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Abstract: Hydrological data are crucial for a better understanding of hydrological processes and can
help improve models to predict floods and droughts, to allocate water resources and to better manage
hydropower. However, hydrological data are often scarce, as gauging stations are expensive to build and
maintain. Citizen science can help fill such data gaps and thereby complement the existing hydrological
measurement network. To maximize its use, citizen science in hydrology requires innovative and novel
approaches that are aligned with the capabilities and the equipment of citizen scientists. One such ap-
proach is a virtual staff gauge, i.e., a sticker with a staff gauge that is inserted onto a photograph of a
river that can be used with a mobile smartphone application. The virtual staff gauge is placed on the
photograph of the first observation of a particular location, which results in the reference picture. For
further observations, citizen scientists compare the current water level to the virtual staff gauge in this
reference picture and submit an estimate of the new water level and a new photograph. The water level
estimatesare measured in classes defined by the staff gauge and have no absolute units. Compared to
streamflow, water level classes are easier for citizen scientists to estimate, and the data are therefore
more reliable. However, even for water level class estimates, there is still potential for mistakes, either
when placing the virtual staff gauge on the reference picture or when making a new estimate of the water
level. Two strategies to reduce these data errors were explored in this thesis. First, data quality control
was crowdsourced through a gamified web interface. Citizen scientists can vote on the water level classes
that they believe are accurate, based on the comparison of the reference picture and the uploaded photo-
graph. Several votes were collected per observation submitted via the app and the mean value of all votes
was used to either confirm or correct the initial water level class estimate that was submitted via the
app. This interface provides a scalable way for citizen scientists to check each other’s submissions and is
therefore also applicable to other large scale citizen science projects. Second, the gamified interface can
also be used for training new citizen scientists. By playing the game, citizen scientists become familiar
with the concept of the virtual staff gauge. Voting on a water level classmakes them realise which virtual
staff gauge placements facilitate or complicate further estimates. This training helps citizen scientists to
better place virtual staff gauges in the smartphone application and therefore helps to improve the quality
of the reference pictures and all further observations. This thesis shows that it is possible to crowd-
source water level class data through a mobile smartphone application on a global scale. Crowdsourcing
data quality control not only results in higher data quality, but also trains new citizen scientists. The
crowdsourced water level class data can be used to constrain hydrological models, which can simulate
streamflow time series. Hydrologische Daten sind für ein besseres Verständnis hydrologischer Prozesse
essentiell und helfen Hochwasser oder Dürreperioden vorherzusagen, Wasserressourcenzu verteilen und
Wasserkraft besser zu nutzen. An vielen Standorten sind jedoch keine hydrologischen Daten vorhanden,
da Messstationen teuer zu errichten und zu erhalten sind. Citizen Science (auch Bürgerwissenschaften
genannt) kann helfen, diese Datenlücken zu füllen und das hydrologische Messnetz zu ergänzen. Um das
Potential von Citizen Science bestmöglich auszunutzen, müssen die Fähigkeiten und Messmöglichkeiten
der Citizen Scientists berücksichtigt und innovative Ansätze entwickelt werden; wie zum Beispiel die
virtuelle Messlatte. Diese ist eine Art Aufkleber, der digital auf ein Flussfoto geklebt wird und mithilfe
einer App weltweit verwendet werden kann. Die virtuelle Messlatte wird an einem Standort eingerichtet
und in einem Referenzfoto abgespeichert. Für weitere Beobachtungen am selben Standort bezieht sich der
Citizen Scientist immer auf dieses Referenzfoto und fügt dabei ein weiteres Foto sowie eine Schätzung des



Wasserstandes hinzu. Der Wasserstand wird in Klassen geschätzt, welche durch die virtuelle Messlatte
definiert werden. Für Citizen Scientists ist es einfacher Wasserstandsklassen als Abfluss abzuschätzen,
wodurch die Verlässlichkeit der Daten verbessert wird. Gelegentlich passieren dennoch Fehler; entweder
beim Platzieren der virtuellen Messlatte auf dem Referenzfoto oder beim Abschätzen einer weiteren
Wasserstandsbeobachtung. Um diese Fehler zu verringern, wurden zwei Strategien entwickelt. Einerseits
wird die Datenqualität von vielen Citizen Scientists in einem Spiel kontrolliert, wobei hochgeladene Fotos
mehrmals neu klassifiziert werden. Diese Schätzungen werden gemittelt, um den ursprünglich angegebe-
nen Wasserstandswert entweder zu bestätigen oder zu korrigieren. Andererseits kann das Spiel zusätzlich
zur Qualitätskontrolle auch als Training für neue Citizen Scientists verwendet werden. Während des
Spielens werden die Citizen Scientists mit der virtuellen Messlatte vertraut und lernen gute und schlechte
Platzierungen zu erkennen. Somit hilft das Training neuen Citizen Scientists virtuelle Messlatten in der
App besser zu platzieren, was zu verbesserten Referenzfotos und Daten führt. Diese Arbeit zeigt, dass
Schätzungen von Wasserstandsklassen mithilfe einer Smartphone Applikation weltweit gesammelt werden
können. Die spielerische Datenqualitätskontrolle hilft zusätzlich neue Citizen Scientists zu trainieren.
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Hydrological data are crucial for a better understanding of hydrological processes and can help 
improve models to predict floods and droughts, to allocate water resources and to better 
manage hydropower. However, hydrological data are often scarce, as gauging stations are 
expensive to build and maintain. Citizen science can help fill such data gaps and thereby 
complement the existing hydrological measurement network. To maximize its use, citizen 
science in hydrology requires innovative and novel approaches that are aligned with the 
capabilities and the equipment of citizen scientists. One such approach is a virtual staff gauge, 
i.e., a sticker with a staff gauge that is inserted onto a photograph of a river that can be used 
with a mobile smartphone application. The virtual staff gauge is placed on the photograph of 
the first observation of a particular location, which results in the reference picture. For further 
observations, citizen scientists compare the current water level to the virtual staff gauge in this 
reference picture and submit an estimate of the new water level and a new photograph. The 
water level estimates are measured in classes defined by the staff gauge and have no absolute 
units. 

Compared to streamflow, water level classes are easier for citizen scientists to estimate, and 
the data are therefore more reliable. However, even for water level class estimates, there is still 
potential for mistakes, either when placing the virtual staff gauge on the reference picture or 
when making a new estimate of the water level. Two strategies to reduce these data errors were 
explored in this thesis. First, data quality control was crowdsourced through a gamified web 
interface. Citizen scientists can vote on the water level classes that they believe are accurate, 
based on the comparison of the reference picture and the uploaded photograph. Several votes 
were collected per observation submitted via the app and the mean value of all votes was used 
to either confirm or correct the initial water level class estimate that was submitted via the app. 
This interface provides a scalable way for citizen scientists to check each other’s submissions 
and is therefore also applicable to other large scale citizen science projects. 

Second, the gamified interface can also be used for training new citizen scientists. By playing 
the game, citizen scientists become familiar with the concept of the virtual staff gauge. Voting 
on a water level class makes them realise which virtual staff gauge placements facilitate or 
complicate further estimates. This training helps citizen scientists to better place virtual staff 
gauges in the smartphone application and therefore helps to improve the quality of the 
reference pictures and all further observations. 

This thesis shows that it is possible to crowdsource water level class data through a mobile 
smartphone application on a global scale. Crowdsourcing data quality control not only results 
in higher data quality, but also trains new citizen scientists. The crowdsourced water level class 
data can be used to constrain hydrological models, which can simulate streamflow time series. 

ABSTRACT 
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Hydrologische Daten sind für ein besseres Verständnis hydrologischer Prozesse essentiell und 
helfen Hochwasser oder Dürreperioden vorherzusagen, Wasserressourcen zu verteilen und 
Wasserkraft besser zu nutzen. An vielen Standorten sind jedoch keine hydrologischen Daten 
vorhanden, da Messstationen teuer zu errichten und zu erhalten sind. Citizen Science (auch 
Bürgerwissenschaften genannt) kann helfen, diese Datenlücken zu füllen und das 
hydrologische Messnetz zu ergänzen. Um das Potential von Citizen Science bestmöglich 
auszunutzen, müssen die Fähigkeiten und Messmöglichkeiten der Citizen Scientists 
berücksichtigt und innovative Ansätze entwickelt werden; wie zum Beispiel die virtuelle 
Messlatte. Diese ist eine Art Aufkleber, der digital auf ein Flussfoto geklebt wird und mithilfe 
einer App weltweit verwendet werden kann. Die virtuelle Messlatte wird an einem Standort 
eingerichtet und in einem Referenzfoto abgespeichert. Für weitere Beobachtungen am selben 
Standort bezieht sich der Citizen Scientist immer auf dieses Referenzfoto und fügt dabei ein 
weiteres Foto sowie eine Schätzung des Wasserstandes hinzu. Der Wasserstand wird in Klassen 
geschätzt, welche durch die virtuelle Messlatte definiert werden. 

Für Citizen Scientists ist es einfacher Wasserstandsklassen als Abfluss abzuschätzen, wodurch 
die Verlässlichkeit der Daten verbessert wird. Gelegentlich passieren dennoch Fehler; 
entweder beim Platzieren der virtuellen Messlatte auf dem Referenzfoto oder beim Abschätzen 
einer weiteren Wasserstandsbeobachtung. Um diese Fehler zu verringern, wurden zwei 
Strategien entwickelt. Einerseits wird die Datenqualität von vielen Citizen Scientists in einem 
Spiel kontrolliert, wobei hochgeladene Fotos mehrmals neu klassifiziert werden. Diese 
Schätzungen werden gemittelt, um den ursprünglich angegebenen Wasserstandswert 
entweder zu bestätigen oder zu korrigieren. 

Andererseits kann das Spiel zusätzlich zur Qualitätskontrolle auch als Training für neue Citizen 
Scientists verwendet werden. Während des Spielens werden die Citizen Scientists mit der 
virtuellen Messlatte vertraut und lernen gute und schlechte Platzierungen zu erkennen. Somit 
hilft das Training neuen Citizen Scientists virtuelle Messlatten in der App besser zu platzieren, 
was zu verbesserten Referenzfotos und Daten führt. 

Diese Arbeit zeigt, dass Schätzungen von Wasserstandsklassen mithilfe einer Smartphone 
Applikation weltweit gesammelt werden können. Die spielerische Datenqualitätskontrolle hilft 
zusätzlich neue Citizen Scientists zu trainieren.  

ZUSAMMENFASSUNG 
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Information about water levels and flow in rivers is important to predict floods and droughts, 
to help hydropower operations, and to manage water resources. Such information does not 
always exist, because measurement stations are expensive to build and maintain. New methods, 
such as citizen science, can help to fill this gap. Data collection methods for citizen science 
should be as user friendly as possible. One such method is the virtual staff gauge that can be 
used in an app. With this method, the citizen scientist can add a “sticker” of a ruler with classes 
to a photograph of a river. This photograph is used as a reference by citizen scientists who 
return to the same place to make a new measurement of the water level. 

The work described in this thesis shows that water level classes are relatively easy for citizen 
scientists to estimate and the collected data is quite reliable. However, sometimes citizen 
scientists still make mistakes, either when placing the virtual staff gauge on the photograph of 
a river or when making a new water level class estimate. Therefore, it is important to check 
how accurate these measurements are. Two different methods to improve the data are 
presented in this thesis. First, everybody can help to check the data, meaning that the data 
quality control can be crowdsourced. Citizen scientists check each other’s observations in a 
game, based on the photograph that was sent by the citizen scientist who estimated the water 
level with the app. This helps to either confirm or correct the original water level class estimate. 
Second, this game also trains new citizen scientists because they learn to read the virtual staff 
gauge while playing the game. When they later add a virtual staffgauge to their own 
photographs in the app, they tend to make fewer mistakes. 

This thesis shows that it is possible for citizen scientists to collect water level class data with 
an app. In addition, a game enables the data to be quality controlled and for new citizen 
scientists to be trained. The crowdsourced data can be used to improve hydrological models 
that calculate when and how much water runs down the river. 

  

PLAIN LANGUAGE SUMMARY 
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1.1 Importance of hydrology and hydrological measurements 

Hydrology is the study of “water on and under the earth’s surface” [Hendriks, 2010, p. xi]. 

Hydrology seeks to fully understand the water cycle. It relates to how rivers flow, how 

they influence and are influenced by topography, and how groundwater moves and 

influences geological processes. Hydrology also studies water allocation, protection and 

rights issues [Hornberger et al., 1998]. 

The field of hydrology goes back to antiquity, is very diverse and covers a lot of different 

sub-disciplines. Water is vital to life on earth but also represents severe risks, such as 

floods, droughts and water contamination. Therefore, information on the overall 

availability, quality and the temporal and spatial distribution of water on and under the earth’s surface is crucial for societies and is the foundation for water management. 

There are many types of water, such as atmospheric water, groundwater, soil moisture 

and surface water. In this thesis the focus is on surface water, which is “water at the 
surface, whether stagnant in the form of surface storage or flowing in brooks or rivers, or as 

overland flow on slopes” [Hendriks, 2010, p. 200]. More specifically, this thesis focuses on 

flowing surface water, i.e., streams and rivers.  

There are many reasons why hydrological measurements are important. Hydrological 

data can help to improve our understanding of hydrological processes, to quantify our 

water resources and to check that the water quality is in compliance with regulations 

[Western et al., 2005]. Streamflow data are used for river management, such as water 

allocation and for the calibration of hydrological models that can be used to help predict 

floods and droughts or climate change impacts [Beven, 2012]. 

There are different methods to collect surface water data, such as water levels and 

streamflow. Measuring water levels is generally easier, which can be done with a staff 

gauge, a water level recorder or a pressure transducer. Streamflow can be determined 

with volumetric gauging, in case of small flows. The velocity-area method is used for 

larger streams with a slow flow. Thereby, the river profile is surveyed and the flow 

velocity is measured using the float method, a current meter or an acoustic Doppler 

1. INTRODUCTION 
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current profiler. For mountainous rivers with turbulent flow, the salt dilution method is 

usually used to quantify the streamflow [Hendriks, 2010]. 

Because water levels are easier to quantify, usually gauging stations measure the water 

levels continuously and streamflow only occasionally. These measurements can then be 

combined via the rating curve (i.e., stage-discharge relationship), which requires several 

measurements and regular updates in case of river profile changes [Hendriks, 2010]. 

For many applications, streamflow data are needed. For example, most hydrological 

models require some streamflow data for calibration [Beven, 2012]. However, a study 

from Seibert and Vis [2016] indicates that water levels can also be used to calibrate a 

hydrological model. For humid catchments, the missing volumetric information is 

deduced from the annual precipitation amounts. 

Hydrology is often limited by insufficient data, in particular in low-income regions 

[Mulligan, 2013; Walker et al., 2016]. Such regions in particular, tend to have many water 

related issues, such as “climatic water scarcity, high population-related demands, lack of – 

or poor – land and water management practices, poverty or significant inequalities in 

sharing water and its benefit” [Mulligan, 2013, p. 750]. In addition, there is an overall 

decline in national hydrological and meteorological measurements networks [Vörösmarty 

et al., 2001; Fekete et al., 2012; Ruhi et al., 2018]. Many new measurement approaches, 

such as remote sensing, geophysical methods and wireless sensor networks, have the 

potential to alleviate this situation. However, high spatiotemporal resolution streamflow 

measurements are still difficult to obtain. Citizen science therefore represents an 

innovative and novel approach to fill some of these gaps [Buytaert et al., 2014]. 

1.2 Citizen science 

1.2.1 Definition of citizen science 

The Oxford English Dictionary defines citizen science as “scientific work undertaken by 
members of the general public, often in collaboration with or under the direction of 

professional scientists and scientific institutions” [Haklay, 2014]. Thus, citizen science 

means that scientists and volunteers collaborate during some stage in the scientific 

process.  

The common definition of a citizen scientist is "a member of the general public who 

engages in scientific work, often in collaboration with or under the direction of professional 

scientists and scientific institutions; an amateur scientist” [Haklay, 2014]. Another 

definition is “a volunteer who collects and/or processes data as part of a scientific enquiry” 

[Silvertown, 2009]. 

These definitions for “citizen science” and “citizen scientist” cover a wide range of projects 

and participants, yet the exact definition is still discussed in the citizen science community 
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[Bonney et al., 2016; Eitzel et al., 2017]. A common classification of the different degrees 

of involvement of citizen scientists was given by Haklay [2013]. Figure 1 shows the four 

different levels of involvement, according to this classification. 

 

Figure 1: Levels of participation in citizen science. Figure adapted from Haklay [2013]. 

Most frequently, citizen scientists are engaged in projects with lower levels of 

participation, i.e., crowdsourcing and distributed intelligence. However, in some projects 

participants may have different tasks or degrees of involvement [Haklay, 2013]. An 

example for the lowest level of participation is volunteer computing [Kloetzer et al., 2016]. 

Examples for projects that ask citizen scientists to interpret information are CoCoRaHS 

[Reges et al., 2016], Galaxy Zoo [Lintott et al., 2008], Foldit [Cooper et al., 2010] and 

CrowdWater [Paper I]. An example that engages citizen scientists during the problem 

definition and data collection stage is for example the environmental justice case in Flint, 

Michigan [Bellinger, 2016; Pieper et al., 2018]. Examples for extreme citizen science are 

anti-poaching or anti-illegal logging projects [Matthias et al., 2014]. 

There are also other classification schemes available, such as subdividing projects into 

contributory, collaborative and co-created citizen science projects [Bonney et al., 2009a]. 

Some example projects for this classification scheme are listed in Thornhill et al. [2019] 

or Bonney et al. [2009a]. 

1.2.2 History of citizen science 

While the term “citizen science” is relatively new, the concept has been around for quite a 

long time [Irwin, 1995; Bonney et al., 2009a]. Various projects are credited with being the 

first citizen science project, most commonly the Audubon Christmas Bird Count in the 

United States, which began collecting bird observations in 1990 [Dunn et al., 2005]. Others 

mention diary entries of the cherry tree blossoming date in Kyoto, Japan in the 9th century 

[Aono and Kazui, 2008], lighthouse keepers collecting bird strike data starting in 1880, 

the National Weather Service Cooperative Observer Program starting in 1890 [Bonney et 

al., 2009a] or volunteers recording the tide for two weeks in 1835 [Cooper, 2016]. 

Over the last decade the field of citizen science has grown enormously [McKinley et al., 

2017]. This recent advent can partly be accredited to mobile smartphones becoming 
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ubiquitous [Silvertown, 2009; Graham et al., 2011; Dickinson et al., 2012; Paul et al., 2018]. 

Smartphones make it easy to immediately transfer any observation with a GPS-location 

and a timestamp. Furthermore, the option to add a photograph to any observation, 

facilitates quality control for project managers [Dickinson et al., 2012]. Moreover, data 

collection via smartphones enables citizen scientists to have almost immediate access to 

their own data and other observations [Graham et al., 2011] and to build online 

communities that can increase the motivation to participate [Science Communication Unit 

- University of the West of England, 2013]. 

The recent increase in citizen science projects is also manifested through the creation of 

the Citizen Science Association (www.citizenscience.org) in 2012 and the European 

Citizen Science Association (www.ecsa.citizen-science.net) in 2013. There are also 

national associations, e.g. in Switzerland called “Citizen Science Schweiz” that was 

launched in 2015 (www.schweiz-forscht.ch) or in Austria called “Zentrum für Citizen 
Science” also launched in 2015 (www.zentrumfuercitizenscience.at). 

1.2.3 Citizen scientists: contribution patterns and motivations 

The variability in the contributions from citizen scientists is similar in most citizen science 

projects: the majority of citizen scientists make one contribution and the vast majority of 

contributions are provided by a few dedicated citizen scientists [Sauermann and Franzoni, 

2015]. FreshWater Watch reported that 1% of citizen scientists provided 47% of the 

observations [August et al., 2019], 86% of participants who joined the CrowdHydrology 

project sent only one observation [Lowry et al., 2019] and for the project iSpot more than 

half of all registered participants never uploaded any observation, but a few hundred of 

the 42,000 registered participants added “hundreds or thousands” of contributions each 

[Silvertown et al., 2015]. 

In order to be able to retain citizen scientists and attract frequent contributors, it is 

important to analyse the motivations of citizen scientists to participate, which can vary 

significantly between projects. Project managers need to understand the relevant 

incentives in order to target the right audience and engage the public for longer [Thornhill 

et al., 2019]. Motivations can differ between initially joining a project and sustained 

participation and can broadly be classified into intrinsic and extrinsic motivations [West 

and Pateman, 2016]. Factors inspiring citizen scientists to participate over a long period 

are feedback from the project, good communication between project organisers and 

citizen scientists, social interactions among citizen scientists and various reward systems 

[West and Pateman, 2016]. A study investigating the motivations of the participants of the 

CrowdWater project (see 3. CrowdWater) concluded that citizen scientists mostly 

decided to join in order to contribute to science, improve the wellbeing of society and to 

protect nature [Etter et al., in review]. A survey investigating the motivations to join the 

CrowdWater game showed that citizen scientists enjoyed playing the game, were 

http://www.citizenscience.org/
http://www.ecsa.citizen-science.net/
http://www.schweiz-forscht.ch/
http://www.zentrumfuercitizenscience.at/
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interested in hydrology, wanted to be part of the CrowdWater community and enjoyed 

helping others [Paper III]. 

1.2.4 Benefits and limitations of citizen science 

Citizen science projects have many advantages compared to more conventional research 

projects, yet these benefits depend considerably on the project and the research field. One 

of the main benefits of citizen science approaches is the possibility to gather vast amounts 

of data in a relatively short time [Catlin-Groves, 2012]. For example, Galaxy Zoo managed 

to collect 8 million galaxy classifications within 10 days of launching their site [Clery, 

2011]. The project Phylo, a citizen science project for improving multiple genome 

sequence alignment, received more than 350,000 submitted solutions within their first 

year [Kawrykow et al., 2012]. 

Citizen science also enables data collection with a unique spatial coverage [Goodchild, 

2007]. For example, the Audubon Christmas Bird Count has over 70,000 annual 

participants and has collected data on 551 different bird species in the United States and 

southern Canada. This spatially distributed dataset enables researchers to investigate 

trends for the whole study region and also at smaller scales, e.g. at the level of states or 

provinces [Soykan et al., 2016]. CoCoRaHS, a meteorological citizen science project, has 

approximately 20,000 active citizen scientists that provide data in the United States, 

Puerto Rico, the U.S. Virgin Islands and in 13 Canadian provinces [Reges et al., 2016]. 

Another project with exceptional spatial coverage is the German project “Mückenatlas” 

(mosquito atlas), which asks participants to send in frozen mosquitos for identification. 

In this project more than 17,000 mosquitos including 39 species were collected [Haklay, 

2015]. 

Citizen science projects sometimes take advantage of the unique local or individual 

knowledge of participants [Wilson et al., 2018]. Examples for such projects are 

anti-illegal-logging projects [Matthias et al., 2014] or a study about tropical resource 

monitoring [Danielsen et al., 2014]. 

Citizen science can, furthermore, help to bridge the gap between science and society and 

introduce citizens to science [Overdevest et al., 2004; Bonney et al., 2009a; Price and Lee, 

2013]. However, some researchers mention that education should not be the main aim of 

citizen science projects, as per definition, citizen science should primarily be a tool for 

scientific work [Bonney et al., 2014]. Citizen scientists may learn field-specific information 

within the project [Schrier, 2017]. For example, Crall et al. [2013] found that by 

participating in a training programme, citizen scientists learned to better identify invasive 

plants. However, in some projects no learning effect took place [Overdevest et al., 2004]. 

Some researchers perceive citizen science projects as outreach or educational projects 

[Bonney et al., 2014]. This misconception can likely be reduced through further studies 
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that demonstrate the scientific validity of citizen science projects and data, by maintaining 

high scientific standards and by communicating the potential of such data and results. 

While the potential of citizen science has been demonstrated by numerous successful 

projects worldwide and in many different scientific fields [Cooper, 2016], there are also 

some challenges. Citizen science is sometimes criticised for the unconventional data 

collection methods and often the data quality is doubted [Catlin-Groves, 2012; Burgess et 

al., 2016; Parrish et al., 2018; Wilson et al., 2018; Njue et al., 2019]. Although no 

generalised statements regarding the data quality can be made, many studies have 

demonstrated the accuracy and validity of their data (see 1.4.2 Data quality in citizen 

science). 

Sensitive data, such as the participants’ private information or the location of endangered 

species have to be considered carefully, consent has to be obtained and the data have to 

be protected whenever possible [Haklay, 2015]. These issues need to be handled on a 

project by project basis. Some environmental citizen science projects have chosen not to 

share the data publicly, in order to protect certain species [Bowser and Wiggins, 2015; 

Ganzevoort et al., 2017; de Vries et al., 2019] or to safeguard user privacy [Newman et al., 

2012; Rey-Mazón et al., 2018]. 

Currently, there is a lack of diversity in citizen scientists. Haklay [2015] writes that the 

average citizen scientist is “well educated, working in a job that provides enough income 
and working conditions for ample leisure, and with access to the internet as well as 

ownership of smartphones”. Therefore, some projects struggle with a geographical bias, 

meaning that there are more projects in wealthy regions [Buytaert et al., 2014; Haklay et 

al., 2018]. Haklay et al. [2018] point out the irony of this, as many citizen science 

researchers talk about the potential of citizen science in less affluent regions [e.g. Njue et 

al., 2019]. Some projects have nonetheless been successful in poorer regions, such as a 

water level project in Kenya [Weeser et al., 2018] or SmartPhones4Water, a project for 

precipitation measurements in Nepal [Davids et al., 2019]. Those projects sometimes had 

to adjust the incentives for participation. Buytaert et al. [2014] mention that citizen 

science projects in developing countries more commonly pay their citizen scientists for 

contributions. For citizen science to reach its full potential, strategies to be more inclusive 

will have to be explored. That innovative strategies can expand the user groups is shown 

in Extreme Citizen Science projects, where projects were designed to even include 

illiterate groups [Haklay, 2015]. 

1.3 Citizen science in hydrology 

Citizen science in the field of hydrology is still a relatively new, but rapidly expanding field 

[Buytaert et al., 2014; Assumpção et al., 2018; Njue et al., 2019]. Traditional hydrological 

measurements are collected with expensive equipment, which poses a challenge to citizen 
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science projects [Buytaert et al., 2014]. Nonetheless, contributory citizen science projects 

are the most common form of participation [Buytaert et al., 2014; Njue et al., 2019]. 

A few hydrological citizen science projects aim at complementing the scarce streamflow 

data, typically by providing additional water level observations [Buytaert et al., 2014; Njue 

et al., 2019]. A successful hydrological citizen science project, called CrowdHydrology, 

partly inspired the CrowdWater project that is central to this thesis. CrowdHydrology 

collects water level data by placing a staff gauge in streams and rivers, mostly along hiking 

paths. A sign encourages people who happen to walk by to read the current water level 

and send a text message with this value. By 2019, the U.S.-based project had 120 stations, 

over 16,000 observations and over 8,000 participants [Fienen and Lowry, 2012; Lowry 

and Fienen, 2013; Lowry et al., 2019]. A similar approach using fixed staff gauges in rivers 

was successfully used by a project in Kenya [Rufino et al., 2018; Weeser et al., 2018]. Both 

of these projects rely on actual water level gauges, which limits the number of possible 

locations. In addition to financial constraints, project organisers cannot visit an unlimited 

number of locations to place and maintain these staff gauges. In contrast, this thesis 

proposes a mobile smartphone application with a virtual staff gauge. This leads to a fully 

scalable approach because the citizen scientists place the virtual staff gauges in a 

photograph by themselves (see 3.2 The CrowdWater app). Thus, there is no extra cost per 

virtual staff gauge and no maintenance required. Unlike the physical staff gauge, the 

virtual staff gauge does not have absolute units. The accuracy of these data is explored in 

this thesis. 

Hydrological citizen science projects extend beyond water level observations in rivers 

[Buytaert et al., 2014]. For example, the project LOCSS (Lake Observations by Citizen 

Scientists and Satellites) uses water level gauges in lakes in order to obtain ground truth 

observations for satellites [The University of North Carolina at Chapel Hill, 2019]. 

Groundwater well water levels were monitored in a Canadian study [Little et al., 2016]. 

Wet/ dry mapping of intermittent streams has been done in multiple citizen science 

projects [Turner and Richter, 2011; Kampf et al., 2018; Allen et al., 2019]. Other studies 

investigated qualitative observations of soil moisture, such as the “boots and trousers” 

method [Rinderer et al., 2012, 2015]. In a different project, snow depth observations were 

collected by skiers and snowboarders who use an avalanche probe as a measuring stick 

[Hill et al., 2018]. The Swedish meteorologist, Tor Bergeron, already successfully asked 

people to measure snow depth between 1941-1943 [Bergeron, 1949] and also measure 

rainfall [Bergeron, 1960] and to mail their observations via postcard. Lottig et al. [2014] 

used a long-term dataset (between 1938 and 2012) collected by citizen scientists, to study 

geographical differences and temporal trends in lake-water clarity in eight states in the 

United States. 

Most citizen science projects in hydrology collect observations to assess water quality. 

For example, the HydroCrowd project [Breuer et al., 2015] collected water samples to 
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investigate nitrogen concentrations in Germany with the help of students. A similar study 

in Canada examined various water quality parameters [Jollymore et al., 2017]. The project 

FreshWater Watch crowdsources observations regarding algal presence, turbidity, water 

colour and nitrate and phosphate concentrations with the help of trained citizen scientists 

[Castilla et al., 2015; Thornhill et al., 2018]. A study in South, Central and North America 

asked citizen scientists to provide microscale information, such as point sources and bank 

vegetation conditions, in order to explain sub-basin variability of phosphate 

concentrations [Loiselle et al., 2016]. Visible macro-plastic pollution can also be observed 

with the help of citizen scientists [Emmerik and Schwarz, 2020]. 

In addition to data collection, multiple investigations into hydrological modelling with 

citizen science data have been made to demonstrate the usefulness of such crowdsourced 

observations [Assumpção et al., 2018; Etter et al., 2018, 2020; Mazzoleni et al., 2018; 

Weeser et al., 2019]. For example, Weeser et al. [2019] showed that crowdsourced water 

level measurements could effectively calibrate a lumped hydrological model, in particular 

when including water balance or evapotranspiration data. Etter et al. [2020] showed that 

water level classes can be used to calibrate the HBV model even when the data have a low 

temporal resolution and contain some errors (which corresponds to a citizen science 

scenario). 

1.4 Data quality 

1.4.1 Data quality in hydrology 

Hydrological data, just like any environmental data, are never fully accurate or complete. 

Whitfield [2012] writes that “most environmental data suffer from missing observations, 
missing periods, and other forms of incompleteness”. Even gauging station data can still 

contain errors [McMillan et al., 2012; Whitfield, 2012; Chao et al., 2015; Kiang et al., 2018] 

due to errors in the stage and streamflow measurements, interpolation and extrapolation 

of the rating curve and changes in the stream cross-section [McMillan et al., 2012]. 

According to McMillan et al. [2012] relative errors for streamflow vary depending on the 

streamflow volume and can be ±50–100% for low flows and ±10–20% for medium or high 

flows. Streamflow beyond the streambank is likely to have even higher errors. 

Westerberg et al. [2011] calculated rating curve related errors of −60% to +90% for low 
flows and ±20% for medium to high flows. Thus, data might have varying quality. It is 

therefore important that the “fitness-for-purpose” is considered. This means that data are 

only used for purposes for which the data quality is sufficient. Therefore, it is essential 

that the data quality is communicated and that data users consider such factors [Whitfield, 

2012]. 

Even when including the error ranges mentioned above, gauged streamflow data likely 

have a higher data quality than crowdsourced data. However, while the temporal 
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resolution of gauging stations is high, they are more limited and less flexible with regard 

to spatial coverage than crowdsourced data, due to construction and maintenance costs 

[Lowry et al., 2019]. Therefore, smaller catchments often remain ungauged [Kirchner, 

2006; Bishop et al., 2008]. Currently, observation networks are more likely to decrease 

the spatial resolution than to increase it [Kundzewicz, 1997; Ruhi et al., 2018]. As an 

example, in the United States the number of stream gauges decreased by 21% between 

1947 and 2016 [Ruhi et al., 2018]. 

1.4.2 Data quality in citizen science 

The issue of data quality receives a lot of attention in citizen science [Engel and Voshell, 

2002; Haklay, 2010; See et al., 2013; Aceves-Bueno et al., 2017]. Many researchers and data 

users alike are worried about the data quality of less standardised and less 

well-established approaches [Catlin-Groves, 2012; Burgess et al., 2016; Parrish et al., 2018; 

Wilson et al., 2018; Njue et al., 2019]. Therefore, many citizen science projects begin by 

analysing the data quality for their innovative data collection strategies [Turner and 

Richter, 2011; Rinderer et al., 2012, 2015; Lowry and Fienen, 2013; Peckenham and 

Peckenham, 2014; Breuer et al., 2015; Le Coz et al., 2016; Little et al., 2016; Weeser et al., 

2018]. Many of these projects found promising results regarding the accuracy of the 

crowdsourced data. For example, Lowry and Fienen [2013] analysed water level data that 

were collected by hikers by reading a staff gauge. The results showed that the 

crowdsourced data were almost as good as data from a pressure transducer. A similar 

approach to collect water levels was chosen by Weeser et al. [2018], who also found that 

the crowdsourced data were comparable to those from data loggers. Groundwater levels 

were collected and analysed in a study by Little et al. [2016], who found that the absolute 

difference of the well readings of 2 to 11 mm was sufficiently small and that 

crowdsourcing therefore provided a cheap and effective method for water resources 

management. 

Citizen science projects try several approaches to maintain a high data quality, often 

depending on the field and level of engagement. These approaches are categorised as 

prevention (before data collection) or correction (after data collection). Examples for 

methods before data collection are: intuitive data collection approaches, standardised 

protocols and training new citizen scientists. Examples for methods after data collection 

are: automatic data filtering, collecting many observations that can be cross-checked for 

consistency and quality control either through experts or through citizen scientists 

[Wiggins et al., 2011]. 

There are many projects that try to develop intuitive and simple data collection 

approaches that are easy to implement and therefore avoid mistakes. Examples of such 

approaches are a qualitative soil moisture scale adapted to different regions [Rinderer et 

al., 2012, 2015], wet/ dry mapping of intermittent streams [Turner and Richter, 2011; 

Kampf et al., 2018] and the virtual staff gauge for water level class estimates [Paper I]. 
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Some projects opt for strictly standardised data collection protocols to minimise 

misunderstandings that enable citizen scientists to follow clear instructions. An example 

is a snow observation project in the United States [Dickerson-Lange et al., 2016] or a bird 

survey across three citizen science projects [Jones et al., 2018]. Many projects have 

training material or training days, in order to ensure that citizen scientists have a basic 

understanding of the topic and the applied methodology. FreshWater Watch provides a 

one-day training to volunteers [Thornhill et al., 2019] and CoCoRaHS has developed 

training animations [Reges et al., 2016]. 

There are many methods of data quality control after data collection. A study investigating 

hail reports automatically filters reports according to the meteorological condition 

[Barras et al., 2019]. Filtering can only be done in projects where likely limits on values 

can be pre-determined, which is not feasible in many projects. In a study investigating 

crowdsourced hydro-meteorological data, researchers benefited from collecting many 

observations as they were able to cross-check these observations with neighbouring 

observations for consistency [Walker et al., 2016]. For this approach, data with close 

proximity and collected at a similar time are needed, which is also not always possible. In 

smaller projects, data quality control can be done with experts [Wiggins et al., 2011]. 

Alternatively, quality control can also be crowdsourced, as for example in the projects 

Pattern Perception [Koch and Stisen, 2017] or Cyclone center [Hennon et al., 2015] that 

ask citizen scientists to visually compare spatial patterns, or the projects Snapshot 

Serengeti [Swanson et al., 2016] or Cropland Capture [See et al., 2014] that require citizen 

scientists to assess photographs. Another example for crowdsourced quality control is the 

CrowdWater game (see 3.3 The CrowdWater game). 

The fundamental questions regarding data quality that need to be answered by any new 

citizen science project are: 

1. Can citizen scientists collect data with the required quality? And if not, how can the 

data quality be improved either before or after data collection? 

2. Is the quality of the resulting data good enough for the intended purpose? 

Both of these questions were addressed for the CrowdWater project (see 3. CrowdWater). 

The first question is discussed in this thesis, as well as in Papers I-IV. Section 8. Outlook 

briefly touches upon the second question, which is further discussed in a related thesis by 

Simon Etter, as well as in other publications [Seibert and Vis, 2016; van Meerveld et al., 

2017; Etter et al., 2018, 2020].  
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Crowdsourced hydrological data might enhance the spatial coverage of hydrological 

measurements. Therefore, the overall aim of this thesis is to investigate the quality and 

potential of crowdsourced hydrological data, in particular water level class observations 

collected with a virtual staff gauge. This thesis examines the general feasibility of this 

approach, characterises the quality of the collected data, and investigates how the data 

quality can be further improved. 

The research questions of this thesis were: 

1. Is the virtual staff gauge concept suitable to crowdsource water level data? 

a. What errors occur when citizen scientists use the virtual staff gauge? 

b. How accurately can citizen scientists collect water level class data with the 

virtual staff gauge? 

2. Is it possible to crowdsource data quality control? 

3. Can a game for data quality control also be used to train new citizen scientists? 

To answer the first research question, the benefits, limitations and errors of the virtual 

staff gauge approach are discussed [Paper I]. This virtual staff gauge approach is also 

compared with other crowdsourcing methods for hydrological data, by comparing the 

accuracy of water level class and streamflow estimates [Paper II]. For the second research 

question, a gamified method to crowdsource data quality control to further improve the 

data quality is investigated [Paper III]. The use of the game for training new citizen 

scientists is explored to answer the third research question [Paper IV]. The connections 

between these four papers are illustrated in Figure 2. In the outlook, preliminary 

modelling results are presented that show an example of how quality-controlled 

crowdsourced water level class observations can be used for hydrological model 

calibration in the future. 

2. SCOPE OF THE THESIS 

2 
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Figure 2: Overview of the thesis and themes of the papers. 
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3.1 The CrowdWater project 

The research questions of this thesis were investigated within the CrowdWater project. 

CrowdWater is a hydrological citizen science project (www.crowdwater.ch), where any 

citizen can participate in the hydrological data collection. This is done through a mobile 

smartphone application, which is used for data collection, and an online game, which is 

used for quality control. The CrowdWater app and the data are freely available. 

The project was launched at the Department of Geography, University of Zurich by Prof. 

Dr. Jan Seibert and Dr. Ilja van Meerveld in spring 2016 and was funded by the Swiss 

National Science Foundation. Between 2016 and 2020, two Ph.D. students (Simon Etter 

and myself) worked on this project. 

Citizen scientists were recruited through various methods, such as public talks, science 

fairs, social media, student events, conferences, press releases and personal invitations 

via the project members’ networks. To help with the outreach and recruitment, we 

produced or commissioned tutorial and motivational videos, graphics and a mascot called 

Droppy (Figure 3). According to Haklay’s levels of citizen science [Haklay, 2013], CrowdWater fits into the 

level of citizen engagement called “Distributed Intelligence”. CrowdWater citizen scientists 

collect data and provide some basic interpretation as well, such as estimating water levels 

(see 3.2 The CrowdWater app). In the CrowdWater game players interpret water levels 

by comparing photographs, which is also considered “Distributed Intelligence”. According 

to a different classification scheme by Bonney et al. [2009b], CrowdWater can also be 

considered a “contributory” citizen science project. 

3. CROWDWATER 

3 

http://www.crowdwater.ch/
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Figure 3: An example of an explanatory graphic produced by the University of Zurich‘s Multimedia & E-Learning-Services. 

The graphic explains the concept of the CrowdWater project as well as several possible data uses by citizen scientists. The 

infographic is centred around the CrowdWater mascot: Droppy. Figure by Tara von Grebel. 

3.2 The CrowdWater app 

The CrowdWater smartphone application (from here on called app) can be used to collect 

observations or estimates of water level classes, soil moisture, the state of temporary 

streams and the amount of plastic in streams. The app was first launched in spring 2017. 

By December 2, 2019 the CrowdWater app had 663 users and included 10,157 

observations at 2616 different locations worldwide. This thesis focuses on the water level 

class estimates, for which 4948 observations at 931 locations worldwide had been 

submitted by December 2, 2019. The 10 citizen scientists who submitted the most water 

level class observations, contributed 59% of all water level class observations. The 

CrowdWater app was co-designed and produced by SPOTTERON (www.spotteron.net), 

an Austrian-based company specialising in citizen science smartphone applications. 

Citizen scientists start collecting water level class time series by taking a reference 

picture, i.e., a photograph of a river to which they add a sticker-like virtual staff gauge with 

http://www.spotteron.net/
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10 classes (Figure 4). For follow-up observations, they compare the current water level 

with the original reference picture and submit the current water level class, as well as a 

new photograph of the stream [Paper I, Seibert et al., 2019]. 

 

Figure 4: A reference picture is a photo with a sticker-like virtual staff gauge added to it. 

The CrowdWater app also includes features that are similar to social media. Citizen 

scientists can like and comment on each other’s observations and can follow each other’s 
contributions. These features were included in the app to establish a community spirit, 

which can promote long-term engagement with a project [Jennett et al., 2016]. These 

social media features are used by some of the citizen scientists, but many citizen scientists 

do not use them. Unfortunately, no data are available to quantify how many citizen 

scientists are actively using these features. It is possible that it will simply take some time 

until these features are more widely adopted by the community. For further information 

regarding the CrowdWater mobile app, see Papers I, III and IV. 

3.3 The CrowdWater game 

The CrowdWater game is a web-based citizen science game to check and improve the 

accuracy of the water level class data. It was launched in cooperation with SPOTTERON 

in spring 2018. The game enables multiple citizen scientists to check the water level class 

observations submitted via the CrowdWater app, thereby improving the data quality. The 
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game only controls the data quality of water level classes (and not the other three 

observation types collected through the app), because the water level is clearly visible on 

a photograph and can thus be assessed without having to be next to the stream. 

In this web-based game, players compare the reference picture with the virtual staff gauge 

to a follow-up observation and vote on a water level class (Figure 5). Per observation 

15-50 votes are collected to determine the mean water level class, called the mean vote.  

Each game round contains two types of picture pairs: unclassified and classified. For 

unclassified picture pairs, the correct water level class value is still unknown because 

fewer than 15 players have voted on them so far. Classified picture pairs have been voted 

on by at least 15 players, therefore the mean of all votes already yields a reliable water 

level class value that is assumed to be correct. 

Players can also report a picture pair if for example they are unable to see the water level 

on the picture (e.g. the picture is too dark) or for technical issues (e.g. the staff gauge is 

missing). The reasons for the report can be stated during the submission. 

 

Figure 5: Screenshot of the CrowdWater game. The left picture shows the reference picture with the virtual staff gauge. 

The right picture shows the stream at a later date (an update), for which the player estimates the water level class. The 

water level class can be selected on the horizontal gauge classes below the pictures. Left of the pictures, the top ranked 

players of this round are shown (anonymised in this illustration). Figure taken from Paper III. 

The CrowdWater game is a casual citizen science game, which means that little time, prior 

knowledge, experience or training is needed to start playing the game [Crowston and 

Prestopnik, 2013]. The game consists of daily rounds and monthly championships. Points 
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(6 points for a correct vote on a classified picture pair, 4 points for an error of one class 

and 0 points for a larger error, 3 points for unclassified picture pairs or reports) can be 

gained for each picture pair, which are summed up during each round and championship. 

The CrowdWater game automatically receives the CrowdWater app water level class 

pictures, hence the number of possible picture pairings is continuously growing. By 

December 2, 2019, the CrowdWater game had 3964 picture pairs (1599 classified and 

2365 unclassified picture pairs) and 209 players. 

The CrowdWater game forms the basis for Papers III and IV. The focus of Paper III is on 

crowdsourcing quality control through a gamified approach, whereas the focus of Paper 

IV is on training new citizen scientists through the game. For further information 

regarding the CrowdWater game, see Papers III and IV. 
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4.1 CrowdWater app and game data 

Data collected in connection with the CrowdWater project (see 3. CrowdWater), including 

the CrowdWater app, the CrowdWater game, as well as additional surveys, form the basis 

for the analysis of this thesis. The CrowdWater app and CrowdWater game datasets used 

are subsets of the current datasets, based on the data that were available at the time of 

the publications (Table 1). The CrowdWater project and crowdsourcing efforts are 

ongoing. Therefore, more data are currently available. 

Table 1: Summary of datasets used in this thesis. The time period of the subsets of the CrowdWater app and CrowdWater 

game were determined by the publication of the respective papers. 

Data source Time period of subset Chapter Paper 

CrowdWater app Spring 2017 – September 3, 2018 4.2 I 

Survey  4.3 II 

CrowdWater game Spring 2018 - February 28, 2019 4.4 III 

Survey  4.5 IV 

 

The CrowdWater app data are publicly available and can be freely downloaded from the 

CrowdWater homepage (www.crowdwater.ch). Each observation also includes the 

location, the timestamp and an identifier of the citizen scientist who made the observation 

(User-ID). Usernames and e-mail addresses are excluded from the public download to 

protect the privacy of all citizen scientists. The e-mail address is only stored and used for 

administrative purposes and is not publicly visible. Citizen scientists and their data are 

protected by the General Data Protection Regulation established by the European Union. 

A citizen scientist can choose any username and does not need to provide his or her real 

name. Demographic data, such as age, education or profession, can be added to the user 

profile. However, very few citizen scientists choose to do so. Therefore, we do not know 

4. METHODS AND DATA 

4 

http://www.crowdwater.ch/
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the demographic data of the CrowdWater citizen scientists, either from the app or the 

game. 

All citizen scientists can see all observations, not just their own. However, they are only 

able to edit their own observations. Administrators and appointed moderators can edit 

observations from other citizen scientists. This is intended for quality control and allows 

erroneous observations to be removed or corrected. Reference pictures that were 

checked and deemed suitable by an administrator can be “locked” within the dataset. This 

shows citizen scientists and data users that the reference picture is suitable for further 

observations. Citizen scientists can no longer edit a locked reference picture, to ensure 

that all follow-up observations refer to the same reference picture. 

There are no strict guidelines for when a reference picture with a badly placed virtual 

staff gauge is removed from the dataset. In general, reference pictures are removed when 

they do not enable further observations at this location, e.g., when the class zero of the 

virtual staff gauge is not located on the water surface. The removal of a reference picture 

is admittedly somewhat subjective and depends on the administrator. Location errors are 

only noticeable if they are severe, e.g., the location is supposedly next to a large river, but 

there is no river on the map. The locations of smaller rivers are harder to verify, as they 

may not be shown on the map. Currently, the backend of the CrowdWater app and dataset 

does not log the changes that are made to observations, nor who has made the changes 

(i.e., an administrator or the citizen scientist). Such an addition would enable better 

traceability and improve the metadata and, therefore, should be implemented in the 

future. 

The CrowdWater game data are not yet publicly available but may be merged with the 

CrowdWater app data in the future. User-IDs, as well as location and observation IDs for 

the CrowdWater app and game, are identical, which facilitates merging these datasets.  

4.2 Issues related to the placement of the virtual staff gauge 

This section focuses on data submitted through the CrowdWater app and in particular on 

the reference pictures. It quantifies the errors that occurred when citizen scientists placed 

the virtual staff gauge onto river photographs. Reducing these errors by training new 

citizen scientists is discussed in a later chapter (see 4.5 Training citizen scientists). 

For the analysis of the CrowdWater app in Paper I, all app submissions collected between 

the first launch (spring 2017) and September 3, 2018 were included. At this point 2431 

observations had been submitted by 218 citizen scientists, including roughly 500 water 

level class reference pictures, i.e., pictures with a virtual staff gauge. 

Based on this dataset, we noted that some reference pictures had issues with the 

placement of the virtual staff gauge. Therefore, we analysed and quantified the 

frequencies of different error categories (staff gauge size problem, staff gauge placement 
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problem or unsuitable location). An exact quantification of the frequencies was not 

feasible, as not all changes in the dataset could be traced anymore because either an 

administrator or citizen scientist could have deleted an unsuitable spot. However, rough 

estimates were still possible. 

4.3 Accuracy of water level class and streamflow estimates 

We assessed people’s abilities to estimate hydrological data with surveys (see Paper II). 

Two different types of estimates were assessed: estimates of streamflow based on 

individual streamflow factors (width, mean depth and flow velocity; Qfactor) and estimates 

of the water level class with the virtual staff gauge approach (Qlevel). 

We conducted 16 surveys at 10 different rivers or streams in Switzerland. A total of 517 

passers-by participated. The 10 rivers were grouped into different size categories based 

on the mean annual streamflow: XS: ≤1 m3/s (three streams), S: >1–50 m3/s (five rivers), 

M: >50–200 m3/s (one river), and L: >200 m3/s (one river). We had already set the virtual 

staff gauge in a photo during a previous visit of the location, so that participants could 

compare the current water level with a potentially different water level in the reference 

picture. 

We calculated streamflow estimates (Qfactor and Qlevel) into a relative streamflow estimate, 

i.e., the streamflow estimate divided by the measured streamflow value times 100%, so 

that streamflow estimates for different streams could be compared. A value of 100% 

represents a perfect estimate, smaller values indicate an underestimation and larger 

values an overestimation. Estimates under 50% or over 150% are considered outliers in 

this analysis. Please note that the definition of outliers is not entirely consistent 

throughout this thesis, as the analyses differ between the publications. For the water level 

class estimates, we determined how many classes the estimate was off from our estimate 

of the water level class (which we assume to be correct).  

In order to be able to compare the water level class estimates collected via the survey at 

Swiss rivers with the streamflow estimates, water level classes were re-calculated to a 

corresponding streamflow value (m3/s). For stream locations with a nearby official 

gauging station, the classes of the virtual staff gauge were converted to streamflow classes 

by measuring the stream depth that corresponded to each water level class (midpoint and 

boundaries) and then using the available rating curve to find the corresponding 

streamflow value. For stream locations without an official gauging station, additional 

stream profile measurements were taken in order to calculate the corresponding 

streamflow with the Manning-Strickler formula [Manning, 1891]. 
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4.4 Crowdsourced data quality control 

In Paper III, the suitability of the CrowdWater game for crowdsourced data quality control 

is analysed. The analysis of the CrowdWater game dataset was finished on February 28, 2019, with 2326 picture pairs in the game (846 classified (≥ 15 game votes) and 1480 
unclassified picture pairs). In total, 153 players contributed at least one vote in the game, 

but only 58 players played more than two full rounds. 

The mean game vote and the original water level class submitted through the app were 

compared, in order to assess if the CrowdWater game is a suitable mechanism to correct 

erroneous app submissions. For all classified picture pairs (i.e., at least 15 votes), we 

calculated the mean game vote between the 10th and the 90th percentile (to exclude outlier 

votes). The comparison between the mean game vote and the app value can lead to one of 

three outcomes:  

1. No water level class correction is needed, i.e., both values state the same water 

level class and the original app value can be confirmed. 

2. A correction of a water level class is needed, i.e., the two values differ and either of 

them needs to be corrected. 

3. The calculation of the mean game vote yields a higher water level class resolution 

(e.g. if half of all players vote for class one and the other half vote for class two, the 

resulting mean vote is 1.5). In this case, the original app value of one was not 

incorrect, but the mean game vote nonetheless delivers a higher resolution and 

therefore contains more information. 

For all observations that required a correction, the pictures were assessed through expert 

judgement by the project members (Simon Etter and myself). The possible outcomes of 

this assessment were as follows: 

 The original app value was better. 

 The mean game vote was better.  

 The correct value was between the original app value and the mean game vote. 

 The observation should have been reported through the report function, as voting 

on a water level class was not possible.  We calculated a mean accuracy per player (the absolute difference between the player’s 
vote and the mean game vote, averaged over all their votes and subtracted from 10) and 

plotted as a function of playing frequency. We divided the players between novice and 

regular players and tested the difference between these groups with the Mann-Whitney 

test (p < 0.05). 
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4.5 Training citizen scientists 

For Paper IV, we conducted a computer-based training study with 52 participants to 

assess if citizen scientists can be trained by playing the CrowdWater game. We specifically 

investigated if participants improved the placement of the virtual staff gauge after 

training (playing the CrowdWater game for 50 picture pairs). The participants’ performance in placing the virtual staff gauge was quantified with a 

placement score. This placement score is the sum of score sub-categories, such as the 

selection of a good stream picture, the choice of virtual staff gauge and the angle and 

positioning of the virtual staff gauge within the stream picture. The resulting placement 

score ranges from 0 to 13. A score of 13 means that all sub-categories had full marks, 

though a score of 10 or higher is considered a good placement score. The participants’ performance during the training was quantified with the game score. 

Participants voted on 50 picture pairs, each with a maximum of 6 points. Therefore, a 

score up to 300 points could be gained but a score of 245 or higher was still considered a 

good game score. 

To assess the differences of the placement score before and after the training, we analysed 

the training dataset with the Wilcoxon test (p < 0.05). Many participants already 

performed well before the training. We therefore also examined the subset of participants 

that had a low placement score (< 10 points) before the training, as we expected larger 

improvements through the training.   
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5.1 Virtual staff gauge 

The virtual staff gauge enables citizen scientists to submit water level class observations. 

This has been demonstrated by CrowdWater app users since the launch of the app. Over the project’s duration, several locations have received numerous updates (up to 582 

observations at the same location, 14 locations with more than 51 observations, and 56 

locations with more than 11 observations) and a time series of water level classes, 

reflecting the rivers’ dynamics, could be established (Figure 6). Most of these locations 

tend to be visited by the same citizen scientist on a regular basis, some with an almost 

daily frequency. The location with the most water level class updates so far, is at the 

Königseeache river in Austria. This time series consists of 582 observations between 

December 2017 and December 2019, equalling a contribution frequency of a new 

observation every 1.2 days (Figure 7). Overall 394 citizen scientists have made at least one 

water level class observation and the median number of water level class observations per 

citizen scientist is two. However, 50 citizen scientist have made more than ten observations. 

 

Figure 6: Reference pictures of the top 10 locations in terms of number of updates made by December 2, 2019. The locations 

are sorted according to number of updates. 

5. RESULTS 
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Figure 7: Time series of water level class observations at the Königseeache river in Austria. This time series demonstrates 

the potential of such crowdsourced observations. River dynamics are clearly visible, even though water levels are collected 

in classes instead of metric values (bottom plot). As an example a subset of the time series is highlighted (middle plot) and 

illustrated with the pictures submitted through the CrowdWater app (top plot). Figure adapted from Paper I. 

Some submissions through the CrowdWater app, in particular water level class reference 

pictures, contained mistakes. We estimate that this occurred in about 10% of reference 

pictures. The most common mistakes were staff gauge scaling problems, staff gauge 

placement problems and the use of an unsuitable location (Table 2). These mistakes can 

lead to difficulties when trying to update the water level class for these locations. 

Therefore, they were usually excluded from the dataset and Paper IV analysed if training 

could reduce these errors. Based on the survey presented in Paper II, about half of first 

time users (48%) estimated the correct water level class and 40% were only one class off, 

indicating that a majority of first time users understood the virtual staff gauge concept. 

While these mistakes are expected to be lower for regular CrowdWater app users, they 

are lowered even further through crowdsourced quality control, as shown in Paper III. 
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Table 2: Overview of errors made by app-users grouped into broader error categories and frequency of occurrence. +++: 

occasional = more than 10 times; ++: seldom = 5-10 times; +: rare = less than 5 times; / = not quantifiable. Based on the 500 

reference pictures available at the time of the study. Table taken from Paper I. 

Error type  Frequency of occurrence 

Staff gauge size problem Staff gauge too big +++ 

Staff gauge too small + 

Staff gauge placement 

problem 

Wrong angle +++ 

Staff gauge not on the 

water surface 

+++ 

Unsuitable location Lack of reference structure 

for water level 

identification 

++ 

Structure hidden by 

vegetation or snow 

+ 

Unclear which structure to 

use 

+ 

River bank too far away ++ 

Poor image quality + 

Site not easily accessible / 

No suitable site for staff 

gauge placement available 

/ 

Changes in the rating curve + 

Multiple measurement 

sites at (almost) the same 

location 

+ 

Testing (e.g. beer glasses, 

not a river, out of train, 

etc.) 

++ 

5.2 Accuracy of water level class and streamflow estimates 

The accuracy of the hydrological estimates received during our surveys at Swiss rivers 

differed significantly between the streamflow calculated out of streamflow factors (width, 

mean depth and flow velocity combined into Qfactor) and streamflow calculated out of the 

water level class with the virtual staff gauge approach (Qlevel). The Qlevel estimates were 
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more accurate and had fewer outliers than the Qfactor estimates (Table 3 and Figure 8), 

except for small streams for which the Qfactor had a smaller interquartile range. This anomaly 

was influenced by two specific survey locations. For further information please see Paper 

II. Whilst the Qlevel overall was more accurate than the Qfactor, estimates still contained errors 

and sometimes were under- or overestimated. Therefore, methods that reduce these errors 

were explored in Paper III (see 5.3 Crowdsourced data quality control). 

Table 3: Interquartile range, under- and overestimations for streamflow estimates calculated based on the streamflow 

factors (width, mean depth and flow velocity; Qfactor) and streamflow calculated based on the water level class (Qlevel). 

 Qfactor Qlevel 

Interquartile range 30-163% 67-157% 

Under- or overestimations  

(percentage of estimates < 50% or > 150%) 

66% 39% 

Extreme under- or overestimations  

(percentage of estimates < 10% or > 1000%) 

11% 3% 

 

Figure 8: Boxplot of the relative estimates of Qfactor and Qlevel for each stream size class and all surveys combined. The 

statistically significantly different medians are indicated by different upper case letters (combined data from all surveys) 

and different lower case letters (per stream size class). The solid (red) line at 100% indicates that the estimate is the same 

as the measured value; the dashed (red) lines indicate the 10% uncertainty band for the measured streamflow. The box 

indicates values between the interquartile range and points indicate values more than 1.5 times the interquartile range 

above or below the 25th or 75th quantile. Figure adapted from Paper II. 
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5.3 Crowdsourced data quality control 

The CrowdWater game proved to be a successful method to crowdsource data quality 

control. The mean game vote and the original app submission agreed about the water 

level class (with a maximum difference of half a class) for 70% of the picture pairs. In 30% 

(252) of picture pairs the mean game vote and original app submission differed by at least 

one class. These picture pairs were evaluated through expert judgement (Simon Etter and 

myself). For 74% of the picture pairs for which the app and mean game vote water level 

class differed, the mean game vote was better than the original app submission and in 9% 

of picture pairs the original app submission was better. For 8% of the picture pairs, the 

correct value was in between the mean game vote and the original app submission. The 

CrowdWater game has a built-in reporting function, which enables players to report 

picture pairs, e.g. if there is an issue with the pictures and the water level class cannot be 

voted for. For 9% of the picture pairs, the players should have reported the pictures 

through this report function. 

Figure 9 shows all classified observations (observations with ≥ 15 game votes). The mean 

game vote (red triangle) has a higher water level class resolution than the original app 

submission (orange star) and, therefore, also indicates if a water level is likely in between 

two classes. The figure also shows a relatively large agreement in observations that have 

a similar water level to the reference picture, i.e., that are in water level class zero. 

 

Figure 9: Agreement among players (in % of votes) per classified observation. Each column represents one observation, 

sorted according to the mean game vote (red triangle). Darker colours represent a higher agreement and lighter colours 

a lower agreement among the players. The original value of water level class submitted via the app is indicated by the 

orange star. Figure taken from Paper III. 
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In addition to correcting observations, the game can also increase the water level class 

resolution of the app submissions by taking the mean of all game votes. Therefore, the 

CrowdWater game provides further information for each observation, even for time 

series that have a well-placed staff gauge and good water level class estimates. For 

example, the Königseeache river has a nicely placed virtual staff gauge (see Figure 4) and 

only 19% of the observations were corrected by at least one class through the 

CrowdWater game and only one value was corrected by two classes (2% of all 

corrections). This is less than the 30% of observations that were corrected by at least one 

class across all locations in the CrowdWater game. However, 43% of the observations at 

Königseeache river have a value between two classes (*.3 ≤ mean game vote ≤ *.7, where 
* represents any class), which provides additional information compared to the app 

submission and contributes to a higher resolution (Figure 10). 

 

Figure 10: Crowdsourced water level class data for the Königseeache river. The upper plot shows the water level classes 

submitted via the app (blue) and the lower plot shows the mean water level classes from the game (green and red), which 

are supplemented by water level class observations from the app (blue) where the game has not yet provided 15 votes. The 

lower plot shows the increased water level class resolution that is possible by averaging CrowdWater game votes (green) 

as well as observations that were corrected by at least one class (red). 

The results in Paper III show that regular players (> 24 classifications in the CrowdWater 

game, n = 58) had a significantly better median and a smaller range of the mean accuracy 

per player than novice players (≤ 24 classifications, n = 94). More CrowdWater game 
rounds improved the mean accuracy even further (Figure 11), showing that either the 

accuracy of players improves over time, or that players with a low accuracy are more 

likely to stop playing. 
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Figure 11: Mean accuracy per player as a function of the number of observations that that player classified. Each triangle 

represents one player. The lines indicate the median accuracy for all players (solid line) and the 25th and 75th percentile 

(dashed lines). The green shading indicates the novice players who played a maximum of two rounds (24 classifications). 

Note the log scale on the x-axis. Figure taken from Paper III. 

5.4 Training citizen scientists 

The results of the training study [Paper IV] suggest that many participants improved the 

placement of the virtual staff gauge after playing the CrowdWater game (i.e., after the 

training). The placement scores were significantly better after the training (Wilcoxon test; 

p < 0.01). Participants who had a low placement score before the training, i.e., participants 

who would potentially benefit more from a training, also performed significantly better 

after the training (Wilcoxon test; p < 0.01, Figure 12), although for 38% of participants 

the placement score was still low after the training. 
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Figure 12: Boxplots of the placement scores before the training and after the training for all participants (upper plot) and 

for participants who had a low placement score before the training (lower plot). There was a statistically significant 

difference in the placement scores before and after the training for both groups (indicated with the *) based on the 

Wilcoxon test (p < 0.05). The green shading indicates a good score (≥ 10 points). Figure adapted from Paper IV.  

The improvement was not necessarily related to the performance during the training. 

Participants with a good game score improved their placement score after the training, 

whereas participants with a low game score did not (Wilcoxon test; p < 0.01 and p = 0.11 

respectively). Almost all participants with a good game score also had a good placement 

score after the training. However, also all participants with a low game score nonetheless 

had a good placement score after the training. Participants with a low placement score 

after the training mostly had an average game score. Due to the small number of 

participants in this category, this may not be a generalisable result (Figure 13). 
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Figure 13: Placement scores before and after the training (x-axis); arrow points from before to after training score, dots 

indicate no change in the placement score. Each arrow or dot represents one participant (y-axis) and is coloured according 

to the game score they obtained during the training. Figure taken from Paper IV.  
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6.1 Is the virtual staff gauge concept suitable to crowdsource water 

level data? 

Water level class data can be collected through a virtual staff gauge in a mobile 

smartphone application. Ideally, such observations are repeated at the same location, so 

that water level class time series are generated. These crowdsourced time series provide 

information about the river’s dynamics (Figure 7). 

Early tests showed that crowdsourcing streamflow data can be difficult and prone to 

errors [Paper II] and the value of such data for model calibration is limited [Etter et al., 

2018]. A more innovative approach was therefore needed, which resulted in the virtual 

staff gauge approach. Paper I shows that the concept of the virtual staff gauge is 

understandable and intuitive to most citizen scientists. Only about 10% of new staff gauge 

installations are problematic. Similarly, Paper IV shows that 36 of 52 participants (69%) 

placed the staff gauge well prior to receiving any training and that this increased to 44 of 

the 52 participants (85%) after training. Paper II shows that citizen scientists are better 

at estimating water level classes compared to streamflow. Only 13% of the passers-by 

chose a water level class that was more than one class off from the correct class and 48% 

chose the correct class. This was again confirmed in Paper III, which showed that for 70% 

of all app submissions, the app and mean game vote agreed and for only 10% of the 

observations the difference was more than one class. Aceves-Bueno et al. [2017] argue 

that keeping the skills of the citizen scientists in mind is crucial for a successful citizen 

science project. Therefore, we decided to use the virtual staff gauge approach, even 

though streamflow estimates correspond more to hydrological data that are traditionally 

used for model calibration or water resources allocation.  

One of the main differences between CrowdWater and other citizen science projects that 

crowdsourced water level data, is that this project uses water level classes as opposed to 

a high-resolution staff gauge with absolute metric units [Weeser et al., 2018; Lowry et al., 

2019]. We decided to use water level classes, because it is difficult to use an absolute scale 

in a virtual staff gauge. Having a virtual staff gauge that can be placed and retrieved on a 

smartphone application, enabled the approach to be fully scalable. Thus, staff gauges 

6. DISCUSSION 
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could be placed by anybody anywhere without extra costs or needs for permits. A 

sticker-like virtual staff gauge that included a metric unit would, however, have been 

trickier to install, as on-site measurements would have been necessary [Paper I]. 

Therefore, we relied on virtual and relative water level class units. 

Neither absolute high-resolution streamflow nor absolute high-resolution water level 

data are strictly necessary to calibrate a hydrological model, as classes provide enough 

information about the dynamics of streamflow responses [Seibert and Vis, 2016; van 

Meerveld et al., 2017; Etter et al., 2020]. Seibert and Vis [2016] calibrated 671 catchments 

with water level data, using the HBV model by optimizing the Spearman rank correlation 

coefficient [Spearman, 1904]. They showed that water level data can provide accurate 

model simulations, in particular in humid catchments. van Meerveld et al. [2017] 

presented a modelling study that used synthetic water level class data, i.e., streamflow 

that was converted into water level classes to calibrate the HBV model. The results 

showed that as few as two water level classes are already informative, however, five to 

seven classes improved the model performance even more. Etter et al. [2020] presented 

another modelling study with synthetic data. They also calibrated the HBV model with 

synthetic water level class data but included estimation errors (that correspond to the 

water level class estimation errors presented in Paper II) and assumed infrequent 

contribution times over the course of one year. The model still outperformed a lower 

benchmark with random parameter sets (i.e. without any water level or streamflow data 

input) and depending on the contribution times and error scenario was as good as the 

model calibrated with actual water level data. They show that 12 observations during one 

year already provide valuable information. This is considerably shorter compared to 

citizen science projects in other fields, such as ornithology, that require data over longer 

periods [Sullivan et al., 2009; Dickinson et al., 2010]. Etter et al. [2020] also show that 

although the modelling results are not very sensitive to errors, a lower estimation error 

is beneficial for the model calibration. Papers I and IV indicate that mistakes happen 

during the installation of the virtual staff gauge and Papers II and III show that errors also 

occur when citizen scientists estimate a water level class. Therefore, methods to improve 

the data quality of the water level class estimates are useful (see 6.2 Is it possible to 

crowdsource data quality control? and 6.3 Can a game for data quality control also be used 

to train new citizen scientists?). 

In the future, it might be possible to use machine learning to determine the water level 

class in a photograph. However, at this stage we rather rely on citizen scientists to 

interpret the water level to avoid issues related to the precise location and angle at which 

the picture is taken [Paper I]. 

The limitations of the usefulness of water level class data for specific applications will 

have to be assessed in future studies. The geographic bias towards places where people 

live, might limit the amount of collected data in remote regions. The reduced temporal 
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resolution might be a problem for some data applications, as citizen scientists are unable 

to provide data at, for instance, hourly resolution. While the water level class observations 

are fairly accurate, some applications might require a higher accuracy and therefore, will 

not be able to use this virtual staff gauge based citizen science approach.  

6.2 Is it possible to crowdsource data quality control? 

Crowdsourcing data quality control, as opposed to expert quality control, is scalable and 

can easily be implemented in large-scale citizen science projects. During the early stages 

of the CrowdWater project, we could still check app submissions ourselves, however, the 

volume of app submissions quickly became too large, which led to the launch of the 

CrowdWater game. Similar approaches to crowdsource data quality control were 

implemented by iSpot [Silvertown et al., 2015]. 

The data of the CrowdWater game show that it is possible to crowdsource data quality 

control. New observations for a water level time series (i.e., errors documented in Paper 

II) can be corrected or confirmed by showing picture pairs to multiple players and by 

taking their collective vote as the correct value. The agreement between players seems to 

be particularly high for the water level class zero (Figure 9). A picture of an observation 

with the water level class zero is very similar to the reference picture. Therefore, an 

estimate of the water level class might be easier for citizen scientists compared to 

extrapolating water level classes based on the reference features in the picture, such as 

stones on the streambank. Power et al. [2001] state that people intuitively look at 

similarities (in their case of maps) before they assess differences in patterns. Through the 

report function in the CrowdWater game, mistakes during the placement of the virtual 

staff gauge (i.e., errors documented in Paper I) can also be marked by the crowd. The 

results of Paper III are similar to the conclusions of other picture-based citizen science 

approaches, some of which were also gamified. Snapshot Serengeti, which asks 

participants to identify wildlife on photographs, reported 97.9% agreement between 

experts and the mean vote of participants, although the agreement varied according to 

species [Swanson et al., 2016]. For Phylo, a game that tries to improve the alignment of 

the promoters of disease-related genes, it was shown that a citizen science approach can 

improve the accuracy of multiple genome sequence alignments [Kawrykow et al., 2012]. 

Galaxy Zoo, a platform to visually classify galaxies, found that the classifications by citizen 

scientists were consistent with classifications by professional astronomers [Lintott et al., 

2008]. 

In addition to correcting erroneous data, the CrowdWater game also delivers a higher 

water level class resolution. This could be particularly important in cases, when the 

virtual staff gauge in the reference picture is too large, which is one of the most common 

mistakes (Table 2). A large staff gauge means that the water level remains within a few 

water level classes. Having too few classes might decrease the value of the data. Although 
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van Meerveld, et al. [2017] showed that as few as two water level classes were informative 

for model calibration, the performance of the model was better, when the water level data 

was split into five to seven classes. Therefore, for large virtual staff gauges the 

CrowdWater game can provide a better water level class resolution. However, even for 

staff gauges that appear properly sized, the game may result in higher resolution data, as 

shown for the Königseeache river, where 43% of the classified picture pairs suggested a 

half class (Figure 10). 

6.3 Can a game for data quality control also be used to train new 

citizen scientists? 

The idea of using the CrowdWater game also as a training tool developed through 

informal feedback from citizen scientists [Paper IV]. We also noticed improvements in the 

performance of players over time when analysing the CrowdWater game data [Paper III]. 

Figure 11 shows that players who participated for several rounds, generally had a higher 

voting accuracy than players who compared only a few picture pairs. Consequently, we 

analysed if the game could serve a second purpose. 

The results of this study indicated that the CrowdWater game is a useful training tool for 

new citizen scientists. 63% of the participants who performed poorly prior to training 

placed the virtual staff gauge well after the training. The mistakes that were made when 

placing the staff gauge both before and after the training, resembled the mistakes 

presented in Paper I, which included making the staff gauge too big, not placing the zero 

line on the water level or placing the staff gauge with a distorting angle. 

In total, 85% of all participants placed the staff gauge well after the training. This shows 

that the training did not help every participant. This might be attributed to the fact that 

the training with the CrowdWater game is an implicit approach, meaning that participants 

were not told what the relevant criteria for a good virtual staff gauge placement were. 

Most participants intuitively learned this by looking at many staff gauges and by trying to 

estimate water level classes both from well-placed and unfavourably-placed staff gauges. 

On the one hand, the benefit of such an approach is that crowdsourcing quality control 

and training can be mixed, whereas on the other hand some citizen scientists might have 

appreciated more explicit information and tips. Additionally, the CrowdWater game 

would likely be less fun to play, particularly for frequent players, if the same tips would 

be stated after every round. In order to better accommodate both types of citizen 

scientists, we recommend providing explicit tips on a project homepage. Newman et al. 

[2010] also recommend that different training approaches should be provided by citizen 

science projects.  

Whether or not citizen scientists need to be trained varies vastly from project to project 

[Gaddis, 2018]. In some projects training can be crucial, such as CoCoRaHS, where citizen 
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scientists operate a meteorological station [Reges et al., 2016] or a groundwater study in 

Canada, where citizen scientists measure water levels in wells [Little et al., 2016]. 

However, when tasks can be achieved without any training, more citizen scientists might 

be inclined to join [Paper IV]. Keeping the barrier for entry low can, therefore, be 

beneficial. By offering a game as training, more people might go through this training, as 

the gamified interface can make it seem less like “homework”. So far, this training is not 

compulsory for citizen scientists before making their first observation with the 

CrowdWater app. Even though this could be adjusted in the future, we believe that 

participants are sufficiently self-motivated to play the CrowdWater game by the gamified 

features. 

A combination of both approaches, training as well as crowdsourced data quality control, 

improves the data quality. Training ensures that fewer inadequate reference pictures are 

uploaded in the first place. This is important, as mistakes could always be missed by other 

citizen scientists during quality control. Additionally, fewer erroneous submissions would 

have to be removed, which saves time for the project administrators and avoids 

disappointing citizen scientists (when they see that their submission was incorrect or not 

very valuable). 

Even with training, erroneous submissions are still uploaded, so that data quality control 

is still needed. For projects with a lot of submissions, crowdsourcing data quality control 

is often the only feasible approach, as expert review becomes too laborious [Lintott et al., 

2008; Silvertown et al., 2015; Freitag et al., 2016; Kosmala et al., 2016; Swanson et al., 

2016]. 
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This research has shown that water level class observations can be crowdsourced using 

a mobile smartphone application. The virtual staff gauge is an intuitive and scalable 

approach to collect data on water level dynamics. The virtual staff gauge can be placed 

anywhere in the world by citizen scientists. Thus, time series of water level classes can be 

collected wherever potential data users might require such data. Citizen scientists proved 

to be sufficiently motivated to contribute data on a regular basis and to collect valuable 

time series of hydrological data.  

The water level class estimates by citizen scientists were more accurate than streamflow 

estimates, indicating that the virtual staff gauge is a suitable citizen science approach to 

collect water level data. Occasionally, citizen scientists still make mistakes, either when 

placing the virtual staff gauge or when estimating a new water level class for an existing 

location. These mistakes can be mitigated through quality control and training. 

Crowdsourcing data quality control based on the pictures of the rivers that are submitted 

with each observation through a game is effective at reducing errors and results in an 

increase of the water level class resolution. In addition, by playing this game, new citizen 

scientists are trained to place the virtual staff gauge. By observing different examples 

during the game, the players familiarised themselves with the virtual staff gauge approach 

and learned which sizes, angles and placements of virtual staff gauges were most suitable. 

This led to a better placement of the virtual staff gauge and thus better reference pictures 

for subsequent observations. 

The resulting quality-controlled water level class data can potentially be used for 

hydrological model calibration, as shown in a preliminary study and other studies based 

on synthetic data (see 8. Outlook). Further studies should investigate under which 

conditions these data are most informative and should analyse the minimum 

requirements, in terms of time series length, number of observations and staff gauge 

placement for different catchment types and applications. The vote distribution collected 

through the game can help to estimate uncertainties associated with individual locations 

and measurements. 

Hydrological measurements are scarce in many regions and citizen science is a valuable 

approach to supplement current hydrological data networks. Similar approaches can also 

7. CONCLUSIONS 
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be used in many different fields and for various kinds of data. Some recommendations for 

future citizen science projects are: 

 Consider carefully the types of observations that can be collected by citizen 

scientists. The difficulty and effort involved in the data collection dictates how 

many citizen scientists are likely to join and how much effort has to be invested in 

training.  

 Evaluate what type of quality control can be implemented in the project and 

ensure that the collected data are of sufficiently high quality for the intended 

purpose. Photographs of observations often provide a simple and efficient basis 

to check the quality of the submitted observations. 

 Plan sufficient time for community outreach and science communication, as 

citizen science projects need to be promoted and citizen scientists require regular 

feedback to ensure long-term participation. 
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8.1 Hydrological modelling with crowdsourced data  

Although there are many ways to extend the analysis of the CrowdWater data, an obvious 

one is to determine its “fitness-for-purpose” and to use it for hydrological model 

calibration. Multiple studies have investigated the value of water level data for 

hydrological model calibration: Seibert and Vis [2016] calibrated a hydrological model 

(HBV) with water level measurements for over 600 catchments and found that especially 

in humid catchments the calibration with water level data worked surprisingly well. 

Mazzoleni et al. [2017] integrated synthetic crowdsourced water level data into a model 

and similarly found that such data can improve flood predictions. 

Previous studies have also shown that water level class observations can in principle, be 

used to calibrate a hydrological model [van Meerveld et al., 2017; Etter et al., 2020]. These 

studies were, however, based on synthetic data and thus depended on assumptions, for 

example, the extent of the virtual staff gauge, the data quality and the frequency of the 

data collection. The errors of the synthetic observations were based on a previous field 

study with citizen scientists [Paper II]. In addition, the studies highlight that the value of 

the observations and the accuracy of the resulting model output depends on the accuracy 

of the observations. 

8.1.1 Model calibration with real CrowdWater data 

Potential future work can further extend these studies by 1) using the actually 

crowdsourced data for model calibration and 2) determining whether the 

quality-controlled game data lead to a better model performance than the data submitted 

directly via the app. Now that large amounts of crowdsourced water level class data have 

been collected, they can be used for future applied research. Therefore, it is important to 

develop methodologies to adequately assess the observation uncertainty. The described 

methodologies may also be useful for other citizen science projects. 

We made a preliminary modelling study with the data from the Königseeache catchment 

(Figure 6, Figure 7 and Figure 10). At the time of the study, water level class data were 

available for the period December 2017 to August 2019. There were 486 water level class 

8. OUTLOOK 
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observations, which means, on average, one water level class observation available per 

1.2 days. Out of all these observations, 176 had received 15 or more votes in the 

CrowdWater game. 

The catchment is 360 km2 in size. Streamflow is measured by the Bavarian Environment 

Agency “Berchtesgaden-Klärwerk”, which is located roughly 10 km away from the 

CrowdWater location. The meteorological data were obtained from the German National 

Meteorological Service, as the majority of the catchment lies in Bavaria, Germany.  

This preliminary study used the HBV model, as implemented in the HBV-light version 

[Seibert and Vis, 2012] to facilitate comparisons with previous studies [Seibert and Vis, 

2016; van Meerveld et al., 2017; Etter et al., 2018, 2020]. The HBV model (Hydrologiska 

Byråns Vattenbalansavdelning) is a bucket-type runoff model [Bergström, 1976; 

Lindström et al., 1997] that calculates snow, soil, groundwater and stream routing 

processes. The model can simulate streamflow when the input data (precipitation, 

temperature and evapotranspiration time series) are available. 

The Spearman rank correlation coefficient was used as the objective function during the 

calibration with a genetic algorithm [Seibert, 2000]. Other commonly used objective 

functions were not possible since the water level class observations only reflect the 

dynamics of a stream, and do not provide volumetric information [Spearman, 1904; 

Seibert and Vis, 2016]. The calibrated model parameters were validated with streamflow 

measurements from the same time period. The resulting model efficiencies were 

compared to benchmark efficiencies, i.e., the maximum model performance obtained by 

calibrating the model with the streamflow data and the minimum performance obtained 

with random parameters. These benchmarks enable assessment of the results 

independent of the potential model structure uncertainty or uncertainties in the input 

data [Seibert, 2001; Seibert et al., 2018]. 

The initial results show that the model calibrated with CrowdWater data (app and game) 

performed better than the lower benchmark. However, the results also suggest that the 

model fit is not perfect and that improvements are likely possible (Figure 14). 

Surprisingly, the models calibrated with the CrowdWater game and CrowdWater app data 

had a very similar performance. We believe that this is partly because the CrowdWater 

app data already have a high water level class resolution. It is possible that time series 

with fewer water level classes or with more erroneous data would benefit more from the 

additional information provided through the CrowdWater game. This should be 

investigated with further research. 

The maximum uncertainty that is permissible in applied hydrology depends on the use of 

the model simulations. Even though higher uncertainties might be tolerated for some 

applications, it is crucial for data users to be aware of the quality of the data and the 

resulting model simulations. To better assess the usability of the data, and to assess if the 

CrowdWater data are “fit-for-purpose” [Beven et al., 2012], potential applications of 
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hydrological data need to be analysed. Thus future data users will need to assess the 

fitness of the data for their specific purposes. 

  

Figure 14: Boxplots of the values of the objective function for model validation for the same time period as the calibration. 

All model runs were calibrated by optimizing the Spearman Rank correlation coefficient. The model was calibrated 100 

times. The left plot shows all resulting Spearman Rank values, whereas the right plot shows a zoomed in version, in order 

to emphasize the values of the upper benchmark, the CrowdWater game (mean game vote) and the CrowdWater app.  

8.1.2 Including information on data uncertainty in model calibration 

This preliminary study suggests that CrowdWater water level class data can be used in 

applied research where streamflow data are needed. Further improvements might still be 

possible, such as including the uncertainty information derived from the CrowdWater 

game, or including streamflow measurements or soil moisture observations. 

The uncertainty of CrowdWater observations can be quantified based on the vote 

distribution of the CrowdWater game (i.e., the observation is more likely to be certain if 

the votes agree, and less certain if the votes disagree). The uncertainty estimate based on 

the spread of the votes for an observation in the CrowdWater game will enable data users 

(i.e., people who download the freely available CrowdWater data) to assess whether a 

specific observation (or a complete time series) has a relatively low or high overall 

uncertainty and to potentially exclude specific, highly uncertain observations. One of the 

earlier studies quantified the average accuracy of water level class estimates [Paper II]. 

This quantification likely overestimates the uncertainty as the survey only included first 

time users, whereas the observations in the app are generally submitted by frequent 

users. 

Bootstrapping provides a means to assess how the uncertainty of the data affects the 

calibrated model parameters. Each observation gets 15-50 different votes in the game. 

The HBV model can be calibrated using a time series of randomly sampled (i.e., 
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bootstrapped) votes from the game. By repeating this procedure multiple times and 

analysing the spread of the resulting streamflow simulations, the uncertainty in the model 

simulation due to the uncertainty in the input data can be quantified. Additionally, the 

bootstrapping results can be used to calculate a mean streamflow simulation (based on 

all bootstrapped simulations), thereby giving both an uncertainty range and a mean 

parameter set that is likely more robust against water level class estimation errors. 

Future research could explore different strategies to include the available uncertainty 

information more directly into the modelling process, in order to assess how the overall 

model performance can be improved. This could be done by weighting the objective 

function during model calibration according to the uncertainty of each observation. The 

maximum likelihood framework, which is frequently used in statistics, provides a 

statistical approach for these weights. For instance, if the errors are assumed to be 

independent and Gaussian, each observation is weighted by the inverse of the observation 

error variance. However, because the observation error is not necessarily Gaussian, a 

different weighting might be more suitable, for example one that is based on higher order 

statistics, the range, or the interquartile range of the votes. Several of these metrics should 

be tested to investigate which metric works best for the CrowdWater game data. Such an 

approach has already been included in the HBV model to weight snow cover data between 

0 and 1 according to the quality of the data (cloud cover on satellite image and overall 

quality of satellite image) [unpublished, personal communication with Daphné Freudiger, 

09.08.2019]. We expect that accounting for the heterogeneity in the data quality 

significantly improves the resulting model quality and leads to a more realistic 

representation of the uncertainty in the model predictions. 

These weighting metrics can only be calculated for observations that have already 

received a sufficient number of votes in the CrowdWater game. All other observations 

could instead be weighted by an average weight according for each water level class. The 

CrowdWater observations have different uncertainties depending on the water level. 

Generally, the uncertainties are highest for the high and low water level observations; 

observations close to water level class zero tend to be more certain (Figure 15). 

The parameter uncertainty after calibration with CrowdWater water level classes can 

likely also be reduced through other means. One strategy is to use additional calibration 

data to ensure that the model interprets the CrowdWater observations adequately. Water 

level class data provide information regarding the dynamics of a hydrograph, but 

quantitative information on streamflow volumes is missing. 
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Figure 15: Percentage of correct votes per water level class (original app value) for all observations at the Königseeache 

river with the same mean water level class vote from the game. The colour of the dots indicates whether the observations 

were made at a time that the water level was lower (green), similar (white), or higher (red) than in the reference picture. 

The results for class 7 deviate from the overall pattern of lower agreement for more dissimilar water levels, because several 

observations had water levels significantly above class 7 and therefore gave the players certainty for which class to vote.  

Seibert and Vis [2016] argued that particularly in humid catchments, the model partially 

derives the volumetric information from the precipitation input (as the potential and 

actual evapotranspiration are likely similar). In their study, they chose to couple water 

level observations with annual streamflow volumes to provide volumetric information. 

However, annual streamflow volumes are not collected through the CrowdWater project. 

Weeser et al. [2019] coupled water level observations with water balance information 

based on the precipitation and actual evapotranspiration estimates derived from remote 

sensing data. Another potential approach is to include a few high-accuracy streamflow 

measurements [Buytaert et al., 2014; Assumpção et al., 2018; Pool and Seibert, 2019]. An 

ongoing study investigating the combination of water level measurements with individual 

streamflow measurements has led to promising early results [Pool and Seibert, 2019]. 

This novel approach can be tested by merging water level class observations and a few 

streamflow measurements. The underlying assumption is that occasional streamflow 

measurements can be obtained by data users in parallel to CrowdWater observations 

with relatively little effort. This will not be necessary for every CrowdWater data user, but 

might be a useful approach for those who require smaller uncertainties and who can visit 

the location in question to make the measurements. 

Another possibility is to use crowdsourced soil moisture observations (as collected by 

CrowdWater) as additional model input. If in a catchment with a specific water level class 

location also soil moisture observations are available, this information can be used to 

constrain the soil moisture parameters in the HBV model (or any other model). The 

overall model performance (as defined by the objective function value) might actually 

decrease due to the hydrograph not being exclusively fitted to water level class data, but 

the additional data might nonetheless help improve future predictions as the calibrated 

model parameters might be more consistent [Seibert and McDonnell, 2002]. A similar 

approach was used by Stahl et al. [2016], who calibrated the HBV model not only on 

streamflow measurements but also on snow and glacier cover data. 
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8.2 Other CrowdWater data 

The CrowdWater app can be easily expanded and is already used to collect several other 

types of hydrological data (see 3.2 The CrowdWater app). Further research within this 

project aims to investigate the value of these data or to develop approaches for new 

observation types. 

Flow information of intermittent streams can already be crowdsourced with the 

CrowdWater app and is currently a fairly popular observation type. Within the 

CrowdWater app, this category was named temporary streams, as this seemed more 

intuitive for citizen scientists. While many observations have been collected, so far, no 

analysis has been done on them. Further tests are needed to estimate the accuracy and 

consistency of these observations for a wide range of environments and the usefulness of 

these data to improve hydrological models. Some form of picture-based quality control 

might still be possible, at least for some sub-categories. For example, if some water is 

clearly visible in a photograph, the category “dry riverbed” is unlikely to be correct, 

although it might be difficult to distinguish between trickling and flowing water in a 

photograph. Further research is needed to assess, if such a limited form of data quality 

control is helpful. 

The CrowdWater app currently does not collect any data on water quality, however, this 

could potentially be included. In order to assess the usefulness of such data for water 

quality modelling, research with synthetic data will first need to be conducted, similar to 

Seibert and Beven [2009], Seibert and Vis [2016], van Meerveld et al. [2017], Etter et al. 

[2018]. The research with the synthetic data can focus on questions, such as: what is the 

best balance between spatial and temporal resolution of crowdsourced water quality 

data, what is the best balance between accuracy and amount of data and what is the 

potential value of inexpensive sensors for citizen science approaches. Even for this 

observation type some limited form of the CrowdWater game might be possible, as some 

variables of water quality, such as algal blooms or oil spills are visible. Further research 

could investigate the feasibility of visual data quality control for water quality 

observations. 

8.3 CrowdWater game 

Currently, when there is a discrepancy between the original app value and the mean game 

vote, the mean game vote is better in 74% of cases. In addition to the mean vote, the 

CrowdWater game also provides a vote distribution per observation. If a higher accuracy 

is needed, this vote distribution (e.g., a bimodal distribution or a large spread of votes) 

could be used to gain further information about this observation, which might be used to 

distinguish observations where the mean game vote was incorrect after all. 
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Alternatively, trusted citizen scientists (i.e., citizen scientists with a high accuracy score 

in the CrowdWater game) could be asked to assess discrepancies between the 

CrowdWater game and the app or picture pairs where the vote distribution indicates a 

large uncertainty. 

The CrowdWater game could be expanded to provide more explicit training material for 

new citizen scientists. A separate interface could be developed for new and regular citizen 

scientists, so that the quality control is not interrupted for regular players. In a separate 

interface, new citizen scientists could receive tips on how to place the virtual staff gauge 

well and what reference structures to look for. This should, in particular, be included if 

the CrowdWater game is made into a mandatory training for new citizen scientists. 
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Hydrological observations are crucial for decision making for a wide range of water

resource challenges. Citizen science is a potentially useful approach to complement

existing observation networks to obtain this data. Previous projects, such as

CrowdHydrology, have demonstrated that it is possible to engage the public in

contributing hydrological observations. However, hydrological citizen science projects

related to streamflow have, so far, been based on the use of different kinds of

instruments or installations; in the case of stream level observations, this is usually a staff

gauge. While it may be relatively easy to install a staff gauge at a few river sites, the need

for a physical installation makes it difficult to scale this type of citizen science approach

to a larger number of sites because these gauges cannot be installed everywhere or

by everyone. Here, we present a smartphone app that allows collection of stream level

information at any place without any physical installation as an alternative approach. The

approach is similar to geocaching, with the difference that instead of finding treasure-

hunting sites, hydrological measurement sites can be generated by anyone and at any

location and these sites can be found by the initiator or other citizen scientists to add

another observation at another time. The app is based on a virtual staff gauge approach,

where a picture of a staff gauge is digitally inserted into a photo of a stream bank or a

bridge pillar, and the stream level during a subsequent field visit to that site is compared

to the staff gauge on the first picture. The first experiences with the use of the app

by citizen scientists were largely encouraging but also highlight a few challenges and

possible improvements.

Keywords: citizen science, smartphone app, water level class, crowdsourcing, data collection

INTRODUCTION

Data on the quantity and quality of water are needed for appropriate water management decisions.
However, hydrology and water resources management are frequently restricted by limited data
availability, particularly in data-scarce regions with urgent water management issues (Mulligan,
2013). The decline of national hydrological and meteorological observation networks (Vörösmarty
et al., 2001; Fekete et al., 2012; Ruhi et al., 2018) is frustrating, especially in light of the current
local and global water-related challenges, and those ahead, such as adaptation to extreme events
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and securing water resources for a growing population.
Although new observation techniques, including remote
sensing, geophysical methods, and wireless sensor networks,
provide exciting opportunities for new data collection, central
hydrological variables, such as soil moisture or streamflow
remain difficult to observe with a sufficient spatiotemporal
resolution. Therefore, crowd-based data collection might be a
valuable complementary approach to collect data and overcome
data limitations (Buytaert et al., 2014).

The idea to include the public in hydrological and
meteorological data collection is by no means new. The
Swedish meteorologist Tor Bergeron asked the public through
appeals over radio and phone calls to measure snow depth
(Bergeron, 1949) and rainfall (Bergeron, 1960) and to mail their
observations on postcards. This resulted in much more detailed
maps than would have been possible with official station data
alone. It allowed the creation of a snow depth map for an area
of one degree square covering Uppland, Sweden based on 98
observations by volunteers rather than data from only 12 official
stations (Bergeron, 1949). For the rainfall observations, Bergeron
and his co-workers developed the Pluvius rain gauge as an
inexpensive alternative to existing, official gauges. While later
there were ∼800 of these gauges in other parts in Sweden,
for the initial surveys during 1953 about 150 gauges were
distributed in a ∼30 km by ∼30 km area around Uppsala,
Sweden (Bergeron, 1960). Both of these projects led to a better
understanding of the influence of topography and vegetation
on precipitation formation. Even though these early studies
were very successful, similar approaches remained rare due
to the logistical challenge to transmit and enter the collected
data in a common database. However, recent developments in
information and communication technology provide exciting
new opportunities for citizen-science based approaches using text
messages (Lowry and Fienen, 2013; Weeser et al., 2018), websites
(e.g., Stream Tracker1), apps (e.g., Teacher et al., 2013; Davids
et al., 2018; Kampf et al., 2018; Photrack2), data mining (Smith
et al., 2015; Li et al., 2018) or custom-designed wearable sensors
(e.g., Hut et al., 2016; smartfin3). However, as stated by Jerad
Bales, the Chief scientist for hydrology at the U.S. Geological
Survey, “Crowdsourcing water-information is in its infancy [. . .],
and there remain major issues of data quality and sustainability
(Lowry and Fienen, 2013). Nevertheless, the use of crowdsourcing
to report routine water data, as well as information on floods and
droughts, needs to be creatively explored” (Bales, 2014).

With a large number of contributions from citizens, the
CrowdHydrology project4 (Lowry and Fienen, 2013) has (and still
does) successfully demonstrated that it is possible to engage the
public in hydrological measurements by asking them to submit
stream level observations via text messages. A similar system
was implemented in Cithyd5. However, these approaches using
staff gauges (scaled measurement sticks in the water) restrict the

1http://www.streamtracker.org
2http://www.photrack.ch/mobile.html
3https://smartfin.org/
4http://www.crowdhydrology.com
5http://www.cithyd.com/it/

number of places where stream levels can be observed because
staff gauges cannot be installed everywhere and by everyone.
In mountainous streams, a stable installation is challenging even
for hydrologists, and often permits are required before a staff
gauge can be installed. Furthermore, if a physical installation
is possible, one might consider installing a stream level logger
instead of a staff gauge as these loggers have become less
expensive and more reliable in recent years. Instead, we propose
an approach where anyone can start a measurement location
and the observations can be taken anywhere and by anyone.
Our approach is similar to geocaching6, with the difference that
instead of treasure hunting sites, stream level observation sites
are established and can be revisited by other citizen scientists.
In this paper, we describe the virtual staff gauge approach,
highlight several design considerations, and discuss whether
people understand the concept. In another study (Strobl et al.,
2019), we found that most people can classify the water level
correctly by comparing it to a reference picture with a virtual staff
gauge. Here the focus was on how well people are able to “install”
a virtual staff gauge in the app, i.e., taking the reference picture
and placing the staff gauge in this picture.

VIRTUAL STAFF GAUGE

General Approach
The advantage of the virtual staff gauge approach is that it avoids
physical installations and makes the setup of new observation
sites fast and easy. The basic idea behind our approach for stream
level observations is that it is usually possible to identify a number
of features in a stream or on the streambank, such as rocks,
that allow ranking of the stream levels (i.e., “below this tree but
above that rock”). While such stream level class observations
are not as precise as continuous stream level observations from
a staff gauge (i.e., no millimeter resolution) and provide more
qualitative information such as “the water level is very low”
or “there is a flood event,” they can be quite informative for
hydrological modeling (van Meerveld et al., 2017). The challenge
is to allow easy identification of the different stream level classes,
without the need for lengthy verbal descriptions. A picture is
helpful in this respect but needs to be amended by a scale. For
this, we use the virtual staff gauge approach (see also Figure 1):

• The user chooses a suitable site along a stream and identifies
the location on a map in the smartphone app.

• The user takes a picture of the streambank (perpendicular
to the flow direction and as level as possible, to minimize
contortion of the view). There should be some reference in the
picture, such as a bridge or stones and ideally, the picture is
taken during low flow conditions.

• An image of a yardstick with a number of classes is digitally
inserted into the picture as a virtual staff gauge. The user can
move the inserted staff gauge in the image and scale it so that
it covers the expected stream level variations.

6https://www.geocaching.com/
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FIGURE 1 | Series of screenshots showing the insertion of the virtual staff gauge in the reference picture: (A) insert the image of the staff gauge in the reference

picture, (B) scale the inserted image, and (C) move the image so that the blue line matches the stream level in the picture.

FIGURE 2 | The horizontal version of the staff gauge at the “Update Spot” interface as selectable buttons to report the new water level class observation.

Design/author: Philipp Hummer, SPOTTERON Citizen Science, www.spotteron.net.

This reference picture with the virtual staff gauge allows
anyone who visits the site at a later time to estimate the stream
level class by relating the current stream level to the features

on the photo and the virtual staff gauge (e.g., the stream level
has changed and is now above a certain rock). For this update,
a simplified horizontal staff gauge design is used in the “Update
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FIGURE 3 | Example of a water level time series obtained using the CrowdWater app (River Salzach, Austria). The pictures for one runoff event (and the reference

picture) are shown as an example in the top row.

Spot” interface of the app (Figure 2) that shows the full range
of class bars for input. To update a spot and provide a new
observation of the stream level, the user compares the current
stream level with the reference picture with the staff gauge in
the app, takes a new picture of the stream, clicks on the current
stream level class on the horizontal staff gauge and submits the
new observation to the data servers. Over time, this results in a
time series of water level observations (Figure 3). It is important
to note, that the user observes and enters the water level; the
new picture is only used for documentation. While automated
image recognition could be valuable, at this point we rather
rely on human eyes and interpretation and avoid issues such
as the exact location and angle when the picture is taken. The
pictures, however, allow data quality control. We have recently
developed the CrowdWater game as an approach to use these

pictures for crowdbased quality control of the water level class
data (see “Game”7).

Design Considerations and Initial Tests
Several decisions on the design of the virtual staff gauge had
to be taken before implementation in the smartphone app.
Early on it was decided to use relative stream level classes
instead of numeric values in, for instance, centimeters, as
there is an obvious limitation in the resolution of stream-
level observations that can be achieved with a virtual staff
gauge. Translating the virtual staff gauge levels to absolute levels
would also make the “virtual installation” much more time
consuming as it would require observations of different heights.

7https://www.crowdwater.ch
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FIGURE 4 | Early version of the virtual staff gauge with regular (A) and

irregular (B) class sizes.

Absolute levels would also be site-specific, i.e., the offset would
vary largely from place to place. Fortunately, absolute levels
are not needed for the potential use in hydrological modeling
because the relative values provide important information on
the timing of streamflow responses (Seibert and Vis, 2016;
van Meerveld et al., 2017).

In an early test with university students, two different types
of staff gauges were tested. In addition to regular class sizes
(as ultimately implemented in the app), we also tested irregular
class sizes (Figure 4), but this idea was discarded because some
users found it confusing and because it did not allow for as much
flexibility as we had hoped.

FIGURE 6 | The three staff gauges available in the app. Their ideal application

depends on the flow condition of the river at the time that the reference

picture is taken. Design/author: Philipp Hummer, SPOTTERON Citizen

Science, www.spotteron.net.

Once we had decided to have a non-metric virtual staff
gauge with regular class sizes, we started to discuss the
implementation with SPOTTERON, which is the app company
hired to develop the CrowdWater app. During these discussions,
the focus was largely on how to make the app intuitive to
use. A clearly visible blue wave on the virtual staff gauge
was chosen to indicate the stream level at the time that the
reference picture was taken (Figure 5). During placement,
the citizen scientists will highlight the stream level in the
photo with the water line in the staff gauge (Figure 1). We
decided to use ten classes on the virtual staff gauge; this was
a compromise between simplicity, resolution, and usability.
Through the use of a negative and positive scale, we tried
to make the image even more intuitive, as a negative value

FIGURE 5 | Examples of well-placed virtual staff gauges on (A) the opposite stream bank, (B) a rock in the stream, and (C) a bridge pillar, showing the blue wave at

the stream level when the site was established and the positive and negative scale above and below the current stream level, respectively.
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FIGURE 7 | Various staff gauge designs. Design/author: Philipp Hummer,

SPOTTERON Citizen Science, www.spotteron.net.

would indicate a stream level below the level in the reference
picture and a positive value above it (Figure 6). The stream
level numbers and class bars follow a neutral black/white
scheme to utilize contrast between the sections but also maintain
secondary visual weight.

We recommend that citizen scientists initiate a new measure-
ment site during low flow conditions because the reference points
are better visible during low flow conditions and this enables
future users to better assess the situation for an update. However,
this might be a strong restriction in practice and we, therefore,
decided to allow insertion of virtual staff gauges also in photos
taken during situations with high stream levels. To use suitable
staff gauges for all flow conditions, we decided to offer three
different staff gauges to the user (Figure 6). The green staff
gauge is best suited for rivers with a low water level at the time
that the reference picture is taken, as it still has many positive
classes (i.e., above the blue wave) to record stream levels for
higher flow conditions. The yellow staff gauge is well suited for
when the reference picture is taken at average flow conditions,
and the red staff gauge is ideal for high flow conditions. The
red, yellow and green staff gauges were chosen because strong,
vibrant colors visually communicate not only a difference but

also a development over time, e.g., traffic lights signal different
states of movement.

Virtual Staff Gauge Implementation
The virtual staff gauge was implemented as a so-called
“sticker”. Stickers are a common practice in app design;
they use image- or vector-based content as overlays in
photos that are taken on a smartphone. They are mainly
used in messenger tools, such as WhatsApp or Facebook
Messenger to add additional information or emotions to images.
Positioning and transformation are usually done by multi-
touch gestures for scaling, placement, and rotation. In this
case the sticker has to be moved so that the staff gauge is
aligned with the streambank or bridge pillar and the blue line
is located at the water level (Figure 1). By adopting such
a rather well-known input method, the use of the app is
more intuitive and, thus, optimizes usability. Obviously, using
an established technique also had technical advantages for
the implementation.

In practice, the placement of the staff gauge can happen
on bright or dark, blurry or clear, high- or low-saturation
pictures, taken by the users on all kinds of smartphone models
and cameras. Therefore, various designs for the virtual staff
gauges were tested on different backdrop images and directly
on smartphone screens (Figures 7, 8). To ensure that the staff
gauge is visible in various conditions, we used additional soft
shadows to enhance the edge contrast, but still let the staff
gauge immerse itself into the picture as part of the scenery. We
furthermore decided to strengthen the visual representation of
the areas above and below the stream level by using a blue hue
for all class bars below the water level and making them slightly
transparent (Figures 6–8).

TEST OF THE APP IN PRACTICE

CrowdWater App
The virtual staff gauge was implemented in the CrowdWater
smartphone app. The app was first launched for iOS and

FIGURE 8 | Staff gauge design variants in different environments. Design/author: Philipp Hummer, SPOTTERON Citizen Science, www.spotteron.net. Note that the

virtual staff gauges were not scaled nor placed correctly (see Figure 1).
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FIGURE 9 | Screenshot of an intro slide that appears when the app is opened

for the first time. These can be re-watched anytime. The goal is to quickly

provide the most important information on the basic functionalities of the app.

Android in March 2017; there have been several updates
of the app since its initial launch. The app was promoted
on the CrowdWater homepage (see Footnote 7), through
Facebook, Twitter, Instagram, LinkedIn, and ResearchGate posts,
as well as on the CrowdWater YouTube channel and at
several conferences.

When starting the app, the user has to browse through a
number of intro-slides that explain the basic functionalities and
the interface of the app. Among them is the sticker function
of the virtual staff gauge (Figure 9). Additional guidance on
how to use the app in the form of texts, pictures and videos
are provided on the project homepage and in an explanatory
YouTube video8.

8https://www.youtube.com/watch?v=3ag4sHWf0yg

TABLE 1 | Collection of errors made by app-users grouped into broader error

categories and frequency of occurrence.

Frequency of

Error type occurrence

Staff gauge size

problem

Staff gauge too big +++

Staff gauge too small +

Staff gauge placement

problem

Wrong angle +++

Staff gauge not on the water surface +++

Unsuitable location Lack of reference structure for stream

level identification

++

Structure hidden by vegetation or snow +

Unclear which structure to use +

River bank too far away ++

Poor image quality +

Site not easily accessible .

No suitable site for staff gauge

placement available

.

Changes in the rating curve +

Multiple measurement sites at (almost)

the same location

+

Testing (e.g., beer glasses, not a river,

out of a train, etc.)

++

+++: occasional = more than 10 times; ++: seldom = 5–10 times; +: rare: less

than 5 times; . : not quantifiable.

Typical Mistakes
While users seem to understand the approach used in the
CrowdWater app in general, there were also a number of
recurrent mistakes related to the staff gauge placement or
size. These mistakes affect about 10% of the more than 500
reference pictures (Table 1). Staff gauge placement or size
problems could be due to users not having read the available
instruction material or not fully understanding the concept.
Some other issues are not directly related to setting up a
virtual staff gauge site but still affect the results, e.g., it
is less useful if users create new measurement sites in, or
close to, a location where another spot already exists than
when they update the existing spot or start a new site on a
different river.

Staff Gauge Placement Problem

The most common mistake was related to the placement
of the virtual staff gauge. Some users took pictures in the
direction of the flow (instead of perpendicular to the flow,
see example in Figure 10). This makes it almost impossible
to place a virtual staff gauge that allows subsequent level
observations because clear reference features are usually missing
on these pictures. Another placement related issue occurs
when the blue wave of the staff gauge is not located at
the water surface in the reference picture. This means that
the stream level of the reference picture is not at zero,
which could lead to confusion for other users when updating
the spot later on.

Staff Gauge Size Problems

In a number of cases, the size of the staff gauge was suboptimal.
This may be either because people do not realize that they
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FIGURE 10 | Examples of misplaced virtual staff gauges: (A) The picture was taken in the upstream direction instead of perpendicular to the flow direction, which

makes it impossible to estimate subsequent stream level changes, (B) The virtual staff gauge is so large that it is unlikely that the water level will reach different

classes and is therefore improbable to obtain an approximate representation of the stream hydrograph, (C) The small virtual staff gauge can show small changes in

the stream level, but cannot represent very high flows as anything above a medium flow falls into the highest class.

can resize the size of the staff gauge or do not understand
why it is useful to rescale the staff gauge. The perfect staff
gauge size is however, somewhat subjective and might to some
degree depend on the specific research question and data
needs for a site.

In our instruction material, we show the optimal case where
the highest class of the staff gauge reaches up to the level of the
highest in-bank flow. This may, however, be hard to imagine
for citizen scientists and is probably also not considered when
users place their first virtual staff gauge. Staff gauges that are
too large are not only unrealistic (i.e., the stream level is very
unlikely to rise into the highest classes) but this also reduces
the variation in future observations because it is less likely that
a change in stream level is large enough to reach the next
class. There were also a few cases where the staff gauge was
too small. A small staff gauge can make it hard to determine
the class of the current stream level because the differences
between the classes are too small. It also makes it hard to
document very high or very low flows. Furthermore, finding
the location of the measurement site can be challenging when
users take a very detailed (zoomed-in) picture of the reference
structure. This issue was more common for small staff gauges
and could probably be solved by implementing an option to
add an overview photo that shows the general location of the
reference structure.

Unsuitable Location

An obvious problem are pictures that lack references for level
identification or pictures where a staff gauge was not inserted

in the picture. Optimal conditions to place a virtual staff
gauge, such as a vertical wall on the opposite river bank
or a vertical structure like a rock or bridge pillar in the
river, are sometimes hard to find. At least in some cases,
the reason for problematic pictures could also be that the
rivers were not easily accessible or had no suitable reference
features but people still wanted to take a picture to establish a
measurement site. Another problem is that in some locations
the vegetation growth obscures features on the river bank
that were visible when the reference picture was taken (e.g.,
in winter when there was no vegetation). This makes it
nearly impossible to compare stream levels properly. Reference
pictures with snow can also make it difficult to assess the
stream level later on.

On wide rivers, it is difficult to place a reasonably sized staff
gauge at the opposite river bank and still observe changes in
stream levels. Furthermore, in these cases, the quality of the
pictures is often low due to zooming. This problem can be solved
at locations with an instream structure (such as a bridge pillar)
and placing the staff gauge along a pillar.

Changes due to erosion or sedimentation are another
issue. In these cases stream levels are not a reliable
indicator of streamflow. Our dataset contains one site
where the riverbed changed quite drastically due to
deposited sediment. Because the reference structure
(a concrete wall next to a bridge) stayed in place,
approximately the same flow meant a different stream level
class compared to the situation in the reference picture
taken before the sediment was deposited. The solution
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to this problem would be to archive the reference picture and
create a new one.

CONCLUDING REMARKS

In this paper, we presented a new citizen science approach
based on virtual staff gauges that allow crowd-based stream level
observations along any stream. The advantage of this approach
is that no physical installations are needed, which makes the
approach fully scalable, as it is easy and quick for anyone to set
up a new measurement site or contribute an observation to an
existing site. As discussed in this paper, during development and
testing of the virtual staff gauge approach, we identified several
issues that required modifications in the original design. Further
app developments and better guidance for app users on how to
set up a virtual staff gauge site will reduce the number of incorrect
sites in the future. Despite these challenges, the first experiences
from using the virtual staff gauge approach are encouraging and
show that this approach can be useful to collect stream level data
at many locations by citizen scientists.

In the first year since launching the smartphone app,
numerous measurement sites have been set up. On 3. September
2018, 2431 observations had been submitted by 218 users. For 79
of the 675 sites, more than five updates on the stream level class
had been submitted. The collected data have a limited resolution
due to the use of stream level classes and are sometimes spotty
in time. However, previous work using synthetic data indicates
that such data are still informative to constrain hydrological
models. Time series of precipitation and temperature are more
likely to be available than those of streamflow. The observed
stream level class data can, thus, be used in combination with
these time series to generate modeled streamflow time series. The
potential value of such data has been evaluated based on subsets
of existing data. These studies have indicated the value of water
level class data for model calibration (van Meerveld et al., 2017);

uncertain streamflow estimates were less informative (Etter
et al., 2018). The water level data collected in the CrowdWater
project are publicly available, and we expect them also to be
used for other uses, be it for research, flood protection or
leisure activities.

While our current focus is on measurement sites in
Switzerland, the app can be, and is already, used worldwide.
For developing and evaluating the value of the data obtained
with the virtual staff gauge approach countries with a relative
wealth of stream data, such as Switzerland, are favorable, but we
anticipate that, once developed and tested, the approach will be
most beneficial in regions where data are scarce.
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ABSTRACT

Streamflow data are important for river management and the calibration of hydrological models.
However, such data are only available for gauged catchments. Citizen science offers an alternative
data source, and can be used to estimate streamflow at ungauged sites. We evaluated the
accuracy of crowdsourced streamflow estimates for 10 streams in Switzerland by asking citizens
to estimate streamflow either directly, or based on the estimated width, depth and velocity of the
stream. Additionally, we asked them to estimate the stream level class by comparing the current
stream level with a picture that included a virtual staff gauge. To compare the different estimates,
the stream level class estimates were converted into streamflow. The results indicate that stream
level classes were estimated more accurately than streamflow, and more accurately represented
high and low flow conditions. Based on this result, we suggest that citizen science projects focus
on stream level class estimates instead of streamflow estimates.
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1 Introduction

Streamflow data are important for many aspects of river

management, including water allocation and the reduction

of flood hazards. Streamflow data are also important for

the calibration of hydrologicalmodels to predict floods and

droughts or the impacts of climate change. Most hydro-

logical models need at least a certain amount of data to be

properly “tuned” to a particular catchment (Beven 2012).

Three important aspects define the usability of

streamflow data: accuracy, spatial coverage and tem-

poral resolution. Conventional streamflow gauging sta-

tions can provide detailed information with high

accuracy and temporal resolution, but the spatial cov-

erage is limited. While data from gauging stations are

considered accurate, the data can still contain substan-

tial errors due to sensor errors, interpolation and extra-

polation of the rating curve and cross-section

instability (McMillan et al. 2012). Typical relative

errors for streamflow are ±50–100% for low flows and

±10–20% for medium or high flows (still within the

streambank) (McMillan et al. 2012). Similar values

were derived by Westerberg et al. (2011), who men-

tioned rating curve related errors of −60% to +90% for

low flows and ±20% for medium to high flows.

The temporal resolution of gauging stations is often

high. However, due to financial and logistic con-

straints, only a few sites have a gauging station, hence

the spatial coverage is limited. Furthermore, these sta-

tions may not be installed at representative locations or

might miss certain types of catchments, especially small

headwater streams (Kirchner 2006, Bishop et al. 2008).

Also relatively few measurement stations are located in

developing countries. Thus, for many catchments there

are no streamflow data available for water management

decisions or model calibration.

Although new wireless sensor network technology

provides the possibility to expand the measurement

networks, the reality is that, due to budget cuts, obser-

vation networks often shrink rather than expand

(Kundzewicz 1997, Ruhi et al. 2018). For example,

Ruhi et al. (2018) showed that between 1947 and

2016 the number of streamgauges in river basins in

the USA decreased by 21%.

Several studies have focused on the minimum num-

ber of measurements required to properly calibrate

a hydrological model (Perrin et al. 2007, Juston et al.

2009, Seibert and Beven 2009, Seibert and McDonnell

2015, Vis et al. 2015) and have shown that even a few

streamflow measurements can vastly improve the per-

formance of a model (Pool et al. 2017). While employ-

ees of agencies responsible for national or regional

gauging station networks could perhaps take a limited

number of additional measurements at a few ungauged

streams, it is impossible for them to take measurements
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at all ungauged streams. An interesting alternative to

obtaining streamflow data for more streams is to ask

citizen scientists or citizen observers to collect stream-

flow data.

Citizen science has been used in numerous environ-

mental studies to obtain data with a much higher

spatial resolution than is otherwise possible

(Dickinson et al. 2010, Tulloch et al. 2013, Aceves-

Bueno et al. 2017, Hadj-Hammou et al. 2017) and has

been used to obtain hydrological data as well (Buytaert

et al. 2014). For example, citizen science data have been

used to fill in spatial and temporal gaps in water quality

and stream level data series (Lowry and Fienen 2013,

Hadj-Hammou et al. 2017) and to obtain groundwater

level data across large areas (Little et al. 2016). Citizen

science could therefore be a complementary approach

to collect the stream level and streamflow data that are

needed for hydrological model calibration, particularly

for the many streams that are currently ungauged. In

order to involve as many citizens in data collection as

possible and to obtain data for remote areas,

approaches are needed to collect these data with very

little time and effort and without special equipment.

Despite their potential to complement existing data

sources, citizen science data are not without challenges;

in particular, the accuracy of crowdsourced data is often

discussed (Engel and Voshell 2002, Haklay 2010, See

et al. 2013, Aceves-Bueno et al. 2017). Several studies

have examined the accuracy of crowdsourced hydrolo-

gical data (Turner and Richter 2011, Rinderer et al.

2012, 2015, Lowry and Fienen 2013, Peckenham and

Peckenham 2014, Breuer et al. 2015, Le Coz et al.

2016, Little et al. 2016, Weeser et al. 2018). Lowry and

Fienen (2013) found promising results in terms of the

accuracy of stream level data from participants who read

the level from a staff gauge in a stream close to a hiking

path. The root mean square error (RMSE) of the crowd-

sourced stream level data was approximately 5 mm,

which was almost as good as that of pressure transducer

data. They concluded that the level of accuracy “is

encouraging since no training was given to the citizen

scientists” (Lowry and Fienen 2013, p. 155). In a similar

study by Weeser et al. (2018) in Kenya, data collected by

citizens were comparable to those of conventional data

loggers, although they had a low temporal resolution.

Little et al. (2016) provided volunteers with equipment

to measure the water level in their own wells. They

found that the absolute difference of the well readings

ranged from 2 to 11 mm and concluded that “commu-

nity-based groundwater monitoring provides an effective

and affordable tool for sustainable water resources man-

agement” (Little et al. 2016, p. 317). Peckenham and

Peckenham (2014) analysed groundwater quality data

collected by students and concluded that the accuracy

varied, but “it is possible to make precise and accurate

measurements consistent with the methods specifications”

(Peckenham and Peckenham 2014, p. 1477).

However, these previous hydrological citizen science

studies are not easily scalable to many sites because

they require the installation of staff gauges or other

instrumentation. Therefore, it is useful to also develop

and test citizen science approaches to collect stream-

flow or stream level data that do not require equipment

or the installation of staff gauges, but these new citizen

science tasks should be designed “with the skill of the

citizens in mind” (Aceves-Bueno et al. 2017, p. 287). It

is likely that many citizens who frequently pass by

streams notice high and low flows throughout the

seasons. These frequently visited locations could be

turned into locations for streamflow or stream level

class observations if citizens can accurately estimate

streamflow or stream level classes.

Testing the accuracy of citizen science data before

starting a citizen science project is crucial for every

citizen science project. This ensures that the data

collected are sufficiently accurate for the purpose of

the project and avoids unnecessarily burdening citi-

zens with tasks that result in data that are in hindsight

of limited value due to data accuracy issues. The

objective of this study was, therefore, to determine

what types of parameters related to streamflow citi-

zens can estimate accurately. We asked 517 citizens to

estimate both the streamflow and stream level class

and assessed whether one can be estimated more

accurately than the other by calculating the corre-

sponding streamflow for each stream level class esti-

mate. Accuracy is defined here as the difference

between the estimated value and the measured value,

as well as the frequency of extreme outliers. The

specific research questions for this study were:

(1) How well can stream level class, streamflow and

the different factors of streamflow (width, depth,

flow velocity) be estimated by citizens?

(2) To what extent do stream size and flow conditions

affect the accuracy of the crowdsourced data?

2 Methodology

2.1 Basic approach and study sites

We conducted 16 field surveys where we asked people

to estimate the streamflow, as well as the average width,

depth and velocity of the stream, and the stream level

class. For the surveys, we selected 10 locations (Table 1;

see also Supplementary material, Fig. S1) where we
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expected enough people to pass by and have time for

the survey. We divided the streams into four different

size classes (XS, S, M, L) based on the mean annual

streamflow, and, when long-term time series were not

available, based on the available measurements:

● XS (Chriesbach, Hornbach and Irchel): ≤1 m3/s,
● S (Glatt, Magliasina, Schanzengraben, Sihl and

Töss): >1–50 m3/s,
● M (Limmat): >50–200 m3/s, and
● L (Aare): >200 m3/s.

To analyse whether the flow conditions affect the

accuracy of the estimates, surveys were conducted

under high and low flow conditions for three streams:

Aare (L), Limmat (M) and Sihl (S).

The aim of the surveys was to get a sufficient num-

ber of streamflow estimates for a specific stream on

a specific day (our aim was 30 participants per survey

to assure statistical significance; Field et al. 2013). We

therefore used a logistically simple sampling strategy,

whereby we personally approached passers-by (similar

to Breuer et al. 2015) and asked if they would complete

the 5-minute survey (i.e., we did not use a targeted

approach to capture responses of a representative

group of citizens). No data were collected on the per-

centage of passers-by who participated, but we estimate

that about every third person we approached agreed to

participate in our survey. In addition, we asked high-

school (Magliasina) and university students

(Chriesbach, Glatt and Limmat) to fill out the survey

during excursions. All surveys took place between

October 2016 and September 2017. In total, we

received 517 complete surveys: 372 passers-by, 61 par-

ticipants from a university geography bachelor student

excursion (Glatt and Chriesbach), 40 from a high-

school student excursion (Magliasina) and 44 from

a summer school for PhD students from fields ranging

from physics to social sciences (Limmat) (see Table 1).

During the group excursions we emphasized the need

for individual estimates and limited discussions

between the students for the duration of the survey.

The age distribution of all 517 participants corre-

sponds to that of the inhabitants of Zurich (where

most field surveys were conducted), although there

were fewer participants over the age of 60 (13% of

the participants vs 19% of the population in Zurich;

see Supplementary material, Fig. S2(c) and (d))

(Statistik Stadt Zürich 2017). Also a large number

of participants were university educated, roughly

48% compared to 16% of the population in Zurich

(Fig. S2(b)) (Statistik Stadt Zürich 2017). There was

an almost equal split between male and female par-

ticipants (Fig. S2(a)).

Table 1. Information on the streams where the field surveys took place. Size classes XS: ≤1 m3/s; S: >1–50 m3/s, M: >50–200 m3/s
and L: >200 m3/s. A map with the survey locations is given in the Supplementary material (Fig. S1). Survey dates given as dd.mm.
yyyy.

Stream Size Date of
survey

No. of
participants,

n

Streamflow
(m3/s)

Source for measured
streamflow*

Approx. distance to
virtual staff gauge (m)

Comments

Chriesbach
(Zurich)

XS 29.09.2017 30 0.38 Salt dilution 5 BSc students: no direct
streamflow estimates

Hornbach
(Zurich)

XS 19.02.2017 33 0.134 Salt dilution 8

Irchel (Zurich) XS 11.03.2017 25 0.01 Salt dilution 1
Glatt (Zurich) S 29.09.2017 31 2.8 WWEA, station: 533 11 BSc students: no direct

streamflow estimates
Magliasina
(Magliaso)

S 28.04.2017 40 16 FOEN, station: 2461 14 High-school students: no stream
level class estimates

Schanzen-graben
(Zurich)

S 01.04.2017 31 2.6 Salt dilution 16

Sihl (Zurich) S 1 18.02.2017 33 7 FOEN, station: 2176 32 Low flow
2 26.07.2017 31 28 High flow

Töss (Winterthur) S 12.03.2017 35 9 WWEA, stations: 518,
520 and 581

29 Interpolation between three
nearby stations for reference
value

Limmat (Zurich) M 1 29.10.2016 38 59 FOEN, station: 2099 7 No stream level class estimates
2 08.04.2017 27 83
3 02.06.2017 31 107
4 09.07.2017 44 75 PhD students Low flow
5 13.11.2017 31 222 High flow

Aare (Brugg) L 1 07.01.2017 27 108 FOEN, station: 2016 53 Low flow
2 10.05.2017 30 389 High flow

* The measured streamflow data were obtained from the Federal Office of the Environment (FOEN; http://hydrodaten.admin.ch/), the Office of Waste, Water,
Energy and Air of Canton Zurich (WWEA; www.hydrometrie.zh.ch/) or by salt dilution gauging (Salt dilution).
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2.2 Streamflow estimation

Participants were first asked to estimate the streamflow

directly. For this direct estimate, we asked them to

estimate the flow in m3/s, or in L/s for the very small

streams (XS). This directly estimated streamflow value

is referred to as Qdirect. This task, understandably,

proved to be difficult for some participants because

streamflow quantification was difficult and they were

unfamiliar with the units. A few participants refused to

answer this question, even with a bit of prompting.

Some decided to guess, even though they thought it

was unlikely to be a realistic value and others deduced

on their own that they could estimate the width, mean

depth and flow velocity to get an approximate value.

After this initial guess of the streamflow, we

explained to the participants that it is possible to esti-

mate the individual factors (width, mean depth and

flow velocity) and to derive the streamflow by multi-

plying these values (Equation (1)). The participants

were then asked to estimate the average width, mean

depth and velocity of the stream. We also asked them

to classify the streambed material. Equation (1) was

used to calculate the streamflow using these factors:

Qfactor ¼ w � d � v � k (1)

where Qfactor is the estimated streamflow (m3/s), w is

the estimated width (m), d is the estimated mean depth

(m), v is the estimated surface flow velocity (m/s) and

k is the correction factor to obtain the average velocity

from the surface velocity. While some participants still

found the quantification difficult, they were more

familiar with these units, compared to m3/s or L/s.

Often a value of 0.85 is used for the correction factor

k (Welber et al. 2016); but it can also be estimated

using the logarithmic velocity distribution (Prandtl-

von Kármán equation) for turbulent flow based on

the surface flow velocity, grain size and stream depth

(Dingman 2015). This calculated factor for the mean

flow velocity varied for the different estimates of the

participants (even for the same stream). For two-thirds

of all estimates, the calculated velocity factor was not

within the typical range of 0.71–0.95 (Welber et al.

2016) due to an unrealistic ratio between the estimated

average water depth and estimated streambed rough-

ness. Values lower than 0.71 were adjusted to 0.71

(52% of estimates) and values over 0.95 were adjusted

to 0.95 (1% of estimates). When no estimate for

streambed roughness was available (this happened

only occasionally, except for the entire field survey at

Magliasina), the typical velocity correction factor of

0.85 was used (including the participants at

Magliasina this corresponds to 13% of all estimates).

During the university excursion at the Glatt and

Chriesbach, we did not ask for direct stream estimates

because most geography bachelor students would likely

have applied the indirect estimation method (Qfactor)

because of lectures on streamflow during their

education.

To assess the accuracy of crowdsourced streamflow

data, the streamflow estimates were compared to mea-

sured streamflow data. Streamflow was measured

before or after the surveys (Chriesbach, Hornbach,

Irchel and Schanzengraben) or obtained from official

gauging station data when these were located near the

survey location (Aare, Limmat, Magliasina and Sihl,

stations of the Swiss Federal Office for the

Environment (FOEN); Glatt and Töss, stations of the

Office of Waste, Water, Energy and Air of Canton

Zurich (WWEA)) (see Table 1). The methods for the

reference measurements for width, mean depth and

flow velocity depended on the size and accessibility of

the river. These measurements included direct mea-

surements for width and depth with measurement

tapes, data on the stream cross-section from FOEN

for width and depth (when available), an estimate of

the width of the river from Google Maps for wide

rivers (Aare and Limmat) and the stick method for

flow velocity. Even though these measurements are

likely also affected by errors, they were assumed to be

the “true” data to which the citizen science estimates

could be compared. We assumed that the uncertainty

for the measured values is 10% for streamflow (Pelletier

1988), 0.5% for width and 1–3% for depth (Herschy

1971) and roughly 10% for flow velocity (based on our

own measurements).

2.3 Stream level class estimation

We also asked participants to estimate the stream level

class. Stream level refers to the height of the water in

a stream. A stream level class means that this height is

expressed on a discrete scale of classes, rather than on

a continuous scale. Stream level class data only pro-

vide information about whether the stream level is

higher or lower than previously, but earlier studies

have shown that stream level class data are useful for

hydrological model calibration (van Meerveld et al.

2017). Thus, the participants were not asked to esti-

mate the stream level in centimetres but to estimate

the stream level class. The participants compared the

current stream level with a photo of the same stream

(taken at an earlier time) with a digitally inserted staff

gauge with 10 level classes (Fig. 1, also Supplementary

material, Section S2). The staff gauge was scaled so
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that the highest class represented the highest in bank

flood level and the lowest class represented the likely

lowest stream level. The height of the classes is arbi-

trary and varied for each location, depending on the

size of the river and how the virtual staff gauge was

placed in the picture. A small staff gauge would have

a higher resolution, but the stream level for very high

and low flows may be above or below the staff gauge,

whereas a large staff gauge would imply a lower reso-

lution of the observations as the stream level would

fluctuate across fewer classes. In this study we tried to

place the staff gauges so that the staff gauge covered

both high and low in bank flows. The number of

classes was a compromise between resolution and

usability. A larger number of classes provides higher

resolution data but also makes it more difficult (or

even impossible) for participants to determine the

stream level class. Based on a previous model, study

model calibration results do not improve much when

more than five stream level classes are used (van

Meerveld et al. 2017). The number of 10 classes was

chosen to ensure observable stream level fluctuations

even in cases where the virtual staff gauge is placed so

that some classes are never or very rarely reached. The

correct stream level class value was determined by us

by carefully choosing appropriate references and indi-

vidually (but unanimously) deciding on the correct

stream level class.

For the Limmat, results are given for all five field

surveys for streamflow, but stream level class esti-

mates are given for only four surveys because

a slightly different virtual staff gauge was used for

the first survey.

2.4 Data analyses

To be able to compare the accuracy of the streamflow

estimates for different streams, relative estimates

(in percent) were calculated by dividing the streamflow

estimate by the measured value (i.e., considered true

value). A value of 100% corresponds to a perfect esti-

mate, smaller values represent an underestimation and

larger values represent an overestimation. The quality

of the data was then assessed by statistical measures,

such as the interquartile range and median. In addi-

tion, we determined the number of outliers as they are

likely disinformative for model calibration (Beven and

Westerberg 2011) and can be worse than having no

data. Even though filters can be used to remove outliers

in citizen science data, in practice, it may be difficult to

filter out all outliers. All relative estimates below 50%

and above 150% were considered to be outliers.

For comparison between streamflow and stream

level class estimates, stream level classes and the

errors in this classification were converted to an

equivalent streamflow (m3/s), named Qlevel in the

remainder of the manuscript. For the stream locations

with a nearby FOEN gauging station (Sihl, Limmat,

Aare), the classes of the virtual staff gauge were con-

verted to a metric value by determining the stream

depth that corresponded to each stream level class

(i.e., mid-point and upper and lower stream level for

each class) and using the FOEN rating curve to con-

vert these stream levels to a streamflow estimate. For

the sites where no rating curve was available

(Hornbach, Irchel, Schanzengraben and Töss), addi-

tional measurements of the stream profile and water

Figure 1. Example of a virtual staff gauge in the pictures used for the surveys at Limmat (left) and Schanzengraben (right).
Photographs taken on 29.06.2016 when the streamflow was 165 m3/s (Limmat) and on 05.01.2017 (unknown streamflow;
Schanzengraben). For the dates and the flow conditions during the surveys see Table 1.
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surface slope (estimated based on the slope of the

streambed) were used to estimate the streamflow for

each stream level class using the Manning-Strickler

formula (Manning 1891). This curve was fitted to

the streamflow measured on the day of the surveys

by adjusting the roughness coefficient within prede-

fined boundaries based on the streambed material.

The roughness coefficient used for the Manning-

Strickler formula introduces some subjectivity and

thereby likely increases the uncertainty of the conver-

sion of the stream level class to streamflow compared

to FOEN rating curve measurements. Since the stream

level classes represent a range of values rather than

just one value, the streamflow was not only calculated

for the centre value of the level class, but also the class

boundaries to obtain the possible range of streamflow

values. The estimates from Chriesbach, Glatt and

Magliasina were excluded from this analysis (101 of

the 517 estimates) because the relevant data were not

collected at the time of the surveys.

The differences in the median relative estimates for

the different stream size classes were tested for signifi-

cance using the Kruskal-Wallis test with the post hoc

procedure based on Dunn (1964). Differences in the

median relative streamflow estimates between high and

low flow conditions were tested for significance using

the Mann-Whitney test. A p-value of 0.05 was used for

all statistical tests, unless otherwise indicated.

3 Results

3.1 Streamflow estimates

Although there was a large spread in the streamflow

estimates, the median values were surprisingly close to

the measured streamflow (Figs 2 and 3). Across all sur-

veys the median of the direct streamflow estimates

(Qdirect) was closer to the measured value than the esti-

mate based on the factors (Qfactor) (median relative esti-

mates of 93 and 80%, respectively, when all surveys were

analysed together). However, the interquartile range was

smaller for the streamflow calculated from the estimated

factors (the first and third quartiles were, respectively, 26

and 309% for Qdirect and 39 and 172% for Qfactor; Fig. 3),

meaning that the streamflow estimates were closer to the

measured value for the estimates based on the factors.

Figure 2. Scatter plots showing the spread of Qdirect (left) and Qfactor (right) for each field survey. The data points are colour-coded
according to the stream size: from left to right, XS to L are red, orange, light blue and dark blue, respectively. ▴: median estimated
streamflow per survey; solid and dashed (red) line: the 1:1 line with the 10% uncertainty band. The number at the top of the graph
indicates the number of extreme outliers (1–6, not shown).
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The differences between the median estimates of

Qdirect and Qfactor were statistically significant (p <

0.05) for three out of the 14 surveys with both Qdirect

and Qfactor estimates, but not for all surveys combined

(Fig. 3). Of these three surveys, two had a median

estimate for Qdirect that was closer to the measured

value. The interquartile range was smaller for Qfactor

for two of the three surveys.

3.2 Streamflow factor estimates

There were also numerous outliers for the relative esti-

mates of width, mean depth and flow velocity (Fig. 4).

The median relative estimates for the width, depth and

flow velocity were all significantly different from each

other (Fig. 4). The width was generally underestimated

(median relative estimate of 75%, and third quartile of

95% when all stream surveys were analysed together), the

mean depth was generally overestimated (median rela-

tive estimate of 126% when all stream surveys were

analysed together), while the median flow velocity was

surprisingly accurate (median relative estimate of 100%

when all stream surveys were analysed together).

However, the interquartile range suggests that width

can be estimated most accurately (interquartile range of

relative estimates from 57 to 95% when looking at all

surveys together), and mean depth (interquartile range of

relative estimates from 86 to 180%) and flow velocity

(interquartile range of relative estimates from 57 to

143%) can be estimated less accurately. The percentage

of relative estimates below 50% or above 150% shows the
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same pattern, with width having fewer outliers (26%)

than flow velocity (39%) and mean depth (41%) (Fig. 4).

3.3 Stream level class estimates

About half of the participants (48%) selected the correct

stream level class and most of the remaining participants

(40%) were off by only one class. There were only a few

outliers (13% of participants had an error of two classes

or more; the total does not add to 100% due to round-

ing) (Fig. 5(a)). The largest overestimation was six

classes and the largest underestimation was three classes.

These errors likely occurred due to a misunderstanding

of the method.

3.4 Comparison of stream level class and

streamflow estimates

To allow comparison of the streamflow and stream

level class estimates, the latter were translated into

corresponding streamflow values. These calculated

streamflow values had a narrower interquartile range

than the streamflow estimates based on the factors

(67–157% compared to 30–163% for Qlevel and Qfactor,

Figure 4. Box plots of the relative estimates of width, mean depth and flow velocity for each stream size class and all streams
together. Median relative estimates of width, mean depth and flow velocity of all surveys combined were significantly different
(indicated by different upper case letters), whereas between stream size classes they were mostly similar (same lower case letters).
The solid red line (100%) indicates that the estimate is the same as the measured value; dashed red lines indicate the 5% (width
and mean depth) and 10% (flow velocity) uncertainty bands. The numbers above and below the box plots indicate the number of
outliers not shown. Note the log scale.
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respectively, when all estimates are compared together)

and also had fewer outliers (see Fig. 6). Only 39% of

the streamflow estimates derived from the stream level

class estimates (compared to 66% for Qfactor) were

significantly overestimated (relative estimate > 150%)

or underestimated (relative estimate < 50%).

Furthermore, only 3% of the estimates were more

than a factor of 10 “off target” (compared to 11% for

Qfactor). Even when taking the uncertainty in stream-

flow for the upper and lower stream level class bound-

aries into account (Fig. 7), the stream level class

estimates resulted in streamflow values that were

more accurate and had fewer outliers than those deter-

mined from the estimated width, mean depth and flow

velocity.

Only for the small-sized streams was the interquartile

range for streamflow calculated from stream level classes

larger than the streamflow determined from the esti-

mated width, depth and flow velocity (Fig. 6). When

taking a closer look at the surveys for the different

streams, it is clear that mainly the first survey at the

Sihl and partly the survey at the Töss caused the large

variation in the estimated streamflow from the stream

level class data (see Supplementary material, Fig. S3).

3.5 Effect of stream size on streamflow and stream

level class estimates

3.5.1 Streamflow

When estimating streamflow directly (Qdirect), partici-

pants made larger relative errors for the small streams

(S; first to third quartile of relative estimates: 55–542%),

than for the XS (19–112%), M (23–233%) and

L (14–134%) streams. However, general statements on

the effect of stream size on the accuracy of streamflow

estimates are difficult to make because there were signifi-

cant differences within each size class as well (Fig. 3).

The interquartile range of the Qfactor estimates was

significantly smaller for the small (first to third quartile

of relative estimates: 49–175%) and medium (27–117%)

streams compared to Qdirect (Fig. 6). The Qfactor estimates

were less accurate for XS (interquartile range: 47–293%)

and L (17–226%) streams than for S and M streams. For

the XS streams this difference is largely based on the

estimates from Irchel, where direct streamflow estimates

were more accurate than those derived from the esti-

mated factors. For the Hornbach (another XS stream),

there was no significant difference between the median

relative estimates ofQdirect andQfactor (for the Chriesbach
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HYDROLOGICAL SCIENCES JOURNAL 9



there was no directly estimated streamflow data). The

reasons for this different pattern in the Irchel stream are

unknown, but could be due to the lower streamflow in the

Irchel stream (0.01 m3/s) compared to the Hornbach

(0.13 m3/s).

3.5.2 Stream level classes

Stream level class estimates were also analysed accord-

ing to the distance between the participants and the

virtual staff gauge, because the distance was not always

related to the stream size. For the Limmat the virtual

staff gauge was positioned on a bridge pillar rather

than the opposite streambank (Fig. 1).

The stream level class estimates were generally more

accurate if the staff gauge was closer to the observer

(Fig. 5). For a distance of 0–10 m, 53% of participants

selected the correct stream level class, while 35%

selected a stream level that was only one class away.

For a distance of 10–20 m, no one selected a stream

level class more than one class from the true value, and

73% of the participants selected the correct class, while

for a distance of 20–30 m, 32% of participants were

correct and 45% were one class away. For a distance of

50–60 m, 30% of participants chose the correct stream

level class and 60% a neighbouring stream level class

(Fig. 5(b)). This is not surprising, as, in cases where the
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virtual staff gauge is far away, it is more difficult to

discern the stream level class and the reference, such as

stones or other helpful objects, on the streambank.

3.6 High vs low flow estimates

One issue with hydrological data based on citizen science

is the accuracy of the estimated streamflow, but another

issue is whether changes in these estimates reflect differ-

ences in streamflow over time. Comparison of the esti-

mated streamflow values for the Limmat, Sihl and Aare

shows that the median estimated streamflow (Qfactor) was

higher when the flow was higher, but the differences

were not sufficient to fully reflect the increased stream-

flow (Fig. 8) and were not significant for the Aare (Fig. 8

(b) and (c)). For the Limmat there were significant

differences between the surveys, but these differences

did not correspond fully to the measured values, as

participants underestimated both high and low flow

and the differences of estimates between the surveys

were seemingly random regardless of high or low flow

(Fig. 8(a)).

The variations in streamflow were better represented

by the streamflow derived from the stream level class

estimates (Qlevel; Fig. 8(d)–(f)), for which the median

estimated streamflow was indeed significantly higher

when the flow was higher for seven out of eight surveys.

The exception is the median streamflow for the survey

on June 2017 at the Limmat, for which the median

estimated streamflow (Qlevel) was not significantly differ-

ent from the median estimated streamflow during the

July and April 2017 surveys, although the first and third

quartiles were higher than for the July and April 2017

surveys (see Table 2 and Fig. 8(d)). The variation in

streamflow is therefore better represented by streamflow

derived from stream level class estimates than by stream-

flow derived by the factors.

4 Discussion

4.1 Can citizens estimate streamflow accurately?

The results of the streamflow estimation surveys

demonstrated the “wisdom of the crowd” effect

(Surowiecki 2004, Nielsen 2011) as the median esti-

mates were close to the measured values. However, in

practice there will be, at a certain location, only one or

at most a few estimates for a certain point in time, so
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for hydrological citizen science projects focusing on

streamflow the accuracy of the individual estimates is

more important than the accuracy of the median

estimate.

As expected, estimation of the individual streamflow

factors (width, mean depth and flow velocity) led to

more accurate streamflow estimates than the direct

estimation of streamflow. The reduction in the number

of extreme outliers for estimates based on the stream-

flow factors is likely due to the more intuitive units in

which the estimates have to be given. For non-scientists

the unit cubic metres per second (m3/s) is difficult to

visualize and not easy to relate to everyday experiences.

Width and depth in metres (m) and flow velocity in

metres per second (m/s) are easier to visualize and

estimate for most people. The unit litres per second

(L/s) is likely more tangible (as one knows the volume

of a litre from drink containers and can estimate how

long it takes to fill a bottle or a bucket). This might

explain why, for the very small Irchel stream, direct

streamflow estimates were more accurate than the

streamflow derived from the estimated width, depth

and velocity, which included the multiplication of

three different types of error. For the Hornbach,

another very small stream, there was no significant

difference between Qdirect and Qfactor, possibly because

it had more streamflow than can fit in a bucket in

a second.

The direct streamflow estimates for the Aare (L)

were also surprisingly accurate. After the survey, we

learned that there used to be a digital display of the

current streamflow at the FOEN gauging station, close

to the location of our surveys. That display was

dismantled before our survey, but it is possible that

some participants walked by this site regularly and had

a “ballpark” value for the streamflow of the Aare in the

back of their minds. Nevertheless, based on our dataset,

estimating the streamflow factors rather than the

streamflow directly is especially suitable for small and

medium streams. It is, however, also important to note

that, within the same stream size class, the accuracy of

estimates varied for each stream, and even the accuracy

of the estimates for the same stream location can vary

for different flow conditions (Figs 3 and 8). There was

no clear pattern in the relative streamflow estimates

(Qfactor or Qlevel) to suggest that either low or high

flows are more accurately estimated (see Fig. 8 and

Table 2; also supplementary Fig. S4).

Many participants estimated the flow velocity fairly

accurately if they threw a twig or leaf into the stream,

as we suggested, or even just watched something like

a bubble in the stream pass by. The differences between

these approaches could not be quantified, as it was not

documented who chose which approach.

Even though width and mean depth are measured in

the same units, width could be estimated more accu-

rately than mean depth. This is consistent with a study

by Wahl (1977), in which trained participants mea-

sured both the width and depth of a stream, but mea-

sured width with more consistency than depth. In our

case this is likely due to the refraction of light in water,

as well as the inability to see the bottom of the stream

because the water is murky or deep, which was the case

for the Sihl at high flow (S), Limmat at high flow (M)

and both surveys for the Aare (L). Also in some cases –

Hornbach (XS), Irchel (XS), Glatt (S), Sihl (S), Töss (S)

Table 2. Descriptive statistics of the streamflow derived from the estimated width, mean depth and flow velocity (Qfactor; m
3/s) (and

relative estimate, %) and the stream level classes for the Aare, Limmat and Sihl for different flow conditions.

Streamflow, Qfactor (m
3/s)

(relative Qfactor, %)
Stream level class

Stream Date Measured Percentile Measured Percentile

25% 50% 75% 25% 50% 75%

Sihl 18.02.2018 7 5 9 26 0 0 1 1
(100) (66) (127) (365)

26.07.2018 28 11 21 46 1 2 2 3
(100) (39) (76) (163)

Limmat 29.10.2016 59 31 48 86
(100) (53) (81) (146)

08.04.2017 83 22 60 111 –2 –2 –1 –1
(100) (27) (73) (134)

02.06.2017 107 26 54 78 –1 –1 –1 0
(100) (24) (51) 72)

09.07.2017 75 9 32 49 –2 –2 –1 –1
(100) (12) (42) (66)

13.11.2017 222 53 120 296 1 1 1 2
(100) (24) (54) (133)

Aare 07.01.2017 108
(100)

47
(44)

128
(118)

404
(374)

0 –1 0 1

10.05.2017 389 51 182 684 4 3 3 4
(100) (13) (47) (176)
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and Limmat (M) – it was feasible to pace the width

along a bridge, in order to gain a better estimate, which

made the width estimates more accurate; of course this

could not be done for depth. According to Gibson and

Bergman (1954), distance estimation can be trained

and constant over- and underestimation of distances

can be improved.

Training is implemented in many citizen science

projects to ensure high-quality data (Bonney et al.

2009, Haklay et al. 2010, See et al. 2013, Stepenuck

and Genskow 2017). Participants in our survey received

no training, had no prior experience and (presumably)

only estimated streamflow and its factors once. The

effect of a one-time training was tested for some citizen

science projects (Crall et al. 2013, Rinderer et al. 2015)

and has been shown to improve the data-collection

ability of the participants. Training options for our

study could be in the form of online tutorial videos, or

a list of well-known streams and their range in stream-

flow to indicate approximate numbers for streamflow, as

well as width, depth and flow velocity. If participants

can improve the accuracy of their estimates and the

number of outliers can be reduced sufficiently, stream-

flow estimates might be usable for hydrological model

calibration (Etter et al. 2018). Further research will test

the applicability of quality control methods, such as

outlier detection and the effect of training on the accu-

racy of streamflow estimates.

The inaccuracies of the streamflow estimates should

be seen in light of the rating curve errors that are

included in conventional measurements, which have

a range of ±20% for medium to high flows and sub-

stantially higher errors ranging from −60 to +90% for

low flows (McMillan et al. 2012). Only 29 and 63% of

the Qdirect estimates were within ±20 and ±90% of the

measured streamflow value, respectively. For the Qfactor

estimates, the respective values were 15 and 73%.

Ensuring, and possibly improving, the accuracy of

the crowdsourced data is an important aspect in any

citizen science project. The inaccurate estimates of

streamflow might be excluded from analyses by quality

control methods. A comprehensive overview of data

validation methods in the field of citizen science, such

as expert review, photo submission or automatic filter-

ing, is provided by Wiggins et al. (2011), and many of

these methods are likely also applicable to crowd-

sourced hydrological estimates.

Video imagery is an alternative way to estimate

streamflow. These methods have great potential, espe-

cially for more accurately determining flow velocities

(Bradley et al. 2002, Tsubaki et al. 2011, Lüthi et al.

2014, Le Coz et al. 2016, Tauro et al. 2018) and have

benefits, such as being more objective and possibly

allowing a higher accuracy than visual streamflow esti-

mates. By using advanced and sophisticated technol-

ogy, they also create a curiosity factor that can motivate

people. However, there are also some limitations of

these approaches in citizen science projects. Issues

include light requirements, camera restrictions and

the need for initial in situ channel measurements as

a reference (Lüthi et al. 2014). To encourage more

participants to join a citizen science project, we were

interested to keep the “installation” of new sites and the

observation approach as easy as possible. The visual

estimates used in this study are easier to apply for

many citizens and, thus, can potentially be used to

provide more observations. The different methodolo-

gies complement each other and different methods

might be most suitable for different locations, partici-

pant groups or observation goals. Tauro et al. (2018)

express a similar opinion: “Reconciling and comple-

menting observations from such an abundant pool of

methodologies, devices and platforms is the ultimate goal

of the research community towards an improved under-

standing of hydrological processes” (Tauro et al. 2018,

p. 187). Many of the current limitations in video ima-

gery will likely be resolved in the future, making this

approach a more usable alternative for streamflow or

stream level estimates. A possibility in the future might

also be to develop a virtual staff gauge in an augmented

reality setting, thereby facilitating participants’ stream

level class estimates.

4.2 Can citizens estimate stream level classes

accurately?

Stream level classes were introduced to simplify the

stream level estimation task for the participants. In

theory we could have also asked participants to esti-

mate a metric value above or below some fixed point.

However, the depth estimates (Fig. 4) for Qfactor suggest

that this approach would lead to estimates with a low

accuracy. The high accuracy of stream level class esti-

mates and the small number of outliers (i.e., estimates

that are more than one class off target) indicate that

this is a suitable parameter for citizen science projects.

The major benefits of the virtual staff gauge approach

is that estimates can be done quickly and that relative

variations in stream level can be estimated with small

uncertainties, but, on the down side, they also have

a lower resolution. A participant can be no more than

10 classes off target (which never happened; 0.7% of

participants were four classes off and <0.5% of partici-

pants were five or six classes off).

Participants only needed to compare the current

stream level to a previous stream level using structures,
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streambanks or stones as a reference. If the virtual staff

gauge is well placed (i.e., there is a suitable structure on

the stream bank or in the stream), the participant only

needs to look for the reference and then determines the

corresponding stream level class. In general, the vast

majority of participants had no problem understanding

the concept and estimated the stream level class cor-

rectly; outliers in the estimated stream level classes

were very rare. However, there were also a few clearly

wrong stream level class estimates, which might suggest

a misunderstanding of the concept by some partici-

pants. The two most extreme overestimations were

both at the Limmat, the most extreme underestima-

tions at the Aare. Most participants (49%) underesti-

mated the stream level class at the Aare. The reasons

are unknown, but potentially this could be attributed to

a staff gauge placement during an exceptionally low

stream level (less than a 2-year low according to official

measurements; BAFU 2017), meaning that the zero

value was already very low. This might have confused

participants as they may have thought that the staff

gauge represents the average streamflow condition.

The stream level class estimates were especially

accurate for smaller streams where the opposite stream

banks, at which the virtual staff gauges were located in

the photo, were close to the participant. The Limmat is

a wider stream, but was an exception as the virtual staff

gauge was placed on a bridge pillar, which was rela-

tively close to the observer. This is most likely the

reason why the stream level class estimates for the

Limmat were more accurate than for the Aare (the

only stream where the references for the virtual staff

gauge were 50–60 m away from the participant), even

though the widths of the actual streams were similar

(50 and 52 m, respectively). This shows that, for stream

level class estimates, the placement of the virtual staff

gauge is important. One of the very small streams

(Irchel) had a poorly placed staff gauge (the image

was taken looking down onto the stream rather than

horizontally from the height of the stream level, which

distorted the virtual staff gauge relative to the wall

behind the stream) and made it more difficult to

read. The median relative estimate for Qlevel for the

Irchel stream was 12%, whereas the median relative

estimate for Qlevel for all surveys was 101%.

Several studies have examined the accuracy of crowd-

sourced data (Haklay et al. 2010, Crall et al. 2011, See

et al. 2013, Isaac and Pocock 2015, Tye et al. 2016,

Aceves-Bueno et al. 2017, Mengersen et al. 2017), men-

tioning case studies such as OpenStreetMaps, where

Volunteered Geographic Information (VGI) data are

collected online and verified by other participants

(Haklay et al. 2010), and discussing issues such as

presence-only data for crowdsourced species classifica-

tion (Isaac and Pocock 2015, Tye et al. 2016, Mengersen

et al. 2017). While hydrological studies have also dis-

cussed crowdsourced data accuracy (Turner and Richter

2011, Rinderer et al. 2012, 2015, Lowry and Fienen 2013,

Peckenham and Peckenham 2014, Breuer et al. 2015, Le

Coz et al. 2016, Little et al. 2016, Weeser et al. 2018),

most of these studies looked at crowdsourced measure-

ments rather than estimates (Lowry and Fienen 2013,

Peckenham and Peckenham 2014, Little et al. 2016,

Weeser et al. 2018). While others, such as Turner and

Richter (2011), looked at class estimates, they mainly

looked at two class options (wet or dry stream), but

unfortunately do not mention data accuracy apart

from the fact that participants were trained for consis-

tency. Rinderer et al. (2012, 2015), who also looked at

classed data, analysed participants’ ability to estimate

relative soil moisture classes and found that, in one

case study, 95% of participants were no more than one

class off (Rinderer et al. 2012), and in another study

with various groups, 81–93% of the participants were no

more than one class off (Rinderer et al. 2015). However,

as far as we are aware, our study is the first to address

the accuracy of participants’ estimates of stream level

classes.

In addition to being more accurate, the stream level

class estimation process is also very quick, which is

a big advantage for a citizen science project. It is

assumed that offering a fast procedure to document

stream levels will encourage citizen observers to con-

tribute data to a project regularly (Eveleigh et al. 2014).

It is very common for citizen science projects that the

majority of the contributions come from a small group

of high contributors (Lowry and Fienen 2013, Eveleigh

et al. 2014, Sauermann and Franzoni 2015). For exam-

ple, in the CrowdHydrology project, one participant

walked past a particular station three to four times

a week, which led to this station having almost 10

times as many measurements as the station with the

next highest number of data submissions (Lowry and

Fienen 2013). This highlights the extreme value of

these high contributors and shows that it is important

to be able to take measurements quickly.

4.3 Are citizens likely to observe variations in

streamflow?

Having data for high and low flows, or relative varia-

tions in streamflow is crucial in order to determine

how a stream reacts to precipitation, snowmelt events

or long periods without rainfall, and for hydrological

model calibration. Hence, it is important to know if

crowdsourced data can properly reflect such variations
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in streamflow and whether the accuracy of the data

depends on the flow conditions. The results from the

surveys suggest that the temporal dynamics in stream-

flow will be relatively poorly represented by citizen-

based streamflow estimates. For two of the three

streams (Sihl and Aare), the median streamflow was

overestimated at low flows and underestimated at high

flows, which indicates insufficient adjustment of the

streamflow estimates to the variation in flow condi-

tions. For the Limmat, the significant difference in

the streamflow estimates does not seem to correspond

to the differences in the measured streamflow (Fig. 8

(a)–(c)). This is partly due to the problem that width

(and to a lesser degree velocity) estimates were more

accurate compared to depth estimates (Fig. 4). As long

as a high flow stays within the streambank, the width of

the streams in our survey does not vary significantly

between low and high flows. Thus, the majority of the

variation in flow conditions is due to the variation in

depth, which was most difficult to estimate.

During the surveys we did not ask the same persons

to estimate the flow during high and low flow condi-

tions. The results for an individual who reports the

streamflow at different times may be different, because

the participant might consistently over- or underesti-

mate the flow and therefore the relative variations

might be more accurate than indicated by our results

(Rinderer et al. 2015). Thus, further research is needed

to determine if the streamflow dynamics are better

described by the streamflow estimates when the major-

ity of the contributions for a particular stream are

made by one (or a few) active citizen(s) (Lowry and

Fienen 2013).

The high and low flow patterns are better reflected

in the stream level class estimates, with the median

flow derived from these estimates (Qlevel) being signifi-

cantly different between high and low flows for all

streams. For the Limmat, the post hoc tests showed

a significant difference between the high flow and all

other survey campaign estimates. This underlines the

benefits of collecting stream level class estimates, par-

ticularly for model calibration (see additional discus-

sion below).

4.4 Should citizen science projects focus on

streamflow or stream level class estimates?

The reduction of the number of outliers in the stream-

flow estimates calculated from the stream level class

data (Qlevel) compared to the direct streamflow esti-

mates (Qdirect) and streamflow estimates based on the

streamflow factors (Qfactor) can partly be explained by

the limited number of potential entries for the virtual

staff gauge (i.e., participants can only choose one out of

10 available classes for the stream level estimate). For

Qdirect and Qfactor, participants were able to state any

value for their estimates, even values that are physically

impossible for a particular stream. Hence, with regard

to the reduction of outliers, estimating stream level

classes seems advantageous for citizen science projects.

Additionally, our results suggest that stream level class

estimates appear to be better suited to represent varia-

tions in flow conditions. Thus, the results of this study

suggest that citizen science projects should focus on

stream level class estimates instead of streamflow esti-

mates, although this needs to be tested for different

climatic, geographical and socio-economic settings.

However, it should be noted that part of the differ-

ence in accuracy for the stream level class estimates

and streamflow estimates is due to the difference

between relative and absolute values. For our approach,

it would be impractical to use classes for streamflow

estimates, as we would need many classes, or the reso-

lution of the data would be very low (i.e., the flow for

a given stream is likely to always be within the same

class). However, as mentioned above, lists of well-

known streams, giving their streamflow range to indi-

cate orders of magnitude for the expected streamflow,

as well as width, depth and flow velocity, could be

provided to make it easier for citizens to make the

estimates and to improve the accuracy of the estimates.

One of the disadvantages of the stream level classes

is that each class represents a range of potential stream-

flow values, rather than one specific value. If

a participant estimates that the stream level is in class

two, it is unclear whether that means the upper, middle

or lower part of the class. The other disadvantage is

that these estimates do not provide information on

streamflow volumes. However, the usability of stream

level class data for hydrological model calibration was

tested by van Meerveld et al. (2017), who showed that

stream level class data can be used to calibrate a simple

bucket-type hydrological model, and suggested that

simple hydrological models can be used to convert

stream level class data to time series of streamflow.

The value of stream level data for hydrological model

calibration, especially for humid catchments, was

demonstrated recently by Seibert and Vis (2016). The

value of crowdsourced stream level data (photographs

of a fixed staff gauge) together with rainfall and flood

observations was also shown by Starkey et al. (2017).

They used community-based observations of rainfall

(manual raingauges), river levels (manual staff gauge)

and flood-related evidence (anecdotes, photographs or

videos) alongside traditional information (tipping

bucket raingauge, official raingauge measurements, six
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pressure transducers for water level measurements and

flow gauging for the discharge-rating curve), in order

to fill spatial and temporal gaps in hydrometric data for

a 42 km2 catchment in the UK to improve a physically-

based, spatially-distributed catchment model

(SHETRAN). Etter et al. (2018) calibrated a bucket-

type model with synthetic crowdsourced streamflow

data with different degrees of error (including errors

that are comparable to those observed in this study)

and different temporal resolutions, and indeed found

that such streamflow estimates do not contain suffi-

cient information to improve the model compared to

random parameter sets. However, they also showed

that, if the standard deviation of the log-normal dis-

tribution that was used to describe the errors of crowd-

sourced streamflow estimates could be reduced by

a factor of two, one estimate per week would lead to

a significant improvement in the model simulations.

5 Conclusion

We asked 517 citizens to estimate streamflow directly

and indirectly by estimating the stream width, depth

and flow velocity. We also asked them to estimate

the stream level class. The survey results allowed us

to quantify the accuracy of the estimates and are,

thus, a basis for evaluating the potential value of

citizen science based estimates of streamflow and

stream level classes. The median estimated stream-

flow values were close to the measured streamflow,

but there were also many outliers, and the variations

in the flow conditions were not fully discernible in

the streamflow estimates. The stream level class esti-

mates, which were converted into streamflow values

for comparison, had far fewer outliers and were sig-

nificantly different for the different flow conditions.

Stream level class estimates also seemed to be

quicker and easier to estimate and are thus consid-

ered preferable for citizen science approaches.

Hydrological models can then be parameterized

based on these stream level class estimates to obtain

streamflow time series. The study was conducted in

Switzerland and, while we do not expect significant

differences, we recommend testing the accuracy of

citizen science based estimates of streamflow and

stream level classes in different climatic, geographical

or socio-economic settings and for rivers with differ-

ent sizes.
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Abstract

Data quality control is important for any data collection program, especially in citizen science

projects, where it is more likely that errors occur due to the human factor. Ideally, data qual-

ity control in citizen science projects is also crowdsourced so that it can handle large

amounts of data. Here we present the CrowdWater game as a gamified method to check

crowdsourced water level class data that are submitted by citizen scientists through the

CrowdWater app. The app uses a virtual staff gauge approach, which means that a digital

scale is added to the first picture taken at a site and this scale is used for water level class

observations at different times. In the game, participants classify water levels based on the

comparison of the new picture with the picture containing the virtual staff gauge. By March

2019, 153 people had played the CrowdWater game and 841 pictures were classified. The

average water level for the game votes for the classified pictures was compared to the water

level class submitted through the app to determine whether the game can improve the qual-

ity of the data submitted through the app. For about 70% of the classified pictures, the water

level class was the same for the CrowdWater app and game. For a quarter of the classified

pictures, there was disagreement between the value submitted through the app and the

average game vote. Expert judgement suggests that for three quarters of these cases, the

game based average value was correct. The initial results indicate that the CrowdWater

game helps to identify erroneous water level class observations from the CrowdWater app

and provides a useful approach for crowdsourced data quality control. This study thus dem-

onstrates the potential of gamified approaches for data quality control in citizen science

projects.

1. Introduction

Data quality and quality control are frequently discussed for citizen science projects because

these data are generally perceived to be less accurate than traditional data due to human errors.

Nonetheless several studies have shown that citizen science data can be as accurate as data

from experts [1–3]. Data quality control in citizen science has several purposes, the most

PLOSONE | https://doi.org/10.1371/journal.pone.0222579 September 26, 2019 1 / 23

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Strobl B, Etter S, van Meerveld I, Seibert J

(2019) The CrowdWater game: A playful way to

improve the accuracy of crowdsourced water level

class data. PLoS ONE 14(9): e0222579. https://doi.

org/10.1371/journal.pone.0222579

Editor: Seyedali Mirjalili, Torrens University

Australia, AUSTRALIA

Received: April 5, 2019

Accepted: September 2, 2019

Published: September 26, 2019

Copyright: © 2019 Strobl et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files are

available from the Zenodo data repository (https://

doi.org/10.5281/zenodo.2630587).

Funding: This study was funded by the Swiss

National Science Foundation (www.snf.ch; project

163008, CrowdWater). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-5530-4632
http://orcid.org/0000-0002-7553-9102
http://orcid.org/0000-0002-7547-3270
http://orcid.org/0000-0002-6314-2124
https://doi.org/10.1371/journal.pone.0222579
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222579&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222579&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222579&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222579&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222579&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222579&domain=pdf&date_stamp=2019-09-26
https://doi.org/10.1371/journal.pone.0222579
https://doi.org/10.1371/journal.pone.0222579
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.2630587
https://doi.org/10.5281/zenodo.2630587
http://www.snf.ch


obvious being the improvement of the data quality. Additionally, improved data quality also

increases the credibility of the data for the users and the confidence of the citizen scientists in

their ability to submit useful data [4,5].

Different data quality control approaches have been developed for citizen science projects

within different scientific fields and for different data collection approaches [4,6–8]. Wiggins

et al. [8] summarised 18 approaches for data quality control, which can be grouped into

approaches before, during and after data collection. These include training participants and

providing tutorial materials [9,10], filtering of the incoming data based on the plausibility of

the data and the likelihood for a particular geographic region [6,10–14], bias correction, for

example for presence only data [10,11,15,16], and review of incoming data [4,8,11,17,18].

The review approach includes reviews by professional scientists, reviews by experienced

contributors or regional experts, and peer-reviews by multiple parties [8]. The three review

approaches can also be combined within a project, e.g. by asking the public to flag certain

entries (peer-review), which are then reviewed by experts [6,18]. Review through professionals

is a time-consuming task and can only be done in citizen science projects with a limited

amount of incoming data [4]. While all non-fully automated data quality control approaches

might be time-consuming, the effort becomes more doable if it can be shared by many people.

Review by experienced contributors or regional experts can therefore also be used for large

projects. However, it opens the question whom to assign this “ambassador-status”, and

depending on the data volume and number of ambassadors it might still be a lot of work for a

few dedicated volunteers [11,18]. Peer-review by multiple parties is a method to crowdsource

data quality control. The quality of the review is insured through multiple assessments so that

individual mistakes or misclassifications are insignificant when all assessments are taken into

account. Through peer review, the quality control mechanism is scalable, so that it can even be

used for big projects. Furthermore, it ensures that citizen scientists are involved in both data

collection and data quality control.

There are many examples of peer-review in the field of citizen science, such as projects

related to Volunteered Geographic Information [7,19], such as OpenStreetMaps [20], in proj-

ects where volunteers make visual comparisons of spatial patterns, such as Pattern Perception

[21], Cyclone center [22] and Galaxy Zoo [23], and in projects where volunteers assess pic-

tures, such as Snapshot Serengeti [24] and Cropland Capture [17]. As with many citizen sci-

ence projects and tasks, a major difficulty associated with the peer-review approach is the

recruitment and retention of a sufficient number of reviewers [17,21–25]. Depending on the

project, the scientific field and the specific task at hand, different strategies can be employed. A

frequently applied strategy, especially for online citizen science projects, is the gamification of

tasks [26–28].

Gamification can range from simple points and leaderboards to more immersive games

with complex storylines [28]. Different phrases are used in the literature for these types of

games, such as citizen science games [29,30], knowledge games [31], games with a purpose

[32,33] or serious games [29]. Examples of projects that gamified their interaction with citizen

scientists are Foldit, StallCatchers, Phylo, Serengeti Pictures and Cropland Capture. A compre-

hensive list of gamified citizen science projects can be found on www.citizensciencegames.

com.

Many of these games were successful in finding a large number of participants:> 2 500

players in Cropland Capture [34],> 12 000 players in Phylo [35], and> 57 000 players in Fol-

dit [36]. The different topics of the games make comparisons between them difficult, but most

publications describe the games as a success. The project Foldit mentions that their players can

“produce structure solutions of the highest quality” [37] and Curtis [38] says that “the games

[Foldit, Phylo and EteRNA] have the potential to greatly improve our understanding of the
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genetic processes underlying important diseases”. For Cropland Capture, the conclusions were

slightly mixed “At first glance [. . .] volunteers are highly effective at rating photographs and sat-

ellite imagery for the presence of cropland.”, but “extracting a reliable signal from crowdsourced

data without guidance from expert validations is not possible for this type of task.” [34].

This paper focuses on the value of the online CrowdWater game (https://crowdwater.ch/

en/crowdwater-game/) to check and improve the accuracy of crowdsourced water level class

data submitted via the CrowdWater app. The CrowdWater game can be described as a citizen

science game for which the primary purpose is data quality control rather than education. One

of the main differences between the CrowdWater game and most other citizen science games

is the complementarity of the tasks (collection and correction) in the CrowdWater project.

The CrowdWater project asks citizens to submit water level class data for streams and rivers

through an app [39], which in turn are checked by (other) participants through the online

CrowdWater game. Therefore, unlike games such as Foldit, Phylo or Cropland Capture, the

CrowdWater game does not produce data, but checks the quality of the crowdsourced data.

This means that there are two potential entry points into the project (the app and the game;

Fig 1) and that there is a range of tasks and interactions available for participants. This might

help to “sustain engagement over time” [27]. iNaturalist [[40] and iSpot [41] have a similar

complementarity as the CrowdWater project, by asking the citizen scientists to collect pictures

of plants and animals and by also asking citizen scientists with good species recognition abili-

ties to help classify these pictures.

The specific research questions for this study were:

1. Can the CrowdWater game be used to correct mistakes in the data submitted through the

CrowdWater app?

2. Can players correctly identify unsuitable observations through the report function in the

game?

3. Is the assignment of the water level class by regular players more accurate than for novice

players?

4. What motivates participants to play the CrowdWater game?

2. Methods

2.1 The CrowdWater app

The CrowdWater app [39,42] can be used by citizen scientists worldwide to collect hydrologi-

cal data. Currently, the app can be used to collect data for three parameters: water level class

(and as an advanced option, streamflow), soil moisture, and the occurrence of flow in tempo-

rary streams. The CrowdWater game was developed as a data quality control mechanism for

the water level class data. To report changes in water levels with the app, users first have to cre-

ate a reference picture, which is a picture of a stream with a virtual staff gauge that is inserted

digitally onto the picture like a sticker. Hence the staff gauge only exists in the reference picture

and no physical installations are needed. The size of the virtual staff gauge is controlled by the

user but the number of classes is fixed at ten. The virtual staff gauge is placed in the picture in

such a way that per definition the water level in the reference picture is always at class zero. At

a later time, the user who has made the reference picture or any other citizen scientist visiting

the same location can look at the initial reference picture and compare the water level in the

current situation with that on the reference picture. They select the water level class that they

think best represents the current situation and upload a picture of the new situation. This is

called “observation” and results in a time series of water level class data with relative values of
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the water level for that particular location, rather than time series of actual (metric) water level

values. For further information on the CrowdWater app, as well as the use of the virtual staff

gauge approach, we refer the reader to the following publications [39,43–45].

2.2 The CrowdWater game

2.2.1 The game. The CrowdWater game is a casual game, which means that very little

time, background knowledge, experience or training is needed to start playing the game [46].

The instruction manual is available on the homepage of the CrowdWater project and can be

read easily in 5 to 10 minutes. In addition, there is a short (<2 min) movie explaining the

game (https://crowdwater.ch/en/instructions/). The task for the players can be described as a

series of “microtasks”, which refers to “[. . .] systems [that] achieve high quality, typically as

good as or better than expert annotators, through extensive use of redundancy and aggregation.”

[47]. The gamification aspects of the CrowdWater game include championships, rounds,

points and leaderboards.

The crowdsourced water level class observations displayed in the CrowdWater game are

obtained from the CrowdWater app (see Fig 1 and 2.1 The CrowdWater app). The Crowd-

Water game uses all water level class observations with a picture and displays each picture

together with the reference picture for that site (Fig 2). By February 28, 2019, there were 2326

picture pairs in the game but this number is increasing continuously as the app users continue

to create new spots with reference pictures and provide observations and pictures for existing

spots. These pictures are automatically transferred to the game. The game players compare the

picture pairs and estimate the water level class for the picture of the new observation (i.e. the

Fig 1. Schematic overview of the CrowdWater project, showing the connection between the CrowdWater app and game.

https://doi.org/10.1371/journal.pone.0222579.g001
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one that does not have the virtual staff gauge). This way many players can assess the same situ-

ation without being outside at the same stream at the same time and thereby peer-review the

water level class data that are submitted via the app. As the players only get to see a photo-

graph, rather than seeing the actual stream, we need to test the value of the game for data qual-

ity control and how many votes need to be collected per observation. Obviously, if a water

level observation is uploaded without a new picture (< 3% of all observations), data quality

control via the game is not possible.

2.2.2 Observation reports. While playing the game, players can use a report button (Fig

2) when they believe that the water level cannot be determined for the new picture or when

there are other issues with the pictures. Players can choose one of six reasons to report an

observation. In the case of “other reason” the player can write what that reason is.

• The photo is ok, but I don’t know the category.

• The staff gauge is not placed correctly.

Fig 2. Screenshot of the CrowdWater game. The left picture shows the reference picture with the virtual staff gauge. The right picture shows an observation for the
same spot at a different time. The player has to estimate the water level class for the picture on the right by comparing the water level and features in the stream or on
the stream bank for both pictures. On the left hand side the scores of the top ten players for this round of the game are shown. The report button at the bottom can be
used for pictures that cannot be classified. The squares at the top indicate the number of comparisons completed in this round of the game so far (black) and
comparisons still to come (grey).

https://doi.org/10.1371/journal.pone.0222579.g002
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• The staff gauge is missing.

• The approved value is clearly incorrect.

• The location has changed and the reference image is unrecognizable.

• Other reason: . . .

2.2.3 Gamification aspects of the CrowdWater game. In its current implementation, the

CrowdWater game has monthly championships that consist of 28 daily rounds. Twelve picture

pairs are shown to the players per round. There are two different types of picture pairs: classified

and unclassified observations. Classified observations have already received 15 or more votes by

at least 15 different players. On February 28, 2019, there were 846 classified observations (i.e.,

classified pictures) in the game. Within the game, the median of the votes for the water level

class for a classified observation is calculated and used as the approved value to which the vote

of the current player is compared. Currently, the classified observations remain in the game

until they have received 100 votes. When there are fewer than 15 votes for a picture, it is defined

as “unclassified” and, thus, does not have an approved value assigned to it yet. On February 28,

2019, there were 1480 unclassified observations in the game. The players do not know which

type of observation they are looking at until they have voted for a water level class. This is a sim-

ilar approach as for the Cropland Capture game [17]. For already classified observations, players

receive six points if they choose the same class as the median of the votes from the other players

(considered to be the approved class), four points if they choose a neighbouring class and zero

points if they are more than one class off from the median. For (so far) unclassified observa-

tions, players always receive three points (regardless of their vote). When reporting a problem

for a picture pair (see section 2.2.2 Observation reports) players always receive three points so

that there is no incentive to try to classify a picture that should be reported. The distribution of

points also ensures that it is not possible to win a round merely by reporting every observation.

After completing a full round of pictures in the game, the players see the score and all twelve

picture pairs together with his/her vote and the approved water level class for each picture

pair. This provides feedback to the player on what the correct water level class was. At this

stage it is possible to report a picture again (but this time this does not lead to any points).

The names of the top ten players for the daily rounds are shown on the leader board (Fig 2).

Every month a new championship starts and small prizes are given to the overall winners of the

monthly championship (i.e. the three players with the most points for that month), as well as three

randomly selected players who won at least one of the daily-rounds during the championship.

2.2.4 CrowdWater game participants. The game was tested internally (i.e., within our

research group) between May and July 2018 and has been published and promoted online

since August 2018. The game was advertised through several communication channels: the

CrowdWater homepage, facebook, twitter, LinkedIn, ResearchGate, CrowdWater app push-

messages, CrowdWater newsletter, SciStarter, Schweiz Forscht, citizensciencegames.com, as

well as by directly contacting colleagues, friends and family.

The frequency distribution of the contributions per player in the CrowdWater game is simi-

lar to many other citizen science projects [5,48–51]: there are a few dedicated participants who

play very frequently and contribute the majority of the votes, whereas many participants have

only tried the game once or play infrequently (see 3.1 Participants).

2.3 Analysis of the CrowdWater game data

2.3.1 Correction of app data through the game. The aim of the game is to check the

water level class data submitted through the CrowdWater app and if necessary correct the
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water level class observations. For each observation that has been classified by 15 or more play-

ers in the game, we computed the mean water level class from all the game votes. To exclude

the influence of outliers, only the values within the 10th and 90th percentiles were used to com-

pute the mean. This mean value differs from the current implementation of the CrowdWater

game, where the approved water level class is determined based on the median value. The dis-

crepancy between the analyses in this paper and the implementation in this game is due to the

game being implemented earlier; we expect that the game will be adapted in the near future so

that it also uses the mean water level class as the approved value as this more accurately reflects

the correct water level near class boundaries (see results section 3.2 Vote distribution per

observation and data correction). The difference between the mean water level class from the

game and the water level class submitted via the app can be divided into three categories: no

discrepancy, a water level class correction, and a higher water level class resolution.

• No discrepancy: If the mean game vote is within< 0.25 classes from the original value sub-

mitted via the app, no correction of the original app value is necessary.

• Water level class correction: If the mean value of the game votes is more than 0.75 water level

classes away from the value submitted via the app, either the original app value or the mean

game vote needs to be corrected.

• Higher water level class resolution: The water level of a stream can be at the border of two

water level classes. In the app the citizen scientist has to decide on one of these neighbouring

classes. In the game, the player also has to decide on one of the classes, but based on the dis-

tribution of the votes from many players it sometimes becomes apparent, that the actual

water level class is in between the two classes. Therefore, if the mean game vote is between

0.25 and 0.75 classes away from the value submitted via the app, it could be considered as a

half-class, i.e., a value with a higher resolution of the water level class scale than is possible in

the app.

If the water level class submitted via the app and the mean game vote do not agree (i.e. they

differ by more than 0.75 water level classes), expert judgement is needed to determine which

of these values is most accurate. Experts can decide based on the pictures of the stream level

that are also shown in the game whether the app value or the mean game vote is more likely to

be correct. Two of the authors (Strobl and Etter) checked and classified the observations indi-

vidually and discussed the pictures in case their expert judgement differed. The expert judge-

ment was only done to evaluate the performance of the CrowdWater game, to better

understand the accuracy of the output of the game for future applications. This will not be

done continuously for the CrowdWater game as the number of pictures that need to be

assessed would quickly become unmanageable. The categories used for expert judgment were

as followed:

• The original app value was correct.

• The mean game vote was correct.

• Neither was correct, but the original app value was closer to the correct value.

• Neither was correct, but the mean game vote was closer to the correct value.

• The correct value was precisely in the middle between the original app value and the mean

game vote.

• The observation should have been reported, rather than voted on by players, e.g. because

there was no possibility to determine the exact value based on the picture.
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2.3.2 Vote distribution per observation. For each observation that had at least 15 votes,

we determined the distribution of the differences between each vote and the mean game vote

(i.e. the error distribution). The distribution of the errors is an important indicator of the cer-

tainty of a mean value and showed how sure “the crowd” was of their collective vote. We

wanted to know if the error distribution of the game votes was similar to the error distribution

of the water level classes for people who see the actual stream (rather than only a picture). We

therefore compared the error distribution for all observations in the game with the error distri-

bution from a previous field study, in which 517 passers-by at ten different locations were

asked to estimate the water level class of the stream by comparing the current situation with a

printed copy of the reference picture with the staff gauge [45]. The error distributions for the

game players and the passers-by were not normally distributed, therefore we used the Mann-

Whitney test to compare the medians of the two datasets and the Pearson Chi-Squared test to

compare the frequency distributions.

2.3.3 Impact of the number of votes on the calculation of the mean water level class.

Wewanted to determine the number of votes per observation that are needed to obtain a correct

mean game vote to be able to design the CrowdWater game in such a way that it accurately classi-

fies the observations in the most efficient way possible (i.e., to remove observations from the

game when they have been classified by a sufficient number of game players, so that the effort can

be directed towards classifying new observations). Currently 15 votes are needed to classify a pic-

ture but this number was merely an initial guess and could be changed based on the results of

this analysis. We used bootstrapping to evaluate how the number of votes per observation affects

the uncertainty of the mean game vote and thus the resulting water level classification. More pre-

cisely, we compared how the mean value of the votes for a randomly chosen subset of votes (rang-

ing from 1 to 30 votes) for each classified picture differed from the overall mean that takes all

votes into account. We then determined the number of classified pictures for which this differ-

ence was less than 0.05 and less than 0.2. This was repeated 10 000 times. The analysis was only

done for classified pictures with at least 30 votes (246 observations or 11% of all observations).

For this analysis we used the actual mean vote, rather than the mean within the 10th to 90th per-

centile of the votes, as the exclusion of outliers was not practical for the smaller subsets of votes.

2.3.4 Accuracy per player. We also tested whether there are differences in the abilities of

the players to classify an observation correctly and if this is connected to how regularly they play

the game, i.e., whether regular players are better at assigning the right water level class to an

observation than novice players. Therefore, we calculated the mean accuracy per player, which

is the mean of the absolute difference between the vote of the player and the mean game vote

(within the 10th to 90th percentile of all votes) for all of their votes and subtracted this value

from 10 (the maximum possible divergence). Thus an accuracy score of ten indicates a perfect

score (i.e., the votes of the player were always the same as the average vote from all players),

whereas a low value indicates that the votes of the player were often different from the average

vote. To check whether or not the mean accuracy per player was significantly different for the

regular and novice players, we used the Mann-Whitney test (p< 0.05) because the Shapiro-

Wilk normality test indicated that the mean accuracy values were not normally distributed. Reg-

ular players were defined as players who played more than two full rounds of the game (38% of

all players, representing 96% of all votes), whereas novice players played fewer rounds.

2.4 Survey

To address questions related to the motivation of the participants, we sent out a short survey

to everybody who had played the CrowdWater game at least once before 11.02.2019 (145 play-

ers), using the email addresses that were used to register for the game. The questions in the
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survey took 5–10 minutes to complete and covered several topics, such as what motivated the

respondents to play the game, which game aspects they liked, and which ones were frustrating.

In the survey we also asked if the respondents had used the CrowdWater app and how their

experience with the app compared to their experience with the game. The full survey can be

found in the supplementary material 1 (S1 File).

3. Results

3.1 Participants

By 28.02.2019, 153 players had registered for the CrowdWater game and contributed at least one

vote; in total, 33 176 picture pairs have been compared. However, only 58 players had played

more than two rounds, indicating that many participants only tried the game once or twice. The

average number of observations classified per participant was 148, but the median was only 12.

The mean number of classifications for the five most dedicated contributors was 1829. These

results indicate a very skewed distribution of the number of classifications among the partici-

pants. Few of the participants who participated in the survey had watched the tutorial movie

(36%) but more participants read the manual (61%) before playing the game for the first time.

3.2 Vote distribution per observation and data correction

The agreement of votes for classified pictures varied significantly from observation to observation

and sometimes even for observations taken at different times for the same site. However, the app

values and the mean game vote rarely differed by more than one water level class. For 43% of all

classified observations there was no difference between the original water level class submitted via

the app and the mean game vote, meaning that the app user and the mean vote of the game play-

ers agreed. For 27% of all observations, the mean value from the game differed by half a water

level class, which should not be considered an error, but rather an increase in the resolution of the

data (i.e. indicating a water level between two class boundaries). For 30% of all classified observa-

tions the mean game vote and the app entry differed by at least one class. For 20% of all classified

observations the disagreement was exactly one class; for only 10% of the classified observations,

the mean game vote and the original app value differed by more than one class (Fig 3).

The agreement among the game players was particularly high for observations for which

the water level was relatively similar to that in the reference picture (i.e., the mean vote had a

water level class of zero; Fig 4).

Based on the mean game value, 390 of all 846 classified observations (46%) fell into water

level class 0 (i.e., similar to the water level class as in the reference picture), whereas all other

classes had< 10% of the observations respectively. For 263 (31%) classified observations the

mean vote indicated a half-class (Fig 5).

For 77% of the observations with a water level class of +1, the mean vote was class +1

(n = 64), whereas 68% of the observations with a water level class of -1 had a mean vote class -1

(n = 45).

The frequency distribution of the differences in the votes per observation from the mean

game vote for that observation was similar to the distribution of the errors in the water level

class assignment for 517 passers-by who estimated the water level for ten streams with the

same virtual staff gauge approach [45]. For both the game and the real life situation more than

48% of the participants chose the right class, and less than 3% were more than two classes off.

The median difference in the water level class values (0 for the game and the passers-by) and

the frequency distribution were not significantly different either (p< 0.05; Fig 6). The accu-

racy was comparable, as the two distributions were not significantly different from each other

(based on a Pearson Chi-Squared test, p< 0.05).
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Fig 4. Agreement among players (in %) per classified observation. Each column represents one observation, sorted according
to the mean game vote (red triangle). Darker colours represent a higher agreement and lighter colours a lower agreement
among the players. The original value of the water level class submitted via the app is indicated by the orange star.

https://doi.org/10.1371/journal.pone.0222579.g004

Fig 3. Cumulative frequency distribution of all corrections. Corrections of the original app value based on the mean game votes
(between the 10th and 90th percentile). 100% = 841 classified observations.

https://doi.org/10.1371/journal.pone.0222579.g003
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All 252 observations for which the mean game vote and the original app value differed by

one or more class, were classified through expert judgement. For 60% of these cases the mean

game vote was considered to be correct and for 14% of cases neither the mean game vote nor

the app value was correct, but the mean game vote was closer to the correct value. For 8% of

these cases the app value was correct and in 1% of cases neither were correct, but the app value

was closer to the correct value. For 8% of cases the correct value was precisely between the app

value and the mean game vote. For 9% of the cases the observations should have been reported,

rather than getting a water level class vote.

3.3 Accuracy per player

The median of the mean accuracy per player for the 58 regular players (i.e.> 24 classifications

per player) (9.60) was significantly better than the median of the mean accuracy per player for

the 94 novice players (� 24 classifications per player) (9.26). The range in the mean accuracy

per player was smaller for the regular players as well (1.24 classes for the regular players vs.

3.63 classes for the novice players). Players seem to get even better with more rounds, as the

median for players with more than four rounds (9.62) was also significantly better than for

players between two and four rounds (9.53). All very frequent players (those who

classified> 500 observations; n = 11) had a mean accuracy that was higher (i.e., better) than

the median of the mean accuracy for all players (Fig 7), however statistical differences could

not be calculated due to a small sample size of very frequent players.

3.4 Observation reports

Almost half of the players used the report function at least once. Of all players who reported at

least one observation, 77% were regular players, or, expressed differently 35% of the regular

players and 87% of the novice players never reported an observation.

The report function was used at least once for 8% of all observations (classified and unclas-

sified) that were in the game (n = 193). After an observation has received 15 reports, it is

removed from the game. So far this occurred for only three observations (Fig 8).

The most common reason for reporting an observation was “other reason” (47% of all

reports). Within this category, 48% of all reports stated that the picture was too dark. The

Fig 5. Cumulative number of classified observations per water level class based on the mean game value.

https://doi.org/10.1371/journal.pone.0222579.g005
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second most common report was “the location has changed and the reference image is unrecog-

nizable” (32%), followed by “The staff gauge is not placed correctly” (10%) and “The staff gauge

is missing” (10%). The other report categories were rarely used (< 3% each) (Table 1).

3.5 Impact of the number of votes on the mean game vote

The impact of the number of votes on the mean of the game votes for that observation shows

at what point the mean game vote becomes stable, i.e., the mean value does not change with

additional votes. The results of the bootstrapping analyses indicate that for 89% of observations

the error was� 0.2 after 15 votes, for 90% of observations the error was� 0.2 after 16 votes

and for 95% of the observations after 20 votes (median values for all 10 000 iterations) (Fig 9).

An error� 0.2 would still be rounded to the approved water level class. More votes steadily

increased the percentage of observations above these thresholds.

3.6 Survey

A quarter of all players [36] who were sent the link to the survey filled in the survey. Half of the

respondents of the survey played the CrowdWater game at least once a week, a quarter of the

respondents played the game one to three times per month, and another quarter of the respon-

dents had played only once.

The main motivations for playing the game were enjoyment in playing the game, a general

interest in hydrology, and being part of the CrowdWater community. Contributing to science,

Fig 6. Error distribution of the water level classes for the CrowdWater game and a field survey. Comparison of the error distribution of the votes in the
CrowdWater game (difference between the vote of a player and the mean game vote for that observation; n = 841) and for previously held field surveys
(n = 517) [data from 49].

https://doi.org/10.1371/journal.pone.0222579.g006
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helping the environment, and the monthly competitions were less frequently mentioned as

motivating factors (Fig 10). The majority of respondents stated, that they enjoy “classifying dif-

ficult pictures, even though I might not get full points” compared to a minority who said that

they enjoyed “classifying easy pictures, because I will likely get full points”. Almost two thirds of

respondents said that they enjoyed “competing against each other”; one person found that “the

points and competition are unnecessary and distract from the scientific goal”. Overall the three

aspects found to be most frustrating and marked by about half of all respondents were “diffi-

culty finding adequate references in the pictures”, “pictures that are not taken from the same

angle” and “not getting full points, even though I am sure of my vote”.

The majority (67%) of the players who responded to the survey also use the CrowdWater app.

Almost half of them enjoyed both activities equally, a third enjoyed using the app more, while a

quarter enjoyed the game more. The large majority (79%) of respondents who also use the app

indicated that the game helped them “be more aware of how to place a staff gauge in the app”. Half

of the respondents stated that the game helped them “to estimate water level classes in the app”.

4. Discussion

4.1 Can peer-review improve the quality of crowdsourced water level class
data?

Many publications have reported on the accuracy of citizen science games, with game aims,

topics and styles covering an extensive range. Therefore the results and the accuracy metrics

Fig 7. Mean accuracy per player.Mean accuracy per player as a function of the number of observations that that player classified (each triangle represents one
player). The lines indicate the median accuracy for all players (solid line) and the 25th and 75th percentile (dashed lines). The green shading indicates the novice
players who played a maximum of two rounds (24 classifications). Note the log scale on the x-axis.

https://doi.org/10.1371/journal.pone.0222579.g007
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used in these previous publications vary considerably. Generally the conclusions have been

very positive and many of these citizen science games are still online and collect valuable scien-

tific data [24,35,37,49,52,53]. The results of the CrowdWater game are also positive and suggest

that showing the same picture pair to multiple players and taking their collective vote as the

approved value can help improve the quality of the water level class data that are collected by

the CrowdWater app. A big benefit of peer-review compared to a data filter, is that incorrect

data are not only filtered out but can be updated and therefore can still be used as a valid data

point in later analyses. Furthermore, it does not require pre-defined criteria of what data are

likely to be incorrect.

For 70% of all water level class observations, there was either no difference or a difference of

only half a class between the mean game vote and the original app value. For 74% of the obser-

vations for which there was a difference between the mean game vote and the original app

value, the game provided a more accurate estimate of the water level class than the app. This

suggests that the game is a valuable tool to check the quality of the water level data provided

through the app. We would therefore strongly recommend collecting pictures together with any

citizen science data (if feasible), even in projects where this does not seem essential at first.

Fig 8. Percentage of reports over all votes. Reports for each of the 841 classified observations (i.e. at least 15 votes in total)
that received at least one report. The red colour indicates that the observation received 15 reports, after which it is excluded
from the game.

https://doi.org/10.1371/journal.pone.0222579.g008

Table 1. Reasons given for a report as a percentage of the overall number of reports.

Report reason Percentage of reports

The photo is ok, but I don’t know the category. 1%

The staff gauge is not placed correctly. 9%

The staff gauge is missing. 9%

The approved value is clearly incorrect. 2%

The location has changed and the reference image is unrecognizable. 32%

Other reason: too dark to classify 23%

Other reason: all other reasons 24%

https://doi.org/10.1371/journal.pone.0222579.t001
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Fig 9. Impact of number of votes. Percentage of observations with an error� 0.05 (median in blue) or an error� 0.2 (median
in green) as a function of the number of votes per observation. The dashed blue and green lines indicate the 10th and 90th

percentile, while the grey lines show the results for all 10 000 iterations. The solid red lines indicate that for 90% of observations
the error is� 0.2 after 16 votes. The dashed red lines indicate that for 95% of observations the error is� 0.2 after 20 votes.

https://doi.org/10.1371/journal.pone.0222579.g009

Fig 10. Motivation of the participants to play the CrowdWater game. The survey questions can be found in supplementary
material 1 (S1 File).

https://doi.org/10.1371/journal.pone.0222579.g010
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The frequency distribution of the vote errors in the field survey was similar to that of the

CrowdWater game, even though the reference pictures in the field survey were all initiated by

us (which should have guaranteed a reasonable quality) and the participants were able to look

at the stream directly. In the game, the reference pictures are created by citizen scientists using

the app (where sub-optimal reference pictures do occur) and the player can only take a look at

a picture of the stream. The sense of depth may be different for the picture than when one sees

the actual stream. In spite of these differences, and even though not all pictures are optimally

sharp or free from distortions, citizen scientists were just as good at determining the water

level class in the game as the passers-by that assessed the water level class outside. This further-

more suggests that it is beneficial to obtain pictures with the submission of the data via the app

and to use these pictures in a gamified approach to improve data quality.

However, in some cases (9% of all observations for which the mean game vote differed

from the water level class submitted via the app), the water level class obtained from the mean

game vote was less accurate than the original app value (as determined by expert checks).

When the number of observations increases, it will be impossible to determine whether the

mean game vote or the original app value is right. It would be useful to automatically identify

these cases, to avoid changing a correct app value. To identify these observations, indicators

could be used, such as kurtosis, as a proxy for the vote distribution, bimodality to indicate

diverging interpretations of the same picture, location to indicate a poorly placed staff gauge in

the reference picture or the overall contribution of the app user or mean accuracy of the con-

tributing game players [54]. Currently not enough data are available to assess, whether these

indicators can be reliably used, however, in the future this topic might be worth revisiting.

Another option to assess the correctness of the original water level class submitted via the app

would be to go back to the observer who submitted the original via the app and to ask how cer-

tain (s)he is about the initial estimate. In some cases, such as accidental misclassification, the

discrepancy might be easily resolved. Additionally this would provide feedback to app users,

which might provide training and increase the accuracy of their data. By receiving feedback

app users find out that their data are checked. This could increase their confidence in being

able to contribute high-quality data, which was discovered to be useful in a study where citizen

scientists from seven different online citizen science projects were interviewed [5]. If the app

user insists that his/her water level class estimate is correct, the observation could be reviewed

by an expert, as this would likely occur for fewer cases than all corrections. Currently, without

any further means of validating the game results, it still makes sense to use the mean game vote

as the approved value, as in 74% of cases the game provided a more accurate water level class

than the original submission via the app.

4.2 Can the vote distribution per observation provide additional
information?

The primary reason for using several votes per observation was to minimise errors in the water

level class assignment because the errors of individual game players likely average out (i.e. wis-

dom of the crowd [55]). The vote distribution per observation shows if there is a high agreement

between players, which suggests a higher certainty for the resulting mean game vote, and thus

higher certainty for the water level class. The results showed that the highest agreement between

players is at class zero, which per definition represents a situation that closely resembles the ref-

erence picture. Some of the uncertainty for very high or low water level observations can there-

fore partly be derived from the interpretations that game players make to assess a very different

looking picture. The interpretation is particularly tricky, if the correct water level class is below

the water surface in the reference picture, as the relevant reference features might not be visible.
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This is supported by the results indicating a higher percentage of votes for the approved class

for observations with class plus one compared to class minus one (77% vs. 68%).

The vote distribution per observation can also indicate if the water level is at the boundary

between two classes. This results in higher resolution water level class data than is possible in

the app. The app user has to decide on one of the two classes, even if the user believes that the

water level is exactly at the border of two classes. While the individual game users also had to

decide on either the upper or the lower class, their vote distribution could show that the water

level was likely in the middle of two classes. This higher resolution water level class data may

be useful for further analyses of these data, e.g. to calibrate a hydrological model.

For a few observations, we detected a bimodal distribution in the game votes (not between

two neighbouring classes), which could indicate that a picture was unclear and allowed for

multiple interpretations. These observations all came from the same location, which had large

changes in the amount of sediment in the stream bed after the reference picture was taken

(both deposition and scour). Based on this small sample, it is not possible to conclude that a

bimodal distribution only occurs for such scenarios and can be used to filter out such situa-

tions. However, similar results regarding the agreement among players were found in a study

based on cropland identification, where “crowdsourcing appeared particularly cost-effective in

areas that were easy to interpret and allowed difficult or problematic sampling units to be identi-

fied, i.e., as evidenced by a lack of consensus between volunteers.” [54].

4.3 Are votes from regular players more accurate?

The votes from regular players, were statistically significantly more accurate than the votes from

novice players. There are two possible reasons for this higher accuracy. On the one hand players

might get better after playing several rounds and therefore their mean accuracy improves. On

the other hand, novice players might notice that they consistently get few or no points and

therefore drop out of the game. The survey showed that only a minority of the players really

cared about achieving a high score, but nonetheless some stated that they found it frustrating to

vote for difficult pictures, as they might not get full points. Perhaps the players who got few

points and dropped out of the game after a few rounds were the same ones that were eager to

get many points and win, however, we do not have data to check this assumption.

A similar difference in accuracy for regular and novice players was not observed for the

Forgotten Island and Happy Match games, and only a minimal difference was found for the

game Happy Moths [49]. However, for the Cropland Capture game, it was shown that the

score of players could indeed improve over time [56]. This suggests that the difference in the

accuracy of the votes between regular players and novice players and the potential for improve-

ment of the accuracy when playing the game depends on the game.

There is also the possibility of bias in the game. Observations had to be classified by 15 dif-

ferent players before they were considered classified. Due to game logistics, further classifica-

tions were not necessarily done by different players. Therefore, it is possible for the same

player to classify an observation more than once, thereby influencing the mean game vote

which results in a higher accuracy. However, due to a large number of players and many obser-

vations available in the game, we assume that this effect is negligible.

4.4 Can players correctly identify unsuitable observations through the
report function?

The report function is a valuable tool to filter out unsuitable observations. When an observa-

tion is reported because “The staff gauge is not placed correctly.”, “The staff gauge is missing.”

and “The location has changed and the reference image is unrecognizable.”, the observation
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should not only be removed from the game, but also from the app, as e.g. a reference picture

without a staff gauge cannot be used to obtain a water level class time series. For the categories

“The photo is ok, but I don’t know the category.”, “The correct value is clearly incorrect.” and

“Other reason” the observation and picture might not be suitable for the game, but might still

be a valuable data point. The reported reason “the picture is too dark” is an example of a picture

being unsuitable for the game, but the app player might still have seen the location adequately

to estimate the water level class correctly. On the other hand, the report reason “The location

has changed and the reference image is unrecognizable.” indicates a problem with the reference

picture or it might be challenging to find a suitable reference. Here the number of votes could

be used as an indication: if the majority of players reported the observation it is likely that

there was an issue with the reference picture, but if only a few players reported the observation

it might simply be difficult to find a suitable reference. The observation in the app should be

removed, if the streambed has indeed changed significantly between the time that the reference

picture was taken and the new observation.

The fact that roughly half of all players never used the report function, could indicate that

these players are unaware of the report button or are unsure when to use it. This is also sup-

ported by the fact that only very few novice players (13%) used the report function at least

once (compared to 65% of regular players). The infrequent use of the report function was also

reported for the Cropland Capture game, which has a button so that players can choose

“maybe” instead of stating whether a picture displays cropland or not. This button was only

used infrequently (rarely over 50% of the votes per picture), even for pictures that were difficult

to classify [34].

If a large number of players cannot find the report button in the CrowdWater game, it may

take longer for certain spots to be removed from the game. There were several ambiguous

cases, when it might still be possible to guess the water level class on a relatively dark picture,

but the estimate was likely uncertain. In these cases some users opted for the report button and

others decided to vote for the most likely water level class. In addition, there was a chance that

players just guessed that the water level class is zero (which is the most frequently occurring

water level class) in order to get full points.

4.5 Howmany votes are necessary to achieve a stable mean?

Our current number of 15 votes per observation to consider an observation classified and

keeping it in the game for 100 votes seems to work well because for 90% of the observations

the error was� 0.2 after 16 votes. Allocating game points with a certainty of just under 90%

seems sufficiently accurate, especially as more votes are collected overall. We will therefore

leave the classification threshold at 15 votes for the point allocation, but will reduce the total

number of votes per observation to 50, in order to more quickly complete the classification of

observations within the game to more quickly classify observations.

Other projects have investigated the ideal number of votes in a similar way. The cut-off

number for votes varies depending on the citizen science project but is comparable to the cut-

off value found for the CrowdWater game. The Cyclone Center decided on ten classifications

per picture to reach a “statistically reasonable consensus” [22], the project Pattern Perception

used a “retirement limit” of 20 votes, in OpenStreetMap 15 contributors per square kilometre

resulted in a very good positional accuracy [20] and in the MalariaSpot game 22 votes from

non-expert players or 13 votes from trained players resulted in an accuracy higher than 99%

[57]. StallCatchers tried to reduce this number through individually weighed sensitivity mea-

sures in order to quickly advance the study field and to ensure that the time of the citizens is

spent efficiently [58,59]. StallCatchers ultimately arrived at a flexible number of necessary
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votes per picture based on voting consistency and user experience, with an average of seven

votes [58,59]. Such methods could in the future also be implemented in the CrowdWater

game, to keep the number of necessary votes per observation flexible, e.g. by checking the vot-

ing agreement for each observation and by taking the accuracy of the player into account. For

example, an observation, where five usually rather accurate players are in full agreement, is

likely to already yield the correct mean value, whereas high disagreement for an observation

might require more votes to obtain an accurate classification.

4.6 What motivates participants to play the CrowdWater game?

The survey results indicate that the majority of the game players enjoy “helping others”, the

game in general, or are interested in hydrology. The majority (75%) of the players enjoy classi-

fying difficult pictures, even though they might get fewer points, which also suggests that most

users like the game for its purpose, rather than for the gamified aspects. This is in contradiction

with the statement that they found it frustrating not to get full points, even when they were

sure about their vote. Only a minority of players mentioned that they enjoy the competition

but one player indicated that s(he) found the gamified aspects distracting. Based on the survey

results, we decided to keep the gamified aspects as they are currently implemented.

The survey also showed that there was a large overlap between the game players and app

contributors. This was not what we had expected, as we thought that the different approaches

would appeal to different people. However, many of the people we could initially reach with

news about the CrowdWater game were already interested in the CrowdWater project. Per-

haps in the future, when both parts of the project are better known, the two user groups may

become more distinct. One advantage of the overlap between the game players and the app

users is that 79% of the game players who participated in the survey indicated that playing the

game made them more aware of how to place a staff gauge in the app. This is likely because the

players see examples of both good and poorly placed staff gauges in the game, which might

make them more aware of how they can do it better themselves. This means that the game

could be used as initial training before using the app, as some of the reference pictures do not

have the correct angle, size or sometimes lack a staff gauge altogether [39].

4.7 Further research

The CrowdWater game can improve the accuracy of the water level class data gathered

through the CrowdWater app and thereby enhanced the usability of the data, e.g. for hydrolog-

ical modelling. Future research will have to investigate how to best incorporate the game

results into the app. One method could be to automatically update the app data with the values

derived from the game. However, this could also put errors into the app data that were not

there before. Alternatively, deviations between the app and game values could be flagged, so

that an expert can look at these particular data points. The main issue with the second

approach is the scalability, as the database may quickly become too large for such an approach.

However, super users who have played more than a certain number of rounds of the game

may be involved in this as well, as the accuracy of their data was very high and their votes

could potentially be weighed more. The original app value could also be taken into account by

simply adding it to the game votes as an additional vote, perhaps with additional weight as the

app user gets to see the actual location, whereas the game players only see the picture.

Another interesting topic to be investigated in the future, is that of automating the Crowd-

Water game. Michelucci and Dickinson [60] defined the phrase “human computation” as the

“combination of humans and computers to accomplish a task that neither can do alone”. This is

also reflected in Kawrykow et al. [35] who say that “crowdsourcing begins where automation
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fails”. The boundaries of what a computer can accomplish are however likely to shift in the

future, which means that it is feasible that some of the steps that are currently done by game

players, such as an automatic recognition of the virtual staff gauge and water level by a com-

puter, could be outsourced to computers. At that stage it might still be possible to continue the

game, but to adjust the specific tasks to what is needed. This balance will always have to be

reassessed carefully, as “intuition and reasoning often make humans more effective than com-

puter algorithms in various realms of problem solving.” [21]. Additionally people are better at

visual classifications, as shown in projects such as StallCatchers [58,59], Galaxy Zoo [23], Snap-

shot Serengeti [24] and Cyclone center [22].

5. Conclusions

The CrowdWater game allows checking and correcting crowdsourced water level class data

based on the pictures that are submitted by citizen scientists through the CrowdWater app.

This means that both data submission and data quality control are crowdsourced, which pro-

vides two different tasks (one in the field and one online) for citizen scientists who want to

join the CrowdWater project. The results of this study indicate that the CrowdWater game

improves the accuracy of the water level class data that are collected via the app by correcting a

third of all app values. This improves water level class data for future purposes such as hydro-

logical modelling. The game also helped to increase the resolution of the data as a third of all

classified pictures had a mean game vote that fell into a half class. This provides higher resolu-

tion data than is currently possible through the app. The game can also be used to filter unus-

able observations or reference pictures through the report function, e.g. if the virtual staff

gauge was not placed correctly, but half of the players, including a quarter of the regular play-

ers, never used this function.

Through the pictures provided via the app, the game can ensure data quality control for

time-series of water level class data obtained via citizen science. We, therefore, recommend

that citizen science projects obtain pictures, in addition to an observation value, so that they

can be used for data quality control. While other citizen science games so far have mostly used

professional pictures, this study shows that games can also be based on crowdsourced pictures

of environmental observations. Additionally, we recommend that citizen science games aim

for regular contributors through suitable advertisement and achievable daily goals, as regular

players tend to have a higher voting accuracy. Games or citizen science projects should also

determine early during a project the right numbers of votes per observation, as this has the

potential to save time and effort of project organisers and citizen scientists.

Even though the results show that the majority of the submitted crowdsourced water level

class data is correct, even without quality control, the results of this study indicate that the

CrowdWater game improves the data by correcting water level class observations, increasing

the data resolution and removing unusable reference pictures and observations. The results of

the CrowdWater game show the potential of gamified approaches to crowdsource data quality

control in citizen science projects. This is particularly valuable for variables that can change

rapidly, such as water levels in our case, because other forms of data quality control are difficult

because observations by different citizen scientists at the same time and place are not realistic

in practice.
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Abstract. Some form of training is often necessary for citi-

zen science projects. While in some citizen science projects,

it is possible to keep tasks simple so that training require-

ments are minimal, other projects include more challenging

tasks and, thus, require more extensive training. Training can

be a hurdle to joining a project, and therefore most citizen

science projects prefer to keep training requirements low.

However, training may be needed to ensure good data qual-

ity. In this study, we evaluated whether an online game that

was originally developed for data quality control in a citizen

science project can be used for training for that project. More

specifically, we investigated whether the CrowdWater game

can be used to train new participants on how to place the vir-

tual staff gauge in the CrowdWater smartphone app for the

collection of water level class data. Within this app, the task

of placing a virtual staff gauge to start measurements at a new

location has proven to be challenging; however, this is a cru-

cial task for all subsequent measurements at this location. We

analysed the performance of 52 participants in the placement

of the virtual staff gauge before and after playing the online

CrowdWater game as a form of training. After playing the

game, the performance improved for most participants. This

suggests that players learned project-related tasks intuitively

by observing actual gauge placements by other citizen scien-

tists in the game and thus acquired knowledge about how to

best use the app instinctively. Interestingly, self-assessment

was not a good proxy for the participants’ performance or

the performance increase through the training. These results

demonstrate the value of an online game for training. These

findings are useful for the development of training strate-

gies for other citizen science projects because they indicate

that gamified approaches might provide valuable alternative

training methods, particularly when other information mate-

rials are not used extensively by citizen scientists.

1 Introduction

Citizen science projects can be grouped into two different

types with regard to data collection and training: either citi-

zen scientists are engaged in relatively straightforward tasks

so that no training is needed, or they perform more advanced

tasks that require detailed instructions and training (Breuer et

al., 2015; Gaddis, 2018; Reges et al., 2016). Training needs

depend on the tasks within the projects and the project or-

ganizers’ perceived need for training. Environment-focused

projects, in which citizen scientists perform simple tasks

and, therefore, receive no prior training are, for example, the

global project iNaturalist, where citizen scientists take a pic-

ture of plants and animals and upload it to a server (Gad-

dis, 2018; Pimm et al., 2014); CrowdHydrology, where peo-

ple passing by a stream, such as hikers, read the water level

of staff gauges in the USA (Lowry et al., 2019); a simi-

lar water level study in Kenya (Weeser et al., 2018); or a

survey of the occurrence of hail in Switzerland (Barras et

al., 2019). Projects in which citizen scientists receive train-

ing prior to being able to participate are, for example, Co-

CoRaHS (Community Collaborative Rain, Hail and Snow

network), where citizen scientists operate a weather station

(Reges et al., 2016); a groundwater study in Canada where

volunteers measure the water level in wells (Little et al.,

2016); a water quality study in Kenya and Germany (Breuer
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et al., 2015; Rufino et al., 2018); or a water clarity study in

lakes in the USA (Canfield et al., 2016). Bonney et al. (2009,

p. 979) write “Projects demanding high skill levels from par-

ticipants can be successfully developed, but they require sig-

nificant participant training and support materials”.

In practice, there is a range of citizen science projects, and

many projects can be positioned between these two train-

ing types, especially when the tasks are relatively easy but

data quality can be significantly improved with training. An

example is Galaxy Zoo, which requires participants to clas-

sify galaxies in an online test, before they can start to sub-

mit data (Lintott et al., 2008). Another project is a malaria

diagnosis game, which offers a short online tutorial for play-

ers (Mavandadi et al., 2012). Some projects offer in-person

training (Kremen et al., 2011; Krennert et al., 2018; Rufino

et al., 2018), but for many projects training has to be on-

line because the projects are global (e.g., CrowdWater, Seib-

ert et al., 2019a; CoCoRaHS, Reges et al., 2016; and an

invasive-species training programme, Newman et al., 2010).

Computer-based training can be tricky because the partic-

ipants cannot be monitored. However, Starr et al. (2014)

found that such computer training methods, e.g. via video,

can be just as effective as in-person training. Computer-based

training, furthermore, requires less time from the project or-

ganizers once the material has been developed.

The topic of training and learning in citizen science has

received more interest in recent years (Bonney et al., 2016;

Cronje et al., 2011; Jennett et al., 2016; Phillips et al., 2019).

Many citizen science projects that provide training focus

more on topic-specific knowledge often because this is re-

quired to complete the task successfully. Examples are the

Flying Beauties project (Dem et al., 2018); the Neighbour-

hood Nestwatch programme (Evans et al., 2005); or invasive-

species projects (Crall et al., 2013; Cronje et al., 2011; Jor-

dan et al., 2011), where participants have to learn to iden-

tify species before they can participate in the project. How-

ever, some citizen science projects found that the participants

did not increase their factual learning possibly because they

were already quite advanced (Overdevest et al., 2004). Con-

tributory projects often emphasize specific skills more than

general topic knowledge. Examples of training for specific

skills rather than knowledge are the Canadian groundwater

study (Little et al., 2016) or the water quality study in Kenya

(Rufino et al., 2018). However, “Engagement in contributory

citizen science might, by way of the methods employed, re-

sult in more data reliability but fewer science literacy gains

among participants.” (Gaddis, 2018).

A novel approach to training was developed within the

CrowdWater project. The CrowdWater project explores op-

portunities to collect hydrological data with citizen science

approaches. On the one hand, the project develops new ap-

proaches to collect hydrological data by public participation

(Kampf et al., 2018; Seibert et al., 2019a, b) and on the other

hand assesses the potential value of such data for hydrologi-

cal modelling (Etter et al., 2018; van Meerveld et al., 2017).

In this study, the focus is on the collection of water level class

observations based on the virtual staff gauge approach (Seib-

ert et al., 2019a). This virtual staff gauge approach allows for

water level observations without physical installations, such

as staff gauges (Lowry et al., 2019; Weeser et al., 2018), so

that it is scalable and can be used anywhere in the world.

However, it is also more challenging for the user and poten-

tially prone to mistakes (Seibert et al., 2019a; Strobl et al.,

2019a). Previously we developed a web-based game for qual-

ity control of the water level class data (Strobl et al., 2019a).

Here, we investigate whether playing this game might also

be a useful preparation for using the virtual staff gauge ap-

proach in the CrowdWater app. The objective was to evaluate

whether playing the game helped participants to understand

the virtual staff gauge approach. More specifically, we ad-

dressed the following three questions:

– Are participants better at placing a virtual staff gauge

after they have played the game?

– Are participants better at assessing the suitability of a

reference picture after they have played the game?

– Are participants more confident in their contributions

after playing the game, and is this confidence related to

their performance in playing the game?

2 Background information on water level class

observations in CrowdWater

2.1 CrowdWater app

The CrowdWater smartphone app enables citizen scientists

to collect data for several hydrological parameters without

requiring any physical installations or equipment. The app al-

lows citizen scientists to set up new observation locations and

to submit new observations for existing locations. The app

uses OpenStreetMap (Goodchild, 2007) and thus allows for

the georeferencing of observations worldwide. To start water

level class observations at a new location, the citizen scientist

takes a picture of a stream, showing the stream bank, a bridge

pillar or any other structure that allows for the identification

of the water level. Within the app, a virtual staff gauge is in-

serted onto this picture, which then becomes the reference

for all further observations at this location (and is therefore

called the reference picture). The virtual staff gauge is basi-

cally a sticker that is positioned as an additional layer onto

the initial picture (Fig. 1a); i.e., there is no physical instal-

lation at the location. The citizen scientist can choose from

three virtual staff gauges in the app, depending on the water

level at the time when the picture is taken (low, medium or

high; Seibert et al., 2019a). When placing the virtual staff

gauge in the reference picture, the citizen scientist has to

move the staff gauge so that it is level with the current water

level and change the size of the staff gauge so that it covers

the likely range of high and low water levels. When taking
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Figure 1. An example of a reference picture with the virtual staff

gauge (a) and a picture from an observation at the same location

at a later time (b). The logs of the stream bank can be used as a

reference to estimate the water level class.

the reference picture, it is important that it is perpendicular

to the stream bank to avoid distortions when comparing the

water level with the virtual staff gauge at a later time. Poor

staff gauge placement is one of the most common errors and

occurs in about 10 % of the new reference pictures (Seibert et

al., 2019a). The most common errors are making the virtual

staff gauge too big (or more rarely too small) to be useful

to record water level fluctuations, not placing the staff gauge

on the opposite river bank or perpendicular to the flow, or

choosing the wrong staff gauge (Seibert et al., 2019a, b). For

further observations (i.e., observations at the same location at

a later time), the citizen scientist who created the reference

picture or any other person who wants to report a water level

class observation for this location looks for the structures in

the reference picture (e.g., rock, bridge pillar or wall) and es-

timates the water level class by comparing it to the virtual

staff gauge in the reference picture (Seibert et al., 2019a). In

this way, time series of water level class data can be obtained

at each observation location.

2.2 CrowdWater game

In addition to data collection using the CrowdWater smart-

phone app, citizen scientists can also contribute to the project

by checking the collected water level class data in the web-

based CrowdWater game (Strobl et al., 2019a). The idea of

the CrowdWater game is to crowdsource the quality control

of the submitted water level class observations by using the

pictures that were taken and submitted by the citizen scien-

tists in the app. In the game, picture pairs are shown: the

reference picture with the virtual staff gauge and a picture of

the same location at a later time (Fig. 1). The task is to es-

timate the water level class for the picture without the staff

gauge (Fig. 1a) by comparing the water level in this picture

with the reference picture, i.e. the picture with the staff gauge

(Fig. 1b). Citizen scientists play rounds of 12 picture pairs:

eight classified pictures that have already been assigned a

“correct” value, i.e. the median based on the evaluations of

at least 15 game players and four (so far) unclassified pic-

tures. (This value is assumed to be the correct value but

may diverge from the ground truth.) Currently, the Crowd-

Water game uses “unstructured crowdsourcing” (Silvertown

et al., 2015, p. 127), which means that all votes are weighted

equally to obtain the correct water level class. The order

of the pictures is random so that the player does not know

whether a picture pair has already been classified or not. For

the classified picture pairs, points are obtained when the cor-

rect class (six points) or a neighbouring class (four points)

is chosen, and zero points are given if the selected class is

more than one class off from the correct value. For unclas-

sified pictures, the player receives three points regardless of

the vote. Players can also report a picture if voting is not pos-

sible because of, for instance, an unsuitable placement of the

staff gauge, poor image quality or otherwise unsuitable pic-

tures. In this case, the player also receives three points. The

repeated evaluations of the same pictures by multiple players

provide quality control of the incoming water level class data

(Strobl et al., 2019a).

2.3 Motivation for this study

When using the CrowdWater app, citizen scientists take a

picture of the observation location and upload it, similar to

iNaturalist (Gaddis, 2018; Pimm et al., 2014) or iSpot (Sil-

vertown et al., 2015). When starting observations at a new

location, some interpretation is needed, which requires an

understanding of the possible range of water levels and de-

termination of the current water level. The data collection

protocol is, however, simpler than for many projects that do

require training; therefore low-intensity training seems to be

advisable for the CrowdWater project.

As a first step, manuals (https://www.crowdwater.

ch/en/crowdwaterapp-en/, last access: 30 April 2020)

and instruction videos (https://www.youtube.com/channel/

UC088v9paXZyJ9TcRFh7oNYg, last access: 30 April 2020)

were provided online, but in our experience (and based on

the number of views on YouTube) these are not frequently

used. Thus some citizen scientists occasionally still make

mistakes when submitting data in the CrowdWater app,

primarily when starting a new location for observations

and placing a virtual staff gauge onto the reference picture

(Seibert et al., 2019a). Our first approach to handle these

mistakes was to implement a method of quality control to

either filter out or correct erroneous submissions. This qual-

ity control method was gamified in the CrowdWater game.

The CrowdWater game proved successful in improving the

quality of the water level class data submitted through the

app (Strobl et al., 2019a). Shortly after launching the game,

we received anecdotal evidence, such as direct feedback
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from players, that the game also helped them to better place

staff gauges and to better estimate water level classes. This

feedback was confirmed through a short survey sent out to

CrowdWater game players for a different study (Strobl et al.,

2019a). Roughly a quarter of all players at the time filled

in the survey (36 players). When asked if playing the game

helped them to be more aware of how to place a staff gauge

in the app, 79 % agreed. Furthermore, 58 % of all surveyed

players agreed that the game helped them to better estimate

water level classes in the app. The other players indicated no

change in their abilities, and none of the survey players in-

dicated a deterioration of their skills. Essentially, the players

are training each other in the game as the score per picture

pair, which is based on the votes of the other players, shows

the new player if they are correct or not. This is similar to

iSpot, where experts train beginners in species recognition

(Silvertown et al., 2015). Through the CrowdWater game,

players learn which staff gauges are difficult to read and

which ones allow for an easy comparison of the water levels

(Strobl et al., 2019a).

This motivated us to investigate if the CrowdWater game

can be used to train potential citizen scientists to place the

virtual staff gauge in the CrowdWater app correctly. It is bet-

ter to train citizen scientists before participation so that they

provide useful data rather than to filter data from untrained

citizen scientists afterwards. Filtering wrong data afterwards

wastes the time of the citizen scientists, and erroneous data

can be missed by the filter. In the CrowdWater project, it is

particularly important to place the virtual staff gauge cor-

rectly because all subsequent observations at an observation

location are based on this virtual staff gauge (i.e., a poorly

placed staff gauge will influence all following observations).

The CrowdWater game is a project-specific training tool

meant to improve the reliability of CrowdWater observations

and does not aim to improve scientific literacy. This is sim-

ilar to some other citizen science projects, especially con-

tributory projects, where data are crowdsourced (Crall et al.,

2013). Improving the hydrological knowledge was not nec-

essary in our case, as the data can easily be collected without

such background knowledge. However, other materials that

provide such knowledge and a link to an open massive on-

line course are provided on the project website.

3 Methods

3.1 Training study

This study aimed to assess if the CrowdWater game can be

used to train new participants to place the virtual staff gauge

in the CrowdWater app correctly. The placement of the staff

gauge is the most important metric for this study because this

is the most crucial task when CrowdWater app users start a

new observation location. Rating reference pictures gave ad-

ditional insight into whether participants can recognize well

Figure 2. Schematic overview of the pre-training, training and post-

training tasks. For each task, the maximum number of points and the

chosen value for good performance are given.

and poorly placed staff gauges, regardless of whether or not

they can place them well themselves.

The training study consisted of a number of tasks that were

executed before and after playing the game. To focus on the

research questions and to exclude other factors, such as dif-

ferences between locations, flow conditions or daylight, the

study was mainly conducted indoors at a computer. For each

participant, the experiment took 60–90 min. All instructions

and questions were formulated in English; all participants

had a good command of English. The study was conducted

between August and October 2018, apart from a small out-

door task, which was completed by the participants at a later

time. The full study can be found in the “Training study” in

the Supplement.

3.1.1 Study tasks

The six tasks of the training study can be divided into

pre-training, training and post-training tasks (Fig. 2). Each

participant completed these tasks in the same order. Pre-

training and post-training tasks are only intended to assess

the participant’s performance during this study and are not

part of the training for the CrowdWater project.

The pre-training tasks are structured as follows:

– First task (staff gauge placement). The study participant

looked at 18 stream pictures of the river Glatt (see the

stream pictures in the Supplement). The pictures show

the same location but were taken from different angles

and perspectives. Some were well suited for placing a

virtual staff gauge; others were moderately suitable; and

some were not suitable at all. Without receiving any fur-

ther information, the participant was asked to choose
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1 of the 18 pictures and to place a virtual staff gauge

onto the picture. This was done using an interface on

the computer that looked similar to that in the Crowd-

Water app.

– Second task (rating of reference pictures). The partici-

pant looked at 30 different reference pictures (for exam-

ples see “Examples of reference pictures for the rating

task” in the Supplement). These pictures were chosen

from reference pictures that were uploaded by citizen

scientists using the CrowdWater app. The pictures were

selected to represent a range of well, moderately and

poorly placed virtual staff gauges. The participant rated

each of the 30 reference pictures as “unsuitable”, “rather

unsuitable”, “rather suitable” or “suitable”.

The training task is structured as follows:

– Third task (game). The participant played an adapted

version of the CrowdWater game. In this version, the

participant estimated the water level class of 50 picture

pairs. The regular CrowdWater game only offers 12 pic-

ture pairs per day, so this extended version corresponds

to the training effect of about four rounds of the game.

The participant did not receive any explanation on the

game but could use the help button to obtain more in-

formation on the game.

The post-training tasks are structured as follows:

– Fourth task (staff gauge placement). The participant re-

peated the first task and was asked to place the virtual

staff gauge for the river Glatt again. The participant re-

ceived the same 18 pictures but was free to choose an-

other picture and to place the virtual staff gauge in a

different location, angle or size compared to the first

task or to choose the same picture and to place the staff

gauge similarly.

– Fifth task (rating of reference pictures). The participant

repeated the second task for a different set of 30 ref-

erence pictures from the app. The distribution of well,

moderately and poorly placed virtual staff gauges was

roughly the same as in the second task.

– Sixth task (staff gauge placement). The participant used

the CrowdWater app outdoors (instead of the online in-

terface used for the earlier tasks) to create and upload a

reference picture for a stream of their choice. The task

was meant to be completed within 2 weeks after com-

pleting the first five tasks. However, not every partic-

ipant completed the task within this timeframe (at the

latest by March 2019), and 10 participants did not com-

plete this task at all.

After placing the staff gauge online (first and fourth task)

and rating the reference pictures (second and fifth task), par-

ticipants answered several questions to assess the difficulty of

the task, their own performance, and their confidence in com-

pleting these tasks correctly. After the training (third task),

participants were asked about the difficulty of the game and

whether they thought the game was fun.

3.1.2 Assessment of the different tasks

The performance of the participants for the different tasks

was evaluated based on a score. The scores before and after

playing the game (i.e., the training) were compared to deter-

mine the effect of playing the game. The scoring system was

determined prior to the start of the study according to assess-

ment criteria that were based on previous experiences with

pictures submitted through the app and expert judgement (by

Barbara Strobl and Simon Etter). A separation of the indi-

vidual scores into “good” and “poor” was, while somewhat

arbitrary, necessary to be able to distinguish the effects of

the training on the participants who needed it most, i.e. those

who had poor performance (i.e., score) before the training.

For the staff gauge placement tasks (first, fourth and sixth

task), points were given for five different placement criteria.

The maximum placement score was 13. A placement score

of 10 or higher was considered good because these reference

pictures can still be used and would have been left in the

CrowdWater database if they were submitted through the app

(Fig. 3).

Perspective of the picture. The 18 pictures of the river Glatt

were taken from different angles and perspectives and as-

signed a score: 0 (unsuitable), 1 (rather unsuitable), 2 (rather

suitable) and 3 (suitable). The participant could gain more

points for the choice of the picture than the other criteria for

placing a staff gauge because this is essential for a good refer-

ence picture. Because every participant fulfilled the outdoor

task (sixth task) for a different stream and the participants

could choose a location themselves, points could not be as-

signed a priori. However, the location and the picture frame

were assessed, and a score between 0 and 3 was given based

on expert judgement (by Barbara Strobl and Simon Etter).

Choice of the staff gauge. Participants could choose from

three different virtual staff gauges depending on the water

level at the time that the picture was taken (low, medium or

high). The staff gauge for low flow was considered correct, as

the water level was low at the time that the 18 pictures of the

Glatt were taken. The score for the selected staff gauge var-

ied between two (staff gauge for low flow), one (staff gauge

for medium flow) and zero (staff gauge for high flow). For

the outdoor task with the app (sixth task), the situation was

assessed based on the water level, and points were assigned

for the correct assessment of low, medium or high flow by

the participant.

Location of the staff gauge. If the staff gauge was placed

on the opposite stream bank, as it should be, two points were

given; if the staff gauge was incorrectly placed on the par-

ticipant’s side of the stream or in the middle of the stream,

zero points were given.
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Figure 3. Examples of staff gauge placements: (a) 13 points, i.e.,

a full score; (b) 10 points, just enough points to still be considered

suitable for future water level observations; and (c) 3 points, the

lowest score obtained throughout the study.

Angle of the staff gauge. The staff gauge should be placed

perpendicular to the flow in the stream to avoid contor-

tions of the perspective for future water level class esti-

mates. If the staff gauge was placed perpendicular to the flow

(±10◦), two points were given. If the angle was less than 45◦,

one point was given, and if it was larger than 45◦, zero points

were given.

Water level mark. The blue wave of the staff gauge should

be located at the water surface in the reference picture. If this

was the case, two points were given; if the blue wave was

only slightly off, e.g., due to reflections on the water surface,

one point was given; and if the blue wave was not placed on

the water surface, zero points were given.

Very rarely, two virtual staff gauges were placed in the

reference picture (twice before the training – first task, once

after the training online – fourth task – and once after the

training outdoors in the app – sixth task). We assume that this

was most likely due to technical difficulties. In these cases,

we subtracted one point from the participant’s score. This,

however, had hardly any effect on the results.

The rating of the reference pictures (second and fifth

task) was evaluated using a rating score. The participant’s

choice between unsuitable, rather unsuitable, rather suitable

and suitable was compared to the expert judgement of the

reference pictures (by Barbara Strobl and Simon Etter). If

the participant picked the same suitability class as the ex-

perts, three points were given. For each class deviation from

the expert judgement, one point was subtracted. Thus the

maximum score was 90 points (30 reference pictures times

3 points per picture). A score of 75, which corresponds to

being off by one class 5 times and off by two classes 5 times

and choosing the correct class 20 times, was still considered

good.

For the training task (fifth task, the game), the partici-

pants received points for each picture pair that they com-

pared. Similar to the actual CrowdWater game, they received

six points if they chose the correct class, i.e. the median of the

votes of all previous CrowdWater game players; four points

if they chose a water level class that was one class away; and

zero points if they chose a class that was more than one class

away from the median. When reporting a picture pair, the

participant received three points. The maximum score for the

training task was 300 points (a maximum of 6 points times

50 picture pairs). The threshold for a good game score was

determined before the study and set at 245 points, which re-

flects a situation where a participant chose the correct class

for 35 out of the 50 picture pairs, was one class off five times,

was more than one class off for another 5 picture pairs and

reported five pictures (we considered five pictures unsuitable

and would thus have reported them).

3.1.3 Data analysis

The scores for the staff gauge placement and rating tasks be-

fore and after the training were compared for each partic-

ipant using two paired statistical tests: the paired sample t

test for normally distributed data and the Wilcoxon test for

data that were not normally distributed (Table 1). We used a

one-sided test to check whether the difference in the scores

before and after the training was larger than zero and a two-

sided test to determine the significance of the difference in

the scores between the computer-based and the outdoors app-

based staff gauge placement (i.e. between the fourth and the

sixth task). We used a significance level of 0.05 for all tests.

We performed the tests for all participants together but also

divided the participants based on their placement score be-

fore the training (first task) in order to determine the effect

of training for people who initially did not install the virtual
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staff gauge correctly. In order to see whether the game per-

formance was related to the improvement in the placement or

rating score, we also split the data based on the game score.

We used Spearman rank correlation (rs) to evaluate the rela-

tion between performance (i.e., scores) and the confidence of

the participants in their performance, as well as between the

performance and the stated difficulty and fun rating.

3.2 Study participants

The participants for this study were recruited through vari-

ous channels. The University of Zurich offers a database with

potential study participants in the vicinity of Zurich; people

in this database were contacted via email. Additional emails

were sent to staff and students of the Department of Geogra-

phy. Friends, colleagues and family helped to recruit partic-

ipants from their social network as well. Local study partic-

ipants could complete the online part of the study in a com-

puter room at the University of Zurich at specified times; all

other participants received the link and completed the study

on their own. All participants completed the first five tasks

individually in one session.

The participants in this study had neither previously used

the CrowdWater app nor played the CrowdWater game. In to-

tal, 52 participants completed the first five tasks of the study.

Of these 52 participants, 10 did not complete the outdoor

app task, but their results were included in the analyses as

far as possible. When sending email reminders to complete

this sixth task, several participants indicated a lack of time

or a suitable nearby river. Most of the 10 participants in-

tended to complete the task but forgot about it in the end.

Of the 52 participants, 32 (62 %) were female, and 20 (38 %)

were male. Age data were collected in age groups: 6 % of

the participants were under 20 years old; 79 % of the partic-

ipants were 21–40 years old; 8 % were 41–60 years old; and

8 % were 61–80 years old. The highest education level was

secondary school for 4 % of the participants, high school for

12 % of the participants, university (BSc, MSc or similar) for

79 % of the participants and a PhD for 6 % of the participants.

The education level being higher than the Swiss average and

the relatively large group of young people (< 40 years) are

due to the recruitment of the participants at the University of

Zurich. The education level of the CrowdWater citizen sci-

entists is unknown, but 89 % of the 36 CrowdWater game

players who filled in a survey about the game were university

educated, and 75 % were under the age of 40 (Strobl et al.,

2019a). For a survey about the motivations of CrowdWater

app users, as well as citizen scientists from a different phe-

nological citizen science project (Nature’s Calendar ZAMG;

Zentralanstalt für Meteorologie und Geodynamik), 66 % of

the respondents were university educated, and 51 % were un-

der the age of 40 (Etter et al., 2020).

Figure 4. Boxplot of the game score for each study participant.

Scores ≥ 245 points are considered good (indicated by the green

background). The box represents the 25th and 75th percentile; the

line is the median; the whiskers extend to 1.5 times the interquartile

range. The individual scores (blue dots) are jittered to improve the

visibility of all points.

4 Results

4.1 Training results

Almost two thirds (62 %) of the study participants had a good

score (≥ 245 points) for the game. The highest game score

was 274, and the average score was 248. The lowest score

(160 points) was an outlier; the second-lowest score was 211

points (Fig. 4). Interestingly the participant with the lowest

game score found the game “rather difficult” but still “a bit

of fun”, adding “It [the game] was quite tricky. I was curious

if my answer is right or wrong”.

In the game, participants can report a picture pair if they

think that it is not possible to vote on a water level class.

The reason for reporting a picture pair can be selected from

a drop-down menu. The report function was used by 16 par-

ticipants (31 %). It is unknown if the other 36 participants

did not find the report function or if they did not think it was

necessary to report any of the picture pairs. Most of the par-

ticipants who used the report function reported between 1

and 6 picture pairs, but one participant reported 10, and an-

other participant reported 12 picture pairs. Out of the 50 pic-

ture pairs in the game, 22 were reported at least once, and

1 picture pair was reported seven times. When choosing the

50 picture pairs for the game, we included 5 picture pairs

that should be reported (Fig. 5). In other words, there were

57 reports in total, 38 of which were not valid (i.e., our ex-

pert knowledge suggests that the picture pairs could be used

to determine the water level class). For some of these cases,

participants considered a spot unsuitable because they did not

realize that they could see the entire picture if they clicked on

it and therefore thought the reference picture did not have a

staff gauge. In another case, they may have been confused by

a slightly different angle in the picture for the new observa-

tion. The most common reason for reporting a picture was

“The location has changed, and the reference image is un-

recognizable”. This was indeed a problem with some of the

picture pairs (Fig. 5).
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Table 1. The statistical tests were chosen based on whether or not the data were normally distributed according to the Shapiro–Wilk test.

The tests for the placement score compared scores from before and after the training, as well as after the training and outdoors with the app.

The test for the rating score compared scores from before and after training.

Data Data subset Results of the Shapiro–Wilk test Statistical test of the training effect

Placement score All participants Not normally distributed Wilcoxon test

Participants with a low

placement score before

the training

Not normally distributed Wilcoxon test

Participants with a

good game score

Not normally distributed Wilcoxon test

Participants with a bad

game score

Not normally distributed Wilcoxon test

Rating score All participants Normally distributed Paired sample t test

Participants with a low

rating score before the

training

Not normally distributed Wilcoxon test

Participants with a

good game score

Not normally distributed Wilcoxon test

Participants with a

low game score

Normally distributed Paired sample t test

Figure 5. The number of times that a picture pair was reported

and the reason for reporting the picture pair (y axis) for the 22 pic-

ture pairs in the game that were reported at least once (x axis). The

picture pairs that should have been reported based on expert assess-

ment prior to the training study are framed with an orange rectangle;

the orange triangle indicates the reason based on expert assessment.

The blue shading represents the number of reports per picture pair

(as also indicated by the printed number).

4.2 Staff gauge placement

4.2.1 Placement scores before training

The staff gauge placement score before the training (first

task) was 10 or higher for 70 % of the participants; i.e., the

majority of the participants placed the staff gauge in a way

that is suitable for further observations. This is a good perfor-

mance considering that the participants had not yet received

any training. Training is more important for the 30 % of par-

ticipants who had a low placement score before the training.

The lowest scores were two points (one participant) and three

points (two participants).

4.2.2 Placement scores after training

The placement scores generally improved after the training

and were statistically significantly better than the scores be-

fore the training (Wilcoxon test, p<0.01; Fig. 7). Improve-

ment is especially important for the participants who had a

low placement score before the training. Therefore, the par-

ticipants with a low initial score (<10 points) were assessed

separately. For this group, the median placement score im-

proved significantly with training as well (Wilcoxon test,

p<0.01). Of the 16 participants with a poor placement score

before the training, 10 improved their staff gauge placement

sufficiently to make it useful for future observations. Partici-

pants who performed well before the training have less pos-

sibility of improving the placement and also need to improve

their placement score less. However, for two of the partic-

ipants with a good score before the training, the score was

poor after the training (Figs. 6 and 7). The placement score

improved for participants with a good game score (Wilcoxon

test, p<0.01) but not for participants with a low game score

(Wilcoxon test, p = 0.11).

A total of 19 participants (37 %) picked a different picture

for the staff gauge placement after the training. Eight of these

participants chose a stream picture with the same suitability
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Figure 6. Placement scores before the training (x axis) and after the

training (y axis). The circle size indicates the number of participants

with the same scores. The green background indicates participants

who had already performed well in placing the staff gauge before

the training (score ≥ 10), and the yellow background indicates par-

ticipants who performed well after the training (score ≥ 10). The

solid grey line indicates the 1 : 1 line (i.e., the same score before

and after the training), while the dashed lines indicate a difference

of only one point. Points in the upper-left triangle indicate an im-

provement in staff gauge placement after the training. The red cir-

cles indicate outliers.

score as the first one; nine selected a better stream picture;

and two chose a picture that was worse than their original

choice. The other 33 participants chose the same stream pic-

ture as before. The good scores even before the training sug-

gest that most of them also did not need to change the pic-

ture. The participants who changed the stream picture had a

median placement score of 9 before the training and 12 after

the training. The participants who chose the same stream pic-

ture had a median placement score of 11 before the training

and 12 after the training. Before the training, 37 participants

chose a reference picture with a score of 3, 9 with a score

of 2, 5 with a score of 1, and only 1 participant chose a ref-

erence picture with a score of 0. Of the six participants who

had a score of 0 or 1 before the training, four chose a refer-

ence picture with a score of 2 or 3 after the training. For two

participants the reference picture score remained 1.

Except for one participant, all participants who performed

well in the training task (game score ≥ 245 points) had a

good placement score (≥ 10) after the training. However,

the opposite was not the case: participants with a low game

score (< 225 points) sometimes still improved their place-

ment score after the training, and all had a good placement

score (≥ 10) after the training (Fig. 8). The participant with

the most substantial improvement in staff gauge placement

(from 2 points to 13 points) had an excellent game score of

262 points (Fig. 8). Participants who obtained a low score for

the staff gauge placement after the training all had an average

Figure 7. Box plots of the placement scores before the training

(first task), after the training online (fourth task) and outdoors with

the app (sixth task) for all participants (a), for participants who had

a low placement score before the training (b) and for participants

who had a good game score (c). There was a statistically signifi-

cant difference in the placement scores before and after the training

for all groups (indicated by ∗) and no statistically significant dif-

ference between the computer-based task and the outdoor app task

(indicated by “ns”) after the training based on the Wilcoxon test

(p<0.05). The green shading indicates a good score.

score in the game (228–243), except for one participant with

a high game score (248; Fig. 8).

There was no statistically significant difference between

placement scores after the training for the online (fourth task)

and the outdoor task with the app (sixth task), neither for

all participants (p = 0.50), for participants with a low place-

ment score before the training (p = 1.00), nor for partici-

pants with a good game score (p = 0.20) or for participants

with a bad game score (p = 0.57; Fig. 7). This indicates that

the online task can be used as a proxy for handling the app.
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Figure 8. Placement scores before and after the training (x axis)

per participant (y axis). Arrows point to scores from before to af-

ter training. Dots indicate no change in the placement score and

are coloured according to the game score they obtained during the

training.

4.2.3 Placement score outliers

When plotting the placement score before the training and af-

ter the training, two outliers were visually identified (Fig. 8).

Both participants had a low score before the training and,

unlike other participants, also a low score after the training.

These two participants received few points across all assess-

ment criteria for staff gauge placement and also had a below-

average game score (242 and 228 points). They rated the

game as rather difficult and very difficult, and when asked

whether they enjoyed playing the game, they rated it neu-

tral and stated that “It wasn’t fun at all”. Surprisingly both

participants were confident that the reference picture for the

staff gauge placement was rather suitable. Both participants

changed their impression of the difficulty of the staff gauge

placement (first task) from very easy before the training to

rather easy and neutral after the training (fourth task).

Figure 9. Rating scores before the training (x axis) and after the

training (y axis). The circle size indicates the number of participants

with the same scores. The green background indicates participants

who had already performed well (score ≥ 75) before the training,

and the yellow background indicates participants who performed

well after the training (score ≥ 75). The solid grey line indicates the

1 : 1 line (i.e., the same score before and after the training), while

the dashed lines indicate a difference of only one point. Points in

the upper-left triangle indicate an improvement in the rating score

after the training. The red circles indicate outliers.

4.3 Rating of reference pictures

4.3.1 Rating scores before the training

Even though the majority of the participants received a good

staff gauge placement score before the training, only 13 %

of the participants had a good rating score (≥ 75) before the

training. The highest rating score before the training was 80,

and the lowest score was 54; the average score was 68 points.

Only 9 % of the participants had a good score for both staff

gauge placement and rating before the training.

4.3.2 Rating scores after the training

The rating scores improved after the training (Figs. 9 and

10). The median difference in the rating score before and

after the training was statistically significantly larger than

zero, for all participants (paired-sample t test, p<0.001),

for participants with a low rating score before the training

(Wilcoxon test, p<0.001), for participants with a good game

score (Wilcoxon test, p<0.001) and for participants with a

low game score (paired-sample t test, p = 0.02; Fig. 10).

The rating scores can also be analysed per picture. A single

picture can receive between 156 points (all 52 participants

chose the correct suitability class and received 3 points) and

0 points (all participants chose the suitability class that is fur-

thest from the correct class). The score was higher for the ref-

erence pictures that were considered to be unsuitable by the

experts before the study (median: 139; range: 77–152) than
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for the pictures that the experts rated as suitable, rather suit-

able and rather unsuitable (median: 120–121). This indicates

that participants were better at identifying the unsuitable pic-

tures than the more suitable pictures (Table 2).

4.3.3 Rating score outliers

Outliers for the rating scores were less obvious than for the

placement scores, although there appear to be four outliers

(Fig. 9, red circles). One participant was also an outlier for

the staff gauge placement. The game scores and the assess-

ment of difficulty and fun of the game varied for these four

participants. The confidence in their own performance when

rating the reference pictures was mixed before the training,

but it was never lower than neutral. After the training, all four

participants were confident in their performance and found

the task either rather easy or very easy.

4.4 Confidence, difficulty and fun

4.4.1 Confidence and difficulty in staff gauge placement

and rating the reference pictures

The participants were in general quite confident in their per-

formance, and their confidence increased after the training

(from 67 % to 98 % of participants for staff gauge place-

ment and from 62 % to 90 % for rating the reference pic-

tures; Fig. 11). As shown above for the outliers in the place-

ment score and rating score, the participants’ confidence in

their performance was not correlated with their actual per-

formance, neither before nor after the training (|rs| ≤ 0.23;

p ≥ 0.11).

Before the training, participants thought that the place-

ment of the staff gauge was a relatively easy task, but the

level of difficulty was roughly equally split between diffi-

cult, neutral and easy for the rating of the reference pictures

(Fig. 11c, d). Participants generally considered the tasks eas-

ier after the training (72 % of the participants said that the

placement of the staff gauge was easy before the training vs.

84 % of the participants after the training; 43 % of the par-

ticipants thought that rating the reference pictures was easy

before the training vs. 71 % after the training). Similar to the

results for confidence, the assessment of the difficulty of the

task was not related to the performance, neither before nor

after the training (|rs| ≤ 0.16; p ≥ 0.30).

4.4.2 Difficulty and fun of the game

Of the participants, two thirds thought that playing the game

was fun, but when rating the difficulty, they were almost

equally split between difficult, neutral and easy (Fig. 12). All

participants who thought that the game was not fun (21 %)

thought that the game was either difficult or neutral. The level

of fun and difficulty was correlated (rs = 0.43; p<0.01).

Nonetheless, 11 % of the participants stated that they had fun

during the game but also thought it was difficult.

4.5 Feedback

Participants had the option to provide unstructured feedback

at the end of the online study (after the fifth task); 15 partic-

ipants decided to do so. Five participants mentioned differ-

ent issues that had been unclear to them during the study,

and four commented that they had enjoyed taking part in

the study; two specifically mentioned that they thought that

the training had helped them to understand the virtual staff

gauge approach, but one participant stated that they thought

the training had not helped. Two participants stated that they

thought the study was difficult, and two gave feedback on the

technical implementation of the study.

5 Discussion

5.1 Does the CrowdWater game help participants to

place the virtual staff gauge in a suitable way?

The virtual staff gauge approach was developed as an intu-

itive approach to collect water level data so that many citi-

zen scientists would be able to contribute observations to the

CrowdWater project. Such a simple approach is often recom-

mended to citizen science project initiators (Aceves-Bueno

et al., 2017). Many other citizen science projects, such as

CrowdHydrology and iNaturalist, also deliberately chose to

keep the data collection method easy so that citizen scientists

do not require training prior to participation (Gaddis, 2018;

Lowry et al., 2019).

When starting a new CrowdWater location for water level

class observations, the most difficult task is placing the staff

gauge. This is also the first thing that most citizen scientists

who use the CrowdWater app do. Recording follow-up ob-

servations in the app is much easier than placing the virtual

staff gauge. However, the staff gauge placement is an essen-

tial task, as all subsequent observations of water level classes

are based on the reference picture. A well-placed staff gauge

makes the subsequent observations easier, more reliable and

more informative. This is not ideal, as the citizen scientist

might not have fully understood the concept of the virtual

staff gauge yet when making the first observation. Mistakes

in the placement of the virtual staff gauge occur in about

10 % of the cases.

In this study, most participants (70 %) were already good

at placing a staff gauge, even before receiving any training.

This indicates that the virtual staff gauge is indeed intuitive

to use. Training is especially important for the participants

who did not place the staff gauge well before the training,

i.e., citizen scientists who do not intuitively understand how

to place the staff gauge in the app. Starr et al. (2014) reached

a similar conclusion in a study that compared different train-

ing methods for plant identification and also focused on the

beginner group to see the training effects clearly. While the

CrowdWater app is reasonably intuitive, the fact that we do

sometimes receive submissions with mistakes (Seibert et al.,

www.geosci-commun.net/3/109/2020/ Geosci. Commun., 3, 109–126, 2020



120 B. Strobl et al.: Training citizen scientists through an online game

Table 2. Number of pictures to be rated before and after the training per suitability category (as determined prior to the study by the experts)

and the median, average and range in rating scores for the pictures in each category. Each picture can receive a maximum rating of 156 points

(i.e., all 52 participants chose the correct category and therefore gained three points).

Number of pictures Rating score (0–156)

Suitability Before After Median Average Range

category training training

(second task) (fifth task)

Unsuitable 8 8 139 133 77–152

Rather unsuitable 4 3 121 118 105–128

Rather suitable 6 6 121 119 96–132

Suitable 12 8 120 116 66–138

Figure 10. Boxplots of the rating score before and after the training

for all participants (a), for participants who had a low rating score

before the training (b) and for participants who had a good game

score (c). The difference was statistically significant for all groups

based on the Wilcoxon test (p<0.05; indicated by ∗). The green

shading indicates a good rating score.

Figure 11. Percentage of participants who chose a certain con-

fidence level (a, b) and their assessment of the difficulty of the

task (c, d) for the staff gauge placement (a, c) and rating of refer-

ence pictures (b, d) before the training (x axis) and after the training

(y axis). Darker colours indicate that a higher percentage of partic-

ipants chose these options.

2019a) suggests that training could be beneficial. The mis-

takes made when using the app, closely resemble the mis-

takes made by participants in this study and included making

the staff gauge too big, not placing the zero line on the water

level, or choosing a picture with an angle that distorts the im-

age and hampers further observations at this location. Play-

ing the CrowdWater game can help to avoid these mistakes

in a playful manner for some of the participants (63 % of the

participants who performed poorly prior to training did well

after training). Based on these findings, we suggest that new
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Figure 12. Percentage of participants who chose a certain cate-

gory for the difficulty (x axis) and fun (y axis) of the game. Darker

colours indicate that more participants chose these options.

citizen scientists play the CrowdWater game before setting

up a new observation location.

Playing the CrowdWater game was not helpful for all par-

ticipants; some participants who had a low placement score

before the training had a low placement score after the train-

ing as well. Rinderer et al. (2015) reported a similar case,

where some groups did improve their skills at classifying soil

moisture, but others did not. In the context of this study, this

might be due to the CrowdWater game being an implicit ap-

proach to training, instead of an explicit one. We did not pro-

vide theory about staff gauge placement nor mention the es-

sential criteria of a good virtual staff gauge placement to par-

ticipants (e.g. angle, size or placement on water level) during

the study. Most participants intuitively understood this after

playing the game because they noticed that a poor place-

ment of the staff gauge made the estimation of the water

level classes for subsequent observations more difficult. The

benefit of such an implicit approach is that it is likely more

fun than merely providing the theory (which is given on the

CrowdWater website and explained in instruction videos).

Nonetheless, some participants might have preferred explicit,

written instructions on what to look for, instead of having

to acquire this knowledge themselves. We, therefore, rec-

ommend that citizen science projects offer theoretical ma-

terial in addition to a gamified training approach. Newman

et al. (2010) encourage citizen science project leaders to pro-

vide many different training approaches to accommodate dif-

ferent learning styles. We do not know if the participants who

benefited most from playing the game had previous expe-

riences with citizen science, online games or smartphones.

This could be investigated in a future study and would indi-

cate who might require more training or for whom training

via a game is most beneficial.

When rating the reference pictures, participants were bet-

ter at recognizing unsuitable reference pictures compared to

rather unsuitable, rather suitable or suitable pictures. The

boundaries between the intermediate categories are of course

vague and somewhat subjective, but it is very encouraging

that participants could accurately identify unsuitable refer-

ence pictures, as this means that they are aware of what con-

stitutes a poor placement and are therefore less likely to make

these mistakes themselves. This is slightly contradictory to

the results on the use of the report function during the game.

While few participants reported pictures, those who did of-

ten overused this opportunity and reported more picture pairs

than needed. In practice, it is tricky to decide where to set the

limit between a suitable and unsuitable picture. For the ma-

jority of the reference pictures submitted via the CrowdWater

app, the staff gauge placement is neither perfect nor useless.

Although many staff gauges are not placed ideally, this does

not necessarily mean that they are unusable. Depending on

the location, it is often also not possible to place the virtual

staff gauge perfectly.

There was no strong correlation between the game score

and the improvement after the training. This could partly

be due to the fact that learning occurs gradually during the

game. Early in the game, participants might get few points

and improve later during the game, leading to an average

game score and a learning effect before finishing the training.

The number of game rounds for optimal training is unknown,

but the four rounds used here may be a good compromise

between showing enough different pictures and not taking

too much time. Strobl et al. (2019a) showed that, on aver-

age, players who played more than two rounds of the game

(24 picture pairs) chose the right water level class more often

than players who played fewer rounds. Players who played

more than four rounds (48 picture pairs) were even more ac-

curate.

5.2 Advantages and disadvantages of using an online

citizen science game for training

The primary goal of the CrowdWater game is quality control

of the crowdsourced data by the citizen scientists themselves.

This method has proven successful in improving the quality

of the water level class data (Strobl et al., 2019a). The idea

to use the game also for training developed over time (see

Sect. 2.3). By using an online game for this dual purpose

(quality control and training), less effort from project admin-

istrators is needed compared to developing a separate online

training module and quality control mechanism. Newman et

al. (2010) developed multimedia tutorials for a species iden-

tification citizen science project and pointed out that they

“found the development of multimedia tutorials difficult and

time-consuming.” (Newman et al., 2010, p. 284).

The CrowdWater game goes beyond the separation of data

quality control into “training before the task” and “check-

ing after the task” (Freitag et al., 2016). Instead, training and

checking are combined in a continuous loop, where new cit-

izen scientists train and more experienced citizen scientists

check the data with the same task. This, in turn, converts new
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citizen scientists into more experienced ones after only a few

rounds of playing the game. This is similar to iSpot, where

citizen scientists upload a picture of a species and identify

the species, which is then checked online by other contrib-

utors (Silvertown et al., 2015). This leads to the new citizen

scientists learning more about species, which will, in turn,

make them better at helping other citizen scientists in the

future. The approach by Bonter and Cooper (2012) for the

FeederWatch project also combined data quality control with

training by sending an automatic message to the contributor

when a rare and possibly unlikely entry was submitted. They

state that these “messages may function as training tools by

encouraging participants to become more knowledgeable”

(Bonter and Cooper, 2012, p. 306). However, the CrowdWa-

ter game is different from these projects in that it does not

provide factual knowledge (e.g. on streams or hydrology).

The inclusion of new (and therefore inexperienced) citizen

scientists in the quality control process did not negatively in-

fluence the quality of the data, mainly due to the averaging

of votes of several players (Strobl et al., 2019a). Of course,

this is only the case if there are enough experienced players,

as well. In the project iSpot, the issue of including begin-

ners in the validation process was solved through reputation

scores, which need to be earned through correct species sug-

gestions (Silvertown et al., 2015). This could also be a next

step for the CrowdWater game, where an accuracy score can

be calculated for each citizen scientist, which can then be

used to weight the water level class votes in the game (Strobl

et al., 2019a). However, the fact that four rounds of playing

the game seem sufficient for training suggests that this is not

necessary because new game players quickly turn into expe-

rienced ones.

If a citizen science project wants to develop a training task

(as opposed to a quality control methodology that also works

as a training task), slightly different approaches might be bet-

ter. In our case, providing the essential criteria for placing

a staff gauge in a suitable way (e.g. in between the picture

pairs) might have been helpful. Similarly, feedback about the

correct water level class could be given directly after each

picture pair, rather than after each round of the game (as it is

currently implemented). However, this would likely disturb

the frequent players. Consequently, our primary goal is data

quality control, and most game players are already aware of

these criteria and do not want to be disrupted after every pic-

ture when they play the game. Therefore, we decided not to

add this information to the game. However, additional mate-

rial, such as tutorial videos, a manual including examples of

good and bad staff gauge placements, and introductory app

slides are available on the project website. However, our per-

sonal experience is that many citizen scientists do not look

at this material before using the app and are often not aware

of it. A potential benefit of the game, compared to the other

material, is that citizen scientists are less likely to see it as

“homework” but more as an entertaining activity and are,

therefore, likely to spend more time with the game than they

would do with other information materials. Encouragingly,

participants of this study enjoyed playing the game, mean-

ing that they would participate for the fun aspect instead of

seeing it as a “learning task”. Consequently, the game can be

recommended to any potential citizen scientist, without first

having to assess their skills, i.e. their need for training. Ad-

ditionally, we can recommend that new users play the game

instead of discouraging them by explaining that their obser-

vations are incorrect.

Citizen science project tasks and therefore also training

tasks should always be designed “with the skill of the citizens

in mind” (Aceves-Bueno et al., 2017, p. 287). In this study, a

similar number of participants rated the game as easy, neutral

or difficult. This gives the impression that the difficulty of the

game is at a reasonably good level, as it is meant to be en-

gaging and exciting but at the same time not too challenging

as to hinder participation. It should be noted that the partici-

pants in this study looked at 50 picture pairs in a row in order

to simulate several rounds of the regular CrowdWater game,

which only shows 12 picture pairs per day. The CrowdWater

game itself is, therefore, likely even more accessible because

it is less time consuming (and tiring) for citizen scientists.

In the future, it might be feasible to require participants to

play the game before starting a new water level class mea-

surement location, thus placing a virtual staff gauge in the

CrowdWater app. This would be easily verifiable, as the app

and game accounts are the same. In contrast, it is difficult

to assess if citizen scientists have read through the introduc-

tory slides on the app or the training material that are offered

online. Having a compulsory task before all features of the

CrowdWater app are available might heighten the barrier to

entry, which most citizen science projects that require many

participants try to avoid. However, it could also be argued

that participants who chose to complete a training session

might be more committed towards a project and might, there-

fore, become more reliable long-term citizen scientists.

5.3 Does participants’ self-assessment of confidence

predict performance?

In general, participants were more confident in their perfor-

mance and thought that the task was easier after the training.

Self-assessment, however, seems to be an unreliable proxy

for actual performance and should, therefore, be interpreted

carefully. Participants with a low score for placing or rating

the virtual staff gauges might not have realized what the es-

sential criteria were (hence the low score) and therefore also

did not realize that their staff gauge placement or rating of

the reference pictures was not ideal. Self-assessment might

improve after a while, once participants are more aware of

which criteria to look for. Such a realization was seen by

a CrowdWater app user, who commented that new observa-

tions were relatively difficult because the virtual staff gauge

in the reference picture that he had created several months

earlier was not placed ideally. This indicates that the se-

Geosci. Commun., 3, 109–126, 2020 www.geosci-commun.net/3/109/2020/



B. Strobl et al.: Training citizen scientists through an online game 123

quence of activities in the CrowdWater project is not ideal, as

volunteers have to start with the most difficult part, without

having been confronted with different staff gauge placement

options. It also suggests that after a while, citizen scientists

learn what criteria to look out for and that training may be

useful.

The predictability of performance based on self-

assessment seems to vary for other studies. McDonough et

al. (2017) found that the self-assessed species identification

skills did not correspond to the skills of the citizen scien-

tists. Starr et al. (2014) identified a group of citizen scientists

who seemed too confident in their abilities but overall be-

lieved that the self-assessment was accurate for the majority

of their citizen scientists. Crall et al. (2011) found that citizen

scientists’ skills increased with their self-assessed comfort

level. Further research would be required to determine when

self-assessment is a reliable prediction of performance. In the

meantime, self-assessments should not be fully relied on nor

used as a proxy for data quality.

5.4 Limitations of the study

The study was standardized by providing a number of pic-

tures of the same stream to the participants to make the rat-

ing of their staff gauge placement comparable and indepen-

dent of their ability to find a suitable stream. We included

a wide range of stream pictures, including some unsuitable

angles. The staff gauge placement was assessed for only one

river, but it is encouraging to see that there was no difference

in the performance of placing the staff gauge after the train-

ing online and outdoors, indicating that the online interface

and the app were equally intuitive and that participants could

also find suitable stream sections on their own. The training,

therefore, seems to be teaching the necessary skills to the

participants.

Participants could choose from the same 18 stream pic-

tures before and after the training, which could potentially

lead to a confirmation bias; i.e. participants might be more

likely to choose the same picture after the training as they

did before the training. We believe that this effect was neg-

ligible, as only two participants with a poor choice of the

stream picture before the training still had a poor score after

the training as well. All other participants either changed the

picture or had already chosen a suitable picture before the

training.

By singling out participants with poor performance be-

fore the training, the natural variation in performance might

lead to improved performance after the training due to a re-

gression towards the mean. However, the improvements were

statistically significant when analysed for all participants as

well. Further research should investigate how many rounds

of the game would be optimal for training the average citi-

zen scientist and if more rounds would lead to better perfor-

mance for the participants who still received low scores after

the training, i.e. if the optimal number of rounds should be

adapted depending on the citizen scientist.

A disproportionately large number of study participants in

the study had a university degree (85 %) due to the bias in

the social network of the authors, recruitment at the univer-

sity, a tendency of people being more interested in university

studies if they have been to university themselves and the

study being conducted in English. Many other citizen sci-

ence projects also report higher participation of university-

educated citizen scientists (Brossard et al., 2005; Crall et al.,

2011; Overdevest et al., 2004), indicating that the partici-

pants of this study might not be that different from the actual

citizen scientists in the CrowdWater project.

6 Conclusions

We investigated the value of an online game as a training

tool for the CrowdWater project. This game was initially de-

signed for data quality control but turned out to be valuable

for improving the participants’ ability to set up new obser-

vation locations as well. Our results are encouraging beyond

the CrowdWater project, and we argue that the overall con-

clusions that (1) games can provide a suitable approach for

training and (2) training and data quality control can be com-

bined also apply to other citizen science projects. Based on

our study, the following conclusions about games for training

in citizen science projects can be made:

– Citizen science projects should, if possible, be kept in-

tuitive and easy, as this lowers the barrier to entry and

might prevent misunderstandings. For the placement of

the virtual staff gauge in the CrowdWater project, 70 %

of the participants of this study already did well before

receiving any training. This compares well with the ap-

proximately 10 % error rate for data submitted through

the app (Seibert et al., 2019a).

– Games facilitate the training of new citizen scientists

and people who have already participated for a while.

A big advantage is that this approach is scalable. Large

projects with a lot of beginners are also likely to have a

lot of advanced citizen scientists, and therefore the num-

ber of people who can be trained is not limited by the

available time of the people managing the project.

– Training through a game might not necessarily be per-

ceived as training by the citizen scientists (in our case,

the primary goal is data quality control). Potentially this

helps to make the training feel less like homework be-

fore starting to collect data. Nearly two thirds of the par-

ticipants of this training study said that the game was

fun; this compares well with a survey among early game

players of whom 86 % said that they enjoyed playing the

game (Strobl et al., 2019a).

– While materials such as manuals and tutorials can be

useful, gamified approaches provide an enjoyable al-
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ternative training mechanism for citizen scientists. Citi-

zen scientists might respond differently to various train-

ing techniques. In our case, we noticed that few citi-

zen scientists read the manual or watched the instruc-

tion videos but also that some individuals might have re-

sponded better to a more explicit and less playful train-

ing method. We, therefore, recommend offering differ-

ent training options.
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