors) for each of the three

calibration years for each of the four catchments. We also calibrated

the model for the nine different temporal resolutions of the water

level data and the hourly streamflow data for each year and catch-

ment. For the calibration with measured streamflow, we used the

overall performance index (POA; Finger et al., 2011). The POA is the

mean of the Nash‐Sutcliffe efficiency for the streamflow (Nash &

Sutcliffe, 1970), the Nash‐Sutcliffe efficiency for the log‐transformed

streamflow, the mean absolute relative error, and the volume error.

For each calibration with water level or WL‐class data, we optimized

the Spearman rank correlation coefficient (Spearman, 1904) for the

relation between the synthetic WL‐class data and the simulated

streamflow using a genetic optimization algorithm (Seibert, 2000).

The calibration ranges for the 16 parameters were based on their

typical range and are the same as in Etter et al. (2018). For each cali-

bration, we used the preceding year as the warm‐up period and cali-

brated the model 100 times to account for parameter uncertainty.

Each model calibration consisted of 3,500 model runs and 1,000 runs

for local optimization. This resulted in 100 parameter sets for each of

the three hourly streamflow calibrations (dry, average, and wet year,

respectively), each of the 27 water level simulations (3 years and nine

temporal resolutions), and each of the 378 WL‐class simulations

Figure 3. Distribution of the errors in the WL‐class estimates (i.e., the difference

between the reported WL‐class and the actual WL‐class, as determined by

experts) from field surveys for nine different locations. The data were obtained

from Strobl et al. (2019a). This distribution was used to create WL‐class time

series with large errors.

Table 3

The Different Scenarios for the Temporal Resolution of the Observations Used in This Study, With the Number of Data Points in 1 Year of Data (n)

Hourly One data point per hour (8,760 ≤ n ≤ 8,784, depending on the year)

Daily One data point every day (365 ≤ n ≤ 366), randomly between 6 am and 8 pm

Weekly One data point per week, every Saturday, randomly between 6 am and 8 pm (52 ≤ n ≤ 53)

Monthly One data point per month on the 15th of the month, randomly between 6 am and 8 pm (n = 12)

IntenseSummer One data point every other day between July and September, randomly between 6 am and 8 pm (~15 observations per month, n = 46)

WeekendSummer One data point each Saturday and each Sunday between May and October, randomly between 6 am and 8 pm (52 ≤ n ≤ 54)

WeekendSpring One data point on each Saturday and each Sunday between March and August, randomly between 6 am and 8 pm (52 ≤ n ≤ 54)

Crowd52 52 data points (in order to be comparable to the Weekly, IntenseSummer, and WeekendSpring time series), between 6 am and 8 pm

Crowd12 12 data points (comparable to the Monthly data), between 6 am and 8 pm
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(3 years, nine temporal scenarios, and three error magnitudes plus 11 different class sizes) per catchment,

except for Verzasca for which only the average year was used for calibration (Table 1). For the Crowd52

and Crowd12 data sets different realizations of the observation times are possible and we, thus, randomly

selected different observation times for each of the 100 calibration trials. For these cases, the spread of the

results is, thus, a combination of parameter uncertainty and observation timing.

The Spearman rank coefficient cannot be computed if theWL‐class data set contained data for only one class

(i.e., due to a lack of variation in the water level data). This occurred for less than 1% of all the scenarios stu-

died here. For computation of the Spearman rank coefficient for these scenarios, the WL‐class for the obser-

vation at the time of the highest streamflow was manually changed to the next (higher) class.

2.7. Model Validation

For each scenario, we used the 100 calibrated parameter sets to simulate the streamflow for the validation

years. The validation performance was assessed using the overall performance index POA, as was done for

the assessment of the value of uncertain streamflow data by Etter et al. (2018). We determined the median

of the 100 POA values for each scenario and compared it to the median POA of the validation for the model

calibrated with the observed streamflow data, which was considered the best possible model performance

and thus the upper benchmark.

We similarly compared the median model validation performance for the different WL‐class scenarios to the

median validation performance of themodel calibrated with the hourly water level time series. For eachWL‐

class scenario, we also compared the validation performance to the validation performance of themodel cali-

brated with water level data with the same temporal resolution in order to compare the value of citizen

science‐based WL‐class data and citizen science‐based water level data for model calibration. We used the

Table 4

Overview of the Different Model Validation Comparisons Used to Evaluate the Value of Crowdsourced WL‐Class Data

Validation performance for calibration using WL‐class data vs. Statistically significant difference in median POA value indicates:

Hourly streamflow data (upper benchmark) A gauging station is more useful for model calibration than citizen

science‐derived WL‐class data using a virtual staff gauge

Hourly water level data Installation of a water level recorder is more useful for model

calibration than a virtual staff gauge that citizen scientists

can use to determine the WL‐class

Water level scenarios Installation of a staff gauge from which citizens can read water

levels is more useful for model calibration than a virtual

staff gauge to determine the WL‐class

Random parameter sets (lower benchmark) Citizen science‐derived WL‐class data have added

value for model calibration

Note. For each comparison the median validation performances were compared using the one‐sided pairedWilcoxon test. Significant differences are indicated by
filled squares in Figures 5 and 6.

Figure 4. Observed streamflow at Mentue in 2014 (gray area), the hourly WL‐class time series with 10 classes (blue line)

derived from continuous water level data, and the synthetic data series for the Crowd52 scenario without any errors (blue

dots) and large errors (orange circles) that were used for model calibration. The error distribution and formula used to add

errors to the WL‐classes derived from the water level data are given in Figure 3.
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one‐sided paired Wilcoxon test to determine if the median model validation performance for the calibration

with WL‐class data was significantly worse than the validation performance for the model calibrate with the

measured water level data. If there is no significant difference, thenmore easily scalable methods that do not

require the installation of sensors, such as virtual staff gauges, are equally useful for model calibration as

physical staff gauges. If the performance is significantly worse, it might be useful to invest in the installation

of an actual staff gauge and have citizens report the water level from this staff gauge (Table 4).

The lower benchmark was defined as a situation where no streamflow, water level, or WL‐class data are

available for model calibration. In wet environments, random parameters can result in surprisingly good

model performance as long as the model reproduces the water balance. Therefore, the lower benchmark

serves as the minimum model performance that can be expected based on the water balance alone

(Seibert et al., 2018). Thus, for the lower benchmark, we used the median performance of 1,000 streamflow

time series generated from the precipitation and temperature data in the validation period based on 1,000

parameter sets that were selected randomly from the parameter ranges. We then compared the median vali-

dation performance of the models calibrated with streamflow, water level, or WL‐class data to the median

model validation performance for the 1,000 random parameter sets. We tested whether the median model

validation performance of the WL‐class scenarios (for all nine calibration and validation year combinations

for all four catchments) was significantly better than the median validation performance for the random

parameters using the one‐sided pairedWilcoxon test. We considered the data set useful for calibration when

the median validation performance was significantly better than for the random parameters (Table 4).

To determine the significance of differences in the median validation performance for the different observa-

tion scenarios (i.e., different temporal resolutions) but the same number of WL‐classes and error category,

we used a Kruskal‐Wallis test with the Dunn Bonferroni post hoc test with adjusted p values for multiple

comparisons (Bonferroni, 1936; Dunn, 1959).

3. Results

3.1. Model Performance for Calibration Based on Hourly Data

In general, the HBVmodel was able to reproduce the observed streamflow reasonably well when it was cali-

brated using the hourly streamflow data (upper benchmark). The median POA value for these calibrations

was 0.82 (range: 0.66–0.88, with the lowest value for the calibration of the Guerbe for a dry year). The simu-

lations for the validation period were not as good with a median POA of 0.64 (range: 0.19–0.83). The lowest

validation POA value was for the Guerbe catchment when it was calibrated for the dry year and validated for

the wet year (Table 5). These years had very different runoff‐ratios (0.37 for the dry calibration year and 0.81

for the wet validation year; Table 1). The median validation performance (for all combinations of calibration

and validation years) was also worst for the Guerbe catchment (POA = 0.55, range for the other catchments

0.64 to 0.80; Table 5).

The median validation result of all model simulations based on model calibration using hourly water level

data (median: 0.52; range: −0.39 to 0.78) was significantly worse than for the calibration with the hourly

streamflow data (p < 0.001; Figure 5). The use of hourly water level data for model calibration caused the

most noticeable decline in the median model validation performance for the Guerbe (POA relative to the

upper benchmark: 0.45, range for the other catchments 0.75–0.92).

Table 5

Median Validation Performance (i.e., Median POA Values for the 100 Parameters) for the Different Calibration and Validation Years When the Model was Calibrated

With Hourly Streamflow Data (Upper Benchmark)

Validation Dry Average Wet Median

Calibration Dry Average Wet Dry Average Wet Dry Average Wet (of all year combinations)

Murg 0.71 0.76 0.74 0.58 0.59 0.56 0.79 0.78 0.80 0.74

Guerbe 0.35 0.51 0.57 0.63 0.75 0.77 0.19 0.36 0.55 0.55

Mentue 0.40 0.41 0.23 0.64 0.64 0.75 0.66 0.65 0.73 0.64

Verzasca 0.63
a

0.83 0.48
a

0.52
a

0.78 0.47
a

0.65
a

0.80 0.68
a

0.80

a
These years had a runoff rainfall ratio >0.9 (see Table 1) and were not included in any of the other results.
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Calibration based on the hourlyWL‐class data led to a significantly worse median validation performance than

calibration using streamflow data, regardless of the number of WL‐classes (2–20 classes, all p < 0.001).

However, for the case without errors, the performance of the model calibrated with hourly WL‐class data

was not significantlyworse than when the hourly water level data (i.e., hourly) were used for calibration, except

for the case with 10 classes due to outliers (see white squares in the second row on the top of Figure 5).

3.2. Effect of the Number of Observations and WL‐Classes (No‐Error Case)

In general, the model validation performance was poorer when the model was calibrated with fewer water

level or WL‐class observations. Overall, the data set with 52 crowdsourcing‐like observations (Crowd52) led

to the best model validation performance of all data sets with on average one observation per week. The sce-

nario with two observations each weekend between March and August (WeekendSpring) and the scenario

with regularly spaced weekly observations (Weekly) led to the next best model performance. Although the

median validation performance for the models calibrated with the WeekendSpring data was always higher

than for the model calibrated with observations each weekend from May to October (WeekendSummer),

or every other day from July to September (IntenseSummer) (Figure 5), this difference was not statistically

significant according to the Dunn‐Bonferroni test (adjusted p values were all >1.0).

As one would expect, the model validation performance decreased slightly when the number of WL‐classes

decreased, but the effect depended on the temporal resolution of the data used for calibration (Figure 5). For

twoWL‐classes, only the scenariosHourly,Daily, and Crowd52 led to similar model validation performances

as the continuous water level data. For all other scenarios, performances were significantly worse (p ≤ 0.03).

When daily WL‐class data were used, the model validation performance was only for the cases with 15 and 20

classes significantly worse than the performance of the model calibrated with continuous water level data

(p values = 0.03 and 0.02, Figure 5). This was largely due to two outliers in both cases in the Guerbe catchment

with POA‐values between −0.18 and −0.40 or scores relative to the POA of the upper benchmark between −0.5

Figure 5. Box plots of the validation performance of the HBV‐model calibrated with synthetic WL‐class data (different temporal resolutions and different numbers

of WL‐classes) relative to the performance of the model calibrated with hourly streamflow data. The lower benchmark (in gray) represents the median performance

of the model run with 1,000 randomly selected parameter sets. The gray background shading highlights the scenarios for which the median model performance

was not significantly better than for the lower benchmark. The filled squares at the top of the graph indicate cases where the median validation performance for

the model calibrated with WL‐class data was significantly worse compared to the calibration with water level data with the same temporal resolution (top

row) and compared to the calibration with continuous (hourly) water level data (second row); empty squares indicate no statistically significant difference based on

the one‐sided paired Wilcoxon test. All scenarios led to a significantly worse model validation performance than calibration with continuous streamflow data.

TheWL‐classes were equally sized and assumed to be error free. The box extends from the 25th to 75th percentile and the whiskers extend to the tenth and ninetieth

percentile. The black line inside the box represents the median. Numbers at the bottom indicate outliers with a relative Poa < 0.00.
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and −1.9. The validation performance of the model calibrated with the temporally discontinuous Crowd52

water level or WL‐class data sets was never significantly worse than the validation performance of the model

calibrated with the continuous water level data. The validation performance of the scenario focused on

summer (IntenseSummer) was not significantly worse than the validation performance of continuous water

level data if five or more WL‐classes were used. The median model validation performance for the scenario

with two observations each weekend between March and August (WeekendSpring) with 3, 4, 6, 15, and 20

WL‐classes was not significantly different (p values: 0.05–0.08) to the performance of the model calibrated

with the hourly water level data either. This was also the case for the observations every other day between

July and September (IntenseSummer) with at least five WL‐classes (p values: 0.06–0.27). For all the other

scenarios, the model validation performance was significantly worse than for the calibration with continuous

water level data (see black squares in the second row above the main plot in Figure 5).

Calibration with discontinuous WL‐class data led in only very few cases to a significantly poorer model per-

formance than calibration with temporally discontinuous but precisely measured water level data: the

Crowd12 scenario regardless of the number of WL‐classes; the Monthly scenario with 2, 4, and 9 classes;

and the Crowd52, WeekendSpring, WeekendSummer, and IntenseSummer scenario with two classes (see

black squares in first row above Figure 5).

The validation performance for the model calibrated with theHourly, Daily, and Crowd52 data sets was always

better than the lower benchmark. However, monthly WL‐class data (Monthly) never improved the validation

performance compared to the lower benchmark (Figure 5). For five or fewer classes, there weremore scenarios

for which the model did not perform significantly better than the lower benchmark, e.g., theWeekly, Crowd12,

WeekendSpring,WeekendSummer, and IntenseSummer scenarios. However, the p values were close to 0.05 and

therefore the significance test results differed for the different number of WL‐classes. The model performance

for the IntenseSummer andWeekendSpring scenarios did not systematically improvewith an increasing number

of classes, hence model performance for these scenarios was best when eight or nine WL‐classes were used.

Figure 6. Box plots of the validation performance of the HBV‐model calibrated with water level data with different temporal resolutions and the syntheticWL‐class

data (10 equal sized classes) with different temporal resolutions and different errors, relative to the validation performance of the model calibrated with hourly

streamflow data (upper benchmark). The lower benchmark shown (in gray) is the median validation performance of the model run with 1,000 random parameters.

The gray shading indicates a median model performance that is not significantly better than the lower benchmark (p > 0.05). The filled black squares at the top of

the graph indicate cases where the median validation performance for the calibration withWL‐class data is significantly worse than the calibration with water level

data with the same temporal resolution (top row) or compared to continuous water level data (second row); empty squares indicate no statistically significant

difference based on the one‐sided paired Wilcoxon test.
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3.3. Effect of Errors in WL‐Class Estimates With 10 Classes

Including errors in the WL‐class data resulted in only a minor decrease in the overall model validation

performance. This effect was particularly small compared to the effect of the temporal resolution of the data

used for model calibration (Figure 6). For all Hourly, Daily, Crowd52, Crowd12, and the WeekendSpring cases

with 10WL‐classes, the model validation performance was better than the lower benchmark, even when large

errors were included in the calibration data (Figure 6). The effect of errors on model validation performance

was most substantial for calibration with theWeekly and IntenseSummer data sets for which the scenarios with

medium and large errors were not significantly better than the lower benchmark. The addition of medium or

large errors also caused the validation performance for the model calibrated with the IntenseSummer data to

become significantly worse than the model calibrated with continuous hourly water level data (Figure 6).

The performance of the model calibrated with the Daily data became only significantly worse than the model

calibrated with continuous water level data when small or medium errors were included. Themodel validation

performance for calibration with Hourly and Crowd52 WL‐class data was not significantly worse than the

validation performance for calibration with continuous water levels, even with large errors (Figure 6).

The median validation performance of the model calibrated with the discontinuous WL‐class data remained

similar to the performance of the model calibrated with discontinuous water level data, except for Crowd12

and Hourly WL‐classes (again due to the large outliers in the Guerbe catchment) for which the calibration

with WL‐class data with errors led to a significantly worse validation performance than calibration with

discontinuous water level data.

3.4. Effects of Variability in WL‐Class Data on Model Performance

For the Crowd52 scenarios, there were 100 realizations for every catchment and year. This allowed us to

explore the effect of the distribution of the WL‐class observations on model performance. For the wet years

with more streamflow in summer, there was a more balanced distribution of data points across the classes

than for the dry years. For the wet years, 14% of all data points were in the lowest class, 19% in the second

class, and 22% in the third class when 10 WL‐classes were used. The corresponding numbers were 20%,

24%, and 17% for the average year and 45%, 16%, and 14% for the dry years. For the Crowd52 scenario with

10 classes and no errors, the median validation performance for parameter sets obtained by calibration with

data from the wet year (median POA = 0.54) and the average year (median POA = 0.56) were significantly

better than for the calibration with data from the dry years (median POA = 0.44, both p ≤ 0.001).

We also compared the model validation performance of Crowd52 scenarios for WL‐class data based on 10

classes and without errors with a different number of observations in classes 1 and 2 (i.e., observations dur-

ing baseflow conditions). If more than half of the observations were in classes 1 or 2, model validation per-

formance was significantly worse than if there were relatively fewer observations for classes 1 and 2 (and

thus more observations for classes 3–10). This indicates that the model performance increases when there

are more observations for the higher WL‐classes. However, for the Crowd52 scenario, there was no correla-

tion between the variance in WL‐classes used for calibration and model validation performance for the

resulting 100 calibrated parameter sets (adjusted coefficients of determination were all ≤0.01). This is likely

due to the large variability in the individual parameter sets and their effect on model performance because

for the Crowd52 scenario only one parameter set was obtained for each observation scenario.

4. Discussion

With this study, we extended our understanding of the value of uncertain data for hydrological model

calibration. The usefulness of WL‐class data for model calibration was shown earlier for continuous

WL‐class data for a large number of catchments in the United States by van Meerveld et al. (2017). Here we

show that even discontinuous WL‐class data are useful for model calibration. We used the HBV model for

the analyses but argue that the findings would be similar for other bucket‐type hydrological models. For

physically based spatially distributed models that are used without calibration, WL‐class data might still be

useful for model evaluation. The results are likely different for arid regions, where rivers only flow at certain

times of the year, as Seibert and Vis (2016) showed that model parameterizations based on calibration against

water level data were less suitable to simulate streamflow for arid regions than for humid regions.
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4.1. Value of WL‐Class Data for Hydrological Model Calibration

Usually hydrological models are calibrated using streamflow data derived from water level measurements

and a rating curve. In practice, this is the most expensive method to obtain stream‐related data but it also

leads to the best validation results (which is why we consider this the upper benchmark). Continuous water

level measurements are easier to obtain; water level loggers have become cheaper and can now easily store a

year of data. However, the installation of water level loggers still requires some investment and mainte-

nance, particularly in steep mountainous terrain where the stream channel may change frequently due to

scour and deposition. The different temporal observation scenarios with precise water level data represent

the case when a physical staff gauge is placed in a stream and passers‐by read the level and transmit their

observation, as it is done in the CrowdHydrology project (Lowry & Fienen, 2013), Cithyd (www.cithyd.

com; Balbo & Galimberti, 2016), and a project in Kenya (Weeser et al., 2018).

The median validation performance for the model calibrated using WL‐class data was worse than for the

model that was calibrated using streamflow data but as good as using water level data with the same tem-

poral resolution. Even for the realistic citizen science scenario Crowd52, the validation performance was

not significantly worse than when hourly water level data that are recorded with a water level logger are

used for calibration. These results suggest that while traditional streamflow measurements are most infor-

mative for hydrological model calibration and continuous hourly water level data certainly have their value,

observations of WL‐classes, e.g., based on virtual staff gauges (Seibert, Strobl, et al., 2019), are also valuable

for model calibration and can lead to reasonable streamflow simulations when streamflow data are not

available. Model calibration with WL‐class data can be used to transform the measured WL‐classes into

streamflow time series and, thus, be used to derive useful information, such as hydrologic signatures (e.g.,

runoff‐rainfall ratios). The use of regionalized parameter values (Andréassian et al., 2014) would be an alter-

native approach to derive streamflow estimates for ungauged basins. This approach, however, is also subject

to uncertainties as the transfer functions will only be approximations (Hundecha et al., 2002). This was,

therefore, not part of this study but it raises the interesting question whether a few WL‐class observations

can improve regionalized parameter sets for areas where there are no other streamflow data.

4.2. Effects of Timing of the WL‐Class Observations and Errors on Model Performance

The number of observations and the timing of the observations in the year had a larger influence on model

performance than errors in the WL‐class observations. Errors generally had the largest effect on model per-

formance when few observations were available for calibration, as was the case for the Monthly and the

Crowd12 scenarios (Figure 6). Compared to the effect of errors in streamflow estimates on model validation

performance (Etter et al., 2018), the effect of errors in the WL‐classes was minor. This can be explained by

the fact that there are no extreme outliers in the WL‐class data and that the errors in the WL‐class estimates

are smaller than those for streamflow estimates (Strobl et al., 2019a). Even for the large error case, 48% of the

observations were in the correct class and 88% of the observations were within ±1 class of the correct class

(Strobl et al., 2019; Figure 3).

Although there was a general trend of increasing model performance with an increasing number of observa-

tions, the timing of the observations within the year also had a substantial effect on model performance. The

validation performance for themodel calibrated with Crowd52 data (i.e., withmore observations in summer)

was comparable to the performance of the model calibrated with hourly water level data, regardless of the

number of classes. On the other hand, the validation performance of the model calibrated withWeekly data

was significantly worse than the performance of the model calibrated with hourly water level data, even

when using 20 WL‐classes. This is contrary to the results for uncertain streamflow observations of Etter

et al. (2018), where Weekly data resulted in a better model validation performance than Crowd52 data. For

WL‐class estimates, it is probably beneficial to obtain observations that cover a larger variation in streamflow

magnitudes than for streamflow directly because it takes a relatively large change in the actual water level

(and thus also streamflow) to change one WL‐class. Large variations in streamflow occur more often during

wet years with higher flows, leading to the significantly better validation performance for the wet or average

years compared to the dry years for the Crowd52 data set. A denser sampling strategy during summer is also

more likely to catch more of the variation in streamflow, leading to the better model validation performance

for the model calibrated with Crowd52 data compared toWeekly data and for the IntenseSummer data (with

observations every other day during June, July, and August) compared to WeekendSummer data. This also
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explains why the IntenseSummer scenario led to a similar performance asWeekendSpring, even though that

scenario covers more streamflow variation during spring. The median model validation performance for the

calibration with theWeekendSpring data was higher than for theWeekendSummer data and comparable (i.e.,

not significantly worse) to the validation performance of the model calibrated with the hourly water level

data, while calibration with the WeekendSummer data led to a significantly worse model performance than

when hourly water level data were used for calibration.

4.3. Influence of the Number of WL‐Classes on Model Performance

The staff gauges in the survey of Strobl et al. (2019) had 10 classes and, thus, the errors used in this study are

typical for staff gauges with 10 classes. However, in practice fewer classes will be used for many locations as

the virtual staff gauges that are inserted in the pictures are often too large, so that it is unlikely that the water

level will reach the highest classes (Seibert, Strobl, et al., 2019). Our results indicate, however, that even

when the water level fluctuates in only two or three classes, such data can be informative for model calibra-

tion if there is on average at least one observation per week. The influence of errors on such observations

might, however, be larger than when all 10 classes are used (although the chances for large observation

errors are likely smaller for very large virtual staff gauges).

The benefit of usingmore than four to fiveWL‐classes (depending on the scenario) for model calibration was

negligible. This is roughly in line with the findings of vanMeerveld et al. (2017), who showed for continuous

WL‐class data for about 600 catchments in the United States that there was hardly any improvement in

model performance if more than five WL‐classes were used. However, the observation scenario affects this

result, e.g., for the Weekly scenario the results tended to be more stable when 10 classes or more were used

(Figure 5). However, the results of the scenarios with observations during summer (WeekendSummer and

IntenseSummer) suggest that in terms of model performance it is not necessarily helpful to have more

WL‐classes. Especially in summer, when extended periods of low flows can be expected, eight to 10 classes

might provide the model enough degrees of freedom to perform well in a validation year that is different

from the calibration year, whereas more WL‐classes can lead to overfitting of the model to the calibration

period. During periods of low flow, the water level will vary across more classes when more classes are used

(and individual WL‐classes are thus smaller), which might lead to overfitting of the model for that particular

year and result in calibrated parameter sets that do not perform well during other years.

4.4. Implications for Citizen Science Projects

For citizen science projects, where the data quality often is an important issue (Show, 2015), clear and

straightforward procedures help to ensure good data quality (Cohn, 2008). Based on the results of this study,

a simple approach using a virtual staff gauge with 10 classes (as implemented in the CrowdWater app; Seibert,

Strobl, et al., 2019) can provide data that are useful for model calibration. The WL‐class estimates seem to be

superior for citizen science projects than streamflow estimates as indicated by the significantly better model

performance of the Crowd52 and WeekendSpring data sets compared to the calibration using random para-

meters, even when the errors in the observations were large. This was not the case for streamflow estimates,

for which large errors hampered the usefulness of the data for model calibration (Etter et al., 2018).

The lack of an increase in model performance for most scenarios when more than four to fiveWL‐classes were

used indicates that the exact number of WL‐classes does not significantly impact model calibration if at least

four to five WL‐classes are used. It also suggests that model performance should not be impacted dramatically

if citizen scientists do not perfectly place the virtual staff gauge in the CrowdWater app so that the water level

fluctuations do not cover all classes, as long as the water level fluctuates over at least four classes. In some cases,

even fewer classes might be sufficient, especially if there is on average more than one observation per week,

which is not unlikely when dedicated volunteers submit observations (Lowry et al., 2019).

More observations at higher flows and therefore higher WL‐classes improved the model performance. Based

on the significantly worse model performance for the Crowd52 scenarios for which the percentage of obser-

vations during baseflow conditions was larger than 50% compared to scenarios for which this was less, we

conclude that it is beneficial to encourage observations during times with larger water level fluctuations.

This finding was also supported by the better model performance for the model calibrated with the

Crowd52 data for wet or average years compared to dry years. This is also the case when physical staff gauges

(instead of virtual staff gauges forWL‐class observations) are used. For some streams, particularly those with

10.1029/2019WR026108Water Resources Research

ETTER ET AL. 14 of 17



a flashy response, it may be difficult to get observations at high flow conditions because people are less likely

to be outside and willing to stop to submit an observation. For other streams, this is possible, particularly

when dedicated volunteers contribute regular observations because the high water levels are also very inter-

esting for them (see example in Figure 3). A larger number of observations during these high flow periods

can be obtained by sending push‐messages if there is an app, text messages, e‐mails, or social media posts.

Although the differences in model validation performance for the discontinuous water level and WL‐class

data were in most cases not statistically significant (Figures 5 and 6), there are advantages and disadvantages

for both methods. The advantage of a real staff gauge is that citizens who pass by a location of interest may

notice the staff gauge and are more directly invited to participate in the project. With the virtual staff gauge

approach, this is not the case for people who have not installed the app yet (or haven't looked at the map of

existing observation sites). Signpost to encourage participation could be used to highlight the virtual staff

gauge site but this requires additional effort (for the project administrators to install the sign and for the citi-

zen scientists to first download the app). Another advantage of a physical staff gauge is that at locations

where the streambed doesn't change, the water level observations could be transformed to streamflow once

a rating curve is available for that location. This is also possible for the WL‐class data but of course results in

an upper and lower bound of the streamflow for each WL‐class observation (Strobl et al., 2019a). When the

riverbed changes drastically either a new (virtual) staff gauge needs to be “installed” or the time series need

to be considered separately. In case the data are used for model calibration, the alternative (though less pre-

ferable option) might be to use different parameter sets for the different periods.

The advantage of the virtual staff gauge approach is that it is easily scalable because only the citizen scientist

needs to be at the location to set up a station and no equipment, permission, and local maintenance are

required (Seibert, Strobl, et al., 2019). Of course, the use of an app, text messages, or even paper forms and

mailboxes can also be combined. From a data quality perspective, the advantage of a virtual staff gauge

approach to collect WL‐class data using an app (e.g., the CrowdWater app) is that observations can be stored

offline if no cellular network connection is available and can be uploaded later. Furthermore, the observa-

tions come with a picture of the situation, which allows some form of checking the data quality and allows

further analysis using image recognition techniques. This is also possible for water level observations at real

staff gauges but when only text messages are sent, the recipient must trust the sender that the water level

reading and the time of the observation are correct. However, in areas without access to smartphones or

internet, text messages or even paper forms might be the only option.

5. Conclusions

We studied the potential value of WL‐class data that can be collected in citizen science projects for

hydrological model calibration. Such data will be irregular in time, affected by errors and less precise than

water level data. Our findings show that citizen science approaches to collect water level data using virtual

or physical staff gauges with a few classes or precise markings are a promising way to obtain useful data for

hydrological modeling in data‐scarce catchments.

The results from the synthetic data sets indicated that time series with on average one WL‐class observation

per week over a 1‐year period provides valuable information for calibration of a lumped bucket type model if

there are four or more classes. Typical errors in the WL‐class estimates for citizen science projects (Strobl

et al., 2019) did not impact model performance considerably. Although the validation performance of the

model calibrated with synthetic WL‐class data with realistic frequencies for citizen science projects was

not as good as when streamflow data were used for calibration, the performance was comparable to calibra-

tion with data collected with water level loggers or physical staff gauges with precise markings. TheWL‐class

observation approach has the advantage of being easier to implement and more scalable because it does not

require any physical installations and, thus, no special equipment, permits, or maintenance.
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