ZÜRCHER HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFTEN DEPARTMENT LIFE SCIENCES UND FACILITY MANAGEMENT INSTITUT IUNR



# Habitatparameter für Wildtieranalysen im Sihlwald und Umgebung

Semesterarbeit 2

von

#### **Claudia Gerber**

Bachelorstudiengang 2012 Abgabedatum: 12. Februar 2015 Studienrichtung Umweltingenieurwesen

Fachkorrektoren: Bächtiger Martina, Dr. Signer Claudio

Forschungsgruppe Wildtiermanagement ZHAW LSFM IUNR Grüental, Postfach CH - 8820 Wädenswil

## Impressum

Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) Life Siences und Facility Management (LSFM) Institut für Umwelt und Natürliche Ressourcen (IUNR) Grüental, Postfach CH – 8022 Wädenswil

Titelbild by Claudia Gerber

- *Keywords*: cover availability, habitat parameter, vegetation parameter, habitat modelling, wild ungulates, roe deer (Capreolus capreolus), wildlife management
- Schlagworte: Deckungsangebot, Habitatparameter, Vegetationsparameter, Habitatmodellierung, Wildhuftiere, Reh (Capreolus capreolus), Wildtiermanagement

Zitiervorschlag:

Gerber, C. (2015). *Habitatparameter für Wildtieranalysen im Sihlwald und Umgebung.* Wädenswil: Institut für Umwelt und Natürliche Ressourcen (IUNR). Departement für Life Sciences und Facility Management (LSFM). Zürcher Fachhochschule für Andgewandte Wissenschaften (ZHAW). Semesterarbeit.

## Abstract

Wild ungulates increasingly face disturbance and habitat fragmentation due to human activity. Therefore, the knowledge of species specific needs, such as cover in its habitat is essential to conduct a sustainable wildlife management. However, habitat models that describe the cover availability itself can hardly be found. Thus, this study analyses the correlations between LIDAR data, field based data on cover and forage availability, as well as GIS forestry data derived from airborne inventory mapping of the area Sihlwald and its surrounding close to Zürich. Based on regression analysis and model selection following AIC and BIC validation in R, models for cover availability for bedded (CA\_BEDDED) and standing (CA\_STANDING) roe deer have been generated and implemented in GIS. Both of the final models contained the parameters LIDAR, degree of composition and forage availability in winter, yet CA\_STANDING was supplemented with the forage availability in Summer. Corresponding to the comparison of field and model based data of cover availability, CA BEDDED calculated more reliable but slightly underestimated results. The study area Sihlwald and surrounding showed generally high cover availability, while CA\_BEDDED was constantly better than CA\_STANDING. Among the vegetation parameters, the ratio of coniferous trees (degree of composition) and the forage availability in winter, canopy cover and degree of development, as well as degree of development and LIDAR showed the most significant correlations. In future, waveform-recording based LIDAR data could most likely improve these model results.

## Zusammenfassung

Wildhuftiere stehen zunehmend unter dem Druck menschlicher Störungen und genereller Habitatfragmentierung. Deshalb ist die Kenntnis artspezifischer Habitatpräferenzen, wie der Deckung unabdingbar für ein nachhaltiges Wildtiermanagement. Bisher gibt es jedoch kaum Habitatmodelle, welche das Deckungsangebot selbst beschreiben. Aus diesem Grund untersuchte die vorliegende Arbeit die Korrelationen zwischen LIDAR-Daten, Feldaufnahmen zu Äsung und Deckung, sowie Forstparameter aus der Luftbild-Bestandeskartierung für den agglomerationsnahen Grossraum Sihlwald (ZH). Basierend auf Regressionsanalyse und Modellselektion nach AIC und BIC in R wurden Deckungsangebotsmodelle für das liegende (CA\_BEDDED) und stehende (CA\_STANDING) Reh generiert und in GIS umgesetzt. Die Endmodelle enthielten beide die Parameter LIDAR, Mischungsgrad und Winteräsungsangebot; CA\_STANDING zusätzlich das Sommeräsungsangebot. Gemäss dem Vergleich der im Feld erhobenen und den modellierten Deckungswerten, berechnet CA\_BEDDED bei leichter Unterschätzung die verlässlicheren Werte. Der Grossraum Sihlwald zeigte generell ein gutes Deckungsangebot, wobei CA\_BEDDED ausnahmslos besser ausfiel als CA\_STANDING. Unter den Vegetationsparametern wiesen insbesondere der Nadelholzanteil (Mischungsgrad) und das Winteräsungsangebot, der Deckungsgrad und die Entwicklungsstufe, sowie die LIDAR-Daten und die Entwicklungsstufe signifikante Korrelationen auf. Differenziertere, Waveform-recording basierte LIDAR-Daten könnten die Modelle in Zukunft mit hoher Wahrscheinlichkeit noch verbessern.

# Abkürzungsverzeichnis

| AIC   | Akaike's An Information Criterion – Statistische Formel und Verfahren zur          |
|-------|------------------------------------------------------------------------------------|
|       | Beurteilung der Güte bei einer Modellselektion                                     |
| BIC   | Bayesian Information Criterion – Statistische Formel und Verfahren zur Beurteilung |
|       | der Güte bei einer Modellselektion                                                 |
| LIDAR | Light Detection and Ranging – Methode zur optischen Abstands- und                  |
|       | Geschwindigkeitsmessung                                                            |
| GIS   | Geoinformationssystem                                                              |
| WILMA | Fachstelle für Wildtiermanagement an der Zürcher Fachhochschule für Angewandte     |
|       | Wissenschaften, ZHAW, Standort Wädenswil                                           |

## Abkürzungen der Parameter

| CA_BEDDED   | Deckungsangebot für ein liegendes Reh                  |
|-------------|--------------------------------------------------------|
| CA_STANDING | Deckungsangebot für ein stehendes Reh                  |
| DEG_COMP    | Mischungsgrad des Waldes – Nadelholzanteil             |
| DEG_COVE    | Deckungsgrad der Waldvegetation                        |
| FAIS        | Index für das Rehäsungsangebot im Sommer               |
| FAIW        | Index für das Rehäsungsangebot im Winter               |
| LEV_DEVE    | Entwicklungsstufe des Waldes                           |
| LIDAR       | Rehvegetation (0-3 Meter Höhe) aus dem LIDAR-Datensatz |
|             |                                                        |

→ Detailbeschrieb siehe Tab 4.

# Inhaltsverzeichnis

| Imp | ress   | um        | 1                                                           |
|-----|--------|-----------|-------------------------------------------------------------|
| Abs | stract | t         | 2                                                           |
| Zus | amn    | nenfassu  | ng3                                                         |
| Abł | kürzu  | ingsverze | eichnis4                                                    |
| Inh | altsv  | erzeichni | s5                                                          |
| 1   | Einl   | leitung   |                                                             |
|     | 1.1    | Hintergr  | und7                                                        |
|     | 1.2    | Hypothe   | se8                                                         |
| 2   | Mat    | erial und | Methoden                                                    |
|     | 2.1    | Untersu   | chungsgebiet9                                               |
|     | 2.2    | Feldaufr  | nahmen11                                                    |
|     | 2.3    | Literatur | recherche12                                                 |
|     | 2.4    | GIS und   | Statistikprogramm R                                         |
|     |        | 2.4.1     | Grundlagendaten                                             |
|     |        | 2.4.2     | Modellgenese                                                |
| 3   | Res    | sultate   |                                                             |
|     | 3.1    | Modellpa  | arameter                                                    |
|     | -      | 3.1.1     | Linearität der Parameterbeziehungen                         |
|     |        | 312       | Deckungsangebot in Abhängigkeit der Vegetationsparameter 19 |
|     |        | 313       | Weitere Korrelationen 21                                    |
|     | 3.2    | Habitato  | odell des Deckungsangebotes                                 |
|     | 5.2    | 2 2 4     | Modellaeneee                                                |
|     |        | 3.2.1     |                                                             |
|     | • -    | 3.2.2     | iviodeligute                                                |
|     | 3.3    | Deckung   | psangebot fur Rehe im Grossraum Sihlwald26                  |

| 4 | Diskussion                                                           | 30 |
|---|----------------------------------------------------------------------|----|
|   | 4.1 Beurteilung der Modellparameter                                  | 30 |
|   | 4.1.1 Das Deckungsangebot und seine Abhängigkeit                     | 30 |
|   | 4.1.2 Beurteilung der Beziehungen zwischen den Vegetationsparametern | 31 |
|   | 4.2 Fazit                                                            | 32 |
| 5 | Literaturverzeichnis                                                 | 33 |
| 6 | Abbildungsverzeichnis                                                | 36 |
| 7 | Tabellenverzeichnis                                                  | 37 |
| 8 | Anhang                                                               |    |

## 1 Einleitung

#### 1.1 Hintergrund

Menschen beeinflussen massgeblich den Lebensraum von Wildtieren, erst recht in der kleinräumigen Schweiz. Mit zunehmender Besiedlung und Fragmentation der Lebensräume sind zwangsläufig vermehrt Einwirkungen auf das Verhalten von Wildtieren zu erwarten (Jayakody, SevvandiSibbald, Angela M.Gordon, Iain J.Lambin, 2008; Stankowich, 2008). Für eine bessere Beurteilung der Auswirkung menschlicher Tätigkeiten auf Wildtiere, ist die Kenntnis der artspezifischen Präferenzen innerhalb eines Habitats und der einzelnen Habitatelemente zentral. Diese gilt es durch bestehende Umweltparameter auszudrücken, um Aussagen über die Habitateignung machen zu können. Aussagekräftige Habitatparameter und die entsprechende Habitatmodellierung sind daher unabdingbare Instrumente für die Umsetzung eines zeitgemässen und nachhaltigen Wildtiermanagements. Insbesondere für Wildhuftiere, wie Reh oder Rothirsch wurden bereits zahlreiche Habitatmodelle, unter anderem zur Bewertung von Lebensräumen und potentiellen Verbreitungen von Populationen entwickelt (Borkowski & Ukalska, 2008; Vospernik, Bokalo, Reimoser, & Sterba, 2007).

Neben der Aussagekraft der Habitatparameter bedeutet die Reduktion auf die wenigen, relevantesten Parameter auch eine effizientere und zielführendere Datenbeschaffung und Analyse. Bei den meisten Modellen der Habitateignung ist neben verschiedensten abiotischen Faktoren oft die begrenzte Anzahl der klassischen Forstparameter anzutreffen. Es sind dies vor allem die Kronendeckung und deren Nadelbaumanteil, der Mischungsgrad zwischen Nadel- und Laubholz, sowie die Entwicklungsstufen und deren einzelne Wachstumsstadien (Reimoser, Partl, Reimoser, & Vospernik, 2009; Vospernik et al., 2007). In jüngerer Zeit wurden vermehrt auf moderne Aufnahmemethoden basierende Habitatparameter in die Habitatmodellierung integriert. Insbesondere die bald landesweit zugänglichen LIDAR-Daten haben sich in ersten Modellen bei der Datenextraktion, sowie als aussagekräftiger Habitatparameter bewährt (Ewald, Dupke, Heurich, Müller, & Reineking, 2014); (Graf, Mathys, & Bollmann, 2009). Gesucht sind jene Habitatparameter, welche in signifikanter Relation zum ausgewählten artspezifischen Lebensraumanspruch, wie Äsung oder Deckung stehen. Das primär vegetationsabhängige Deckungsangebot wird bei Habitatmodellierungen oftmals nicht als eigenständiger Parameter verwendet, sondern höchstens passiv über die Vegetationsparameter abgedeckt. Ist dies dennoch der Fall, handelt es sich um Daten aus Feldaufnahmen (Borkowski & Ukalska, 2008; Reimoser et al., 2009; Vospernik et al., 2007; Vospernik & Reimoser, 2008). Interessant wäre deshalb zur Beurteilung eines Habitats betreffend Deckung für eine bestimmte Art, das Deckungsangebot durch bestehende Vegetationsparameter ausdrücken zu können. Im Rahmen dieser Arbeit wurden jedoch keine derartige Modelle gefunden.

### 1.2 Hypothese

In einem agglomerationsnahen Naherholungsraum ist Ruhe, bzw. Deckung für eine Spezies von hohem Interesse. Deshalb fokussiert sich die vorliegende Semesterarbeit auf das Deckungsangebot. Die Wahl der Art fiel auf das Reh, als im Schweizer Mittelland häufigstes Wildhuftier (Bundesamt für Umwelt (BAFU), 2014). Der stadtnahe Grossraum Sihlwald im Kanton Zürich diente als Untersuchungsgebiet.

Ziel ist ein vegetationsabhängiges GIS-Modell zur Beurteilung des Deckungsangebotes für Rehe zu generieren. Das Modell baut auf der bestehenden forstlichen Luftbild-Bestandeskartierung, LIDAR-Daten des Gebietes und punktuellen Feldaufnahmen auf. Bestehende wissenschaftliche Erkenntnisse über die Deckungspräferenzen von Wildhuftieren fliessen in die Klassifizierung des Deckungsangebotes ein. Die vorliegende Semesterarbeit will:

- 1 die für das Deckungsangebot relevanten Vegetationsparameter und ihre gegenseitigen Beziehungen identifizieren.
- 2 das Deckungsangebot für das Reh mit dem generierten Modell im Untersuchungsgebiet Grossraum Sihlwald mittels GIS visualisieren.
- 3 Hinweise betreffend die Übertragbarkeit des Modells auf andere Untersuchungsgebiete abgeben.

## 2 Material und Methoden

## 2.1 Untersuchungsgebiet

Die gesamte Untersuchung fand innerhalb der Koordinaten 680'000 / 240'500 Nordwest und 688'000 / 230'000 Südost statt (gemäss Karte Abb 1). Die Plotstandorte erstreckten sich über eine Fläche von 3'000 ha, wovon in der vorliegenden Arbeit 1'700 ha effektiv bewertet wurden (3.2 Habitatmodell des Deckungsangebotes). Die Analyse beschränkte sich auf die mehrheitlich zusammenhängenden Waldgebiete des Sihltals und seiner unmittelbarer Umgebung südlich der Stadt Zürich.

Die betroffene Waldfläche wird zu 55% von schwachen bis starken Baumholzbeständen dominiert. 10% fallen unter Stangenholz bis BHD 30 cm und Höhe 21 m. Die Anteile an Jungwuchs und stufigen, ungleichaltrigen Beständen sind mit knapp 3%, respektive 6% vergleichsweise klein. Das Gebiet ist hauptsächlich gegen Norden (26%) und Osten (37%), teilweise gegen Westen (24%), hingegen wenig gegen Süden (13%) exponiert. Der Perimeter reicht von 450 bis 910 M.ü.M. und ist auf knapp 6% seiner Fläche steiler als 30°. (Amt für Wald ZH, 2010) Die nahe gelegene zentrale Wetterstation Zürich Fluntern mass für 2014 eine Jahresmitteltemperatur und einen mittleren Jahresniederschlag von 10.6°C, bzw. 1076.4mm . Aufgrund von Exposition, Vegetation und Geomorphologie ist im Sihlwald von einer geringerer Jahresmitteltemperatur auszugehen. (Meteoschweiz, 2015)

Der agglomerationsnahe Naturerlebnispark Sihlwald macht mit 1'200 ha ein Grossteil des Untersuchungsgebietes aus. Die Waldgebiete sind sehr gut erschlossen und werden rege durch individuellen Langsamverkehr Erholungssuchender, wie Wanderer, Reiter und Biker genutzt. (Schweizer Pärke, 2015)



## Plotstandorte im Untersuchungsgebiet Grossraum Sihlwald (ZH)

Abb 1: Untersuchungsgebiet Grossraum Sihlwald und die 178 untersuchten Plotstandorte

### 2.2 Feldaufnahmen

#### Methoden

Wir erhoben einerseits das Äsungsangebot (1) und andererseits das Deckungsangebot (2). Die Untersuchungsstandorte wurden aus einem Punkteraster von 50x50 Metern nach dem Zufallsprinzip generiert. Dabei wurde berücksichtigt, dass jeder Waldbestandestyp mindestens einmal vorkommt (Tab 2). Der Waldbestandestyp ist ein dreistelliger Code, generiert aus den drei Forstparametern Entwicklungsstufe, Deckungsgrad und Mischungsgrad aus der Luftbild-Zürcher Waldes Bestandeskartierung des nach Ineichen (2015). Die aenerierten Standortkoordinaten dienten im Feld als Plotmittelpunkte und wurden mit einem Vermessungsstab markiert. Dieser war exklusive Einsteckspitze von zwei Meter Länge und in jeweils 10 cm hohen Bändern abwechselnd rot/weiss gestreift. Die Halbmeterabschnitte erhielten zusätzlich ein auffälliges Erkennungsmerkmal. Alle Vegetationsdaten haben wir gemäss Aufnahmeprotokoll (Anhang A. Protokoll Feldaufnahmen) der Masterarbeit von Priska Ineichen aufgenommen. (Ineichen, 2015) Das Deckungsangebot hätten wir mittels Zylindermethode (Ordiz, Støen, Langebro, Brunberg, & Swenson, 2009) aufnehmen können. Jedoch stellte sich die oft verwendete Cover Pole Methode (Gallina, Bello, Verteramo, & Delfin, 2010; Jiang, Ma, Zhang, & Stott, 2010) nach Griffith (1988), zudem auf das Reh angepasst, als die geeignetste Methode heraus.

(1) Ein Abstand von 12.5 m in die vier mittels Kompass bestimmten Himmelsrichtungen definierte die quadratische Plotgrösse (310m<sup>2</sup>) für die Vegetationsaufnahmen des Äsungsangebots. Entsprechend der Art und deren Beschirmungsgrad errechneten wir den Forage Availability Index (Äsungsangebotsindex) für Sommer und Winter. (2) Ebenfalls aus den vier Himmelsrichtungen nahmen wir aus jeweils 15 m Entfernung die Deckung auf. Die Aufnahme erfolgte stets von Augenhöhe bei geöffnetem rechtem Auge und Stand auf dem Endpunkt der Distanzmessung. Für jeden Halbmeter notierten wir die Anzahl der 0 bis 5 roten bzw. weissen Bänder, welche zu nicht mehr als 25% verdeckt waren. Davon liessen sich jeweils pro Himmelsrichtung und Halbmeterkategorie Sichtbarkeitsmittelwerte berechnen. Diese multiplizierten wir mit den von Griffith eruierten Werten der pro Halbmeterkategorie prozentual sichtbaren Anteilen des liegenden, bzw. stehenden Rehkörpers (Tab 1). Die Subtraktion des so erhaltenen, zwischen 0 und 5 liegenden Sichtbarkeitswertes von 5 ergab den gesuchten Deckungswert. (Griffith & Youtie, 1988)

| Tab 1: Potentiell sichtbarer Anteil des liegenden und stehenden Rehkörpers und Sichthöhe (Griffith & Youtie, | 1988) – |
|--------------------------------------------------------------------------------------------------------------|---------|
| Faktoren für die Berechnung des Deckungsangebotes                                                            |         |

| Desition Poh | Sichtbarer Körperanteil pro Höhe |             |             |             |  |  |  |
|--------------|----------------------------------|-------------|-------------|-------------|--|--|--|
| Position Ren | 0 – 0.5 m                        | 0.5 – 1.0 m | 1.0 – 1.5 m | 1.5 – 2.0 m |  |  |  |
| liegend      | 0.83                             | 0.17        | 0.0         | 0.0         |  |  |  |
| stehend      | 0.0                              | 0.73        | 0.23        | 0.4         |  |  |  |

#### Aufnahmezeitpunkt und Realisation ursprüngliche Planung

Von den geplanten 279 Standorten konnten wir 178 untersuchen. Die Aufnahme des Deckungsund Äsungsangebotes musste zwingend während der Vegetationszeit stattfinden. Bedingt durch die Terminpläne der beiden Arbeiten erfolgten rund 80% der Aufnahmen im September, die übrigen 20% im Oktober. Weitere Aufnahmen waren aufgrund des fortgeschrittenen Laubfalls nicht mehr möglich. Mit Ausnahme zweier Waldbestandestypen haben wir alle Typen weitestgehend berücksichtigt (Tab 2).

|          | Erhoben | Erhoben | Ausgewählte Plots |                  |  |
|----------|---------|---------|-------------------|------------------|--|
| Farbcode | %       | Anzahl  | Anzahl            | Waldbestandestyp |  |
| 0%       | 25%     | 1       | 4                 | 113              |  |
| 1 - 33%  | 100%    | 1       | 1                 | 121              |  |
| 34 - 66% | 100%    | 1       | 1                 | 123              |  |
| 67 -100% | 50%     | 1       | 2                 | 131              |  |
|          | 100%    | 1       | 1                 | 132              |  |
|          | 50%     | 1       | 2                 | 133              |  |
|          | 0%      | 0       | 1                 | 211              |  |
|          | 0%      | 0       | 2                 | 222              |  |
|          | 100%    | 9       | 9                 | 231              |  |
|          | 84%     | 27      | 32                | 232              |  |
|          | 57%     | 12      | 21                | 233              |  |
|          | 67%     | 6       | 9                 | 242              |  |
|          | 50%     | 5       | 10                | 243              |  |
|          | 33%     | 1       | 3                 | 321              |  |
|          | 33%     | 4       | 12                | 322              |  |
|          | 70%     | 14      | 20                | 323              |  |
|          | 78%     | 21      | 27                | 331              |  |
|          | 69%     | 29      | 42                | 332              |  |
|          | 53%     | 31      | 59                | 333              |  |
|          | 64%     | 9       | 14                | 342              |  |
|          | 71%     | 5       | 7                 | 343              |  |
|          | 64%     | 179     | 279               | TOTAL            |  |

Tab 2: Übersicht über die erhobenen Plots in Relation zu den ursprünglich ausgewählten Plotstandorten

### 2.3 Literaturrecherche

Primärer Ausgangspunkt war die von EBSCO Information Services betriebene Datenbank über *Wildlife & Ecology Studies Worldwide*, worin am erfolgreichsten Artikel über Habitatmodellierung, Wildhuftiere in Agglomerationsnähe und deren Deckungsansprüche zu finden waren.

## 2.4 GIS und Statistikprogramm R

## 2.4.1 Grundlagendaten

Tab 3: Details zu den verwendeten GIS-Grundlagen

| Name                                                                         | Beschrieb                                                                                                                            | Format &<br>Koordinatensystem                     | Datenherr                         | Datenqualität<br>& -haltung                                                     |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------|
| Luftbild –<br>Bestandes-<br>kartierung<br>ALN_WALD.<br>LUFTBILDBE<br>STAND_F | Forstdatensatz Kanton ZH;<br>verwendete Attribute:<br>- Deckungsgrad (DG)<br>- Mischungsgrad (MG)<br>- Entwicklungsstufe<br>(ESCODE) | SDE,<br>ESRI polygone<br>shapefile<br>CH1903_LV03 | Kanton ZH, ALN,<br>Abteilung Wald | Jährliche<br>komplette<br>Nachführung,<br>benutzte<br>Version vom<br>16.04.2010 |
| LIDAR<br>WPZ_TOPO.C<br>HM_2006081<br>7_HEIGHT_1<br>M                         | LIDAR-Aufnahmen vom<br>Grossraum Sihlwald<br>- zeigt die Oberflächen-<br>bedeckung über Erdboden                                     | Rasterdatei<br>CH1903_+LV95                       | GIS Wildnispark<br>Zürich         | Vorläufig<br>einmalige<br>Aufnahme vom<br>April 2004                            |
| Hintergrund-<br>karten<br>LK 1:25'000                                        | Schweizer Landeskarte                                                                                                                | ESRI Rasterdatei (TIF)<br>CH1903_LV03             | Swisstopo©                        | 6-jähriger<br>Nachführungs-<br>zyklus,<br>Version 2007                          |

## 2.4.2 Modellgenese

Ausgangslage war die Extraktion von Grundlagendaten zu Vegetation und Deckung aus Feldaufnahmen, bestehenden GIS-Daten aus der kantonalen Luftbild – Bestandeskartierung des Waldes und LIDAR-Daten. Ich ergänzte die Plotstandorte der Feldaufnahmen darauf mittels räumlicher Bezüge in einer GIS-Analyse mit den Vegetationsdaten aus LIDAR und der Luftbild-Bestandeskartierung. Die dabei entstandene Datentabelle (1) (Anhang B.d.Tabelle Grundlagendaten) diente in der Folge als Grundlage für die Analyse mit R Console 2.15.1. (2) Die signifikantesten Korrelationen bestimmten die Bewertung und die Auswahl der Parameter zur Erstellung des Habitatmodells mittels einer zweiten GIS-Analyse. (3) In einem letzten Schritt prüfte ich die Modellgüte mit dem Vergleich der plotspezifischen Deckungsangebotswerte aus Feldaufnahmen und Modell. (4)

## (1) Extraktion der Grundlagendaten in GIS

Ich realisierte die gesamte Extraktion im ArgGis Modelbuilder (detailliertes Arbeitsprotokoll im Anhang B.a.Modell ReheSA2a).

In der Luftbild-Bestandeskartierung (Tab 3) erachtete ich die Forstparameter Deckungsgrad (DEG\_COVE), Entwicklungsstufe (DEV\_LEVE) und Mischungsgrad (DEG\_COMP) als wichtigste Einflussgrössen für das Deckungsangebot. Aus dem LIDAR-Datensatz extrahierte ich zudem eine Rehvegetation von 0 – 3m. Die 3m sind als Sammelkategorie zur Repräsentation der LIDAR-Daten zu verstehen, da ich diese hier entgegen anderer Studien (Ewald et al., 2014) nur in Form eines Parameters behandle. Ich generierte daraus mit einer Flächenanalyse (Tool Block Statistics) über den Anteil Rehvegetation im jeweils umgebenden Quadrat von 20x20 m einen Rehvegetationsparameter (LIDAR). Dies ist eine Annäherung an die Plotgrösse der Feldaufnahmen des Äsungsangebotes (siehe A.Protokoll Feldaufnahmen). Ich reklassifizierte die vier Parameter für die weitere Analyse (Tab 4). Die abschliessende Datenzusammenführung erfolgte über eine pro Parameter wiederholte, räumlich basierte Zuweisung der jeweiligen Werte zu den einzelnen Datensätzen der zuvor als Excel-Dokument importierten Grundlagentabelle (Tool Spatial Join). Diese enthielt dabei bereits die vier übrigen, im Feld erhobenen Parameter Winteräsungsangebot (FAIW), Sommeräsungsangebot (FAIS) und Deckungsangebot für das liegende (CA\_BEDDED), sowie für das stehende (CA\_STANDING) Reh (2.2 Feldaufnahmen). Für die einzelnen Schritte waren teilweise Formatänderungen (Tools Clip, Polygon to Raster und Raster to Polygon) nötig. Zuletzt exportierte und bereinigte ich die vollständige Tabelle der Grundlagendaten in ein Excel-Dokument (Anhang B.d.Tabelle Grundlagendaten).

| Parameter | Beschrieb                         | Kategorisierung (neue Kategorien in Fettdruck)                                                                                                                                             |
|-----------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIDAR     | Flächenanteil der                 | 1 = 0-25% Rehvegetation                                                                                                                                                                    |
|           | Rehvegetation (0-3m) im           | <b>2</b> = 25-50%                                                                                                                                                                          |
|           | 400m <sup>2</sup> grossen Quadrat | <b>3</b> = 50-75%                                                                                                                                                                          |
|           | (20x20m) um den                   | <b>4</b> = 57-100%                                                                                                                                                                         |
|           | Plotmittelpunkt                   | <b>0</b> => NA (22 Datensätze ohne Wert, da die<br>Plotkoordinaten (Plots Feldaufnahme > target feature)<br>beim <i>Spacial Join</i> ausserhalb der LIDAR-Daten (join<br>feature) lagen    |
| DEG_COVE  | Deckungsgrad; Anteil der          | <b>10</b> = 0-33%                                                                                                                                                                          |
|           | Gesamtüberschirmung an der        | <b>20</b> = 33-66%                                                                                                                                                                         |
|           | Bestandesfläche in 10%            | <b>30</b> = 66-100%                                                                                                                                                                        |
|           | Stufen                            |                                                                                                                                                                                            |
| DEG_COMP  | Mischungsgrad;                    | <b>100</b> = 0-10%                                                                                                                                                                         |
|           | Nadelholzanteil (bezüglich        | <b>200</b> = 10-50%                                                                                                                                                                        |
|           | Deckungsgrad) der am              | <b>300</b> = 50-90%                                                                                                                                                                        |
|           | Aufbau des Bestandes              | <b>400</b> = 90-100%                                                                                                                                                                       |
|           | beteiligten Baumarten             | <b>0</b> => NA (33 Datensätze ohne Wert, da die<br>Plotkoordinaten (Plots Feldaufnahme > target feature)<br>beim <i>Spacial Join</i> ausserhalb der DEG_COMP-Daten (join<br>feature) lagen |

Tab 4: Beschrieb und reklassifizierte Kategorien der Parameter für die Grundlagentabelle Matrix\_Rohdaten\_ReheSA2

| DEV_LEVE                                                                                                        | Entwicklungsstufen<br>(BH = Ø Bestandeshöhe)<br>10 = Jungwuchs/Dickung<br><12cm, BH <= 8m<br>20 = Stangenholz 12-30cm,<br>8m < BH <= 21m<br>30 = Schwaches Baumholz<br>30-40cm, 21m < BH <= 28m<br>40 = Mittleres Baumholz<br>40-50cm, 28m < BH <= 35m<br>50 = Starkes Baumholz<br>>50cm, BH >= 35 m<br>60 = stufige, ungleichaltrige<br>Bestände<br>-2 = dauernde Blösse (Rutsch,<br>usw.) | <ul> <li>1000* = dauernde Blösse (Rutsch u.ä.)</li> <li>2000 = Stangenholz (BHD &lt; 12-30cm, Bestandeshöhe (8-21m)</li> <li>3000 = schwaches bis starkes Baumholz (BHD &gt; 30cm, Bestandeshöhe &gt;21m) &amp; stufige, ungleichaltrige Bestände)</li> <li>4000 = Jungwuchs/Dickung (BHD &lt; 12cm, Bestandeshöhe &lt; 8m)</li> <li>*Diese Kategorie wurde hier aufgeführt, da sich Rehe bei Störung erfahrungsgemäss auch an steile Stellen (Rutsche, etc.) zurückziehen und flache Gebiete meiden (Ineichen, 2015).</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>&gt; Alle Werte aus</li> <li>Flächen standen</li> <li>Reklassifizierung</li> <li>behandelt.</li> </ul> | den drei Parametern des Forsto<br>wurden im vorliegenden Beschr<br>en mit NoData bezeichnet und s                                                                                                                                                                                                                                                                                           | latensatzes, welche für undefinierte oder nicht erhobene<br>rieb nicht aufgeführt. Sie wurden in den<br>somit in nachfolgenden Analyseschritten nicht mehr                                                                                                                                                                                                                                                                                                                                                                        |
| FAIW                                                                                                            | Forage Availability Index in<br>Winter; <b>Äsungsangebot</b> im<br><b>Winter</b>                                                                                                                                                                                                                                                                                                            | <b>5</b> , <b>4</b> , <b>3</b> , <b>2</b> , <b>1</b> ; geringes (5) bis sehr gutes (1) Äsungsangebot (Details siehe Anhang A. Protokoll Feldaufnahmen, Beiblatt)                                                                                                                                                                                                                                                                                                                                                                  |
| FAIS                                                                                                            | Forage Availability Index in<br>Summer; <b>Äsungsangebot</b> im<br><b>Sommer</b>                                                                                                                                                                                                                                                                                                            | <b>5</b> , <b>4</b> , <b>3</b> , <b>2</b> , <b>1</b> ; geringes (5) bis sehr gutes (1) Äsungsangebot (Details siehe Anhang A. Protokoll Feldaufnahmen, Beiblatt)                                                                                                                                                                                                                                                                                                                                                                  |
| CA_BEDDED                                                                                                       | Deckungsangebot für ein<br>liegendes Reh                                                                                                                                                                                                                                                                                                                                                    | <b>0</b> , <b>1</b> , <b>2</b> , <b>3</b> , <b>4</b> , <b>5</b> ; kein (0) bis sehr gutes (5)<br>Deckungsangebot (Details siehe 2.1 Feldaufnahmen)                                                                                                                                                                                                                                                                                                                                                                                |
| CA_STANDING                                                                                                     | Deckungsangebot für ein<br>stehendes Reh                                                                                                                                                                                                                                                                                                                                                    | <b>0</b> , <b>1</b> , <b>2</b> , <b>3</b> , <b>4</b> , <b>5</b> ; kein (0) bis sehr gutes (5)<br>Deckungsangebot (Details siehe 2.1 Feldaufnahmen)                                                                                                                                                                                                                                                                                                                                                                                |

#### (2) Korrelationsanalyse im Statistikprogramm R Console (V 2.15.1)

Während der gesamten Analyse in R galt der korrekten Verrechnung der Datensätze mit fehlenden, im Text-Dokument als NA deklarierten Werten ein besonderes Augenmerk. Dies betraf insgesamt 50 Datensätze und deren jeweilige Korrelationen mit beiden oder einem der Attribute LIDAR (22 NA-Werte) oder DEG\_COMP (33 NA-Werte), da diese Plots ausserhalb der entsprechenden Datenflächen lagen (Anhang B.c. Erklärungen Tabelle Grundlagendaten).

Um einen ersten Überblick über die Paramterbeziehungen zu erhalten, stellte ich die Korrelationswerte nach Pearson (R-values) mit den entsprechenden Signifikanzwerten (P-values) in einer *corrplot* Matrix dar (Abb 2). Da bei den Parametern mit linearen Beziehungen zu rechnen ist, verwendete ich die Methode Pearson. Weil die bestehenden Attribute lediglich drei bis fünf Kategorien enthielten, wählte ich nicht den multiplen Scatterplot zur ersten Beurteilung der Korrelationen. Dieser hätte unter anderem aufgrund der zahlreichen übereinanderliegenden Daten (wiederholte Wertkombinationen des gleichen Parameterpaars) aussagekräftige Vergleiche unter den Parameterbeziehungen verunmöglicht.

Im zweiten Schritt kamen sowohl die Methode Pearson, als auch diejenige von Spearman mit dem Befehl *rcorr()* zum Einsatz. Ich extrahierte die erhaltenen Korrelations- und Signifikanzwerte und nutzte sie zur Beurteilung der Wichtigkeit einzelner Parameter und der Signifikanz, Linearität oder nicht-Linearität der Parameterbeziehungen. Wichtige duale Parameterbeziehungen konnten so erkannt, in einzelnen Scatterplots dargestellt und interpretiert werden (3.1 Modellparameter).

Des Weiteren floss die Signifikanzbeurteilung der Parameter in die manuelle Modellauswahl mit Hilfe des Befehls für lineare Modelle *Im()* ein. Ich berücksichtigte hierbei Erkenntnisse über die Linearität und allfällige Interaktionen zwischen den Parametern. Das Auswahlkriterium war die Güte der einzelnen Modelle. Diese bestimmte ich jeweils mit den Werten des AIC (Akaike's An Information Criterion) und des BIC (Bayesian Information Criterion) im relativen Vergleich, wobei der BIC eher Modelle mit weniger Parametern bevorzugt. Beide Werte nehmen aber grundsätzlich mit zunehmender Güte parallel ab. ( (Sakamoto, Ishiguro, & Kitagawa, 1988) in (R-core))

Ich verzichtete auf eine automatische Modellselektion mittels eines R-Programms, da diese oftmals Probleme mit NA-Datensätzen haben, vergleichsweise nicht unbedingt zu besseren Resultaten führen und bei manueller Auswahl die Selektion einfacher mit dem realen Hintergrund zu überprüfen ist (Merlot, 2015). Die Ausgangslage bestand aus zwei Modellserien zur Erklärung des Deckungsangebotes für das liegende, bzw. für das stehende Reh. Erstens erstellte ich pro Deckungsangebot das Startmodell mit den sechs Vegetationsparametern LIDAR, DEG\_COVE, DEV\_LEVE, DEG\_COMP, FAIW, FAIS. Zweitens prüfte ich die sechs Varianten pro Deckungsangebot, bei welchen jeweils ein Vegetationsparameter weggelassen wird. Das hieraus beste Modell reduzierte ich weiter um den ausgeschlossenen Vegetationsparameter im, nach AIC und BIC, zweitbesten Modells der obigen sechs Varianten. Zum überprüfenden Vergleich generierte ich auf jeder Reduktionsstufe zusätzlich die Modelle unter Weglassen der nächsten, leicht signifikanteren Parameter (entsprechend dem drittbesten, viertbesten, usw. Modell der vorgängigen Reduktionsstufe). Das gesuchte Zielmodell hatte über alle Modelle, sowie innerhalb seiner eigenen Reduktionsstufe die kleinsten AIC- und BIC-Werte aufzuweisen (Anhang C.c. Modellselektion)

Für die detaillierten R-Codes siehe Anhang D. R-Scripte.

#### (3) Umsetzung Habitatmodell mit GIS

Die bei der Modellselektion eruierten Parameter dienten als Grundlage für je eine Karte der Deckungsangebote des liegenden und stehenden Rehs. Dies, um allfällige Unterschiede erkennen zu können. Die Modelle benötigten die zwei Parameter FAIW und FAIS, welche als Feldaufnahmen im GIS erst punktuell bestanden. Um Flächendaten für die Asungsangebote zu generieren, benutzte ich wiederum das nach AIC und BIC beste Modell (Tab 8). Die Modellselektion führte ich nach denselben Kriterien wie bei der Modellsuche für CA\_BEDDED und CA STANDING durch (oben). Die Startmodelle enthielten dementsprechend jene Vegetationsparameter mit bestehenden Flächendaten im GIS (LIDAR, DEG\_COVE, DEV\_LEVE, DEG\_COMP). Nach einer Rasterberechnung (Tool Raster calculator) gemäss der ermittelten Zielmodelle (Tab 8), reklassifizierte (Tool Reclassify) ich die Äsungsangebote auf ihre ganzzahligen Klassen 1, 2, 3, 4 oder 5 (Anhang B.c.Erklärungen Tabelle Grundlagendaten). Da es sich beim Zielmodell um das Beste, aber nicht perfekte Modell handelt, können bei der Modellumsetzung im GIS für das FAIW, bzw. FAIS Werte ausserhalb des Zielwertbereichs 0.5 bis 5.5 entstehen (Tab 8). Diese schloss ich aus und teilte die übrigen Werte (1.5 - 5.5) nach algebraischer Rundungsregel den Klassen zu.

Ich wiederholte das Vorgehen für die beiden Deckungsangebote. Einzig die Reklassifizierung erhielt gemäss CA\_BEDDED und CA\_STANDING die Klassen 0, 1, 2, 3, 4 oder 5 (B.c. Erklärungen Tabelle Grundlagendaten). Der Zielwertbereich lag somit zwischen -0.5 und 5.5. In einem letzten Schritt vereinte ich CA\_BEDDED und CA\_STANDING in einer Karte des Deckungsangebotes (Tool *Plus*). CA\_STANDING erhielt zu Unterscheidungszwecken vorgängig zweistellige Kategorien (10 statt 1, 20 statt 2, etc.) Die hierfür problematische Kategorie 0 kam in keinem der beiden Deckungsparameter vor.

#### (4) Überprüfung der Modellgüte

Ich extrahierte aus den modellbasierten GIS-Layern der beiden Deckungsangebote die Werte für die im Feld untersuchten Plotstandorte und verglich sie mit den Werten der Feldaufnahmen. Um die Plotgrösse zu simulieren, berücksichtigte ich jeweils den Mittelwert des, den Plotstandort umgebenden Quadrates von 20x20 m (Tool *Block Statistics*). Ich transformierte (Tool *Raster to Polygon*) die neu kalkulierten Layer, ergänzte die GIS-Datentabelle der Feldaufnahme mittels räumlichen Bezügen (Tool *Spatial Join*) mit den neuen plotspezifischen Werten und exportierte die Daten zur Analyse in eine Excel-Tabelle.

## 3 Resultate

### 3.1 Modellparameter

Eine erste allgemeine Gegenüberstellung der Parameter zeigte relativ wenige starke Korrelationen und 32% signifikante Werte bei einem Signifikanzlevel von 0.05 (Abb 2). Bei einer Erhöhung des Signifikanzlevels auf 0.01 verminderte sich der Anteil signifikanter Werte lediglich um das Parameterpaar DEG\_COVE~DEG\_LEVE auf 29%.

| LIDAR    | $\times$ | X        | -0.26    | -X2   | -)×2     | ×         | ×          |   |
|----------|----------|----------|----------|-------|----------|-----------|------------|---|
| ×        | DEG_COVE | ×        | -0.18    | X     | $\times$ | ×         | ×          |   |
| ×        | ×        | DEG_COMP | ×        | -0.22 | -)×4     | ×         | -0.23      |   |
|          |          | ×        | DEV_LEVE | X     | ×        | ×         | ×          | - |
| $\times$ | ×        |          | $\times$ | FAIW  | 0.68     | -0.45     | -0.3       |   |
| ×        | $\times$ | $\times$ | $\times$ |       | FAIS     | -0.36     | -×2        |   |
| ×        | ×        | ×        | ×        |       |          | CA_BEDDED | 0.81       |   |
| ×        | ×        |          | $\times$ |       | ×        |           | A_STANDING |   |

Abb 2: Korrelationsmatrix mit Korrelationswerten (R-value) nach Pearson und integriertem Signifikanzlevel (P-values) von 95%, dargestellt mit ausgekreuzten Werten falls P < 95%. Rote Kreise stellen negative, blaue Kreise positive Korrelationen analog zu den Korrelationswerten oberhalb der Diagonalen dar. Je intensiver die Farbe und je grösser der Kreis, umso stärker die Korrelation.

### 3.1.1 Linearität der Parameterbeziehungen

Die acht verwendeten Parameter sind alle als direkte oder indirekte Beschreibung der Vegetation zu betrachten und unterscheiden sich primär in der Erhebungsmethode. Deshalb ist zwar mit ähnlichen Einflüssen durch externe Faktoren auf die Parameter und deren korrelierende Reaktion, jedoch nicht mit Interaktionen zwischen den Parametern zu rechnen. Auch der Vergleich der Korrelationswerte von Pearson und Spearman ergab nur bei 5 von den 28 möglichen Parameterbeziehungen das Ergebnis R-Spearman > R-Pearson, wobei die Differenz verschwindend klein ausfiel (Tab 5). Dies wäre ein statistischer Hinweis auf eine nicht-lineare Beziehung (Dr. rer. nat. Müller, 2013).

| Parameterbeziehung | R-Wert<br>Pearson | R-Wert<br>Spearman | Differenz R-Werte<br>Spearman und Pearson |
|--------------------|-------------------|--------------------|-------------------------------------------|
| LIDAR~FAIS         | -0.12             | -0.20              | 0.08                                      |
| DEG_COVE~DEV_LEVE  | -0.18             | -0.20              | 0.02                                      |
| DEG_COVE~FAIW      | -0.02             | -0.06              | 0.04                                      |
| DEG_COVE~CA_BEDDED | 0.01              | 0.03               | 0.02                                      |
| DEV_LEVE~FAIW      | -0.03             | -0.04              | 0.01                                      |

Tab 5: Parameterbeziehungen mit Korrelationswerten (R-values) von Spearman > Pearson

#### 3.1.2 Deckungsangebot in Abhängigkeit der Vegetationsparameter

Das Deckungsangebot des liegenden Rehs (CA\_BEDDED) korrelierte weder mit den LIDAR-Daten, noch mit den Parametern aus der forstlichen Luftbild-Bestandeskartierung. Diese Parameterpaare ergaben auffällig kleine Korrelationswerte (-0.7  $\leq R \leq 0.8$ ) bei geringer Signifikanz (  $0.30 \leq P \leq 0.89$ ). Mit dem Äsungsangebot im Sommer, sowie im Winter zeigte sich eine mittelstarke negative Korrelation (R<sub>FAIS</sub> = -0.36 und R<sub>FAIW</sub> = -0.45), jedoch beide Male mit einer Signifikanz von P = 0.00. Ebenso zeigen beide eine geringe Streuung und wenige Ausreisser. (Abb 3) Entsprechend den Parameterkategorien (Tab 4) nimmt mit steigendem Äsungsangebot also das Deckungsangebot für das liegende Reh zu. Für die komplette Übersicht der Korrelationen für das Deckungsangebot des liegenden Rehs siehe Anhang C.a. CA\_BEDDED und Vegetationsparameter.

Beim Deckungsangebot für das stehende Reh (CA\_STANDING) fielen die Parameterbeziehungen leicht anders aus. Ähnlich wie bei CA\_BEDDED waren die GIS basierten Parameter LIDAR, DEG\_COVE UND DEV\_LEVE bei geringer Signifikanz (0.37  $\leq$  P  $\leq$  0.90) kaum korreliert (-0.01  $\leq$  R  $\leq$  0.07). Eine Ausnahme ist der Mischungsgrad (DEG\_COMP) der eine mit P = 0.005 signifikante, obgleich eher schwache negative Korrelation aufwies (R = -0.23) (Abb 4).

Analog zum liegenden Reh bestanden auch bei CA\_STANDING negativ korrelierte Parameterbeziehungen mit dem sommerlichen und winterlichen Äsungsangebot.  $R_{FAIW}$  fällt mit - 0.30 jedoch etwas geringer aus, macht dies aber mit einer Signifikanz von P = 0.00 wieder wett.  $R_{FAIS}$  hingegen war mit -0.12 deutlich kleiner, zeigte auch einen geringeren P-Wert (P = 0.11) und wurde daher als nicht signifikant betrachtet. Ebenso fiel die Streuung der Werte bei der Parameterpaarung mit FAIS vergleichsweise sehr hoch aus. (Abb 5) Die komplette Übersicht der Korrelationen für das Deckungsangebot des stehenden Rehs befindet sich im Anhang C.b. CA\_STANDING und Vegetationsparameter.



Abb 3: Scatterplots des Deckungsangebotes für das liegende Reh (CA\_BEDDED) in Abhängigkeit des Äsungsangebotes im Winter (FAIW) und Sommer (FAIS) mit den zugehörigen Korrelations- (R<sub>Pearson</sub>) und Signifikanzwerten (P). Die Boxplots zeigen die Datenstreuung und Ausreisser.



Abb 4: Scatterplot des Deckungsangebotes für das stehende Reh (CA\_STANDING) in Abhängigkeit des Mischungsgrades (DEG\_COMP) mit den zugehörigen Korrelations- (R<sub>Pearson</sub>) und Signifikanzwerten (P). Die Boxplots zeigen die Datenstreuung und Ausreisser.



Abb 5: Scatterplots des Deckungsangebotes für das stehende Reh (CA\_STANDING) in Abhängigkeit des Äsungsangebotes im Winter (FAIW) und Sommer (FAIS) mit den zugehörigen Korrelations- (R<sub>Pearson</sub>) und Signifikanzwerten (P). Die Boxplots zeigen die Datenstreuung und Ausreisser.

#### 3.1.3 Weitere Korrelationen

Die stärksten Korrelationen ergaben sich nicht allzu überraschend innerhalb der Parameterpaare des Deckungs- (CA\_BEDDED~CA\_STANDING) und des Äsungsangebotes (FAIS~FAIW) (Abb 6) Demzufolge weist ein Standort mit einer guten Deckung für ein liegendes Reh auch eine gute Deckung für ein stehendes Reh auf. Ebenfalls ist laut diesen Resultaten an Orten mit reicher Winteräsung auch eine reiche Sommeräsung zu finden und umgekehrt.



Abb 6: Scatterplots der Parameterpaare des Deckungsangebotes (CA\_BEDDED und CA\_STANDING) und des Äsungsangebotes (FAIW und FAIS) mit den zugehörigen Korrelations- (RPearson) und Signifikanzwerten (P). Die Boxplots zeigen die Datenstreuung und Ausreisser.

Des Weiteren haben sich in der Analyse die nachfolgenden drei Parameterpaare als signifikant  $(0.001 \le P \le 0.02)$  negativ korreliert (-0.18  $\le R \le -0.26)$  erwiesen (Abb 7). Entsprechend den Korrelations- und Signifikanzwerten der Kombination DEV\_LEVE~LIDAR kommt die aus den LIDAR-Daten extrahierte Rehvegetation am häufigsten in Beständen mit Stangenholz, seltener in solchen mit Baumholz oder unterschiedlichen Altern und Baumhöhen und am wenigsten in den mit Jungwuchs geprägten Beständen vor. Ebenso verläuft eine Zunahme des Mischungsgrades (DEG\_COMP), bzw. des Nadelholzanteils parallel zu einer Erhöhung des Äsungsangebotes im Winter (FAIW). Auch weisen Standorte mit hohem Deckungsgrad (DEG\_COVE) entsprechend des hohen Beschirmungsgrades bei älteren Baumbeständen eher auf die Entwicklungsstufe (DEV\_LEVE) Stangen- und Baumholz hin, während er in Dickungen und im Jungwuchs eher gering ausfällt (Tab 4).



Abb 7: Scatterplots der Parameterbeziehungen DEV\_LEVE~LIDAR, FAIW~DEG\_COMP und DEG\_COVE~DEV\_LEVE mit den zugehörigen Korrelations- (R<sub>Pearson</sub>) und Signifikanzwerten (P). Die Boxplots zeigen die Datenstreuung und Ausreisser.

### 3.2 Habitatmodell des Deckungsangebotes

### 3.2.1 Modellgenese

Beide Deckungsangebote konnten nahezu durch die selbe Parameterauswahl am besten beschrieben werden (siehe Tab 6). Das Endmodell des Deckungsangebotes für das liegende Reh kombinierte das winterliche Äsungsangebot (FAIW) als hochsignifikanten Parameter ( $P \cong 0$ ) mit dem Mischungsgrad (DEG\_COMP) und den LIDAR-Daten (LIDAR). Letztere Parameter wurden als nicht signifikant (P < 0.1) bewertet. Dieses Modell wies zudem einen hochsignifikanten ( $P \cong 0$ ) Y-Achsenabschnitt von 4.7 auf. Das beste Modell für das Deckungsangebot des stehenden Rehs beinhaltete dagegen zusätzlich das signifikante sommerliche Äsungsangebot (FAIS) ( $P \cong 0.001$ ) und hatte einen weniger signifikanten Y-Achsenabschnitt ( $P \cong 0.1$ ). (Anhang C.d. Summaries wichtiger Modelle)

Die Signifikanz der Modelle selbst fiel beide Male sehr hoch aus. CA\_BEDDED zeigte dabei einen verschwindend geringeren P-Wert als CA\_STANDING (siehe Tab 6).

Tab 6: Endmodelle für das Deckungsangebot des liegenden, bzw. stehenden Rehs, ihre Signifikanzwerte und Anteil der Flächeneinheiten im GIS-GRID mit Werten ausserhalb des Zielwertbereichs -0.5 bis 5.5. Für Modelldetails aus der R-Analyse siehe Anhang C.d. Summaries wichtiger Modelle.

| Modell liegendes Reh (mB.sFAIS.sDEG_COVE.sDEV_LEVE)                             |  |  |  |
|---------------------------------------------------------------------------------|--|--|--|
| CA_BEDDED = 4.6854 + 1.4568*LIDAR -0.0013*DEG_COMP -0.5847*FAIW                 |  |  |  |
| P-Value = $2.503 * e^{-07}$                                                     |  |  |  |
| Anteil Werte ausserhalb des Zielwertbereichs = 0.0%                             |  |  |  |
| Modell stehendes Reh (mS.sDEG_COVE.sDEVE_LEVE)                                  |  |  |  |
| CA_STANDING = 2.9223 + 1.7293*LIDAR -0.0028*DEG_COMP -0.8371*FAIW + 0.5178*FAIS |  |  |  |
| P-Value = 5.758 * e <sup>-05</sup>                                              |  |  |  |
| Anteil Werte ausserhalb des Zielwertbereichs = 0.7%                             |  |  |  |

Die Hierarchie der Modellserien schloss bereits anfänglich sowohl beim liegenden, als auch beim stehenden Reh die Parameter Deckungsgrad (DEG\_COVE) und Entwicklungsstufe (DEV\_LEVE) aus. Gleichzeitig bewerteten beide Serien der fünfparametrigen Modelle den Mischungsgrad (DEG\_COMP), die LIDAR-Daten (LIDAR) und das winterliche Äsungsangebot (FAIW) als grundsätzlich wichtig. Auffallend ist das sommerliche Äsungsangebot (FAIS), dass bei CA\_BEDDED als erste Wahl ausgeschlossen wurde. Hingegen ist FAIS bei CA\_STANDING Bestandteil des Zielmodells (Tab 6). Die Modellversionen mit allen sechs Vegetationsparametern (mB und mS) kamen aufgrund ihrer Gütewerte nicht als Zielmodelle in Frage. Die Modellhierarchien der beiden Gütewerte des AIC und BIC stimmten ausnahmslos überein. (Tab 7)

Tab 7: Modellserien des Deckungsangebotes des liegenden (mB), bzw. stehenden (mS) Rehs und ihre AIC- und BIC-Werte. Sofern ein Vegetationsparameter im Modell ausgeschlossen wurde, ist er nach mB. bzw. mS. als s\*\*\* aufgeführt. Die beiden Modellserien sind in sich hierarchisch nach AIC, bzw. BIC aufsteigend aufgelistet.

| y-Variable  | Modell       | AIC    | BIC    |
|-------------|--------------|--------|--------|
| CA_BEDDED   | mB.sFAIS     | 374.62 | 394.58 |
|             | mB.sDEG_COVE | 375.00 | 394.97 |
|             | mB.sDEV_LEVE | 376.00 | 395.96 |
|             | mB           | 376.62 | 399.43 |
|             | mB.sFAIW     | 393.70 | 413.67 |
|             | mB.sLIDAR    | 423.38 | 444.22 |
|             | mB.sDEG_COMP | 460.22 | 481.57 |
| CA_STANDING | mS.sDEG_COVE | 438.14 | 458.11 |
|             | mS.sDEV_LEVE | 439.41 | 459.38 |
|             | mS           | 439.72 | 462.53 |
|             | mS.sFAIS     | 446.15 | 466.12 |
|             | mS.sFAIW     | 460.41 | 480.37 |
|             | mS.sLIDAR    | 495.87 | 516.70 |
|             | mS.sDEG_COMP | 553.34 | 574.69 |

Für die Umsetzung der Deckungsangebotsmodelle in GIS waren Flächendaten der in den Modellen enthaltenen (Tab 6) Parameter der Äsungsangebote nötig. Die dazu ermittelten Zielmodelle (Tab 8) zeigten deutlich geringere, aber immer noch gute Signifikanzwerte (beide P-Werte < 0.00). Ausserdem lagen aufgrund mathematischer Ungenauigkeiten bei der Modellselektion keine (FAIW) oder verschwindend wenige (FAIS) Werte ausserhalb des nach algebraischen Rundungsregeln definierten Zielwertbereichs 0.5 bis 5.5.

Tab 8: Zielmodelle für das winterliche und sommerliche Äsungsangebot, ihre Signifikanzwerte und Anteil der Flächeneinheiten im GIS-GRID mit Werten ausserhalb des Zielwertbereichs 0.5 bis 5.5. Für Modelldetails aus der R-Analyse siehe Anhang C.d. Summaries wichtiger Modelle.

| Modell winterliches Äsungsangebot (R-Modellcode = layer.FAIWb3)  |  |  |
|------------------------------------------------------------------|--|--|
| FAIW = 4.9089 + 0.2176*LIDAR -0.0406*DEG_COVE -0.0027*DEG_COMP   |  |  |
| P-Value = 0.0003086                                              |  |  |
| Anteil Werte ausserhalb des Zielwertbereichs = 0.0%              |  |  |
| Modell sommerliches Äsungsangebot (R-Modellcode = layer.FAISc2a) |  |  |
| FAIS = 6.4923 -2.5571*LIDAR -0.0019*DEG_COMP                     |  |  |
| P-Value = 0.001015                                               |  |  |
| Anteil Werte ausserhalb des Zielwertbereichs = 0.7%              |  |  |

In einem Kontrollversuch wurde zudem das Startmodell des FAIS mit dem in der Folge neu in Flächendaten zur Verfügung stehenden FAIW ergänzt (Anhang D.c. *Model Selection* (Parameterauswahl für Habitatmodellierung)). Die AIC- und BIC-Werte des erhaltenen Zielmodells fielen aufgrund der hohen Korrelation zwischen FAIS und FAIW besser aus als bei der Modellselektion für das FAIS ohne das FAIW. Bei der Modellselektion mit FAIW lagen mit 1.3% jedoch mehr Werte ausserhalb des Zielwertebereichs 0.5 bis 5.5. Deshalb wurden die obigen, rein auf den originalen GIS-Flächenparametern (LIDAR, DEG\_COVE, DEV\_LEVE, DEG\_COMP) basierten Zielmodelle verwendet. Auf diese Weise sollten sich mögliche qualitative oder quantitative Datenverluste bei der Modellanwendung minimal auf die Endresultate auswirken.

#### 3.2.2 Modellgüte

Die Modellwerte für das Deckungsangebot des stehenden Rehs stimmten lediglich zu 6% mit jenen der Feldaufnahmen überein (Abb 8). Das Modell hat die Werte tendenziell weniger überschätzt (40%) als unterschätzt (54%) und resultierte in einer ausgeprägt breiten Streuung.



Abb 8: Vergleich der Feld- und Modelldaten des Deckungsangebotes für das stehende Reh. Abweichung als Kategoriendifferenz und deren Häufigkeit von 134 Datensätzen. Farbcode: gelb = überschätzt, grün = korrekt, blau = unterschätzt.

Beim Deckungsangebot des liegenden Rehs wurden 58% der Plotstandorte unterbewertet (Abb 9). Über die Hälfte der Werte (52%) lagen um lediglich eine Kategorie zu tief. Im Gegensatz zur flachen Verteilung bei CA\_STANDING (Abb 8), scheint das Modell CA\_BEDDED das reale Deckungsangebot für das liegende Reh konstant leicht zu unterschätzen. Zudem wurden 15% der Kategorien korrekt berechnet und vergleichsweise nur 29% überschätzt.

Grundsätzlich besteht eine hohe Diskrepanz der Modellwerte zu den im Feld punktuell erhobenen Deckungsangebote.



Abb 9: Vergleich der Feld- und Modelldaten des Deckungsangebotes für das liegende Reh. Abweichung als Kategoriendifferenz und deren Häufigkeit von 134 Datensätzen. Farbcode: gelb = überschätzt, grün = korrekt, blau = unterschätzt.

#### 3.3 Deckungsangebot für Rehe im Grossraum Sihlwald

Das Deckungsangebot für das liegende Reh fiel grundsätzlich besser aus als jenes für das stehende Reh. Nach einigen Datenverlusten durch die verschiedenen Arbeitsschritte belief sich die bewertete Gesamtfläche auf 16.86 km<sup>2</sup>. Beim liegenden Reh (Abb 10) fielen 37.99 ha (2.3%) unter Kategorie 5 (Tab 9). Mit 1607.69 ha (95.3%) entsprach die meiste Fläche Kategorie 4 und die übrigen 40.49 ha (2.4%) der Kategorie 3. Das Modell errechnete keine schlechten Deckungsangebote der Kategorien 0, 1 oder 2. Beim Deckungsangebot für das stehende Reh (Abb 11) bewegten sich die Werte im Mittelfeld. 423.12 ha (25.1%) wiesen Kategorie 4, ganze 1221.57 ha (72.4%) Kategorie 3 und eine kleine Restfläche von 41.48 ha (2.5%) Kategorie 2 auf. Gemäss Modell bestehen im Untersuchungsgebiet keine Flächen der Kategorien 5, 1 oder 0.

Tab 9: Bedeutung der Kategorien der Deckungsangebote

| (F    | Kategorie | Bedeutung   |  |
|-------|-----------|-------------|--|
| t (D/ | 0         | kein DA     |  |
| ebot  | 1         | sehr gering |  |
| ang   | 2         | gering      |  |
| sgn   | 3         | mittel      |  |
| eckı  | 4         | gut         |  |
| Ō     | 5         | sehr gut    |  |

Die total analysierte Fläche der beiden Deckungsangebote stimmte überein, wodurch bei der vergleichenden Analyse nur Flächen mit Werten beider Parameter entstanden (Abb 12). Dies, weil die kleinste gemeinsame Datenfläche der pro Modellverwendeten Parameter (Tab 6) identisch war. Bei dieser Gegenüberstellung zeigte ein Viertel (419.54 ha = 24.9%) der Gesamtfläche bei beiden Deckungsangeboten Kategorie 4 (Tab 9). Der mit 1'232.22 ha (73.1%) grösste Flächenanteil hatte ein, um jeweils eine Kategorie

schlechteres Deckungsangebot für das stehende als für das liegende Reh. Auf 33.43 ha (2.0%) unterschieden sich die Deckungsangebote um zwei und bei lediglich 0.98 ha (0.1%) sogar um drei Kategorien. Das Deckungsangebot für das stehende Reh war stets schlechter oder gleich dem des liegenden Rehs, aber niemals besser.



## Deckungsangebot für das liegende Reh im Grossraum Sihlwald (ZH)

Abb 10: Karte des Deckungsangebotes für das liegende Reh im Grossraum Sihlwald (ZH).



## Deckungsangebot für das stehende Reh im Grossraum Sihlwald (ZH)

Abb 11: Karte des Deckungsangebotes für das stehende Reh im Grossraum Sihlwald (ZH).



## Diskrepanz zwischen den Deckungsangeboten für das liegende und stehende Reh im Grossraum Sihlwald (ZH)

Abb 12: Karte der Diskrepanz zwischen den Deckungsangeboten für das liegende und stehende Reh im Grossraum Sihlwald (ZH).

## 4 Diskussion

## 4.1 Beurteilung der Modellparameter

#### 4.1.1 Das Deckungsangebot und seine Abhängigkeit

Die relativ starke und vor allem signifikante Korrelation des Deckungsgrades (CA\_BEDDED und CA\_STANDING) mit dem Äsungsangebot (FAIW und FAIS) war zu erwarten. Dies, weil sich die Feldaufnahmen für die Äsung auf eine Höhe bis 1.20 m beschränkten (siehe Anhang, A. Protokoll Feldaufnahmen), was praktisch dem nach Griffith für den Deckungsgrad relevanten Bereich des liegenden, sowie stehenden Rehes von 0 bis 1.50 m entspricht (Tab 1). Die Begebenheit, dass gerade die Parameter FAIS und CA\_STANDING als knapp nicht mehr signifikant (P = 0.11) nur gering korrelieren (R = -0.12) ist nicht eindeutig (Abb 5). Dies könnte an der für den Parameter jeweils relevantesten Höhe liegen. Während für das sommerliche Äsungsangebot im Vergleich zum FAIW die Krautschicht im Bodenbereich (circa 0-0.5 m) stark ins Gewicht fällt, befindet sich der potentiell sichtbare Rehkörper beim stehenden Reh komplett über 0.5 m (Tab 1).

Die Abhängigkeit des CA\_STANDING vom Mischungsgrad (DEG\_COMP) ist folgendermassen zu erklären. Bestände mit höherem Nadelholzanteil beschatten den Untergrund tendenziell stärker als Laubholz geprägte Waldstandorte und hemmen so eher das Aufkommen eines Deckung spendenden Unterwuchses. Demzufolge müsste man annehmen, das Deckungsangebot des liegenden Rehs müsse auf ähnliche Weise mit dem Mischungsgrad korrelieren. Diese Parameterbeziehung weist jedoch eine schwächere, obschon ebenfalls negative Korrelation auf (R = -0.07) und dies bei einer Signifikanz von lediglich 0.37. Dennoch ist der Mischungsgrad unmittelbar nach LIDAR der aussagekräftigste Forstparameter der Luftbild-Bestandeskartierung für CA\_STANDING. (Anhang C.b. CA\_STANDING und Vegetationsparameter) Dies überrascht insofern, da in zahlreichen vergleichbaren Habitatmodellierungen andere Vegetationsparameter, vorzugsweise der Deckungsgrad, Anwendung finden (Reimoser et al., 2009; Vospernik et al., 2007; Vospernik & Reimoser, 2008).

Die mit R = 0.81 stärkste und hochsignifikante (P = 0.00) Korrelation innerhalb des Deckungsangebots (Abb 6) für ein liegendes, bzw. stehendes Reh war insofern zu erwarten, da sich die durchschnittliche Vegetation innerhalb den verwendeten 0.5 m Höhenabschnitten (gesamthaft 0 bis 2 m) pro einzelnem Standort nicht sonderlich unterscheidet. Dies gilt solange die untersuchte Waldfläche nicht von einem Standorttyp mit markant unterschiedlicher Vegetationsdichte innerhalb der bodennahen zwei Meter dominiert wird. Dies wäre beispielsweise eine homogen angepflanzte Fläche im Anwuchs (bis ~40 cm) oder einem Aufwuchsstadium (bis

BHD 12 cm). In natürlichen, obschon bewirtschafteten Beständen ist dies in der Schweiz jedoch kaum ein Thema, höchstens auf ehemaligen Pionierflächen im Zuge der Sukzession.

#### 4.1.2 Beurteilung der Beziehungen zwischen den Vegetationsparametern

Die starken und signifikanten Korrelationen zwischen den Parameterpaaren Deckungs- und Äsungsangebot der Feldaufnahme (Abb 6) waren absehbar. Unter anderem aufgrund der Bestimmung der Werte am punktgenau gleichen Standort zum gleichen Zeitpunkt erhielten vier Parameter pro Datensatz die identische zeitliche und inhaltliche Qualität. Im Unterschied zur Kombination CA\_BEDDED~CA\_STANDING (0

Deckungsangebot in Abhängigkeit der Vegetationsparameter) wird die Parameterbeziehung FAIS~FAIW in einem anderen Untersuchungsgebiet nicht zwangsläufig eine ebenso stark signifikante Korrelation aufweisen. Die, vor allem auf der Albisnordseite, sehr geringen Durchschnittswerte für FAIW (4.1) und FAIS (3.9) haben eventuell den hohen R-Wert und die FAIW Signifikanz begünstigt (ø FAIS und Region 1 aus Rohdaten: CD-Rom: Aufnahmepunkte compl bearb150101). Je besser das eine oder andere Äsungsangebot, umso mehr würden sie sich widersprechen; Einerseits bewirken hohe Anteile an Nadelholz, vor allem auch in der Aufwuchsphase (Äsungshöhe Reh bis 1.20 Meter, siehe Anhang A. Protokoll Feldaufnahmen, Beiblatt Forage Availability Index), einen hohen FAIW-Wert, aber auch Krautschicht hemmenden Schatten. Dagegen führen vermehrt lichte Waldpartien zu einer üppigeren Krautschicht und damit zu besseren FAIS-Werten.

Die LIDAR-Daten scheinen Stangenholz noch vor Baumholzbeständen als Vegetation zwischen 0 bis 3 m zu erkennen und stufen Dickungen und Jungwuchs als am wenigsten geeignetes Habitat ein (Abb 7). Die Definition der Rehvegetation als Anteil der Vegetation zwischen 0 und 3 m auf der umliegenden 400 m<sup>2</sup> grossen Fläche reicht für die Art und Genauigkeit der LIDAR-Daten offensichtlich nicht aus, um die von Rehen präferierten Entwicklungsstufen zu beschreiben. So scheint eine optische Aufnahme nach LIDAR-Methode die Rehvegetation am häufigsten in Stangenholzbeständen, etwas weniger in Baumholzbeständen und am wenigsten in Dickungen oder Jungwuchsflächen zu erkennen. In Realität ist es jedoch eher unwahrscheinlich, dass das Reh das Deckungsangebot von Stangenholz (BHD 12-30 cm, Baumhöhe zwischen 8 und 21 Metern) oder Baumholz (BHD > 30cm, Baumhöhe >21 Meter) gegenüber jenem einer Dickung bevorzugen würde (Tab 4). Probleme mit der genauen Differenzierung dieser Vertikalen Vegetationsstrukturen bei First and Last Impulse LIDAR-Daten traten bereits in der Habitatmodellierung anderer Arten auf (Graf, Mathys, & Bollmann, 2009). Verbesserung verspricht das LIDAR mit Waveform-recording, wobei die zeitabhängige Intensität der zurückgestrahlten Energie detailliertere Unterschiede auch unterhalb der Baumkronen erkennen lässt (Gwenzi & Lefsky, 2014; Lefsky, Cohen, Parker, & Harding, 2002).

Das obige Resultat könnte jedoch auch durch die eher kargen Standortbedingungen begünstigt worden sein. Diese Standortbegebenheit liegt einerseits in den Erfahrungen der Feldaufnahmen und andererseits in den LIDAR-Daten bestätigt. Letztere enthalten in 153 von 156 Datensätzen (ohne NA) lediglich 0 - 25% Rehvegetation (Anhang B.d. Tabelle Grundlagendaten). Das Phänomen dieser Parameterbeziehung müsste in einem Untersuchungsgebiet mit einer grösseren Variation im Höhenbereich der Rehvegetation erneut geprüft werden, um sich ein besseres Urteil über die gegenseitigen Abhängigkeiten machen zu können. Im selben Rahmen müsste bei einer Wiederholung der Analyse die Kategorisierung der Entwicklungsstufe überprüft und eventuell angepasst werden, was ihre nominale Struktur erschwert (Tab 4). Die dauernden Blösse (Kategorie 1000) sollten weggelassen werden, sofern ihr Vorkommen im betreffenden Untersuchungsgebiet als verschwindend gering beurteilt werden kann. Damit würden Korrelationsresultate nicht künstlich abgeschwächt.

#### 4.2 Fazit

Die relativ guten Deckungsangebote weisen trotz signifikanten, aber dennoch schwachen Korrelationen (Abb 3 & Abb 5) nicht zwangsläufig auf gute Äsungsangebote hin. Dies bestätigen die fehlenden Qualitätsunterschiede zwischen dem Deckungsangebot der, hinsichtlich Untersuchungsgebiet, nordexponierten Albiskette und dem südexponierten Zimmerberg (Abb 10 & Abb 11), analog zu den örtlichen Unterschieden der Äsungsangebote (4.1.2 Beurteilung der Beziehungen zwischen den Vegetationsparametern). Das Deckungsangebot des liegenden Rehs ist grundsätzlich mindestens in derselben Qualität wie jenes des stehenden Rehs zu erwarten (Abb 12). Die relevantesten Parameter für die Deckungsangebote sind LIDAR, der Mischungsgrad DEG COMP und die Äsungsangebote, insbesondere jenes des Winters. Die Bedeutung der Entwicklungsstufe müsste nach modifizierter Kategorisierung erneut geprüft werden. Der Deckungsgrad hingegen ist für die Deckungsangebote nahezu irrelevant (Anhang C.a. und C.b. CA\_BEDDED, respektive CA\_STANDING und Vegetationsparameter; Tab 7). Die LIDAR-Daten haben zudem zusätzliches Potential, vor allem durch künftig differenziertere, Waveform-recording basierte Rohdaten (4.1.2 Beurteilung der Beziehungen zwischen den Vegetationsparametern). Mit gesteigerter Präzision würden mit hoher Wahrscheinlichkeit die Modelle sowie spezifische Korrelationen, namentlich mit der Entwicklungsstufe DEV\_LEVE (Abb 7) verbessert. Letzterer Parameter würde bei einer Anpassung der Kategorisierung vermutlich ebenfalls relevantere Resultate in paarweisen Korrelationen und als Modellparameter ermöglichen (Abb 2 & Abb 7).

## 5 Literaturverzeichnis

- Amt für Wald ZH. (2010). *Luftbild-Bestandeskartierung. GEO-Lion Dokumentation.* Zürich: Amt für Landschaft und Natur (ALN).
- Borkowski, J., & Ukalska, J. (2008). Winter habitat use by red and roe deer in pine-dominated forest. Forest Ecology and Management, 255(3-4), 468–475. doi:10.1016/j.foreco.2007.09.013
- Bundesamt für Umwelt (BAFU). (2014). *Eidgenössische Jagdstatistik*. Abgerufen am 30. 01 2015 von http://www.wild.uzh.ch/jagdst/index.php
- Dr. rer. nat. Müller, S.-M. (21. 09 2013). *Statistik Stuttgard.* Von Beziehung dieser beiden Korrelationskoeffizienten (KK) zueinander: http://statistik-stuttgart.de/spearman-versuspearson-korrelation/ abgerufen
- Ewald, M., Dupke, C., Heurich, M., Müller, J., & Reineking, B. (2014). LiDAR Remote Sensing of Forest Structure and GPS Telemetry Data Provide Insights on Winter Habitat Selection of European Roe Deer. Forests, 5(6), 1374–1390. doi:10.3390/f5061374
- Gallina, S., Bello, J., Verteramo, C., & Delfin, C. (2010). Daytime bedsite selection pa the texan white-tailed deer in xerophyllous brushland, North-eastern Mexico. *Journal of Arid Environments, 74*, S. 373-377.
- Graf, R. F., Mathys, L., & Bollmann, K. (2009). Habitat assessment for forest dwelling species usin LIDAR remote sensing: Capercaillie in the Alps. *Forest Ecology and Management, 257*, S. 160-167.
- Griffith, B., & Youtie, B. A. (1988). Two Devices for Estimating Foliage Density and Deer Hiding Cover. *Wildlife Society*, S. 206-210.
- Gwenzi, D., & Lefsky, M. A. (2014). Modeling canopy height in a savanna ecosystem using spaceborne lidar waveforms. Remote Sensing of Environment, 154, 338–344. doi:10.1016/j.rse.2013.11.024
- Ineichen, P. (2015). Habitat selection of roe deer (Capreolus capreolus) in a landscape of fear shaped by human recreation. Zürich: Department of Environmental Systems Science (D-USYS), Swiss Federal Institute of Technology (ETH). Master thesis.
- Jayakody, SevvandiSibbald, Angela M.Gordon, Iain J.Lambin, X. (2008). Red deer Cervus elephus elaphus vigilance behaviour differs with habitat and type of human disturbance. Wildlife Biology, 14, 81–91.

- Jiang, G., Ma, J., Zhang, M., & Stott, P. (2010). Multi-Scale Foraging Habitat Use and Interactions by Sympatric Cervids in Northeastern China. (T. W. Society, Hrsg.) *Journal of Wildlife Management*, 74(4), S. 678-689.
- Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar Remote Sensing for Ecosystem Studies. BioScience, 52(1), 19. doi:10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
- Merlot, O. (15. 01 2015). Statistikberatung, IAS (Institut für Angewandte Statistik), ZHAW. (C. Gerber, Interviewer) Wädenswil.
- Meteoschweiz. (31. 01 2015). *Klimaverlauf Messstation Zürich Fluntern*. Abgerufen am 09. 02 2015 von http://www.meteoschweiz.admin.ch/home/klima/gegenwart/klima-verlauf.html#2014;2014
- Ordiz, A., Støen, O.-G., Langebro, L., Brunberg, S., & Swenson, J. (2009). A practical mehtod for measuring horizontal cover. (I. A. Management, Hrsg.) *Ursus, 20(2)*, S. 109-113.
- R-core. (2008). Akaike's An Information Criterion R-Documentation. Abgerufen am 11. 01 2015 von http://127.0.0.1:17689/library/stats/html/AIC.html
- Reimoser, S., Partl, E., Reimoser, F., & Vospernik, S. (2009). Roe-deer habitat suitability and predisposition of forest to browsing damage in its dependence on forest growth—Model sensitivity in an alpine forest region. Ecological Modelling, 220(18), 2231–2243. doi:10.1016/j.ecolmodel.2009.05.022
- Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1988). Akaike Information Criterion Statistics. *Journal* of the American Statistical Association, 83.
- Schweizer Pärke. (2015). *Portrait Wildnispark Zürich Sihlwald*. Abgerufen am 09. 02 2015 von http://www.paerke.ch/de/pdf/portrait/wildnispark\_portrt\_de.pdf
- Stankowich, T. (2008). Ungulate flight responses to human disturbance: A review and metaanalysis. Biological Conservation, 141(9), 2159–2173. doi:10.1016/j.biocon.2008.06.026
- Van Laar, V. R. N. (n.d.). De zoogdierfauna van het Stadspark Schothorst te Amersfoort, met bijzondere aandacht voor de populatieontwikkelingen van haas (Lepus europaeus) en konijn (Oryctolagus cuniculus). [The mammalian fauna of a city park, with emphasis on population development.
- Vospernik, S., Bokalo, M., Reimoser, F., & Sterba, H. (2007). Evaluation of a vegetation simulator for roe deer habitat predictions. Ecological Modelling, 202(3-4), 265–280. doi:10.1016/j.ecolmodel.2006.10.022

Vospernik, S., & Reimoser, S. (2008). Modelling changes in roe deer habitat in response to forest management. Forest Ecology and Management, 255(3-4), 530–545. doi:10.1016/j.foreco.2007.09.036
### 6 Abbildungsverzeichnis

| ABB 1: UNTERSUCHUNGSGEBIET GROSSRAUM SIHLWALD UND DIE 178 UNTERSUCHTEN PLOTSTANDORTE                                               |
|------------------------------------------------------------------------------------------------------------------------------------|
| ABB 2: KORRELATIONSMATRIX MIT KORRELATIONSWERTEN (R-VALUE) NACH PEARSON UND INTEGRIERTEM SIGNIFIKANZLEVEL (P-VALUES) VON           |
| 95%, dargestellt mit ausgekreuzten Werten falls P < 95%. Rote Kreise stellen negative, blaue Kreise positive                       |
| Korrelationen analog zu den Korrelationswerten oberhalb der Diagonalen dar. Je intensiver die Farbe und je grösser                 |
| DER KREIS, UMSO STÄRKER DIE KORRELATION                                                                                            |
| ABB 3: SCATTERPLOTS DES DECKUNGSANGEBOTES FÜR DAS LIEGENDE REH (CA_BEDDED) IN ABHÄNGIGKEIT DES ÄSUNGSANGEBOTES IM                  |
| Winter (FAIW) und Sommer (FAIS) mit den zugehörigen Korrelations- (R <sub>pearson</sub> ) und Signifikanzwerten (P). Die           |
| Boxplots zeigen die Datenstreuung und Ausreisser                                                                                   |
| ABB 4: SCATTERPLOT DES DECKUNGSANGEBOTES FÜR DAS STEHENDE REH (CA_STANDING) IN ABHÄNGIGKEIT DES MISCHUNGSGRADES                    |
| (DEG_COMP) mit den zugehörigen Korrelations- (R <sub>Pearson</sub> ) und Signifikanzwerten (P). Die Boxplots zeigen die            |
| Datenstreuung und Ausreisser                                                                                                       |
| ABB 5: SCATTERPLOTS DES DECKUNGSANGEBOTES FÜR DAS STEHENDE REH (CA_STANDING) IN ABHÄNGIGKEIT DES ÄSUNGSANGEBOTES IM                |
| WINTER (FAIW) UND SOMMER (FAIS) MIT DEN ZUGEHÖRIGEN KORRELATIONS- (R <sub>PEARSON</sub> ) UND SIGNIFIKANZWERTEN (P). DIE           |
| Boxplots zeigen die Datenstreuung und Ausreisser                                                                                   |
| ABB 6: SCATTERPLOTS DER PARAMETERPAARE DES DECKUNGSANGEBOTES (CA_BEDDED UND CA_STANDING) UND DES                                   |
| Äsungsangebotes (FAIW und FAIS) mit den zugehörigen Korrelations- (RPearson) und Signifikanzwerten (P). Die                        |
| Boxplots zeigen die Datenstreuung und Ausreisser                                                                                   |
| ABB 7: SCATTERPLOTS DER PARAMETERBEZIEHUNGEN DEV_LEVE~LIDAR, FAIW~DEG_COMP UND DEG_COVE~DEV_LEVE MIT DEN                           |
| zugehörigen Korrelations- (R <sub>pearson</sub> ) und Signifikanzwerten (P). Die Boxplots zeigen die Datenstreuung und Ausreisser. |
|                                                                                                                                    |
| ABB 8: Vergleich der Feld- und Modelldaten des Deckungsangebotes für das stehende Reh. Abweichung als                              |
| Kategoriendifferenz und deren Häufigkeit von 134 Datensätzen. Farbcode: gelb = überschätzt, grün = korrekt, blau =                 |
| UNTERSCHÄTZT                                                                                                                       |
| ABB 9: Vergleich der Feld- und Modelldaten des Deckungsangebotes für das liegende Reh. Abweichung als                              |
| Kategoriendifferenz und deren Häufigkeit von 134 Datensätzen. Farbcode: gelb = überschätzt, grün = korrekt, blau =                 |
| UNTERSCHÄTZT                                                                                                                       |
| ABB 10: KARTE DES DECKUNGSANGEBOTES FÜR DAS LIEGENDE REH IM GROSSRAUM SIHLWALD (ZH).                                               |
| ABB 11: KARTE DES DECKUNGSANGEBOTES FÜR DAS STEHENDE REH IM GROSSRAUM SIHLWALD (ZH).                                               |
| ABB 12: KARTE DER DISKREPANZ ZWISCHEN DEN DECKUNGSANGEBOTEN FÜR DAS LIEGENDE UND STEHENDE REH IM GROSSRAUM SIHLWALD                |
| (ZH)29                                                                                                                             |

### 7 Tabellenverzeichnis

| TAB 1: POTENTIELL SICHTBARER ANTEIL DES LIEGENDEN UND STEHENDEN REHKÖRPERS UND SICHTHÖHE (GRIFFITH & YOUTIE, 1988) – |             |
|----------------------------------------------------------------------------------------------------------------------|-------------|
| Faktoren für die Berechnung des Deckungsangebotes                                                                    | 11          |
| TAB 2: ÜBERSICHT ÜBER DIE ERHOBENEN PLOTS IN RELATION ZU DEN URSPRÜNGLICH AUSGEWÄHLTEN PLOTSTANDORTEN                | 12          |
| TAB 3: DETAILS ZU DEN VERWENDETEN GIS-GRUNDLAGEN                                                                     | 13          |
| TAB 4: BESCHRIEB UND REKLASSIFIZIERTE KATEGORIEN DER PARAMETER FÜR DIE GRUNDLAGENTABELLE MATRIX_ROHDATEN_REHESA2     | 214         |
| Tab 5: Parameterbeziehungen mit Korrelationswerten (R-values) von Spearman > Pearson                                 | 19          |
| TAB 6: ENDMODELLE FÜR DAS DECKUNGSANGEBOT DES LIEGENDEN, BZW. STEHENDEN REHS, IHRE SIGNIFIKANZWERTE UND ANTEIL DER   |             |
| Flächeneinheiten im GIS-GRID mit Werten ausserhalb des Zielwertbereichs -0.5 bis 5.5. Für Modelldetails aus dei      | r <b>R-</b> |
| Analyse siehe Anhang C.e. Summaries wichtiger Modelle.                                                               | 23          |
| TAB 7: MODELLSERIEN DES DECKUNGSANGEBOTES DES LIEGENDEN (MB), BZW. STEHENDEN (MS) REHS UND IHRE AIC- UND BIC- WERT   | ΓЕ.         |
| SOFERN EIN VEGETATIONSPARAMETER IM MODELL AUSGESCHLOSSEN WURDE, IST ER NACH MB. BZW. MS. ALS S*** AUFGEFÜHR          | T. DIE      |
| BEIDEN MODELLSERIEN SIND IN SICH HIERARCHISCH NACH AIC, BZW. BIC AUFSTEIGEND AUFGELISTET.                            | 24          |
| TAB 8: Zielmodelle für das winterliche und sommerliche Äsungsangebot, ihre Signifikanzwerte und Anteil der           |             |
| FLÄCHENEINHEITEN IM GIS-GRID MIT WERTEN AUSSERHALB DES ZIELWERTBEREICHS 0.5 BIS 5.5. FÜR MODELLDETAILS AUS DER       | R-          |
| Analyse siehe Anhang C.e. Summaries wichtiger Modelle.                                                               | 24          |
| Tab 9: Bedeutung der Kategorien der Deckungsangebote                                                                 | 26          |

### 8 Anhang

| A. |           | Protokoll Feldaufnahmen                                                                                                      | .39       |
|----|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------|
| B. |           | Extraktion Grundlagendaten                                                                                                   | .42       |
|    | a.        | Modell ReheSA2a                                                                                                              | .42       |
|    | b.        | Detailliertes Arbeitsprotokoll zum Modell ReheSA2a                                                                           | .43       |
|    | C.        | Erklärungen Tabelle Grundlagendaten                                                                                          | .44       |
|    | d.        | Tabelle Grundlagendaten                                                                                                      | .45       |
| C. |           | Detaillierte Resultate aus R                                                                                                 | .52       |
|    | a.        | CA_BEDDED und Vegetationsparameter                                                                                           | .52       |
|    | b.        | CA_STANDING und Vegetationsparameter                                                                                         | .53       |
|    | c.        | Modellselektion                                                                                                              | .54       |
|    | d.        | Summaries wichtiger Modelle                                                                                                  | .56       |
| D. |           | R – Scripte                                                                                                                  | .58       |
|    | a.        | Ploting P Values (Visualisierung Matrix Signifikanzwerte)                                                                    | .58       |
|    | b.<br>und | Ploting Pairs Scatterplot (Scatterplot-Visualisierung ausgewählter Parameterpaare mit<br>P-Werten nach Pearson und Spearman) | R-<br>.59 |
|    | c.        | Model Selection (Parameterauswahl für Habitatmodellierung)                                                                   | .63       |
| E. |           | Modell Deckungsangebot in GIS - Modell ReheSA2b                                                                              | .70       |

### A. Protokoll Feldaufnahmen

| Version 2.4                                                                                                                               |                                                                                                                                                     |                                                                                                | MA P. Ine                                                                                | ichen; Projekt Wil                                         | dtiere im Naherholungsraur             |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|
| Aufna                                                                                                                                     | ahmeprotokoll Äs                                                                                                                                    | sungs- und D                                                                                   | eckungsange                                                                              | bot für da                                                 | s Reh                                  |
| Datum:<br>Koordinaten:                                                                                                                    | /                                                                                                                                                   | _ Person:<br>ID Aufnah                                                                         | mepunkt:                                                                                 |                                                            |                                        |
| Beschirmungsgrad (B<br>Aufnahmefläche: 310<br>Mögliche Werte für B<br>Die Summe der BG vo<br>Pflanzengruuppen / A<br>BG 1 bis BG 4 stehen | <b>3G)</b><br>Om <sup>2</sup> (entspricht einer l<br>3G: 0%, 5%, 10%, 20%<br>erschiedener Pflanzer<br>Arten siehe Beiblatt "<br>für den Beschirmung | halben Diagonak<br>,, 100%; gezäł<br>ngruppen / Arter<br>Beschreibung Pfl<br>sgrad von Teilflä | en von 12.5m)<br>hlt werden Pflan<br>h kann > 100% b<br>anzengruppen &<br>chen der gesam | zenteile < 1.2<br>etragen. Für<br>& Arten".<br>ten Aufnahm | 20m<br>die Beschreibung de<br>efläche. |
| Pflanzengruppe / Ar                                                                                                                       | t BG 1 [%]                                                                                                                                          | BG 2 [%]                                                                                       | BG 3 [%]                                                                                 | BG 4 [%]                                                   | BG [%]                                 |
| Laubholz                                                                                                                                  |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Sträucher                                                                                                                                 |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| bevorzugte Nadelhöl                                                                                                                       | zer                                                                                                                                                 |                                                                                                |                                                                                          |                                                            |                                        |
| restliche Nadelhölze                                                                                                                      | r                                                                                                                                                   |                                                                                                |                                                                                          |                                                            |                                        |
| Brombeere                                                                                                                                 |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Himbeere                                                                                                                                  |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Heidelbeere                                                                                                                               |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Grosskräuter                                                                                                                              |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Kleinkräuter                                                                                                                              |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Horstgräser                                                                                                                               |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Süssgräser                                                                                                                                |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Äsungsangebot (= Fo<br>Forage Availability In<br>Forage Availability In<br>Deckungsangebot (=<br>Distanz zum Cover Po                     | orage Availability Inden<br>odex <b>Winter</b><br>odex <b>Sommer</b><br>Hiding Cover Index)<br>ole: 15 m                                            | x, sh. Beiblatt)                                                                               |                                                                                          |                                                            |                                        |
| Himmelsrichtung                                                                                                                           | Anzahl 1                                                                                                                                            | .0 cm - Bänder, v                                                                              | velche weniger                                                                           | als 25% verd                                               | eckt sind                              |
| 2                                                                                                                                         | 0 - 50 cm                                                                                                                                           | 50 - 100 cm                                                                                    | 100 - 150                                                                                | 0 cm                                                       | 150 -200 cm                            |
| Norden                                                                                                                                    |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Osten                                                                                                                                     |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
| Süden                                                                                                                                     |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |
|                                                                                                                                           |                                                                                                                                                     |                                                                                                |                                                                                          |                                                            |                                        |

Version 2.4

MA P. Ineichen; Projekt Wildtiere im Naherholungsraum

### Beiblatt Aufnahmeprotokoll Äsungs- und Deckungsangebot für das Reh

### Forage Availability Index

| Forage | e Availability Index W | inter                                                    |         |
|--------|------------------------|----------------------------------------------------------|---------|
| Index  | Kategorisierung        | Merkmale Winter                                          | BG [%]  |
| 1      | Sehr grosses Angebot   | bevorzugte Nadelhölzer                                   | > 25    |
|        |                        | Brombeere (Rubus sectio Rubus)                           | > 50    |
| 2      | Grosses Angebot        | bevorzugte Nadelhölzer                                   | 10 - 25 |
|        |                        | Brombeere (Rubus sectio Rubus)                           | 25 - 50 |
|        |                        | Laubholz und / oder Sträucher                            | > 25    |
| 3      | Mittleres Angebot      | bevorzugte Nadelhölzer                                   | 5       |
|        |                        | Brombeere (Rubus sectio Rubus)                           | 10 - 20 |
|        |                        | Laubholz und / oder Sträucher                            | 10 - 25 |
|        |                        | bevorzugte Nadelhölzer vorhanden                         | < 5     |
| 4      | Schlechtes Angebot     | Brombeere (Rubus sectio Rubus) vorhanden                 | < 10    |
|        |                        | Laubholz und / oder Sträucher vorhanden                  | < 10    |
| 5      | Kein Angebot           | Keine in dieser Tabelle aufgeführten Nahrungspflanzen im |         |
|        |                        | Bereich 0m – 1.2m verfügbar                              |         |

| Forag | e Availability Index So | mmer                                                                                                                                                                                                                                                                        |         |  |  |  |  |  |  |
|-------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
| index | Kategorisierung         | risierung Merkmale Sommer<br>osses Angebot<br>Laubholz und / oder Himbeere (Rubus sp.)<br>Laubholz und / oder Sträucher<br>Kräuter und / oder Gräser<br>s Angebot<br>Laubholz und / oder Himbeere (Rubus sp.)<br>Laubholz und / oder Sträucher<br>Kräuter und / oder Gräser |         |  |  |  |  |  |  |
| 1     | Sehr grosses Angebot    | Brombeere und / oder Himbeere (Rubus sp.)                                                                                                                                                                                                                                   | > 50    |  |  |  |  |  |  |
|       |                         | Laubholz und / oder Sträucher                                                                                                                                                                                                                                               | > 50    |  |  |  |  |  |  |
|       |                         | Kräuter und / oder Gräser                                                                                                                                                                                                                                                   | > 75    |  |  |  |  |  |  |
| 2     | Grosses Angebot         | Brombeere und / oder Himbeere (Rubus sp.)                                                                                                                                                                                                                                   | 25 - 50 |  |  |  |  |  |  |
|       |                         | Laubholz und / oder Sträucher                                                                                                                                                                                                                                               | 25 - 50 |  |  |  |  |  |  |
|       |                         | Kräuter und / oder Gräser                                                                                                                                                                                                                                                   | 50 - 75 |  |  |  |  |  |  |
| 3     | Mittleres Angebot       | bevorzugte Nadelhölzer                                                                                                                                                                                                                                                      | > 25    |  |  |  |  |  |  |
|       |                         | Brombeere und / oder Himbeere (Rubus sp.)                                                                                                                                                                                                                                   | 10 - 20 |  |  |  |  |  |  |
|       |                         | Laubholz und / oder Sträucher                                                                                                                                                                                                                                               | 10 - 20 |  |  |  |  |  |  |
| 4 9   |                         | Kräuter und / oder Gräser                                                                                                                                                                                                                                                   | 25 - 45 |  |  |  |  |  |  |
| 1     | Schlechtes Angebot      | bevorzugte Nadelhölzer vorhanden                                                                                                                                                                                                                                            | < 25    |  |  |  |  |  |  |
|       |                         | Brombeere und / oder Himbeere (Rubus sp.) vorhanden                                                                                                                                                                                                                         | < 10    |  |  |  |  |  |  |
|       |                         | Laubholz und / oder Sträucher vorhanden                                                                                                                                                                                                                                     | < 10    |  |  |  |  |  |  |
|       |                         | Kräuter und / oder Gräser vorhanden                                                                                                                                                                                                                                         | < 25    |  |  |  |  |  |  |
| 5     | Kein Angebot            | Keine in dieser Tabelle aufgeführten Nahrungspflanzen im                                                                                                                                                                                                                    |         |  |  |  |  |  |  |
|       |                         | Bereich 0m – 1.2m verfügbar                                                                                                                                                                                                                                                 |         |  |  |  |  |  |  |

Version 2.4

MA P. Ineichen; Projekt Wildtiere im Naherholungsraum

### Beiblatt Aufnahmeprotokoll Äsungs- und Deckungsangebot für das Reh

| Pflanzengruppe / Art   | Beschreibung                                                                                                                                |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Laubholz               | Ah, Es, Bu, VBe, HBu, Weide, TKi, Ei, Robinie                                                                                               |
| Sträucher              | Hartriegel, Holunder, Gewöhnlicher Schneeball, Weissdorn, Geissblatt,<br>Schwarzdorn, Wildrosen, Kreuzdorn, Hasel, Liguster, Pfaffenhütchen |
| bevorzugte Nadelhölzer | WTa, Douglasie, Eibe                                                                                                                        |
| restliche Nadelhölzer  | Fi, Lä, WFö                                                                                                                                 |
| Brombeere              | verholzte Stängel, kräftiges Laub                                                                                                           |
| Himbeere               | feine Stacheln, weiches Laub                                                                                                                |
| Heidelbeere            |                                                                                                                                             |
| Grosskräuter           | Hochstauden, Farne, Brennsessel, Mädesüss, Springkraut etc. (keine Disteln &<br>Sumpfschachtelhalme)                                        |
| Kleinkräuter           | Restliche Kräuter, Efeu, Waldrebe                                                                                                           |
| Horstgräser            | Horstgräser wie Draht-Schmiele, Schaf-Schwingel, Hainsimsen, Seggen                                                                         |
| Süssgräser             | Restliche Gräser                                                                                                                            |

### Beschreibung Pflanzengruppen & Arten



- B. Extraktion Grundlagendaten
- a. Modell ReheSA2a



## b. Detailliertes Arbeitsprotokoll zum Modell ReheSA2a

Als erste Quelle diente der LIDAR Datensatz, aus welchem ich mittels Reklassifikation (Tool Reclassify) den als Rehvegetation (Äsung und Deckung) betrachteten Bereich zwischen 0 und 3 m extrahierte. Die nachfolgende Kalkulation mit dem Tool Block Statistics und deren erneute Deckungsgrad (DEG\_COVE), Entwicklungsstufe (DEV\_LEVE) und Mischungsgrad (DEG\_COMP) als wichtige Einflussgrössen für das Deckungsangebot. Nach der räumlichen Reduktion dieses Forstdatensatzes auf das Untersuchungsgebiet (Tool Clip) war eine Transformation in Rasterdaten (Tool Polygon to Raster) nötig, jeweils unter Berücksichtigung des Zielparameters DG (Deckungsgrad), ESCODE klassifizierten Parameter, sowie der reklassifizierte LIDAR-Raster der Block Statistics Kalkulation musste ich für die abschliessende Datenzusammenführung zurücktransformierten (Tool Raster to Polygon). Letztere erfolgte über eine pro Parameter wiederholte, räumlich basierte Zuweisung der jeweiligen Werte zu den einzelnen Datensätzen der Grundlagentabelle (Feldaufnahmen) mit dem Tool Spatial Join. Die Grundlagentabelle habe ich zuvor als Excel-Dokument importiert und ihre Datensätze (Plots) zur Sichtung über die bestehenden X/Y-Werte nummerierten Attributnamen GRIDCODE in die einzelnen Datensätze ein. Um eine Herkunftsverwechslung der Werte auszuschliessen, wählte ich bei der Reklassifikation für jeden Parameter eine andere Anzahl Ziffern (siehe Tab 4, Kategorisierung). Nun konnte ich die vollständige Reklassifikation ergab eine Aussage über den Anteil an Rehvegetation auf einem Quadrat von 20 x 20 m um den Plotmittelpunkt (Koordinaten). In der zweiten Quelle, der Luftbild-Bestandeskartierung des Zürcher Waldes (siehe 2.3.1 Grundlagendaten), erachtete ich die drei Parameter visualisiert. Sie enthielt dabei bereits die vier letzten, im Feld erhobenen Parameter Winteräsungsangebot (FAIW), Sommeräsungsangebot (FAIS) und Deckungsangebot für das liegende (CA\_BEDDED), sowie für das stehende (CA\_STANDING) Reh (siehe 2.1 Feldaufnahmen). Diese vierstufige Anwendung des Spatial Join Tool fügte die Werte der vier GIS basierten Parameter unter dem jeweils unterschiedlich (Entwicklungsstufe), bzw. MG (Mischungsgrad) im value field. Die drei im Rasterformat, abhängig von der ursprünglichen Codierung, Tabelle der Grundlagendaten in ein Excel-Dokument (Anhang B.d. Tabelle Grundlagendaten) extrahieren und bereinigen.

## c. Erklärungen Tabelle Grundlagendaten

| VALUE       | EXPLANATION                                                                                                                                                                                      | CATEGORIES                                                                                                                                                                                             | ORIGIN                                                                                 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Q           | Numerical plot ID of total 50x50m plot raster overlaying the entire study area                                                                                                                   | none                                                                                                                                                                                                   | extract of field data                                                                  |
| x           | X plot coordinate                                                                                                                                                                                | none                                                                                                                                                                                                   | extract of field data                                                                  |
| ٢           | Y plot coordinate                                                                                                                                                                                | none                                                                                                                                                                                                   | extract of field data                                                                  |
| LIDAR       | Vegetation available between 0-3 Meters<br>within a range of 400 sqm around plot<br>center (Grid of 20x20), 4 categories of<br>vegetation availability in percentage of the<br>surrounding area. | $1 = 0-25\%$ , $2 = 25-50\%$ , $3 = 50-75\%$ , $4 = 57-100\% \Rightarrow 0 = NoData because target feature data plot external to join feature data (22 items)$                                         | extract of LIDAR data via GIS<br>Modell ReheSA2a                                       |
| DEG_COVE    | Degree of vegetational cover - 3 categories<br>in percentage.                                                                                                                                    | 10 = 0-33%, $20 = 33-66%$ , $30 = 66-100%$                                                                                                                                                             | extract of the forestry database                                                       |
| DEG_COMP    | Degree of composition - percentage of coniferous trees relative to total stand in 4 categories.                                                                                                  | 100 = 0-10%, $200 = 10-50%$ , $300 = 50-90%$ , $400 = 90-100% => 0 =$ NoData because target feature data plot external to join feature data (33 items)                                                 | extract of the forestry database                                                       |
| DEV_LEVE    | Level of development of forestry stand -<br>nominal categories transferred in 4<br>categories.                                                                                                   | 1000 = dauernde Blösse (Rutsch u.ä.), 2000 = Stangenholz, 3000 = schwaches bis starkes Baumholz (Bestandeshöhe >21m) & stufige, ungleichaltrige Bestände), 4000 = Jungwuchs/Dickung (BHD < 12cm, < 8m) | extract of the forestry database                                                       |
| FAIW        | Forage availability index in winter                                                                                                                                                              | very bad (1) to very good (5); (for details see Anhang, Beiblatt<br>Aufnahmeprotokoll, Forage Availability Index)                                                                                      | extract of field data                                                                  |
| FAIS        | Forage availability index in summer                                                                                                                                                              | very bad (1) to very good (5); (for details see Anhang, Beiblatt<br>Aufnahmeprotokoll, Forage Availability Index)                                                                                      | extract of field data                                                                  |
| CA_BEDDED   | Cover availability index for roe deer while<br>BEDDED (Method Griffith)                                                                                                                          | from no (0) to total (5) coverage; (for details see 2.2<br>Feldaufnahmen)                                                                                                                              | extract of field data (data<br>P.Ineichen original attribute name:<br>w_conc_bedded)   |
| CA_STANDING | Cover availability index for roe deer while<br>STANDING (Method Griffith)                                                                                                                        | from no (0) to total (5) coverage; (for details see 2.2<br>Feldaufnahmen)                                                                                                                              | extract of field data (data<br>P.Ineichen original attribute name:<br>w_conc_standing) |

d. Tabelle Grundlagendaten

| D   | ×      | ×      | LIDAR | DEG_COVE | DEG_COMP | DEV_LEVE | FAIW | FAIS | CA_BEDDED | CA_STANDING |
|-----|--------|--------|-------|----------|----------|----------|------|------|-----------|-------------|
| 1   | 686500 | 230450 | 1     | 30       | NA       | 3000     | 3    | 2    | 5         | 4           |
| 7   | 686300 | 230750 | 1     | 20       | 100      | 3000     | 4    | 4    | 5         | 5           |
| 20  | 686200 | 230900 | 1     | 30       | 100      | 3000     | 4    | 4    | 4         | 2           |
| 24  | 687050 | 230900 | -     | 30       | 100      | 3000     | 4    | 4    | 5         | 5           |
| 27  | 686450 | 230950 | -     | 30       | NA       | 3000     | 5    | 4    | 3         | 2           |
| 28  | 686800 | 230950 | 1     | 30       | 200      | 3000     | 3    | 4    | 4         | 3           |
| 29  | 686100 | 231000 | 1     | 20       | 100      | 3000     | 4    | 4    | 4         | 2           |
| 34  | 687100 | 231050 | 1     | 30       | 100      | 3000     | 4    | 4    | 5         | 5           |
| 38  | 686250 | 231100 | 1     | 30       | 400      | 3000     | 4    | 4    | 3         | 1           |
| 45  | 686150 | 231200 | 1     | 30       | 100      | 3000     | 4    | 4    | 3         | 2           |
| 48  | 687200 | 231200 | 1     | 30       | 100      | 3000     | 3    | 3    | 5         | 5           |
| 81  | 687200 | 231400 | 1     | 30       | NA       | 3000     | 3    | 3    | 5         | 5           |
| 96  | 685950 | 231500 | 1     | 20       | 100      | 3000     | 4    | 4    | 4         | 3           |
| 97  | 686050 | 231500 | 1     | 30       | 100      | 3000     | 4    | 4    | 3         | 1           |
| 103 | 685550 | 231550 | 1     | 20       | 100      | 3000     | 4    | 4    | 3         | 2           |
| 108 | 685950 | 231550 | 1     | 20       | 100      | 3000     | 4    | 4    | 3         | 2           |
| 120 | 685500 | 231650 | 1     | 20       | 100      | 3000     | 4    | 4    | 3         | 3           |
| 122 | 685650 | 231650 | 1     | 30       | 100      | 3000     | 4    | 4    | 4         | 3           |
| 143 | 685150 | 231750 | 1     | 30       | 100      | 3000     | 4    | 4    | 4         | 3           |
| 145 | 685300 | 231750 | 1     | 20       | 300      | 3000     | 4    | 4    | 5         | 4           |
| 153 | 684950 | 231800 | 1     | 30       | 100      | 2000     | 3    | 2    | 4         | 2           |
| 191 | 684850 | 231950 | 1     | 30       | 100      | 3000     | 4    | 4    | 3         | 2           |
| 193 | 685450 | 231950 | 1     | 30       | 100      | 3000     | 4    | 4    | 3         | 3           |
| 210 | 685650 | 232000 | 1     | 30       | 100      | 3000     | 4    | 4    | 4         | 4           |

| 235 | 684850 | 232150 | - | 20 | 100 | 3000 | 4 | 4 | 3 | 4 |
|-----|--------|--------|---|----|-----|------|---|---|---|---|
| 239 | 685750 | 232150 | 1 | 20 | 100 | 3000 | 4 | 4 | 5 | 4 |
| 249 | 685250 | 232200 | 1 | 30 | NA  | 3000 | 4 | 4 | 2 | 1 |
| 254 | 685800 | 232200 | 1 | 20 | 400 | 3000 | 4 | 4 | 4 | 4 |
| 259 | 684750 | 232250 | 1 | 30 | NA  | 3000 | 4 | 4 | 4 | 4 |
| 350 | 685200 | 232600 | 1 | 30 | 100 | 3000 | 4 | 4 | 3 | 2 |
| 367 | 685250 | 232650 | 1 | 30 | 100 | 3000 | 4 | 4 | 3 | 1 |
| 404 | 685700 | 232750 | 1 | 30 | 200 | 3000 | 4 | 4 | 3 | 2 |
| 415 | 685050 | 232800 | 1 | 30 | NA  | 3000 | 4 | 4 | 2 | 1 |
| 420 | 686000 | 232800 | 7 | 30 | 100 | 3000 | 4 | 4 | 2 | 2 |
| 454 | 685050 | 232900 | 1 | 20 | 200 | 3000 | 4 | 4 | 4 | 2 |
| 459 | 685400 | 232900 | 1 | 20 | 300 | 3000 | 4 | 4 | 3 | 2 |
| 473 | 685000 | 232950 | 1 | 20 | 200 | 3000 | 5 | 4 | 4 | 3 |
| 491 | 685150 | 233000 | 1 | 20 | 300 | 3000 | 4 | 4 | 3 | 3 |
| 492 | 685200 | 233000 | 1 | 20 | 300 | 3000 | 4 | 4 | 4 | 2 |
| 509 | 685150 | 233050 | 1 | 30 | NA  | 2000 | 5 | 4 | 4 | 3 |
| 532 | 685550 | 233100 | 1 | 30 | 200 | 3000 | 4 | 4 | 4 | 2 |
| 534 | 685700 | 233100 | 1 | 30 | NA  | 3000 | 4 | 4 | 2 | 2 |
| 547 | 684900 | 233150 | 1 | 20 | 200 | 3000 | 5 | 4 | 3 | 1 |
| 557 | 685600 | 233150 | 1 | 30 | 200 | 3000 | 5 | 4 | 2 | 1 |
| 568 | 684900 | 233200 | 1 | 20 | 200 | 3000 | 4 | 4 | 3 | 3 |
| 572 | 685200 | 233200 | 1 | 20 | 300 | 3000 | 5 | 4 | 3 | 1 |
| 574 | 685500 | 233200 | 1 | 30 | NA  | 2000 | 4 | 4 | 3 | 1 |
| 586 | 685450 | 233250 | 1 | 30 | NA  | 2000 | 4 | 4 | 4 | 3 |
| 596 | 685000 | 233300 | - | 20 | 200 | 3000 | 5 | 4 | 0 | 0 |
| 619 | 685200 | 233350 | - | 30 | NA  | 3000 | 5 | 4 | - | 0 |

| 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30< |                                                                                                                                          | 400<br>200<br>200<br>200<br>200<br>100<br>NA<br>NA<br>NA<br>NA | 3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>300 | - 4 4 0 4 4 7 0 4 4 | - 4 m m 4 4 4 4 | τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ | 0 4 v v o |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|---------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 00     234250     1       50     234300     1       000     234300     1       000     234400     1       000     234450     1       000     234550     1       000     234550     1       000     234550     1       000     234550     1       000     234700     1       000     234700     1       000     234750     1       000     234750     1       000     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20         30         30         30         20         20           30         30         30         30         30         30         30 | 200<br>200<br>200<br>200<br>100<br>NA<br>NA<br>NA<br>NA        | 3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000        | 4 7 0 4 7 7 0 4 4   | 4 m m 4 4 4 4 4 | τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ         τ | 4 v v     |
| 50     234300     1       00     234300     1       00     234450     1       50     234450     1       50     234500     1       00     234500     1       00     234500     1       00     234700     1       00     234700     1       50     234700     1       50     234750     1       50     234750     1       50     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30         30         30         30         30                                                                                           | 200<br>200<br>200<br>100<br>NA<br>NA<br>NA<br>NA               | 3000<br>3000<br>3000<br>3000<br>3000<br>3000                | 4 60 4 4 4 60 4 4   | ω ω 4 4 4 4 4   | ω         4         ω         7         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 000     234300     1       000     234450     1       000     234450     1       000     234550     1       000     234550     1       000     234700     1       000     234700     1       000     234750     1       000     234750     1       000     234750     1       000     234750     1       000     234750     1       000     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30         30         30         30           30         30         30         30                                                        | 200<br>200<br>100<br>NA<br>NA<br>NA                            | 3000<br>3000<br>3000<br>3000<br>3000                        | w 4 4 4 w 4 4       | w 4 4 4 4 4     | 4 m m 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ت ت     |
| 700     234400     1       200     234450     1       550     234500     1       500     234550     1       600     2347500     1       500     234700     1       600     234750     1       600     234750     1       600     234750     1       600     234750     1       600     234750     1       600     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                       | 200<br>NA<br>100<br>100<br>NA<br>NA                            | 3000<br>2000<br>3000<br>3000                                | 4 4 7 8 4 4         | 4 4 4 4 4       | 5     5       4     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 5       |
| 200     234450     1       550     234500     1       500     234550     1       500     234700     1       500     234700     1       500     234750     1       500     234750     1       500     234750     1       750     234750     1       750     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>30<br>30<br>30<br>30                                                                                                               | NA<br>100<br>100<br>NA<br>NA                                   | 2000<br>3000<br>3000<br>3000                                | 4 6 4 4             | 4 4 4 4         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55        |
| 550     234500     1       600     234550     1       800     234700     1       950     234700     1       500     234750     1       950     234750     1       750     234750     1       750     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>30<br>30                                                                                                                           | 100<br>NA<br>100<br>NA                                         | 3000<br>3000                                                | 4 0 4 4             | 4 4 4           | 5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5         |
| 500     234550     1       800     234700     1       050     234700     1       500     234750     1       950     234750     1       750     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br>30<br>30                                                                                                                           | NA<br>100<br>NA                                                | 3000<br>3000                                                | 6 4 4               | 4 4             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (         |
| 800     234700     1       350     234700     1       500     234750     1       950     234750     1       750     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                       | 100<br>NA                                                      | 3000                                                        | 4 4                 | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m         |
| 050     234700     1       500     234700     1       950     234750     1       100     234750     1       750     234750     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                       | NA                                                             |                                                             | 4                   |                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |
| 500         234700         1           950         234750         1           100         234750         1           750         234750         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |                                                                | 2000                                                        |                     | 4               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4         |
| 950         234750         1           100         234750         1           750         234750         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                       | NA                                                             | 2000                                                        | 2                   | 3               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |
| 100         234750         1           750         234750         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                       | NA                                                             | 2000                                                        | 4                   | 4               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |
| 750 234750 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | 200                                                            | 3000                                                        | 4                   | 4               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                       | 300                                                            | 3000                                                        | 2                   | 2               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2         |
| 650 234750 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | 200                                                            | 3000                                                        | 2                   | 4               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5         |
| 050 234800 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | 200                                                            | 3000                                                        | 4                   | 4               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |
| 300 234800 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | NA                                                             | 2000                                                        | 3                   | 2               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5         |
| 800 234850 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | 400                                                            | 3000                                                        | 1                   | 1               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |
| 500 234900 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | NA                                                             | 2000                                                        | 2                   | 3               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5         |
| 050 234950 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | 200                                                            | 3000                                                        | 4                   | 4               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4         |
| 000 235000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | 200                                                            | 3000                                                        | 2                   | 2               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |
| 450 235050 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                       | 300                                                            | 3000                                                        | 4                   | 4               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2         |
| 850 235050 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | 300                                                            | 3000                                                        | 1                   | 1               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |
| 250 235100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                       | 300                                                            | 3000                                                        | 3                   | 4               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7         |

| 5      | 0      | 5      | 5      | 0      | 5      | 5      | 3      | 5      | 3      | 1      | 0      | 3      | 2      | 3      | 4      | 2      | 5      | 5      | 1      | 1      | 4      | 2      | 4      | 5      | ~      |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 5      | ~      | 5      | 5      | -      | 5      | 5      | 4      | 5      | 4      | ۲      | e      | 4      | e      | 4      | 5      | 4      | 5      | 5      | 2      | 3      | 5      | 3      | 4      | 5      | 4      |
| 5      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 8      | 3      | 4      | 4      | 4      | 4      | 4      | D<br>D | 4      | 4      | 2      | 4      | 4      | 4      | 4      |
|        |        |        | -      | -      | -      |        | -      | -      |        | -      |        |        |        | -      | -      |        |        |        | -      | -      |        | -      | -      |        |        |
| 7      | 4      | 2      | 3      | 4      | 4      | 4      | 4      | 2      | 4      | 4      | 4      | 3      | 4      | 4      | 2      | 4      | ო      | 5      | 4      | 4      | 2      | 4      | 4      | 3      | 4      |
| 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 4000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   |
|        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 300    | 400    | 200    | 200    | 100    | 300    | 300    | 400    | 200    | 200    | 100    | ΝA     | 400    | 300    | 300    | 100    | 400    | 200    | 300    | 400    | 400    | 400    | 400    | 100    | 400    | 200    |
|        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 30     | 30     | 30     | 30     | 30     | 20     | 20     | 30     | 20     | 30     | 30     | 10     | 30     | 20     | 30     | 30     | 30     | 20     | 30     | 20     | 20     | 20     | 20     | 20     | 30     | 30     |
| -      | -      | ~      | -      | -      | 7      | ~      | -      | -      | ~      | -      | ~      | -      | ~      | -      | -      | ~      | ~      | ~      | -      | -      | -      | -      | 7      | 1      |        |
| 235100 | 235150 | 235300 | 235400 | 235550 | 235550 | 235550 | 235600 | 235700 | 235750 | 235800 | 235800 | 235800 | 235900 | 235900 | 235900 | 235950 | 235950 | 236000 | 236050 | 236050 | 236050 | 236100 | 236150 | 236150 | 236200 |
| 585800 | 685650 | 685000 | 685050 | 684200 | 685350 | 685400 | 685850 | 685100 | 584400 | 683450 | 684500 | 685650 | 683700 | 684150 | 685400 | 683800 | 684900 | 685450 | 683800 | 683900 | 685550 | 683900 | 684150 | 685200 | 583550 |
| 1290   | 1309   | 1368   | 1416   | 1473   | 1480   | 1481   | 1503   | 1547   | 1568   | 1582   | 1590   | 1594   | 1617   | 1620   | 1624   | 1634   | 1642   | 1661   | 1671   | 1672   | 1677   | 1687   | 1703   | 1706   | 1720   |

| 3      | 2      | 4      | 5      | 5      | -        | 5      | -      | -        | 0        | ~      | 7      | 5      | -      | 3      | 5      | 7      | 4      | 3      | 2      | 5      | 4      | 3      | 3      | 4      | e      |
|--------|--------|--------|--------|--------|----------|--------|--------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 3      | 3      | 5      | 5      | 4      | <b>-</b> | 5      | 2      | <b>-</b> | <b>~</b> | 4      | 3      | 5      | 2      | 4      | 5      | 3      | 5      | 4      | 4      | 5      | 5      | 4      | 4      | 4      | 5      |
| 4      | 4      | 4      | 3      | 4      | 4        | e      | 4      | 4        | e        | 2      | 4      | 4      | 4      | 4      | З      | 4      | 4      | З      | 3      | 4      | 3      | 4      | 2      | ~      | -      |
| 4      | 4      | 2      | 3      | 4      | 4        | e      | 4      | 4        | 4        | 2      | 4      | 4      | 4      | 2      | ~      | 4      | 4      | S      | 3      | 4      | 3      | 4      | -      | ~      | 4      |
| 3000   | 3000   | 3000   | 3000   | 2000   | 3000     | 3000   | 3000   | 3000     | 3000     | 3000   | 3000   | 2000   | 2000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   | 3000   |
| 300    | 100    | 400    | 400    | NA     | 400      | 200    | 400    | 100      | 400      | 400    | 300    | NA     | 400    | 400    | 300    | 400    | 400    | 400    | 400    | 100    | 100    | 200    | 400    | 400    | 200    |
| 20     | 20     | 30     | 30     | 30     | 30       | 30     | 20     | 30       | 20       | 20     | 30     | 30     | 10     | 30     | 20     | 30     | 30     | 30     | 30     | 20     | 20     | 30     | 30     | 30     | 20     |
| 1      | 1      | 1      | 1      | 1      | +        | -      | +      | +        | -        | -      | -      | +      | +      | 1      | +      | -      | +      | +      | 1      | 1      | 1      | 1      | +      | -      | 2      |
| 236200 | 236200 | 236200 | 236200 | 236200 | 236250   | 236250 | 236250 | 236300   | 236300   | 236350 | 236400 | 236400 | 236450 | 236450 | 236500 | 236550 | 236550 | 236600 | 236650 | 236700 | 236700 | 236850 | 236850 | 236850 | 236900 |
| 683850 | 684100 | 685350 | 685450 | 685550 | 684750   | 685100 | 685300 | 683950   | 685300   | 685400 | 684550 | 685000 | 685050 | 685350 | 684350 | 684650 | 685300 | 684300 | 685100 | 683600 | 684950 | 684300 | 684750 | 684800 | 684300 |
| 1723   | 1724   | 1729   | 1730   | 1731   | 1746     | 1750   | 1753   | 1769     | 1776     | 1790   | 1797   | 1798   | 1809   | 1810   | 1813   | 1822   | 1823   | 1826   | 1837   | 1839   | 1841   | 1859   | 1863   | 1864   | 1871   |

|              | 236900 | ~              | 30 | 200 | 3000 | 3        | ~ | 5 | 4 |
|--------------|--------|----------------|----|-----|------|----------|---|---|---|
| 23(          | 9000   | -              | 30 | 200 | 3000 | 2        | 2 | 5 | 4 |
| 23(          | 3950   | -              | 30 | 300 | 3000 | 2        | 2 | 5 | 4 |
| 23           | 6950   | <del>, -</del> | 30 | 400 | 3000 | 4        | 4 | 5 | 5 |
| У.           | 37050  | <del>, -</del> | 30 | 200 | 3000 | 4        | 4 | 3 | 2 |
| 2            | 37200  | <del>, -</del> | 20 | 300 | 3000 | 4        | 4 | 5 | 5 |
| $\mathbf{C}$ | 37350  | <del>, -</del> | 10 | 200 | 3000 | 3        | 2 | 5 | 4 |
| ~            | 237350 | <del>, -</del> | 30 | 100 | 3000 | 4        | 4 | 2 | 2 |
|              | 237350 | <del>, -</del> | 30 | 200 | 3000 | <b>~</b> | - | 4 | 3 |
|              | 237400 | <del>~</del>   | 30 | 100 | 3000 | 4        | 4 | 4 | 4 |
|              | 237400 | <del>, -</del> | 30 | 400 | 3000 | 2        | 2 | 5 | 3 |
|              | 237450 | 1              | 30 | 100 | 3000 | 4        | 4 | 5 | 4 |
|              | 237500 | 1              | 20 | 200 | 3000 | 4        | 1 | 4 | 2 |
| -            | 237500 | 1              | 20 | 200 | 3000 | 4        | 1 | 4 | 1 |
|              | 237550 | 1              | 20 | NA  | 3000 | 4        | 2 | 5 | 4 |
|              | 237600 | 1              | 10 | NA  | 3000 | 3        | 1 | 5 | 5 |
|              | 237650 | 1              | 30 | 200 | 3000 | 3        | 3 | 5 | 5 |
|              | 237850 | 1              | 30 | 100 | 3000 | 4        | 4 | 4 | 3 |
|              | 237950 | 1              | 30 | 300 | 3000 | 2        | 2 | 4 | 3 |
|              | 238050 | NA             | 30 | 400 | 3000 | 4        | 3 | 1 | 0 |
|              | 238050 | 1              | 20 | 100 | 3000 | 4        | 4 | 4 | 5 |
|              | 238100 | 1              | 20 | 300 | 3000 | 2        | 2 | 5 | 3 |
|              | 238150 | NA             | 10 | NA  | 2000 | 1        | 1 | 4 | 3 |
|              | 238200 | 2              | 30 | NA  | 2000 | 3        | 3 | 3 | 1 |
|              | 238250 | 1              | 30 | NA  | 2000 | 4        | 4 | 4 | 2 |
|              | 238300 | -              | 30 | NA  | 2000 | 4        | 4 | 4 | 4 |
| l            |        |                |    |     |      |          |   |   |   |

| 2105 | 681100 | 238300 | -  | 30 | NA  | 2000 | 4 | 4 | 2 | 2 |
|------|--------|--------|----|----|-----|------|---|---|---|---|
| 2113 | 680350 | 238350 | NA | 10 | 400 | 3000 | 2 | 2 | 4 | 2 |
| 2136 | 680450 | 238500 | NA | 20 | NA  | 3000 | 2 | 2 | 4 | 2 |
| 2152 | 680450 | 238650 | NA | 30 | 400 | 2000 | 5 | 2 | 3 | 1 |
| 2177 | 683850 | 238800 | NA | 20 | 400 | 3000 | 4 | 4 | 4 | 3 |
| 2192 | 683850 | 238900 | NA | 30 | NA  | 2000 | 3 | 3 | 3 | 2 |
| 2213 | 683250 | 239050 | 1  | 30 | 200 | 3000 | 2 | 2 | 5 | 5 |
| 2229 | 681550 | 239250 | NA | 30 | 100 | 3000 | 3 | 3 | 5 | 5 |
| 2230 | 683000 | 239250 | ١  | 20 | 300 | 3000 | 2 | 4 | 4 | 3 |
| 2231 | 683450 | 239250 | NA | 30 | 300 | 3000 | 3 | 3 | 5 | 4 |
| 2239 | 681100 | 239450 | NA | 20 | 100 | 3000 | 3 | 2 | 5 | 5 |
| 2240 | 681250 | 239450 | NA | 30 | 100 | 3000 | 3 | 2 | 5 | 5 |
| 2241 | 681550 | 239450 | NA | 30 | 100 | 3000 | 3 | 3 | 5 | 5 |
| 2242 | 682950 | 239450 | NA | 30 | 100 | 3000 | 3 | 4 | 5 | 5 |
| 2248 | 682750 | 239500 | 1  | 20 | 100 | 3000 | 3 | 3 | 4 | 4 |
| 2252 | 683200 | 239500 | NA | 20 | NA  | 3000 | 3 | 3 | 4 | 4 |
| 2257 | 681200 | 239550 | NA | 20 | 100 | 3000 | 3 | 2 | 5 | 5 |
| 2264 | 681200 | 239600 | NA | 20 | 100 | 3000 | 3 | 3 | 5 | 5 |
| 2271 | 683450 | 239600 | NA | 30 | 300 | 3000 | 4 | 4 | 2 | 2 |
| 2282 | 682700 | 239700 | NA | 20 | 200 | 3000 | 3 | 4 | 3 | 3 |
| 2297 | 680900 | 239800 | NA | 30 | NA  | 2000 | 4 | 3 | 4 | 1 |
| 2311 | 680900 | 239900 | NA | 20 | 200 | 3000 | 2 | 2 | 4 | 4 |
| 2320 | 682950 | 240050 | NA | 30 | 200 | 3000 | 3 | 3 | 5 | 5 |
| 2321 | 683000 | 240050 | NA | 30 | 200 | 3000 | 2 | 2 | 5 | 5 |

51

### C. Detaillierte Resultate aus R

### a. CA\_BEDDED und Vegetationsparameter

Visualisierungen des Deckungsangebotes für das **liegende Reh** in Abhängigkeit der sechs Vegetationsparameter LIDAR, Deckungsgrad (DEG\_COVE), Mischungsgrad (DEG\_COMP), Entwicklungsstufe (DEV\_LEVE), Äsungsangebot im Winter (FAIW) und Sommer (FAIS) mit den zugehörigen Korrelations- (R<sub>Pearson</sub>) und Signifikanzwerten (P).



### b. CA\_STANDING und Vegetationsparameter

Visualisierungen des Deckungsangebotes für das **stehende Reh** in Abhängigkeit der sechs Vegetationsparameter LIDAR, Deckungsgrad (DEG\_COVE), Mischungsgrad (DEG\_COMP), Entwicklungsstufe (DEV\_LEVE), Äsungsangebot im Winter (FAIW) und Sommer (FAIS) mit den zugehörigen Korrelations- (R<sub>Pearson</sub>) und Signifikanzwerten (P).



### c. Modellselektion

> Die Modelle sind pro zusammenhängender Block (=Reduktionsstufe) nach aufsteigenden AIC/BIC-Werten hierarchisch geordnet.

> Die beiden Zielmodelle der Deckungsangebote (mB = CA\_BEDDED und mS = CA\_STANDING) sind grün hinterlegt.

| Deckungsangebot des liegenden (mB), bzw. | . stehenden | (mS) Rehs - N | dit allen Ausschlussvarianten jeweils eines Vegetationsparameters (.s****)                                     |
|------------------------------------------|-------------|---------------|----------------------------------------------------------------------------------------------------------------|
| Modellname                               | AIC         | BIC           | Modellcode                                                                                                     |
| mB.sFAIS                                 | 374.62      | 394.58        | lm(CA_BEDDED ~ LIDAR + DEG_COMP + DEG_COVE + DEV_LEVE + FAIW, data = ReheSA2, na.action = na.exclude)          |
| mB.sDEG_COVE                             | 375.00      | 394.97        | lm(CA_BEDDED ~ LIDAR + DEG_COMP + DEV_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)              |
| mB.sDEV_LEVE                             | 376.00      | 395.96        | lm(CA_BEDDED ~ LIDAR + DEG_COMP + DEG_COVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)              |
| mB                                       | 376.62      | 399.43        | lm(CA_BEDDED ~ LIDAR + DEG_COMP + DEG_COVE + DEV_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)   |
| mB.sFAIW                                 | 393.70      | 413.67        | lm(CA_BEDDED ~ LIDAR + DEG_COMP + DEG_COVE + DEV_LEVE + FAIS, data = ReheSA2, na.action = na.exclude)          |
| mB.sLIDAR                                | 423.38      | 444.22        | lm(CA_BEDDED ~ DEG_COMP + DEG_COVE + DEV_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)           |
| mS.sDEG_COVE                             | 438.14      | 458.11        | lm(CA_STANDING ~ LIDAR + DEG_COMP + DEV_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)            |
| mS.sDEV_LEVE                             | 439.41      | 459.38        | lm(CA_STANDING ~ LIDAR + DEG_COMP + DEG_COVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)            |
| mS                                       | 439.72      | 462.53        | Im(CA_STANDING ~ LIDAR + DEG_COMP + DEG_COVE + DEV_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) |
| mS.sFAIS                                 | 446.15      | 466.12        | Im(CA_STANDING ~ LIDAR + DEG_COMP + DEG_COVE + DEV_LEVE + FAIW, data = ReheSA2, na.action = na.exclude)        |
| mB.sDEG_COMP                             | 460.22      | 481.57        | lm(CA_BEDDED ~ LIDAR + DEG_COVE + DEV_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)              |
| mS.sFAIW                                 | 460.41      | 480.37        | lm(CA_STANDING ~ LIDAR + DEG_COMP + DEG_COVE + DEV_LEVE + FAIS, data = ReheSA2, na.action = na.exclude)        |
| mS.sLIDAR                                | 495.87      | 516.70        | lm(CA_STANDING ~ DEG_COMP + DEG_COVE + DEV_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)         |
| mS.sDEG COMP                             | 553.34      | 574.69        | lm(CA_STANDING ~ LIDAR + DEG_COVE + DEV_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)            |

| Modellname             | AIC         | BIC            | Modellcode                                                                                     |
|------------------------|-------------|----------------|------------------------------------------------------------------------------------------------|
| mB.Reduction.l         | Inklusive V | ergleich der I | teduktion der nächstsignifikanteren Parameter                                                  |
| mB.sFAIS.sDEG_COVE     | 373.00      | 390.12         | $m(CA_BEDDED \sim LIDAR + DEG_COMP + DEV_LEVE + FAIW, data = ReheSA2, na.action = na.exclude)$ |
| mB.sFAIS.sDEV_LEVE     | 374.02      | 391.13         | lm(CA_BEDDED ~ LIDAR + DEG_COMP + DEG_COVE + FAIW, data = ReheSA2, na.action = na.exclude)     |
| mB.sDEG_COVE.sDEV_LEVE | 374.21      | 391.33         | $m(CA_BEDDED \sim LIDAR + DEG_COMP + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)$     |
|                        |             |                |                                                                                                |

| Gerber  |
|---------|
| Claudia |
| , 2015, |
| fm, SA2 |
| ZHAW Is |

| mB.Reduction.II                            | Inklusive V | 'ergleich der | Reduktion der nächstsignifikanteren Parameter                                                |
|--------------------------------------------|-------------|---------------|----------------------------------------------------------------------------------------------|
| mB.sFAIS.sDEG_COVE.sDEV_LEVE               | 372.23      | 386.49        | lm(CA_BEDDED ~ LIDAR + DEG_COMP + FAIW, data = ReheSA2, na.action = na.exclude)              |
| mB.sFAIS.sDEG_COVE.sFAIW                   | 404.49      | 418.75        | lm(CA_BEDDED ~ LIDAR + DEG_COMP + DEV_LEVE, data = ReheSA2, na.action = na.exclude)          |
| mB.sFAIS.sDEG_COVE.sLIDAR                  | 419.88      | 434.77        | lm(CA_BEDDED ~ DEG_COMP + DEV_LEVE + FAIW, data = ReheSA2, na.action = na.exclude)           |
| mB.sFAIS.sDEG_COVE.sDEG_COMP               | 457.55      | 472.80        | lm(CA_BEDDED ~ LIDAR + DEV_LEVE + FAIW, data = ReheSA2, na.action = na.exclude)              |
|                                            |             |               |                                                                                              |
| mB.Reduction.III                           | Inklusive V | 'ergleich der | Reduktion der nächstsignifikanteren Parameter                                                |
| mB.sFAIS.sDEG_COVE.sDEV_LEVE.sLIDAR        | 418.35      | 430.25        | lm(CA_BEDDED ~ DEG_COMP + FAIW, data = ReheSA2, na.action = na.exclude)                      |
| mB.sFAIS.sDEG_COVE.sDEV_LEVE.<br>sDEG_COMP | 456.70      | 468.90        | $Im(CA_BEDDED \sim LIDAR + FAIW, data = ReheSA2, na.action = na.exclude)$                    |
| mB.sFAIS.sDEG_COVE.sDEV_LEVE.sFAIW         | 403.57      | 414.97        | lm(CA_BEDDED ~ LIDAR + DEG_COMP, data = ReheSA2, na.action = na.exclude)                     |
|                                            |             |               |                                                                                              |
| mS.Reduction.l                             | Inklusive V | 'ergleich der | Reduktion der nächstsignifikanteren Parameter                                                |
| mS.sDEG_COVE.sDEVE_LEVE                    | 437.64      | 454.75        | lm(CA_STANDING ~ LIDAR + DEG_COMP + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)     |
| mS.sDEG_COVE.sFAIS                         | 444.29      | 461.40        | lm(CA_STANDING ~ LIDAR + DEG_COMP + DEV_LEVE + FAIW, data = ReheSA2, na.action = na.exclude) |
| mS.sDEVE_LEVE.sFAIS                        | 446.43      | 463.54        | lm(CA_STANDING ~ LIDAR + DEG_COVE + DEG_COMP + FAIW, data = ReheSA2, na.action = na.exclude) |
|                                            |             |               |                                                                                              |
| mS.Reduction.II                            | Inklusive V | 'ergleich der | Reduktion der nächstsignifikanteren Parameter                                                |
| mS.sDEG_COVE.sDEVE_LEVE.sFAIS              | 444.46      | 458.72        | lm(CA_STANDING ~ LIDAR + DEG_COMP + FAIW, data = ReheSA2, na.action = na.exclude)            |
| mS.sDEG_COVE.sDEVE_LEVE.sFAIW              | 458.79      | 473.05        | lm(CA_STANDING ~ LIDAR + DEG_COMP + FAIS, data = ReheSA2, na.action = na.exclude)            |
| mS.sDEG_COVE.sDEVE_LEVE.sLIDAR             | 494.15      | 509.03        | lm(CA_STANDING ~ DEG_COMP + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)             |
| mS.sDEG_COVE.sDEVE_LEVE.sDEG_COMP          | 550.82      | 566.07        | lm(CA_STANDING ~ LIDAR + FAIW + FAIS, data = ReheSA2, na.action = na.exclude)                |
|                                            |             |               |                                                                                              |

### d. Summaries wichtiger Modelle

# summary() der Startmodelle mit allen sechs Vegetationsparametern für CA\_BEDDED und CA\_STANDING

| <pre>Call:<br/>lm(formula = CA_BEDDED ~ LIDAR + DEG_COMP + DEG_CO<br/>FAIW + FAIS, data = ReheSA2, na.action = na.ex</pre>                          | 5_COVE + DEV_LEVE +<br>a.exclude) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Residuals:<br>Min 12 Median 32 Max<br>-3.0138 -0.5743 0.2142 0.5585 2.2209                                                                          |                                   |
| Coefficients:                                                                                                                                       |                                   |
| Estimate Std. Error t value Pr(> t )                                                                                                                | t )                               |
| (Intercept) 2.5437069 2.4766639 1.027 0.306                                                                                                         | .306                              |
| LIDAR 1.4076358 1.0985081 1.281 0.203                                                                                                               | .203                              |
| DEG COMP -0.0013346 0.0008345 -1.599 0.112                                                                                                          | .112                              |
| DEG_COVE -0.0109307 0.0180236 -0.606 0.545                                                                                                          | .545                              |
| DEV LEVE 0.0008430 0.0007361 1.145 0.254                                                                                                            | .254                              |
| FAIW -0.6026203 0.1366052 -4.411 2.24e-05                                                                                                           | B-05 ***                          |
| FAIS 0.0080274 0.1380568 0.058 0.954                                                                                                                | 954                               |
|                                                                                                                                                     |                                   |
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '                                                                                                   | 05 '.' 0.1 ' 1                    |
| Residual standard error: 1.018 on 121 degrees of f<br>(50 observations deleted due to missingness)<br>Multiple R-squared: 0.2456, Advised R-squared | of freedom<br>ared: 0.2082        |
| F-statistic: 6.566 on 6 and 121 DF, p-value: 5.03                                                                                                   | 5.036e-06                         |

| Residuals:           |            |              |         |            |       |
|----------------------|------------|--------------|---------|------------|-------|
| Min<br>_3 05309 _1 0 | 10 Med     | ago 0 02125  | M C C   | Iax<br>70  |       |
| Coefficients:        |            |              |         |            |       |
|                      | Estimate   | Std. Error 1 | c value | Pr(> t )   |       |
| (Intercept) -        | -0.0591007 | 3.1689495    | -0.019  | 0.98515    |       |
| LIDAR                | 1.6012236  | 1.4055669    | 1.139   | 0.25687    |       |
| DEG COMP -           | -0.0028006 | 0.0010677    | -2.623  | 0.00984 ** |       |
| DEG COVE             | -0.0146564 | 0.0230617    | -0.636  | 0.52628    |       |
| DEV LEVE             | 0.0011966  | 0.0009418    | 1.271   | 0.20632    |       |
| FAIW                 | -0.8467981 | 0.1747896    | -4.845  | 3.8e-06 ** | *     |
| FAIS                 | 0.5072380  | 0.1766469    | 2.871   | 0.00482 ** |       |
|                      |            |              |         |            |       |
| Signif. codes        | 1***1 0 :5 | .**. 100.0   | v. 10.0 | . 0.05     | 1 1.0 |

# summary() der Zielmodelle für CA\_BEDDED und CA\_STANDING

| all:<br>m(formula =<br>na.actic                                          | cA =                          | BEDDED<br>na.exclu                          | LIDAR + I                                       | DEG_COMP                                      | + FAIW, (                                   | data                     | = ReheSA2, |
|--------------------------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------|------------|
| kesiduals:<br>Min<br>-2.9585 -0.5                                        | 10<br>531                     | Median<br>0.2295                            | 3Q<br>0.5474 2                                  | Max<br>2.1716                                 |                                             |                          |            |
| Coefficients                                                             |                               |                                             |                                                 |                                               |                                             |                          |            |
| (Intercept)                                                              | ES<br>4.6                     | 854208                                      | 1.1042359                                       | t value<br>4.243                              | Pr(> t )<br>4.28e-05                        | ***                      |            |
| LIDAR                                                                    | 1.4                           | 568093<br>013005                            | 1.0172114<br>0.0008242                          | 1.432                                         | 0.1155                                      |                          |            |
| TAIW                                                                     | -0.5                          | 847357                                      | 0.0962675                                       | -6.074                                        | 1.41e-08                                    | ***                      |            |
| signif. code                                                             | :53                           | .***1 0                                     | .**1 100.0                                      | · 10.0                                        | . 0.05                                      | . 0.                     | 1 , , 1    |
| <pre>(esidual sta<br/>(50 observ<br/>fultiple R-s<br/>^-statistic:</pre> | ndar<br>ratio<br>squar<br>12. | d error:<br>ns delet<br>ed: 0.23<br>77 on 3 | 1.012 on<br>ced due to<br>861, Ac<br>and 124 DF | 124 degr<br>missingr<br>djusted F<br>?, p-val | ees of f.<br>less)<br>(-squared<br>ue: 2.50 | reedo:<br>: 0.2<br>3e-07 | n<br>176   |

| lm(formula = na.actic            | = CA_STANDING -<br>on = na.exclude | <pre>   LIDAR   (=) </pre> | + DEG_CC     | OMP + FAIV | V + FAIS, | data = ] | ReheSA2 |
|----------------------------------|------------------------------------|----------------------------|--------------|------------|-----------|----------|---------|
| Residuals:<br>Min<br>-3 09944 -1 | 10 Mediar                          |                            | 30<br>56 2 7 | Max        |           |          |         |
| Coefficients                     |                                    |                            |              | 400        |           |          |         |
|                                  | Estimate Std.                      | . Error                    | t value      | Pr(> t )   |           |          |         |
| (Intercept)                      | 2.922287 1                         | .592067                    | 1.836        | 0.06884    | •         |          |         |
| LIDAR                            | 1.729338 1                         | 400884                     | 1.234        | 0.21938    |           |          |         |
| DEG COMP                         | -0.002753 0.                       | .001061                    | -2.595       | 0.01060    | *         |          |         |
| FAIW                             | -0.837066 0.                       | .169521                    | -4.938       | 2.52e-06   | ***       |          |         |
| FAIS                             | 0.517837 0                         | .174887                    | 2.961        | 0.00368    | **        |          |         |
|                                  |                                    |                            |              |            |           |          |         |
| Signif. code                     | SS: 0 **** 0                       | **. 100.                   | 10.01        | *** 0.05   | . 1.0     | . 1      |         |
| Recidial sta                     |                                    | 1 302 On                   | 123 dec      | Trees of 1 | reedom    |          |         |
| (50 observ                       | vations deleted                    | d due to                   | missing      | grees)     | 1000004   |          |         |
| Multiple R-s                     | squared: 0.180                     | 7, A                       | djusted      | R-squared  | 1: 0.154  |          |         |
| F-statistic:                     | : 6.782 on 4 al                    | nd 123 D                   | F, p-ve      | alue: 5.75 | 58e-05    |          |         |

# summary() der Zielmodelle für FAIW und FAIS auf Basis der flächigen Vegetationsparameter

| Call:                                                                                                   | Call:                                                                                   |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| <pre>Lm(formula = FAIW ~ LIDAR + DEG_COVE + DEG_COMP, data = ReheSA2,<br/>na.action = na.exclude)</pre> | <pre>lm(formula = FAIS ~ LIDAR + DEG_COMP, data = ReheSA2, na.action = na.exclude</pre> |
| Residuals:                                                                                              | Residuals:                                                                              |
| Min 10 Median 30 Max                                                                                    | Min 10 Median 30 Max                                                                    |
| -2.5168 -0.4425 0.3583 0.5184 1.8896                                                                    | -2.5571 -0.1790 0.2539 0.6320 1.6320                                                    |
| Coefficients:                                                                                           | Coefficients:                                                                           |
| Estimate Std. Error t value Pr(> t )                                                                    | Estimate Std. Error t value Pr(> t )                                                    |
| (Intercept) 4.9088975 1.0780063 4.554 1.24e-05 ***                                                      | (Intercept) 6.4923048 0.9443617 6.875 2.63e-10 ***                                      |
| LIDAR 0.2175613 0.9278226 0.234 0.814995                                                                | LIDAR -2.5570967 0.9152315 -2.794 0.00603 **                                            |
| DEG_COVE -0.0406391 0.0156169 -2.662 0.010389 *                                                         | DEG_COMP -0.0018906 0.0007079 -2.671 0.00857 **                                         |
| DEG_COMP -0.0026562 0.0007146 -3.717 0.000304 ***                                                       |                                                                                         |
| signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 ** 0.1 ** 1                                                | Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1                            |
| Residual standard error: 0.9192 on 124 degrees of freedom                                               | Residual standard error: 0.9114 on 125 degrees of freedom                               |
| (50 observations deleted due to missingness)                                                            | (50 observations deleted due to missingness)                                            |
| Multiple R-squared: 0.1398, Adjusted R-squared: 0.119                                                   | Multiple R-squared: 0.1044, Adjusted R-squared: 0.0901                                  |
| F-statistic: 6.717 on 3 and 124 DF, p-value: 0.0003086                                                  | F-statistic: 7.288 on 2 and 125 DF, p-value: 0.001015                                   |

### D. R - Scripte

```
a. Ploting P Values (Visualisierung Matrix Signifikanzwerte)
```

```
#### ploting R-Values incl. significance (p-values)
(install.packages("corrplot"))
library(Hmisc)
library(corrplot)
#read data in a matrix (or dataframe)
datafilename="C:/Users/Claudia
                                             Gerber/Documents/aa_educaziun-professiun/scolaziun
                                                                                                                zhaw/2
semesteroppgaveHS14/ReheSA2 gis/Matrix Rohdaten ReheSA2.txt"
data =read.table(datafilename,header=TRUE)
summary(data)
data
#name the datamatrix correctly
matrix <- as.matrix(data)</pre>
# with significance levels:
cor.mtest <- function(mat, conf.level = 0.99) {
 mat <- as.matrix(mat)</pre>
 n <- ncol(mat)
 p.mat <- lowCl.mat <- uppCl.mat <- matrix(NA, n, n)
 diag(p.mat) <- 0
 diag(lowCl.mat) <- diag(uppCl.mat) <- 1
 for (i in 1:(n - 1)) {
  for (j in (i + 1):n) {
   tmp <- cor.test(mat[, i], mat[, j], conf.level = conf.level)</pre>
   p.mat[i, j] <- p.mat[j, i] <- tmp$p.value
   lowCl.mat[i, j] <- lowCl.mat[j, i] <- tmp$conf.int[1]</pre>
   uppCI.mat[i, j] <- uppCI.mat[j, i] <- tmp$conf.int[2]</pre>
  }
 }
 return(list(p.mat, lowCl.mat, uppCl.mat))
cm <- cor(matrix,method="pearson",use="pairwise.complete.obs")
rcorr(matrix)
corrplot(cm,method="ellipse",bg=91) # simpel, just with ellipses
corrplot(cm,method="ellipse")
res1 <- cor.mtest(matrix, 0.99) # crosses out the insignificant value according to the significance level
#Colour definitions:
col1 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "white", "cyan",
               "#007FFF", "blue", "#00007F"))
col2 <- colorRampPalette(c("#67001F", "#B2182B", "#D6604D", "#F4A582", "#FDDBC7",
               "#FFFFFF", "#D1E5F0", "#92C5DE", "#4393C3", "#2166AC", "#053061"))
col3 <- colorRampPalette(c("red", "white", "blue"))
col4 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "#7FFF7F",
               "cyan", "#007FFF", "blue", "#00007F"))
corrplot.mixed(cm, p.mat = res1[[1]], sig.level = 0.01,lower="circle",upper="number",order="original")
#for stronger colour:
corrplot.mixed(cm, p.mat = res1[[1]], sig.level = 0.01,lower="circle",upper="number",order="original",col=col3(20))
```

### b. *Ploting Pairs Scatterplot* (Scatterplot-Visualisierung ausgewählter Parameterpaare mit R- und P-Werten nach Pearson und Spearman)

#### single parameter pairs Scatterplots

```
datafilename="C:/Users/ClaudiaGerber/Documents/aa educaziun-professiun/scolaziunzhaw/2
semesteroppgaveHS14/ReheSA2 gis/Matrix Rohdaten ReheSA2.txt"
data =read.table(datafilename,header=TRUE)
summary(data)
# PAIR SCATTERPLOTS WITH CA_BEDDED AND CA_STANDING
plot(data$LIDAR,data$CA_BEDDED,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "LIDAR", ylab = "CA_BEDDED",
        xlim = c(0.5, 4.5), ylim = c(-0.5, 5.5))
abline(Im(data$CA_BEDDED~data$LIDAR),col=2,lwd=3,lty=4)
title("R(Pearson) = 0.08 P = 0.31", cex=1)
boxplot(data$CA BEDDED~data$LIDAR,
        boxwex=0.5,
        add=TRUE,
        at=1:3)
plot(data$DEG COVE,data$CA BEDDED,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "DEG COVE", ylab = "CA BEDDED",
        xlim = c(5,35), ylim = c(-0.5,5.5))
abline(Im(data$CA BEDDED~data$DEG COVE),col=2,lwd=3,lty=4)
title("R(Pearson) = 0.01 P = 0.89", cex=1)
boxplot(data$CA_BEDDED~data$DEG_COVE,
        boxwex= 3.75,
        add=TRUE,
        at=1:3 *10)
plot(data$DEG COMP,data$CA BEDDED,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "DEG_COMP", ylab = "CA_BEDDED",
        xlim = c(50,450), ylim = c(-0.5,5.5))
abline(Im(data$CA BEDDED~data$DEG_COMP),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.07 P = 0.37", cex=1)
boxplot(data$CA_BEDDED~data$DEG_COMP,
        boxwex = 50,
        add=TRUE,
        at=1:4 * 100)
```

plot(data\$DEV\_LEVE,data\$CA\_BEDDED,

```
col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "DEV LEVE", ylab = "CA BEDDED",
        xlim = c(500, 4500), ylim = c(-0.5, 5.5))
abline(Im(data$CA_BEDDED~data$DEV_LEVE),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.03 P = 0.72", cex=1)
boxplot(data$CA_STANDING~data$DEV_LEVE,
        boxwex = 500,
        add=TRUE,
        at=1:3 *1000 + 1000)
plot(data$FAIW,data$CA_BEDDED,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "FAIW", ylab = "CA_BEDDED",
        xlim = c(0.5, 5.5), ylim = c(-0.5, 5.5))
abline(lm(data$CA BEDDED~data$FAIW),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.45 P = 0.00", cex=1)
boxplot(data$CA BEDDED~data$FAIW,
        add=TRUE.
        boxwex = 0.65,
        at=1:5)
plot(data$FAIS,data$CA_BEDDED,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "FAIS", ylab = "CA_BEDDED",
        xlim = c(0.5, 5.5), ylim = c(-0.5, 5.5))
abline(lm(data$CA_BEDDED~data$FAIS),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.36 P = 0.00", cex=1)
boxplot(data$CA BEDDED~data$FAIS,
        add=TRUE,
        boxwex = 0.65,
        at=1:5)
plot(data$LIDAR,data$CA STANDING,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "LIDAR", ylab = "CA STANDING",
        xlim = c(0.5, 4.5), ylim = c(-0.5, 5.5))
abline(Im(data$CA_STANDING~data$LIDAR),col=2,lwd=3,lty=4)
title("R(Pearson) = 0.07 P = 0.37", cex=1)
boxplot(data$CA_STANDING~data$LIDAR,
        add=TRUE,
        boxwex = 0.5,
```

```
at=1:3)
plot(data$DEG_COVE,data$CA_STANDING,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "DEG_COVE", ylab = "CA_STANDING",
        xlim = c(5,35), ylim = c(-0.5,5.5))
abline(lm(data$CA_STANDING~data$DEG_COVE),col=2,lwd=3,lty=4)
title("R(Pearson) = 0.05 P = 0.54", cex=1)
boxplot(data$CA_STANDING~data$DEG_COVE,
        boxwex= 3.75,
        add=TRUE,
        at=1:3 *10)
plot(data$DEG_COMP,data$CA_STANDING,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "DEG_COMP", ylab = "CA_STANDING",
        xlim = c(50,450), ylim = c(-0.5,5.5))
abline(Im(data$CA_STANDING~data$DEG_COMP),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.23 P = 0.005", cex=1)
boxplot(data$CA STANDING~data$DEG COMP,
        boxwex= 50,
        add=TRUE,
        at=1:4 *100)
plot(data$DEV_LEVE,data$CA_STANDING,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "DEV_LEVE", ylab = "CA_STANDING",
        xlim = c(500, 4500), ylim = c(-0.5, 5.5))
abline(Im(data$CA STANDING~data$DEV LEVE),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.01 P = 0.91", cex=1)
boxplot(data$CA_STANDING~data$DEV_LEVE,
        boxwex= 500,
        add=TRUE,
        at=1:3 *1000 + 1000)
plot(data$FAIW,data$CA_STANDING,
        col="vellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "FAIW", ylab = "CA_STANDING",
        xlim = c(0.5,5.5), ylim = c(-0.5,5.5))
abline(lm(data$CA_STANDING~data$FAIW),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.30 P = 0.00", cex=1)
```

```
boxplot(data$CA_STANDING~data$FAIW,
        add=TRUE,
        boxwex = 0.65,
        at=1:5)
plot(data$FAIS,data$CA STANDING,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "FAIS", ylab = "CA_STANDING",
        xlim = c(0.5,5.5), ylim = c(-0.5,5.5))
abline(Im(data$CA STANDING~data$FAIS),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.12 P = 0.11", cex=1)
boxplot(data$CA STANDING~data$FAIS,
        add=TRUE,
        boxwex = 0.65,
        at=1:5)
# IMPORTANT PARAMETER CORRELATIONS
plot(data$CA BEDDED,data$CA STANDING,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "CA_BEDDED", ylab = "CA_STANDING",
        xlim = c(-0.5,5.5), ylim = c(-0.5,5.5))
abline(lm(data$CA_STANDING~data$CA_BEDDED),col=2,lwd=3,lty=4)
title("R(Pearson) = 0.81 P = 0.0", cex=1)
boxplot(data$CA_STANDING~data$CA_BEDDED,
        add=TRUE,
        at=1:6 - 1)
plot(data$FAIS,data$FAIW,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "FAIS", ylab = "FAIW",
        xlim = c(-0.5,5.5), ylim = c(-0.5,5.5))
abline(Im(data$FAIW~data$FAIS),col=2,lwd=3,lty=4)
title("R(Pearson) = 0.68 P = 0.0", cex=1)
boxplot(data$FAIW~data$FAIS,
        add=TRUE,
        at=1:5)
plot(data$LIDAR,data$DEV LEVE,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "LIDAR", ylab = "DEV LEVE",
```

```
xlim = c(0.5, 5.5), ylim = c(500, 4500))
abline(Im(data$DEV LEVE~data$LIDAR),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.26 P = 0.001", cex=1)
boxplot(data$DEV_LEVE~data$LIDAR,
        add=TRUE,
        boxwex = 0.65,
        at=1:3)
plot(data$DEG COVE,data$DEV LEVE,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "DEG_COVE", ylab = "DEV_LEVE",
        xlim = c(5,35), ylim = c(500,4500))
abline(Im(data$DEV LEVE~data$DEG COVE),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.18 P = 0.02", cex=1)
boxplot(data$DEV LEVE~data$DEG COVE,
        add=TRUE,
        boxwex = 3.75,
        at=1:3 * 10)
plot(data$DEG COMP,data$FAIW,
        col="yellowgreen",
        pch=16,
        cex=1,
        type = "p",
        na.action=na.exclude,
        xlab = "DEG_COMP", ylab = "FAIW",
        xlim = c(50,450), ylim = c(0.5,5.5))
abline(Im(data$FAIW~data$DEG_COMP),col=2,lwd=3,lty=4)
title("R(Pearson) = -0.22 P = 0.007", cex=1)
boxplot(data$FAIW~data$DEG COMP,
        add=TRUE,
        boxwex= 50,
        at=1:4 * 100)
```

### c. Model Selection (Parameterauswahl für Habitatmodellierung)

#####Model Selection with roe deer cover parameter

```
datafilename="C:/Users/ClaudiaGerber/Documents/aa_educaziun-professiun/scolaziunzhaw/2
semesteroppgaveHS14/ReheSA2_gis/Matrix_Rohdaten_ReheSA2.txt"
ReheSA2 =read.table(datafilename,header=TRUE)
summary(ReheSA2)
str(ReheSA2)
```

library(leaps) library(stats)

na.exclude(ReheSA2)#Check ob NA Werte richtig behandelt!! #glm (generalized linear model) with same output!

#Model selection for y = CA\_BEDDED

mB.cCA STANDING <- Im(CA BEDDED ~., data = ReheSA2, na.action = na.exclude) summary(mB.cCA STANDING) AIC(mB.cCA\_STANDING) BIC(mB.cCA\_STANDING) mB <- Im(CA BEDDED ~ LIDAR + DEG COMP + DEG COVE + DEV LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mB) AIC(mB) BIC(mB) mB.sLIDAR <- Im(CA\_BEDDED ~ DEG\_COMP + DEG\_COVE + DEV\_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mB.sLIDAR) AIC(mB.sLIDAR) BIC(mB.sLIDAR) mB.sDEG\_COMP <- Im(CA\_BEDDED ~ LIDAR + DEG\_COVE + DEV\_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mB.sDEG COMP) AIC(mB.sDEG\_COMP) BIC(mB.sDEG\_COMP) mB.sDEG COVE <- Im(CA BEDDED ~ LIDAR + DEG COMP + DEV LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mB.sDEG COVE) AIC(mB.sDEG COVE) BIC(mB.sDEG COVE) mB.sDEV\_LEVE <- Im(CA\_BEDDED ~ LIDAR + DEG\_COMP + DEG\_COVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mB.sDEV\_LEVE) AIC(mB.sDEV LEVE) BIC(mB.sDEV LEVE) mB.sFAIW <- Im(CA\_BEDDED ~ LIDAR + DEG\_COMP + DEG\_COVE + DEV\_LEVE + FAIS, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIW) AIC(mB.sFAIW) BIC(mB.sFAIW) mB.sFAIS <- Im(CA BEDDED ~ LIDAR + DEG COMP + DEG COVE + DEV LEVE + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS) AIC(mB.sFAIS) BIC(mB.sFAIS) ##y = CA\_BEDDED # further reduction of parameter variety I mB.sFAIS.sDEG COVE <- Im(CA BEDDED ~ LIDAR + DEG COMP + DEV LEVE + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE) AIC(mB.sFAIS.sDEG COVE) BIC(mB.sFAIS.sDEG COVE) #testwise parallel parameter reduction - succesfully confirmed

mB.sFAIS.sDEV\_LEVE <- Im(CA\_BEDDED ~ LIDAR + DEG\_COMP + DEG\_COVE + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEV\_LEVE) AIC(mB.sFAIS.sDEV\_LEVE) BIC(mB.sFAIS.sDEV LEVE) mB.sDEV LEVE.sDEG COVE <- Im(CA BEDDED ~ LIDAR + DEG COMP + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mB.sDEV LEVE.sDEG COVE) AIC(mB.sDEV\_LEVE.sDEG\_COVE) BIC(mB.sDEV\_LEVE.sDEG\_COVE) ##y = CA\_BEDDED # further reduction of parameter variety II mB.sFAIS.sDEG\_COVE.sDEV\_LEVE <- Im(CA\_BEDDED ~ LIDAR + DEG\_COMP + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE.sDEV LEVE) AIC(mB.sFAIS.sDEG\_COVE.sDEV\_LEVE) BIC(mB.sFAIS.sDEG COVE.sDEV LEVE) #testwise parallel parameter reduction - succesfully confirmed mB.sFAIS.sDEG COVE.sLIDAR <- Im(CA BEDDED ~ DEG COMP + DEV LEVE + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE.sLIDAR) AIC(mB.sFAIS.sDEG COVE.sLIDAR) BIC(mB.sFAIS.sDEG COVE.sLIDAR) mB.sFAIS.sDEG\_COVE.sDEG\_COMP <- Im(CA\_BEDDED ~ LIDAR + DEV\_LEVE + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE.sDEG COMP) AIC(mB.sFAIS.sDEG COVE.sDEG COMP) BIC(mB.sFAIS.sDEG\_COVE.sDEG\_COMP) mB.sFAIS.sDEG COVE.sFAIW <- Im(CA BEDDED ~ LIDAR + DEG COMP + DEV LEVE, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE.sFAIW) AIC(mB.sFAIS.sDEG COVE.sFAIW) BIC(mB.sFAIS.sDEG\_COVE.sFAIW) ##y = CA BEDDED # further reduction of parameter variety III mB.sFAIS.sDEG\_COVE.sDEV\_LEVE.sLIDAR <- Im(CA\_BEDDED ~ DEG\_COMP + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE.sDEV LEVE.sLIDAR) AIC(mB.sFAIS.sDEG COVE.sDEV LEVE.sLIDAR) BIC(mB.sFAIS.sDEG\_COVE.sDEV\_LEVE.sLIDAR) mB.sFAIS.sDEG\_COVE.sDEV\_LEVE.sDEG\_COMP <- Im(CA\_BEDDED ~ LIDAR + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE.sDEV LEVE.sDEG COMP) AIC(mB.sFAIS.sDEG COVE.sDEV LEVE.sDEG COMP) BIC(mB.sFAIS.sDEG\_COVE.sDEV\_LEVE.sDEG\_COMP) mB.sFAIS.sDEG\_COVE.sDEV\_LEVE.sFAIW <- Im(CA\_BEDDED ~ LIDAR + DEG\_COMP, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE.sDEV LEVE.sFAIW)

AIC(mB.sFAIS.sDEG COVE.sDEV LEVE.sFAIW) BIC(mB.sFAIS.sDEG COVE.sDEV LEVE.sFAIW) #Model selection for y = CA\_STANDING mS.cCA BEDDED <- Im(CA STANDING ~ ., data = ReheSA2, na.action = na.exclude) summary(mS.cCA BEDDED) AIC(mS.cCA BEDDED) BIC(mS.cCA\_BEDDED) mS <- Im(CA\_STANDING ~ LIDAR + DEG\_COMP + DEG\_COVE + DEV\_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS) AIC(mS) BIC(mS) mS.sLIDAR <- Im(CA STANDING ~ DEG COMP + DEG COVE + DEV LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sLIDAR) AIC(mS.sLIDAR) BIC(mS.sLIDAR) mS.sDEG COMP <- Im(CA STANDING ~ LIDAR + DEG COVE + DEV LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG COMP) AIC(mS.sDEG COMP) BIC(mS.sDEG COMP) mS.sDEG\_COVE <- Im(CA\_STANDING ~ LIDAR + DEG\_COMP + DEV\_LEVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG COVE) AIC(mS.sDEG COVE) BIC(mS.sDEG\_COVE) mS.sDEV\_LEVE <- Im(CA\_STANDING ~ LIDAR + DEG\_COMP + DEG\_COVE + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sDEV\_LEVE) AIC(mS.sDEV\_LEVE) BIC(mS.sDEV\_LEVE) mS.sFAIW <- Im(CA STANDING ~ LIDAR + DEG COMP + DEG COVE + DEV LEVE + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sFAIW) AIC(mS.sFAIW) BIC(mS.sFAIW) mS.sFAIS <- Im(CA\_STANDING ~ LIDAR + DEG\_COMP + DEG\_COVE + DEV\_LEVE + FAIW, data = ReheSA2, na.action = na.exclude) summary(mS.sFAIS) AIC(mS.sFAIS) BIC(mS.sFAIS) ##y = CA STANDING # further reduction of parameter variety I mS.sDEG\_COVE.sDEVE\_LEVE <- Im(CA\_STANDING ~ LIDAR + DEG\_COMP + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG COVE.sDEVE LEVE)

AIC(mS.sDEG COVE.sDEVE LEVE) BIC(mS.sDEG COVE.sDEVE LEVE) #testwise parallel parameter reduction - succesfully confirmed mS.sDEG COVE.sFAIS <- Im(CA STANDING ~ LIDAR + DEG\_COMP + DEV\_LEVE + FAIW, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG COVE.sFAIS) AIC(mS.sDEG COVE.sFAIS) BIC(mS.sDEG\_COVE.sFAIS) mS.sDEVE\_LEVE.sFAIS <- Im(CA\_STANDING ~ LIDAR + DEG\_COVE + DEG\_COMP + FAIW, data = ReheSA2, na.action = na.exclude) summary(mS.sDEVE LEVE.sFAIS) AIC(mS.sDEVE LEVE.sFAIS) BIC(mS.sDEVE LEVE.sFAIS) ##y = CA\_STANDING # further reduction of parameter variety II mS.sDEG\_COVE.sDEVE\_LEVE.sFAIS <- Im(CA\_STANDING ~ LIDAR + DEG\_COMP + FAIW, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG\_COVE.sDEVE\_LEVE.sFAIS) AIC(mS.sDEG COVE.sDEVE LEVE.sFAIS) BIC(mS.sDEG COVE.sDEVE LEVE.sFAIS) #testwise parallel parameter reduction - succesfully confirmed mS.sDEG COVE.sDEVE LEVE.sFAIW <- Im(CA STANDING ~ LIDAR + DEG COMP + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG COVE.sDEVE LEVE.sFAIW) AIC(mS.sDEG COVE.sDEVE LEVE.sFAIW) BIC(mS.sDEG COVE.sDEVE LEVE.sFAIW) mS.sDEG COVE.sDEVE LEVE.sLIDAR <- Im(CA STANDING ~ DEG COMP + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG COVE.sDEVE LEVE.sLIDAR) AIC(mS.sDEG COVE.sDEVE LEVE.sLIDAR) BIC(mS.sDEG\_COVE.sDEVE\_LEVE.sLIDAR) mS.sDEG COVE.sDEVE LEVE.sDEG COMP <- Im(CA STANDING ~ LIDAR + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG\_COVE.sDEVE\_LEVE.sDEG\_COMP) AIC(mS.sDEG COVE.sDEVE LEVE.sDEG COMP) BIC(mS.sDEG\_COVE.sDEVE\_LEVE.sDEG\_COMP) ##chosen best models for CA BEDDED and CA STANDING: mB.sFAIS.sDEG\_COVE.sDEV\_LEVE <- Im(CA\_BEDDED ~ LIDAR + DEG\_COMP + FAIW, data = ReheSA2, na.action = na.exclude) summary(mB.sFAIS.sDEG COVE.sDEV LEVE) AIC(mB.sFAIS.sDEG COVE.sDEV LEVE) BIC(mB.sFAIS.sDEG COVE.sDEV LEVE) mS.sDEG COVE.sDEVE LEVE <- Im(CA STANDING ~ LIDAR + DEG COMP + FAIW + FAIS, data = ReheSA2, na.action = na.exclude) summary(mS.sDEG\_COVE.sDEVE\_LEVE) AIC(mS.sDEG\_COVE.sDEVE\_LEVE) BIC(mS.sDEG COVE.sDEVE LEVE)

##model selection for data expression of FAIW and FAIS # Startmodell a und Reduktionsstufe b mit y=FAIW layer.FAIWa <- Im(FAIW ~ LIDAR + DEG\_COVE + DEV\_LEVE + DEG\_COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWa) AIC(layer.FAIWa) BIC(layer.FAIWa) layer.FAIWb1 <- Im(FAIW ~ DEG\_COVE + DEV\_LEVE + DEG\_COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWb1) AIC(layer.FAIWb1) BIC(layer.FAIWb1) layer.FAIWb2 <- Im(FAIW ~ LIDAR + DEV\_LEVE + DEG\_COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWb2) AIC(layer.FAIWb2) BIC(layer.FAIWb2) layer.FAIWb3 <- Im(FAIW ~ LIDAR + DEG COVE + DEG COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWb3) AIC(layer.FAIWb3) BIC(layer.FAIWb3) layer.FAIWb4 <- Im(FAIW ~ LIDAR + DEG COVE + DEV LEVE, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWb4) AIC(layer.FAIWb4) BIC(layer.FAIWb4) ## Reduktionsstufe c aus layer.FAIWb3 (zur Kontrolle) layer.FAIWc1 <- Im(FAIW ~ DEG COVE + DEG COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWc1) AIC(layer.FAIWc1) BIC(layer.FAIWc1) layer.FAIWc2 <- Im(FAIW ~ LIDAR + DEG\_COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWc2) AIC(layer.FAIWc2) BIC(layer.FAIWc2) layer.FAIWc3 <- Im(FAIW ~ LIDAR + DEG COVE, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWc3) AIC(layer.FAIWc3) BIC(layer.FAIWc3) ## Reduktionsstufe d aus layer.FAIWc2 (zur doppelten Kontrolle) layer.FAIWd1 <- Im(FAIW ~ DEG COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWd1) AIC(layer.FAIWd1) BIC(layer.FAIWd1) layer.FAIWd2 <- Im(FAIW ~ LIDAR, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWd2) AIC(layer.FAIWd2) BIC(layer.FAIWd2)

```
# Startmodell a und Reduktionsstufe b mit y=FAIS
layer.FAISa <- Im(FAIS ~ LIDAR + DEG_COVE + DEV_LEVE + DEG_COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISa)
AIC(layer.FAISa)
BIC(layer.FAISa)
layer.FAISb1 <- Im(FAIS ~ DEG COVE + DEV LEVE + DEG COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISb1)
AIC(layer.FAISb1)
BIC(layer.FAISb1)
layer.FAISb2 <- Im(FAIS ~ LIDAR + DEV_LEVE + DEG_COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISb2)
AIC(layer.FAISb2)
BIC(layer.FAISb2)
layer.FAISb3 <- Im(FAIS ~ LIDAR + DEG_COVE + DEG_COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISb3)
AIC(layer.FAISb3)
BIC(layer.FAISb3)
layer.FAISb4 <- Im(FAIS ~ LIDAR + DEG COVE + DEV LEVE, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISb4)
AIC(layer.FAISb4)
BIC(layer.FAISb4)
## Reduktionsstufe c aus layer.FAISb3 (a) und layer.FAISb3 (b) (zur Kontrolle)
layer.FAISc1a <- Im(FAIS ~ DEG_COVE + DEG_COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISc1a)
AIC(layer.FAISc1a)
BIC(layer.FAISc1a)
layer.FAISc2a <- Im(FAIS ~ LIDAR + DEG COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISc2a)
AIC(layer.FAISc2a)
BIC(layer.FAISc2a)
layer.FAISc3a <- Im(FAIS ~ LIDAR + DEG COVE, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISc3a)
AIC(layer.FAISc3a)
BIC(layer.FAISc3a)
layer.FAISc1b <- Im(FAIS ~ DEV LEVE + DEG COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISc1b)
AIC(layer.FAISc1b)
BIC(layer.FAISc1b)
layer.FAISc2b <- Im(FAIS ~ LIDAR + DEG COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISc2b)
AIC(layer.FAISc2b)
BIC(layer.FAISc2b)
layer.FAISc3b <- Im(FAIS ~ LIDAR + DEV_LEVE, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISc3b)
AIC(layer.FAISc3b)
```

BIC(layer.FAISc3b)

## Reduktionsstufe d aus layer.FAIWc2 (zur doppelten Kontrolle)

layer.FAISd1 <- lm(FAIS ~ DEG\_COMP, data = ReheSA2, na.action = na.exclude)
summary(layer.FAISd1)
AIC(layer.FAISd1)
BIC(layer.FAISd1)</pre>

layer.FAISd2 <- lm(FAIS ~ LIDAR, data = ReheSA2, na.action = na.exclude) summary(layer.FAISd2) AIC(layer.FAISd2) BIC(layer.FAISd2)

#####chosen best models for FAIW and FAIS:

layer.FAIWb3 <- Im(FAIW ~ LIDAR + DEG\_COVE + DEG\_COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAIWb3) AIC(layer.FAIWb3) BIC(layer.FAIWb3) layer.FAISc2a <- Im(FAIS ~ LIDAR + DEG\_COMP, data = ReheSA2, na.action = na.exclude) summary(layer.FAISc2a) AIC(layer.FAISc2a) BIC(layer.FAISc2a)

### E. Modell Deckungsangebot in GIS - Modell ReheSA2b

Teilmodelle für FAIW und FAIS mit Parameter Mischungsgrad (*comp\_recl*), LIDAR (*recl\_bcal*) und Deckungsgrad (*cove\_recl*). (*fais\_NaDa* wurde generiert um Werteanteil ausserhalb Wertebereich 0.5 – 5.5 zu bestimmen > Modellgüte)



Hauptmodell ReheSA2b für das Deckungsangebot des stehenden (*ca\_s\_recl*) und liegenden (*ca\_b\_recl*). Rehs, sowie der Diskrepanz zwischen den beiden Deckungsangeboten (*ca\_totrecl*). Der blau beschattete Modellteil diente der Modellvalidation (3.2.2 Modellgüte). *ca\_b\_NaDa* wurde generiert um den Werteanteil ausserhalb des Wertebereichs von *CA\_BEDDED* (-0.5 – 5.5) zu bestimmen => Modellgüte.

