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SUMMARY 

Outdoor recreation has increased in popularity through development in 

infrastructure and transportation, as well as an enormous diversity and specialisation of 

clothing and gear. Although no harm is intended by recreationists and in some cases 

actually the opposite (i.e. ecotourism) is the goal, recreation has negative consequences 

for wild species. Thus, a great amount of research is being done by concerned 

researchers to try to understand the magnitude of the negative impact of human 

disturbance. 

However, these studies usually have two main caveats. First, they fail in 

disentangling direct effects of human presence from effects of habitat modifications (e.g. 

trails or roads) linked to outdoor recreation. Secondly, many studies are done in areas 

where human disturbances have been occurring already for a long period of time, which 

may lead to wildlife already being “adapted” (either behaviourally or through pre-selection 

of individuals inhabiting those areas) to these disturbances, and thus obscure the 

complete magnitude of the human disturbance impact.  

In this thesis we aimed to deal with these two problems through a combination of 

well-thought comparative and experimental studies. We focused on forested habitats, 

because forests are a widespread habitat worldwide and frequently used for recreational 

activities.  

In the first chapter we were interested in separating the direct human effect from 

the potential indirect effect of habitat change through recreational trails. Therefore we 

selected four different forests with a similar network of trails, strongly differing in their 

human frequentation. Two of them were heavily frequented by humans for recreation 

whereas the other two were rarely used for human recreation. We used a paired point 

count design to census the breeding birds in these four forests, with a point count close to 

a trail and a paired adjacent count further away from the same trail to test how the effect of 
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the trail varied across forests depending on the amount of visitors. We also investigated 

how the effect of the trails/human disturbance is modulated by the characteristics of the 

species. Birds in heavily frequented forests avoided trail proximity; there was a difference 

in bird abundance of 13% between the close and the far point count, whereas there was 

no difference between paired point counts in unfrequented forests. Similarly species 

richness dropped by 12% between the close and its paired far point count in heavily 

frequented forests, whereas there was no difference in unfrequented forests. Looking at 

the nesting guilds in unfrequented forests revealed a tendency for ground nesters to prefer 

trail proximity, whereas there was no trail effect on cavity and open-cup nesters. In heavily 

frequented forests, cavity nesters as well as open-cup nesters avoided trail proximity, 

whereas ground nesters showed no effect. These findings imply, besides some species-

specific differences, that the direct impact of humans using the trails is the stronger driver 

for bird composition compared to the indirect impact of habitat changes through trail 

construction.  

In chapter two we examined whether birds in highly frequented forests are truly 

responding less to humans than in forests which are hardly frequented by humans. For 

that we focused on the antipredatory response, more specifically on flight initiation 

distance (FID), which is the distance at which a bird flushes from an approaching human. 

We measured FID in both heavily and rarely frequented forests during the same time of 

the year for nine forest-bird species. FIDs of most species were larger in the unfrequented 

forest compared to FID in the frequented forests. This could be explained by birds learning 

that humans are not a threat and tolerating human presence (habituation) or by human 

presence acting as a selection factor on personality, with the result that only the most 

tolerant individuals stay, whereas the shy individuals leave the area. 

In the third chapter we focused on the least frequented forest to experimentally 

investigate how the presence of humans during the early spring actually affects territory 
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selection of birds. Therefore, we split forest plots into two halves (split-plots). In one half 

we walked through the forest without trails, mimicking people hiking, during March to mid-

April, and compared the later breeding bird communities between these split-plots and the 

un-frequented ones. Forest-bird abundance as well as species richness were both 

reduced by 15% in human frequented plots compared to control plots. This result shows 

that human presence directly affects a bird’s decision where to settle, independently of 

vegetation characteristics. 

Finally, in chapter four we studied the potential trans-generational effects of the 

experimental recreation (preceding chapter) on the individuals that settled, through 

examining maternal antibody deposition into the eggs of two breeding tit species (Great 

tits Parus major and blue tits Cyanistes caeruleus). We measured the amount of total 

antibodies in six days old tit nestlings (at that age they still rely mainly on maternal 

antibodies) and compared nestlings hatched in experimentally disturbed split-plots with 

hatchlings from unfrequented controls. We found a negative effect of the experimental 

human presence on maternal antibody deposition for great tits, but not for blue tits. Great 

tits breeding in disturbed split-plots deposited fewer maternal antibodies into their eggs 

compared to great tits breeding in control split-plots. This disturbance impact was 

dependent on the vegetation density; with a higher shrub cover lowering the disturbance 

impact on maternal antibody deposition. For great tits, the amount of maternal antibodies 

had a positive effect on hatching success and chick weight, both independent of human 

presence. For blue tits, these results could not be confirmed, instead we found that the 

presence of great tits was the stronger driver than the experimental disturbance. This 

study showed, that even low intensities of human recreation (as ours) can stress breeding 

birds so much, that an immunosuppressive reaction was measurable via maternal 

antibody deposition, and a trans-generational effect could be confirmed. 
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Human presence in forests drives breeding bird densities and species richness and, 

depending on the intensity and duration of recreational activities, could have long term 

consequences for the avifauna. As these human impacts on wildlife will certainly increase 

in the future, effective conservation measures are needed. Such measures necessarily 

include protected wildlife areas with reduced or prohibited access for humans. Outdoor 

recreational activities should be well guided, mainly through a clever trail-network, 

bypassing rare species’ home ranges and/or habitats, for their conservation. Through such 

smart conservation measures most outdoor recreationists will not be limited in their 

activities, but it would allow both, wildlife and recreationists to persist side by side. 

 

Author’s contribution:  

Yves Bötsch’s contributions to each chapter include: 

 Authored general introduction 

 Chapter 1: Study design and planning, data collection of first year, supervision of 

Bachelor student Daniel Scherl (data collection during second year), data analyses 

and publication (main author) 

 Chapter 2: Study design, part of data collection during the first year, supervision of 

Selina Gugelmann (data collection during second year, Semester work), data 

analyses and publication (main author) 

 Chapter 3: Study design and planning, data collection, analyses and publication 

(main author) 

 Chapter 4: Study design, blood sample collection, laboratory work, data analyses 

and publication (main author) 

 Authored general discussion 
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ZUSAMMENFASSUNG 

Freizeitaktivitäten in der Natur haben in den letzten Jahrzehnten an Popularität 

gewonnen. Durch moderne Infrastrukturen sowie spezialisierte Ausrüstung wurden viele 

Aktivitäten für die breite Öffentlichkeit zugänglich gemacht. Obwohl die meisten 

Erholungssuchenden der Natur nicht schaden wollen, ja sich sogar an ihr erfreuen, 

können ihre Aktivitäten negative Folgen für Wildtiere haben. Damit man den Einfluss der 

Freizeitaktivitäten messen und verstehen kann, wird weltweit viel Forschung betrieben. In 

diesen Studien gibt es zwei problematische Punkte: Erstens können die meisten Studien 

direkte Effekte durch die Präsenz von Menschen nicht von Habitatveränderungseffekten 

durch die Infrastruktur (z.B. Wege) trennen. Zweitens werden viele Studien in Gebieten 

durchgeführt, in welchen schon seit langer Zeit Freizeitaktivitäten stattfinden und die lokale 

Tierwelt sich bereits an diese Aktivitäten gewöhnt haben könnte (angepasstes Verhalten 

oder Selektion von störungstoleranten Individuen), was dazu führen kann, dass die 

Grössenordnung des Einflusses der Freizeitaktivitäten unterschätzt wird. 

Das Ziel dieser Arbeit war, diese beiden Schwierigkeiten mit gut geplanten, 

vergleichenden sowie experimentellen Studien zu umgehen. Wälder sind ein weit 

verbreitetes Habitat in Europa und ein beliebter Ort für verschiedenste Freizeitaktivitäten, 

weshalb wir unseren Forschungsschwerpunkt auf diesen Habitat-typ legten.  

Im ersten Kapitel wollten wir den direkten Effekt der menschlichen Präsenz mit 

dem indirekten Effekt der Habitatveränderung durch Wege vergleichen. Dazu wählten wir 

vier verschiedene Wälder mit einem ähnlichen Wanderwegenetz, aber einer stark 

unterschiedlichen Frequentierung aus. Zwei davon werden selten begangen, während die 

anderen beiden Wälder in Stadtnähe sehr oft für Freizeitaktivitäten benutzt werden. Wir 

führten in diesen Wäldern paarweise Punkt-Stopp-Zählungen durch. Eine Zählung fand 

nah und eine weiter entfernt von einem Wanderweg statt, um zu testen, wie sich 
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Habitatveränderungen durch Wege und menschliche Präsenz auf die Vogelwelt 

auswirken. Des Weiteren untersuchten wir, wie sich die Effekte Weg und 

Begehungsintensität auf unterschiedliche Artgruppen auswirkten. Die Vögel mieden die 

wegnahen Punkte in Wäldern, welche oft begangen werden (Abundanz um 13% reduziert 

im Gegensatz zu den weiter entfernten Flächen), wogegen in selten begangenen Wäldern 

kein Unterschied zwischen wegnahen und wegfernen Punkten festgestellt wurde. Einen 

ähnlichen negativen Effekt (-12%) zeigte sich auch für die Artenzahl in oft begangenen 

Wäldern. In wenig begangenen Wäldern konnten wir eine leichte Präferenz von 

Bodenbrütern für wegnahe Punkte feststellen; hingegen zeigten Höhlenbrüter sowie 

Offenbrüter keinen Unterschied zwischen wegnahen und wegfernen Punkten (Abundanz 

und Artenzahl). In den oft begangenen Wäldern wurden die wegnahen Punkte vor allem 

von Höhlenbrütern und Offenbrütern gemieden, wo hingegen Bodenbrüter keinen Effekt 

zeigten. Diese Resultate zeigen, dass neben gewissen Artgruppen spezifischen Effekten, 

die menschliche Präsenz der stärkere Treiber gegenüber weginduzierten 

Habitatveränderungen darstellt. 

Im zweiten Kapitel testeten wir, ob Vögel in häufig begangenen Wäldern 

tatsächlich weniger stark auf Menschen reagieren im Vergleich zu Vögeln aus selten 

begangenen Wäldern und somit den Effekt der Störung verwaschen. Wir haben dazu 

unser Augenmerk auf die Fluchtdistanz gelegt, d.h. die Distanz, bei welcher ein Vogel von 

einem sich annähernden Menschen flüchtet. Wir haben Fluchtdistanzen von neun 

Vogelarten zur gleichen Jahreszeit in häufig begangenen und selten begangenen Wäldern 

gemessen. Die Fluchtdistanzen der meisten Vogelarten waren im selten begangenen 

Wald grösser als in den häufig begangenen Wäldern. Möglicherweise entstehen die 

Fluchtdistanz-Differenzen zwischen häufig begangenen und wenig begangenen Wäldern 

durch eine erlernte Toleranz gegenüber Menschen (Habituation) oder durch eine Selektion 
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von Individuen, die die Anwesenheit von Menschen tolerieren, und eine Abwanderung von 

menschen-intoleranten Individuen bewirkt (Individualität).  

Im dritten Kapitel untersuchten wir mit einem experimentellen Ansatz den direkten 

Einfluss von Wanderern auf das Ansiedlungsverhalten von Waldvögeln. Dazu wanderten 

wir 2-3 Mal täglich während der Ansiedlungsphase der Brutvögel (März bis Mitte April) 

durch Waldflächen ohne Wegenetz und verglichen danach die Brutvogel Gemeinschaften 

zwischen diesen begangenen Flächen und unbegangenen Kontrollflächen. Die Abundanz 

der Waldvögel sowie ihr Artenreichtum waren auf den begangenen Flächen beide um 15% 

geringer als auf den nicht begangenen Kontrollflächen. Dies zeigt, dass menschliche 

Präsenz unabhängig von der Vegetationsstruktur das Ansiedlungsverhalten von 

Waldvögeln direkt beeinflusst.  

Dies leitet direkt über zu Kapitel vier wo wir den möglichen Effekt der 

experimentellen Störungen (siehe vorangehendes Kapitel) auf die Übertragung von 

maternalen Antikörpern in die Eier untersuchten. Dazu haben wir die Antikörpertiter von 

sechs Tage alten Blau- und Kohlmeisen-Nestlingen gemessen, da ihre Antikörper in 

diesem Alter noch hauptsächlich von der Mutter stammen. Wir verglichen die Titer der in 

den von uns begangenen Flächen geschlüpften Küken mit denen von Küken aus den 

unbegangenen Kontrollflächen. Kohlmeisen-Nestlinge, welche in experimentell gestörten 

Flächen schlüpften, hatten tiefere maternale Antikörpertiter als Jungmeisen, welche in 

ungestörten Flächen schlüpften. Dieser Effekt war aber abhängig von der 

Vegetationsdichte; dichtere Vegetation reduzierte den Störungseinfluss auf die maternalen 

Antikörpertiter.  Generell stellten wir fest, dass der Antikörpertiter bei Kohlmeisen mit der 

Schlupfrate sowie mit dem Gewicht der Jungmeisen positiv korrelierte. Bei den 

Blaumeisen konnten wir, ausser der Korrelation zwischen den Antikörpertitern und dem 

Körpergewicht der Jungmeisen, keinen der gefunden Effekte nachweisen. Bei den 

Blaumeisen schien es, dass die Anwesenheit von Kohlmeisen der stärkere beeinflussende 
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Faktor darstellte als unsere Störung. Die geringe Intensität an experimenteller 

menschlicher Aktivität störte die Kohlmeisen während der Eiablage offenbar so stark, dass 

deren erhöhter Stresshormonspiegel (Corticosteron) seine immunosuppressive Funktion 

ausüben konnte, und wir diese via maternale Antikörpertiter in den Nestlingen feststellen 

und somit einen inter-generationen Effekt aufzeigen konnten. 

Die Anwesenheit von Menschen in Wäldern beeinflusst also die Abundanz der 

Brutvögel sowie deren Artenzahl und kann in Abhängigkeit von der Intensität und Dauer 

von Freizeitaktivitäten mögliche Langzeitfolgen haben. Die Ausweisung von 

Schutzgebieten mit eingeschränktem oder unterbundenem Zugang für Besucher scheint 

daher eine angebrachte Naturschutzmassnahme zu sein. Damit seltene Arten oder 

Lebensraumtypen erhalten werden können, sollten Freizeitaktivitäten in der Natur mit 

durchdachten Wegführungen gelenkt werden. Durch solche Massnahmen können die 

Ansprüche von Wildtieren und von Erholungssuchenden gleichermassen erfüllt und ein 

einvernehmliches Miteinander garantiert werden. 
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GENERAL INTRODUCTION 

Pressure on nature 

Human impacts on habitats and wildlife increase unrestrictedly, as the world 

population is growing steadily (Gerland et al. 2014). Natural habitats not only are affected 

by the mere living space needed for the human population along with the need for food-

producing cultivated area. Also human recreation activities commonly occur in nature. 

New recreational activities (e.g. stand-up paddling) with its infrastructure are developed as 

well as vast amounts of specialized clothing and gear. Therefore outdoor recreation entails 

a large economic sector, still booming nowadays (Balmford et al. 2009). The vast majority 

of outdoor recreationists are not interested in directly enjoying nature (e.g. fauna and flora 

observations), but in outdoor sport-activities, from the most popular hiking/jogging to more 

specialized activities like paragliding, downhill cycling or rock climbing. More and more 

previously pristine and unfrequented habitats, from steep rock faces to white water, 

become used by humans. 

Being outdoors has been shown to positively affect human health and well-being 

(Martinez-Juarez et al. 2015). Even the willingness to spend money for conservation is 

positively affected by former experience with nature (Zaradic, Pergams & Kareiva 2009). 

Therefore “allowing” humans to get in contact with nature has positive consequences for 

both humans and nature conservation. Nevertheless, human outdoor activities affect 

wildlife and direct wildlife observations and photography, known as ecotourism and “non-

consumptive” activity (Wilkes 1977; Goodwin 1996), also impact wildlife (Müllner, 

Linsenmair & Wikelski 2004). We also cannot deny research(er) related effects on 

wildlife/natural habitats (Götmark 1992). In the following paragraphs I will point out the 

effects of outdoor recreation on wildlife as well as demonstrate activity and habitat 

dependent modulators of wildlife reactions. 
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Effects of outdoor activities  

Direct effects  

Outdoor-activities can impact wildlife immediately, as humans are often perceived 

by animals as predators (Frid & Dill 2002); therefore animals flush or hide. Besides 

consumptive activities like fishing and hunting, also collisions with cars can directly be 

lethal (Clevenger, Chruszcz & Gunson 2003).  

Frightened animals can show a behavioural reaction and/or may trigger a 

physiological one, non-detectable from the outside (Müller et al. 2006; Thiel et al. 2008; 

Almasi et al. 2015; Arlettaz et al. 2015). These direct impacts can have drastic effects for 

animals, as they lose energy through escaping from the threat, or via increased 

physiological demands, as for example an activation of the HPA-axis (Hypothalamic 

Pituitary Adrenal) and/or the cardiac system (Romero, Soma & Wingfield 1998; Sapolsky, 

Romero & Munck 2000; Nephew, Kahn & Romero 2003; Romero 2004). Such 

physiological reactions can negatively affect the animal’s survival, as for example 

chronically elevated levels of stress hormones (corticosterone or cortisol) negatively affect 

an individual’s immune system (Saino et al. 2003; French et al. 2010).  

Human presence can also alter the animal’s spatial and/or temporal space use 

(Ciucci et al. 1997; Olson, Squibb & Gilbert 1998) or even cause the desertion (local 

extinction) of a given area (Boyle & Samson 1985; Garber & Burger 1995). Moreover the 

individual’s reproductive output and later also the offspring’s survival can be directly 

affected through human presence (Safina & Burger 1983, but see also Seasonality and 

habitat below). 

 

Indirect effects  

Many outdoor activities rely on some kind of infrastructure (e.g. ski lift), with trails 

and roads being the most common ones (from now on referred to as trails). The 
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construction of trails entails a dramatic change in vegetation, soil surface and altered 

water balance (Benninger-Truax, Vankat & Schaefer 1992; Trombulak & Frissell 2000). 

Besides the direct change (reduction) in habitat, an additional important factor joins in, 

namely fragmentation. Habitats not only get smaller through trail construction but become 

also more and more fragmented, separating wildlife populations and reducing gene-flow 

(Saunders, Hobbs & Margules 1991; Reed, Johnson-Barnard & Baker 1996; Forman & 

Alexander 1998; Trzcinski, Fahrig & Merriam 1999; Bregman, Sekercioglu & Tobias 2014). 

Additionally trails can facilitate access of predators, which consequently increases 

predation risk and lowers habitat suitability for the local species/individuals (Miller, Knight 

& Miller 1998). 

Therefore outdoor activities often affect wildlife indirectly, e.g. via changing the 

habitat. Depending on disturbance intensity, indirect effects on wildlife become detectable 

only after a certain period of time (Steven, Pickering & Castley 2011; Monz, Pickering & 

Hadwen 2013), but are then long-lasting, compared to some direct/short-time effects. 

 

Factors modulating the effects of human disturbance 

The severity of human recreation impacts can be modulated through several factors, 

which are described in the three following paragraphs. 

 

Type of leisure activity  

Not all types of recreational activities have the same impact on wildlife. The 

predictability of a given activity plays an important role; activities with a predictable 

direction are perceived as less severe than un-predictably directed activities (predicted 

directions refer mostly to on-trail activities, whereas un-predictable to off-trail, see Miller, 

Knight & Miller 2001; Coppes & Braunisch 2013). In addition, also the speed and/or noise 

of a given activity have been shown to determine its severity, where faster/louder activities 
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are perceived as more dangerous (Burger 1981; Arroyo & Razin 2006; Lethlean et al. 

2017). Apart from recreational activity types, the number of recreationists (group size) in 

general affects the impact, with larger groups having a stronger impact (Geist et al. 2005; 

Remacha, Pérez-Tris & Delgado 2011). Finally, recreationists accompanied by dogs are 

perceived as more dangerous than recreationists without dogs (Miller, Knight & Miller 

2001; Langston et al. 2007; Young et al. 2011; Waldstein Parsons et al. 2016). Even the 

colour of the clothing worn by the recreationist affects the threat severity (Gutzwiller & 

Marcum 1997; Putman et al. 2017). 

 

Species characteristics  

There are several species-specific characteristics which have been shown to affect 

the “disturbance tolerance” of an animal, e.g. nesting site, diet or body size (Blumstein et 

al. 2003; Kangas et al. 2010; Samia et al. 2015). Apart from species-specific sensitivities 

towards recreational activities, individual differences (e.g. sex, age or body condition) may 

influence human impact too. Age for example can be attributed to experience, and more 

experienced individuals either react stronger (sensitization) or less (habituation) towards a 

recreationist (but see Bejder et al. 2009). Animals can get used to a certain level of 

disturbance, but not all species, populations or individuals are able to habituate in the 

same way - some do habituate while others do not (Nisbet 2000; Walker, Dee Boersma & 

Wingfield 2006; Baudains & Lloyd 2007; Bonier, Martin & Wingfield 2007; Bejder et al. 

2009; Rodríguez-Prieto et al. 2009; Samia et al. 2015; Vincze et al. 2016). This 

phenomenon can be seen when individuals of a certain species manage to live in human 

dominated urban landscapes, e.g. cities, and then fully adapt to these “artificial” 

environments (e.g. regardless of increased noise levels or unsuitable urban food 

resources (Meyrier et al. 2017)). Certain individuals of a given species are better capable 

of circumventing such new environmental hurdles, than others. These different types of 
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individuals are called personalities or are sometimes clustered into different reaction 

norms (Wilson 1998; Sih, Bell & Johnson 2004; Mathot et al. 2012; Sih et al. 2015; 

Nicolaus et al. 2016; Arroyo, Mougeot & Bretagnolle 2017), and have been attributed to 

affect the habituation potential (Evans, Boudreau & Hyman 2010; Rebolo-Ifrán et al. 2015; 

Cavalli et al. 2016; Vincze et al. 2016). Within urban areas (e.g. cities) one type of 

personality (bold, aggressive) is overrepresented compared to the homogenous 

distribution of personalities in a natural (rural) population (Evans, Boudreau & Hyman 

2010; Miranda et al. 2013; Sprau & Dingemanse 2017). 

 

Spatio-temporal context: Seasonality and habitat 

Depending on the season (breeding, migration or overwintering), disturbance 

events can have additional far reaching consequences. When parents, for example, are 

hindered from feeding, their chicks will face a reduced survival, which then could have an 

effect up to the population level (Robert & Ralph 1975; Glądalski et al. 2016). During 

wintertime, animals flushed out of their den, face additional losses of energy, firstly due to 

flushing, and secondly via reduced protection from the harsh environment. This increased 

energy loss could lower survival (Arlettaz et al. 2015). When animals on migration are 

disturbed at stopover sites they could be forced to continue their journey without enough 

restored energy reserves, which lowers their survival (Pfister, Harrington & Lavine 1992). 

Therefore human impacts at one location can have carry-over effects on the population at 

an other location or in a different season (mostly for migrating species).  

Besides season also the time of day when the activity takes place, influences its 

impact (e.g. nocturnal versus diurnal species; Tablado & Jenni 2017). Finally, also the type 

of habitat where a recreational activity is taking place, affects its impact. Denser vegetation 

shields animals from the passing recreationists (Thiel et al. 2007; but see also 
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Whittingham et al. 2004), whereas the disturbance impact reaches further in more open, 

less vegetated habitats. 

 

Study aims  

Former studies looking at human recreation impacts on wildlife were mostly 

comparative, and in many cases study sites had been exposed to recreation for a long 

time. This usually creates the following two problems: firstly there is the problem of 

disentangling direct from indirect effects, as they often act in combination, making it hard 

(or sometimes impossible) to determine the driving mechanisms. Secondly, areas already 

used for recreation for a while face the problem that the most sensitive species or 

individuals (i.e. personalities) might already have disappeared from the most heavily 

frequented areas (i.e. spatial rearrangement), or might have habituated to human 

presence, leading to animals already being “adapted” to human recreation. This can 

obscure the magnitude of human recreation impacts on wildlife and lead to erroneous 

conclusions. Therefore we used a set of well-designed comparative and experimental 

studies, to counteract these difficulties. We focused our studies on forest birds, as forests 

are a widely distributed habitat and often used for recreational activities. Birds in general 

are suitable for studying human recreational impacts, as they are highly mobile, quite easy 

to detect and census, and they show a relatively high species richness. Additionally, 

during breeding, most bird species are territorial and have a fixed nesting site, which 

facilitates catching adults and allows gathering brood data easily. 

(Chapter 1) Firstly we wanted to disentangle the direct effects of humans from the 

indirect effects of the trails via habitat change. Therefore we compared bird communities 

at different distances from trails in several forests with a wide variety of human use. We 

used a paired point count study design, where one point count was placed close to the trail 
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and the second far away from the trail, to examine both human-presence and trail impact 

on bird communities. Moreover we investigated whether this human and/or trail impact 

was modulated by species specific traits. 

(Chapter 2) Within the same forests, varying in human frequentation, we measured 

bird species-specific tolerances towards human approach using flight initiation distances 

(FID) in order to investigate whether birds in heavily frequented forests are already 

“adapted” and therefore responding less to recreation. We were examining whether FIDs 

of nine common forest bird species differed between forests depending on the levels of 

recreational use. Therefore we measured FIDs in heavily frequented forests and 

compared them with measures taken in an unfrequented forest. 

To exclude the possibility to examine a “human-adapted” bird community, we finally 

focused on the least-disturbed forest and conducted two experimental studies. (Chapter 3) 

In the first we measured the direct impact of recreational activities on forest birds during a 

possibly sensitive time period, without changing the surrounding habitat. We disturbed 

forest plots during early-breeding season period and compared abundance and species 

richness of the birds which finally settled in the experimental plots with those of 

undisturbed control plots.  

(Chapter 4) Secondly, we examined whether there are carry-over effects of the 

impact of human disturbance during the early-breeding season on offspring through 

maternal antibody deposition in the eggs during the disturbance period. A higher amount 

of maternal antibodies has been previously attributed to an increased survival, as the 

chicks fully rely on these maternal antibodies to withstand infections during the first days of 

their life (Pihlaja, Siitari & Alatalo 2006). 

The findings of this thesis hopefully contribute to our understanding about the 

impact of human disturbance on wildlife and its conservation implications, in order to help 

us protect wildlife while allowing recreationists to appreciate nature. 
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CHAPTER 1 

Effect of recreational trails on forest birds: does human presence 

matter? 
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ABSTRACT 

Outdoor recreational activities are increasing worldwide and occur especially close 

to cities at high frequency. Forests are a natural environment often used for these 

activities (e.g. jogging, hiking, dog walking, mountain biking, and horse riding). The pure 

presence of people in forests can disturb wildlife, which may perceive humans as 

predators. Many of these activities rely on trails, which intersect an otherwise continuous 

habitat and hence impact wildlife’s habitat. The aim of this study was to separate the effect 

of the change in vegetation and habitat structure through trails, from the effect of mere 

human presence using these trails, on forest bird communities. Therefore we compared 

the effect of recreational trails on birds in two forests frequently used by recreationists with 

that in two rarely visited forests. In each forest, we did paired-point counts to investigate 

the differences between the avian community close (50m) and far (120m) from trails, while 

accounting for possible habitat differences. In the disturbed, high recreation level forests 

we found a reduction in the density of birds (-13%) and species richness (-12%) at points 

close to trails when compared to those further away, whereas such an effect was not 

detectable within the low recreation level forests. Additionally we found that the effect of 

human presence varied depending on the characteristics of the species. These findings 
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suggest that the mere presence of humans impoverishes the forest bird community along 

trails and affects different species differently. 

 

Key words: Human disturbance, recreation ecology, recreational activity, avian diversity, 

nesting guild 
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INTRODUCTION  

Nature-based recreational activities have increased enormously in the last decades 

(Boyle & Samson 1985; Steven, Pickering & Castley 2011; Monz, Pickering & Hadwen 

2013; Steven & Castley 2013; Hammitt, Cole & Monz 2015). This trend is raising concerns 

of researchers and conservationists about the potential impact of human recreation on wild 

animals. Humans may be perceived by wildlife as predators (Frid & Dill 2002). Thus, when 

exposed to human presence, animals may react with important changes in their behaviour 

and physiology (e.g. increased vigilance, flight, release of stress hormones; (Ikuta & 

Blumstein 2003; Beale & Monaghan 2004a; b; Tablado & Jenni 2017)), which in turn might 

have consequences for the fitness and dynamics of animal populations.  

Many studies have therefore aimed at assessing the effects of outdoor recreational 

activities on wildlife. One way of approaching this issue has been to investigate the effects 

of recreational trails on bird abundance and species composition. However, the results of 

these studies are not always consistent, with some studies finding an effect of trails while 

others do not (Gutzwiller et al. 1998; Miller, Knight & Miller 1998; Deluca & King 2014; 

Thompson 2015). One reason for this disparity could be the difficulty to disentangle the 

direct effect of human presence from the indirect effect of habitat modification caused by 

the installation of  trails and roads, which entails a less dense vegetation or even the 

clearance of it in most habitats (Miller, Knight & Miller 1998; Miller & Hobbs 2000; Smith-

Castro & Rodewald 2010; Butler et al. 2012; Morelli et al. 2015).  

In order to disentangle the effects of human presence from habitat modifications 

through trails we examined how breeding–bird communities changed with distance to trails 

that were similar in size and structure, but were in forests with widely different levels of 

recreation. We predicted that the differences between bird communities close and far from 

trails will be higher in forests experiencing high recreational levels than in forests 

experiencing low recreational levels. That is, in high-recreation forests we expected lower 
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densities and richness of breeding birds close to the trails than further away, while this 

difference would not exist or be much lower in low-recreation forests. Additionally, we 

expected to find inter-specific differences in the impact of trails according to species 

characteristics, since habitat clearance and/or human presence are likely to affect bird 

species differently according to their nesting-guild, foraging-guild and sensitivity to humans 

(Blumstein et al. 2003; Langston et al. 2007; Mallord et al. 2007; Kangas et al. 2010; 

Thompson 2015). 
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MATERIALS AND METHODS 

Study sites 

We selected four different forests. Two of them (Allschwilerwald (47°32’N, 7°32’E) 

and Sihlwald (47°15’N, 8°33’E), in Switzerland) were close (< 2 km) to cities with more 

than 150,000 inhabitants, and heavily used by humans for recreation. The other two 

forests (Forêt de Chaux (47°05’N, 05°40’E) in France, and Laufenwald (47°26’N, 7°26’E), 

in Switzerland) were less frequently used (> 8 km from towns with less than 25,000 

inhabitants). This classification of the forests into high and low levels of recreation through 

the proximity to cities was confirmed by own observations during fieldwork. In the Forêt de 

Chaux and Laufenwald we observed, on average, no more than one human passage per 

day, while there were 15-25 and 5-15 visitors per hour in the Allschwilerwald and the 

Sihlwald, respectively. Most recreationists were walking (with or without dogs), and a few 

were biking. All forests were broad-leafed, with pedunculate oaks (Quercus robur) and/or 

European beech (Fagus sylvatica) as the dominating tree species and some admixed 

European hornbeam (Carpinus betulus), sycamore maple (Acer pseudoplatanus), 

European ash (Fraxinus excelsior) and scarcely some conifer trees (Picea abies, Abies 

alba, Pinus sylvestris, Pseudotsuga menziesii). The four study sites contained a well-

developed network of gravel roads and trails (hereafter called trails) which were freely 

accessible to the public for recreation (e.g. walking, biking), but where cars and 

motorbikes were prohibited, except for foresters. 

 

Point count surveys 

To assess the avian community near and far from trails we used classical point 

count surveys (Bibby et al. 2000) in a paired design (Fig. 1). We counted birds at 37 pairs 

of points within forests with a high recreational level (Allschwilerwald 8 pairs and Sihlwald 

29 pairs), and at 25 pairs of points in forests with a low recreational level (Forêt de Chaux 
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12 pairs and Laufenwald 13 pairs). Within each pair, we placed one point close (at 50 m) 

to a trail and the other point further away at an average distance of 120 m (range 70 - 160 

m from the trail depending on the spatial configuration). The location of the points was 

chosen from aerial photos, with the criterion of placing both points of a pair within a 

homogenous forest patch.  

During each point count a single observer recorded all birds heard or seen within 50 

m during six minutes. To estimate the number of territories within 50 m we used only 

observations of birds showing territorial behaviour (e.g. singing). We used range finders 

(Nikon Prostaff 7 monocular or Zeiss Victory 10x45 T* RF) to check whether observations 

fell inside or outside the 50 m radius. Points were censused twice in the Allschwilerwald 

and Sihlwald in 2013 (first round 30 May - 18 June, second round 26 June - 17 July), and 

three times in all four forests in 2015 (first round 18 March - 18 April, second round 18 

April - 31 Mai, third round 11 May - 17 June). In 2015 we could only monitor 14 of the 29 

pairs of points in the Sihlwald, due to time constraints. All point counts were done by only 

two observers: Y.B. in 2013 and D.S. in 2015. To account for possible researcher-related 

effects, the order in which points within a pair were censused changed from census round 

to census round. Also the order in which the pairs within a forest were censused changed 

from round to round to eliminate a potential effect of time of day. Point count surveys were 

only done in the early morning, starting right after sunrise (i.e. between  05:21 and 09:45 

Central European Time (CET), (Bibby et al. 2000)). This means that most census work 

was done before the bulk of recreationists arrived (R. Schmidt unpublished data). 

 

Vegetation surveys 

In both years we recorded the vegetation to account for differences in habitat 

composition among points. Surveys were done at five different locations around each point 

(one at the point-count spot itself and four at locations 25 m away from it into the four main 
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cardinal directions; Fig. 1). At each location, we estimated ground vegetation cover (%) on 

a 2x2 m area, shrub cover (%) on a 3x3 m area (i.e. vegetation with diameter at breast 

height (dbh) of less than 5 cm, otherwise counted as trees) and canopy cover (%) by 

looking straight up and assessing the proportion of canopy against the sky in the visual 

field of the observer (same observers as for the point counts). Additionally we counted the 

trees on an 8x8 m area per species (beech, oak and conifers), including standing dead 

trees (deadwood). The vegetation surveys were conducted after the point-count censuses, 

when the vegetation was fully developed (end of May until September). For each 

vegetation variable, we averaged the vegetation measures among the five locations within 

each point before analysis. 

 

Statistical analysis 

In order to examine whether the avian community differed between points close to 

or far from trails, we used two generalized linear mixed models (GLMM), with the number 

of either breeding-bird territories (Number of territories) or breeding-bird species (Species 

richness) per point count as the dependent variable (both following a Poisson distribution). 

As explanatory variables we included distance to the trail (categorical: far vs. close), level 

of recreation (disturbance; categorical: high- vs. low level of recreation), vegetation 

characteristics (ground cover, shrub cover, canopy cover, mean number of beech-, oak-, 

conifer-trees, and dead-trees (deadwood)), and accounted for the seasonal and daily 

variation in singing-activity by including the linear and quadratic terms of the Julian date 

(Jdate and Jdate2), and the time (in minutes) elapsed since sunrise (Δ Sunrise). 

Vegetation variables did not show strong correlations among each other (Pearson 

correlation coefficient < 0.6) and were therefore all included in the models. We included 

the interactive effect between distance and disturbance to test for the impact of recreation 

on the differences between close and far points. To control for potential differences in 
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singing activity depending on recreation intensity (Gutzwiller et al. 1994; Frid & Dill 2002), 

we also incorporated the interaction between Δ Sunrise and disturbance. A preliminary 

analysis, including also trail-type, revealed, that there was no difference in effect of gravel 

roads versus trails (Online Resource Fig. S1). Therefore we removed trail-type as variable 

from further analyses. As random factors we included year, which accounted for both the 

inter-annual differences in bird community and observer effect (observer changed with 

year), round (to control for correlations among counts within the same census period), and 

point_ID nested within pair_ID, which in turn was nested within Site, to account for spatial 

autocorrelation (Table 1). 

In order to explore differences in response to trails according to species properties, 

we performed three additional GLMMs. These had a similar structure as the previous ones 

but additionally included either a three-level factor describing nesting-guild (cavity, ground 

or open-cup nesters according to Perrins and Cramp (1998)), a two-level factor describing 

foraging-guild (ground vs. above-ground according to Perrins and Cramp (1998)) or a two-

level factor describing the sensitivity towards humans, respectively, as well as their two-

way and three-way interactions with distance and disturbance. In order to define sensitivity 

towards humans we used the species’ mean flight initiation distance (FID) (low sensitivity 

= FID lower than the median FID for all our species vs. high sensitivity = FID equal or 

larger than the median FID; FID data from Møller (2008) and Díaz et al. (2013) for non-

urban areas; see Online Resource Table S1). We acknowledge that FID may be 

modulated by many factors (Tablado & Jenni 2017), but is still a reasonable and widely 

available proxy for sensitivity to human disturbance (Blumstein et al. 2003). 

All analyses were conducted in R version 3.3.0 (Ihaka & Gentleman 1996; R Core 

Team 2016) using the glmer function from the R-package lme-4 (Bates et al. 2015). For 

calculating the 95% credible intervals (CrI) of the model estimates we used the Bayesian 

framework (function sim from the R-package arm (Gelman & Su 2015)), simulating 10,000 
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random samples of the joint posterior distribution of the model parameters (Online 

Resource Fig. S2). Additionally, we computed the pairwise differences (with 95% CrI) of 

the number of territories and species between close and far points (Figs. 2 and 3) using 

the highest probability density interval-function (HPDInterval-function from the R-package 

coda; (Plummer et al. 2006)). For all models we evaluated whether model assumptions 

were fulfilled, via analysis of the residuals and checking for overdispersion after Korner-

Nievergelt et al. (2015). To facilitate model convergence all numeric explanatory variables 

were centred and standardized (mean = 0, sd = 1). 
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RESULTS 

In forests with a high level of recreation the number of territories at points close to 

trails was 12.9 % lower than at paired points further away (7.2 versus 8.3 territories on 

average), while in forests with a low level of recreation no difference between points close 

to and far from trails was noticeable (7.9 versus 7.8 on average) (Fig. 2a, Table 1). 

Similarly, we found a reduction of 12.0 % for species richness (5.7 species versus 6.5 on 

average) at points close to trails compared to far points in forests with a high level of 

recreation, which was not observed in forests with low levels of recreation (6.4 species in 

both on average) (Fig. 2b, Table 1). Additionally, we found a quadratic effect of Julian date 

on the number of territories. That is, records of breeding-bird territories were more 

numerous in the middle of the season compared to early or late spring, which reflects the 

general singing phenology of breeding birds. Furthermore, the number of oaks positively 

affected the number of territories and species richness, while the number of beeches 

negatively affected the number of territories (Table 1). 

Cavity nesters (and to a certain extent also open-cup nesters) had lower numbers 

of territories and species close to trails compared to paired points further away in forests 

with high levels of recreation (Figs. 3a and b, Online Resource Table S2 and Figs. S2a 

and b). This effect was not observed in forests with low levels of recreation, where 

proximity to trails seems to only slightly decrease cavity nester presence (Figs. 3a and b, 

Online Resource Table S2 and Figs. S2a and b). Ground-nesting birds, on the other hand, 

showed higher numbers of territories and species close to trails than far from them in 

forests with low levels of recreation (Figs. 3a and b, Online Resource Table S2 and Figs. 

S2a and b). However, this positive effect of trails was not observed in forests with high 

levels of recreation. The foraging-guild specific analysis revealed no differences in number 

of territories or species between close and far points in forests with low levels of 

recreation, whereas in forests with a high level of recreation, above-ground foragers 
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showed a reduction in number of territories and species close to trails compared to further 

away (Figs. 3c and d, Online Resource Table S3 and Figs. S2c and d). Concerning 

sensitivity to humans, we found that in forests with high levels of recreation both high- and 

low- sensitivity species showed lower numbers of territories, and to a certain extent also of 

species, close to versus far from trails. In forests with a low level of recreation, however, 

the tendency of lower numbers of territories and species close to trails was less important 

and only observed in highly sensitive species (Figs. 3e and f, Online Resource Table S4 

and Figs. S2e and f). 
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DISCUSSION 

In this study, we were able to disentangle the effect of human presence from that of 

trail-associated habitat modifications by investigating the response of the avian community 

to trails with different levels of recreation. We showed that the disturbance caused by 

recreation activities (mostly walking) reduced forest bird density and richness by 12 - 13% 

and that this effect was not merely due to the habitat modification associated with the 

presence of trails. This agrees with an experimental study with humans walking off-trail in 

a forest in France where it was observed that humans per se, without habitat modification, 

negatively impact the bird community (Bötsch et al. unpubl. data). Our findings are also 

comparable to those of Ware et al. (2015) who found that traffic-noise alone, without real 

roads, was enough to cause a reduction in bird density. 

Habitat modifications resulting from trail construction may have a positive or 

negative effect depending on bird species (Morelli et al. 2014). We found a positive 

influence of trails on the number of ground nesting birds (Figs. 3a and b for low-recreation 

forests), although this positive effect disappeared with disturbance in forests with a high 

level of recreation. This could be explained by the fact that forest clearing for trail 

construction allows the development of a rich understory at the edges, which in turn can 

serve as refuge and breeding-site/nest cover for ground nesters (Virkkala 1987; Trzcinski, 

Fahrig & Merriam 1999; Šálek, Svobodová & Zasadil 2010). Conversely, for cavity nesters 

there was a tendency, although small, to fewer territories and species close to trails even 

in forests with low levels of recreation. This could be due to the clearing of old, large trees 

(which provide natural cavities) during trail construction and also later for visitor safety 

reasons. The effect of trails per se is also in agreement with previous studies in tropical 

forests, where trail construction has been suggested to impact bird communities negatively 

(Andrén 1994; Laurance, Stouffer & Laurence 2004; Laurance, Goosem & Laurance 

2009). The importance of habitat in driving avian community is further confirmed in our 
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analyses by the overall positive effect of oaks on both the number of territories and 

species richness, which coincides with previous studies which show that oaks are 

determinants of forest biodiversity (Caprio, Ellena & Rolando 2009). 

The impact of recreational trails also varied according to other species 

characteristics, such as, foraging guild and sensitivity to humans. Surprisingly, we did not 

find a strong effect of recreational trails on ground foragers as we expected after 

Thompson (2015). This could be due to the overall low number of ground foragers found in 

these forests or the higher availability of food along the trail edge for certain species 

(Šálek, Svobodová & Zasadil 2010; Batáry et al. 2014). Highly sensitive species (large 

FID) seem to avoid areas close to trails even in forests with low levels of recreation, while 

low-sensitivity species seem to only be negatively affected by trail presence in highly 

frequented forests. Therefore sensitivity, approximated by FID, as we did, could be used to 

help designing future conservation measures through management of tourist numbers and 

access (Blumstein et al. 2003, 2005; Fernández-Juricic et al. 2005; Koch & Paton 2014). 

In conclusion, by comparing the response of the bird community to trails in high-

recreation versus low-recreation forests, we observed that human presence per se causes 

important disturbance to birds in recreational areas and that the overall effect of 

recreational trails depends not only on recreation intensity but also on species 

characteristics. Moreover, the fact that we found a negative effect of recreationists on the 

avifauna of forests which have been used for recreation for decades suggests that 

habituation to humans has not been able to outweigh the negative impact of human 

disturbance. Our findings have also some additional implications. Firstly, census and 

monitoring schemes which are often done from roads and trails (Hanowski & Niemi 1995; 

Sutter, Devis & Duncan 2000; Sauer et al. 2013) should take into account the species-

specific responses to habitat alterations and the level of recreation on trails in order to 

interpret the census results adequately. Secondly, our results provide further evidence that 
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the impact of recreation could be reduced by limiting the access of visitors to certain areas 

(core wilderness areas) and encouraging visitors to stay on trails elsewhere (Miller, Knight 

& Miller 2001; Reed & Merenlender 2008; Coppes & Braunisch 2013). Enough 

undisturbed wildlife habitat (quiet zones) away from trails not only benefits birds, but also 

mammals (Taylor & Knight 2003; George & Crooks 2006; Reed & Merenlender 2008). 

Finally, if new recreational trails or roads have to be constructed a well-designed plan is 

crucial, which incorporates habitat and spatial requirements of the different species (e.g. 

sensitivity to humans or fragmentation; Andrén 1994; Reed et al. 1996; Forman and 

Alexander 1998; Rodríguez-Prieto et al. 2014), considers renaturation of unused trails 

(e.g. harvesting roads) and takes into account the possibility that new trails facilitate 

access of new predators (Miller & Hobbs 2000). In summary, this study supports that trails 

and roads can profoundly affect bird community composition and abundance, not only by 

modifying habitat along trails, but mainly through their use by recreationists. 
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TABLES 

Table 1 Model estimates (± 95% CrI) of the effects tested in the GLMMs investigating the 

impact of recreational trails on the overall number of territories and species richness. The 

corresponding level of each factor is given in parentheses after the variable name. The 

missing factor levels are the ones used as reference categories in the models 

Dependent variable Number of territories Species richness 

Intercept 2.070 (1.604; 2.516) 1.856 (1.568; 2.147) 

Distance (far) -0.012 (-0.116; 0.090) -0.003 (-0.124; 0.121) 

Disturbance (high) -0.092 (-0.216; 0.035) -0.116 (-0.274; 0.039) 

Juliandate 0.100 (0.042; 0.159) 0.018 (-0.046; 0.084) 

Juliandate2 -0.045 (-0.086; -0.004) -0.042 (-0.088; 0.071) 

Δ Sunrise 0.018 (-0.039; 0.074) 0.005 (-0.060; 0.071) 

Ground cover 0.009 (-0.032; 0.051) 0.007 (-0.040; 0.056) 

Shrub cover 0.019 (-0.015; 0.054) 0.025 (-0.017; 0.065) 

Canopy cover -0.005 (-0.050; 0.041) -0.006 (-0.060; 0.049) 

Beeches -0.050 (-0.092; -0.008) -0.047 (-0.096; 0.001) 

Oaks 0.042 (0.004; 0.081) 0.047 (0.003; 0.091) 

Conifers -0.026 (-0.071; 0.019) -0.023 (-0.075; 0.029) 

Deadwood -0.014 (-0.053; 0.025) -0.003 (-0.046; 0.042) 

Δ Sunrise × Disturbance (high) 0.013 (-0.059; 0.085) 0.017 (-0.067; 0.099) 

Disturbance (high) × Distance (far) 0.150 (0.015; 0.285) 0.130 (-0.024; 0.286) 

Distribution = Poisson; link function = natural logarithm; random factors = year, round, and 

point_ID/pair_ID/Site 
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FIGURES 

 

Fig. 1 Schematic representation of a pair of points for counting birds within a radius of 

50m (circles). The grey bar represents a trail. The black and grey circles represent the 

surveyed area of the point close and far from the trail, respectively. Squares (five in each 

point count circle) show the locations where the vegetation survey took place. The middle 

point is the spot from which the bird census (point count) was performed 
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Fig. 2 Differences (mean ± 95% CrI) in the fitted number of territories (a) and species (b) 

between paired point-counts close to and far from trails in forests with low- or high- levels 

of recreation. Negative values indicate more territories or species far from trails while 

positive values indicate higher number of territories or species closer to trails. The dotted 

line (zero) represents an equal number of territories or species at both distances from the 

trail 
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Online Resource 

Table S1 List of bird species recorded during the censuses in 2013 and 2015, with 

scientific and English names, corresponding nesting-guild, foraging-guild and classification 

into two sensitivity groups (according to flight initiation distance (FID): High = FID ≥ median 

FID, Low = FID < median FID, median FID = 12.85m) 

Scientific name English name 
Nesting 
guild

1
 

Foraging 
guild

1
 Sensitivity

2
 

Accipiter nisus Eurasian Sparrowhawk Open-cup Above ground High 

Aegithalos caudatus Long-tailed Tit Open-cup Above ground Low 

Buteo buteo Common Buzzard Open-cup Above ground High 

Certhia brachydactyla Short-toed Treecreeper Open-cup Above ground Low 

Certhia familiaris Eurasian Treecreeper Open-cup Above ground Low 

Coccothraustes coccotraustes Hawfinch Open-cup Above ground High 

Columba oenas Stock Dove Cavity Ground High 

Columba palumbus Common Wood Pigeon Open-cup Ground High 

Cuculus canorus Common Cuckoo Open-cup Above ground High 

Cyanistes caeruleus Eurasian Blue Tit Cavity Above ground Low 

Dendrocopos major Great Spotted Woodpecker Cavity Above ground High 

Dendrocopos medius Middle Spotted Woodpecker Cavity Above ground - 

Dryocopus martius Black Woodpecker Cavity Above ground High 

Emberiza citrinella Yellowhammer Ground Ground Low 

Erithacus rubecula European Robin Ground Ground Low 

Ficedula hypoleuca European Pied Flycatcher Cavity Above ground Low 

Fringilla coelebs Common Chaffinch Open-cup Above ground High 

Garrulus glandarius Eurasian Jay Open-cup Above ground High 

Lophophanes cristatus European Crested Tit Cavity Above ground Low 

Muscicapa striata Spotted Flycatcher Open-cup Above ground Low 

Oriolus oriolus Eurasian Golden Oriole Open-cup Above ground High 

Parus major Great Tit Cavity Above ground Low 

Periparus ater Coal Tit Cavity Above ground Low 

Phylloscopus bonelli Western Bonelli's Warbler Ground Above ground Low 

Phylloscopus collybita Common Chiffchaff Ground Above ground Low 

Phylloscopus sibilatrix Wood Warbler Ground Above ground - 

Phylloscopus trochilus Willow Warbler Ground Above ground Low 

Picus canus Grey-headed Woodpecker Cavity Ground High 

Picus viridis European Green Woodpecker Cavity Ground High 

Poecile montanus Willow Tit Cavity Above ground Low 

Poecile palustris Marsh Tit Cavity Above ground Low 

Prunella modularis Dunnock Open-cup Ground Low 

Pyrrhula pyrrhula Eurasian Bullfinch Open-cup Above ground Low 

Regulus regulus Goldcrest Open-cup Above ground Low 

Rgulus ignicapilla Common Firecrest Open-cup Above ground Low 

Sitta europaea Eurasian Nuthatch Cavity Above ground High 

Streptopelia turtur European Turtle Dove Open-cup Ground High 
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Strix aluco Tawny Owl Cavity Above ground - 

Sturnus vulgaris Common Starling Cavity Ground High 

Sylvia atricapilla Eurasian Blackcap Open-cup Above ground High 

Troglodytes troglodytes Eurasian Wren Open-cup Ground Low 

Turdus merula Common Blackbird Open-cup Ground High 

Turdus philomelos Song Trush Open-cup Ground High 

Turdus pilaris Fieldfare Open-cup Ground High 

Turdus viscivorus Mistle Trush Open-cup Ground High 

1
: Perrins & Cramp 1998, 

2
: Diaz et al. 2013, Møller 2008 ; - no data available 
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Table S2 Model estimates (± 95% CrI) of the determinants of number of territories and 

species in the nesting-guild-specific GLMMs. The corresponding factor categories are 

given in parenthesis. The missing categories are used as reference in the models  

Dependent variable Number of territories Species richness 

Intercept 1.029 (0.548; 1.492) 0.767 (0.455; 1.090) 

Distance (far) 0.055 (-0.113; 0.224) 0.088 (-0.115; 0.293) 

Disturbance (high) -0.316 (-0.507;-0.132) -0.210 (-0.435; 0.009) 

Juliandate 0.100 (0.041; 0.160) 0.018 (-0.047; 0.084) 

Juliandate
2
 -0.045 (-0.086; -0.004) -0.042 (-0.087; 0.004) 

Δ Sunrise 0.018 (-0.040; 0.074) 0.005 (-0.060; 0.072) 

Ground cover 0.009 (-0.033; 0.051) 0.007 (-0.041; 0.057) 

Shrub cover 0.019 (-0.015; 0.054) 0.024 (-0.015; 0.066) 

Canopy cover -0.004 (-0.050; 0.041) -0.005 (-0.060; 0.048) 

Beeches -0.050 (-0.092; -0.008) -0.048 (-0.097; 0.003) 

Oaks 0.041 (0.003; 0.080) 0.047 (0.003; 0.090) 

Conifers -0.026 (-0.070; 0.019) -0.023 (-0.076; 0.029) 

Deadwood -0.015 (-0.053; 0.025) -0.003 (-0.047;0.043) 

Nesting-guild (ground) -0.712 (-0.918; -0.505) -0.647 (-0.894; -0.400) 

Nesting-guild (open-cup) 0.296 (0.138; 0.454) 0.368 (0.185; 0.554) 

Δ Sunrise × Disturbance (high) 0.014 (-0.059; 0.086) 0.016 (-0.065; 0.100) 

Disturbance (high) × Distance (far) 0.246 (0.013; 0.471) 0.137 (-0.132; 0.405) 

Distance (far) × Nesting-guild (ground) -0.285 (-0.590; 0.010) -0.300 (-0.666; 0.059) 

Distance (far) × Nesting-guild (open-cup) -0.047 (-0.267; 0.169) -0.087 (-0.349; 0.171) 

Disturbance (high)  × Nesting-guild (ground) -0.348 (-0.657; -0.034) -0.455 (-0.811; -0.095) 

Disturbance (high)  × Nesting-guild (open-cup) 0.495 (0.285; 0.706) 0.288 (0.039; 0.534) 
Distance (far) × Disturbance (high) × Nesting-guild 
(ground) 0.036 (-0.402; 0.479) 0.183 (-0.328; 0.689) 
Distance (far) × Disturbance (high) × Nesting-guild 
(open-cup) -0.185 (-0.473; 0.106) -0.063 (-0.402; 0.280) 

Distribution = Poisson; link function = natural logarithm; random factors = year, round, and point_ID/pair_ID/Site 
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Table S3 Model estimates (± 95% CrI) of the determinants of number of territories and 

species in the foraging-guild-specific GLMMs with corresponding factor categories given in 

parenthesis. The missing factor levels are the ones used as reference in the models  

Dependent variable Number of territories Species richness 

Intercept 0.848 (0.380; 1.323) 0.724 (0.104; 1.039) 

Distance (far) 0.003 (-0.188; 0.188) 0.002 (-0.205; 0.212) 

Disturbance (high) 0.121 (-0.068; 0.310) 0.075 (-0.142; 0.290) 

Juliandate 0.099 (0.043; 0.159) 0.019 (-0.048; 0.083) 

Juliandate
2
 -0.045 (-0.086; -0.005) -0.042 (-0.087; 0.003) 

Δ Sunrise 0.018 (-0.039; 0.075) 0.005 (-0.061; 0.071) 

Ground cover 0.009 (-0.031; 0.051) 0.007 (-0.041; 0.055) 

Shrub cover 0.020 (-0.015; 0.054) 0.025 (-0.015; 0.066) 

Canopy cover -0.005 (-0.050; 0.041) -0.006 (-0.060; 0.048) 

Beeches -0.050 (-0.091; -0.009) -0.048 (-0.096; 0.001) 

Oaks 0.042 (0.004; 0.080) 0.047 (0.005; 0.090) 

Conifers -0.026 (-0.071; 0.020) -0.023 (-0.074; 0.028) 

Deadwood -0.014 (-0.052; 0.026) -0.002 (-0.047; 0.043) 

Foraging-guild (above ground) 0.869 (0.712; 1.023) 0.750 (0.576; 0.929) 

Δ Sunrise × Disturbance (high) 0.013 (-0.060; 0.086) 0.017 (-0.067; 0.098) 

Disturbance (high) × Distance (far) 0.105 (-0.134; 0.337) 0.110 (-0.150; 0.371) 

Distance (far) × Foraging-guild (above ground) -0.019 (-0.242; 0.207) -0.003 (-0.259; 0.247) 

Disturbance (high)  × Foraging-guild (above ground) -0.314 (-0.519; -0.113) -0.297 (-0.530; -0.073) 
Distance (far) × Disturbance (high) × Foraging-guild 
(above ground) 0.068 (-0.212; 0.354) 0.027 (-0.296; 0.351) 

Distribution = Poisson; link function = natural logarithm; random factors = year, round, and point_ID/pair_ID/Site 
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Table S4 Model estimates (± 95% CrI) of the determinants of number of territories and 

species in the sensitivity-specific GLMMs. The corresponding factor levels are given in 

parenthesis next to the variable name whereas the missing levels are the ones used as 

reference in the models 

Dependent variable Number of territories Species richness 

Intercept 1.431 (0.964; 1.890) 1.198 (0.899; 1.483) 

Distance (far) -0.098 (-0.242; 0.047) -0.066 (-0.234; 0.102) 

Disturbance (high) -0.265 (-0.420; -0.109) -0.196 (-0.382; -0.009) 

Juliandate 0.093 (0.034; 0.152) 0.009 (-0.058; 0.076) 

Juliandate
2
 -0.044 (-0.084; -0.003) -0.042 (-0.087; 0.004) 

Δ Sunrise 0.024 (-0.031; 0.081) 0.010 (-0.055; 0.075) 

Ground cover 0.009 (-0.032; 0.051) 0.008 (-0.040; 0.056) 

Shrub cover 0.023 (-0.012; 0.059) 0.027 (-0.014; 0.067) 

Canopy cover -0.005 (-0.051; 0.042) -0.008 (-0.062; 0.047) 

Beeches -0.044 (-0.085; -0.003) -0.041 (-0.090; 0.008) 

Oaks 0.047 (0.010; 0.085) 0.051 (0.008; 0.093) 

Conifers -0.021 (-0.066; 0.023) -0.018 (-0.069; 0.035) 

Deadwood -0.017 (-0.056; 0.022) -0.004 (-0.050; 0.041) 

Sensitivity (high) -0.174 (-0.317; -0.032) -0.113 (-0.282; 0.053) 

Δ Sunrise × Disturbance (high) 0.006 (-0.064; 0.078) 0.011 (-0.072; 0.093) 

Disturbance (high) × Distance (far) 0.242 (0.048; 0.437) 0.184 (-0.037; 0.405) 

Distance (far) × Sensitivity (high) 0.191 (-0.015; 0.393) 0.137 (-0.099; 0.375) 

Disturbance (high)  × Sensitivity (high) 0.393 (0.202; 0.585) 0.205 (-0.017; 0.423) 
Distance (far) × Disturbance (high) × Sensitivity 
(high) -0.208 (-0.471; 0.065) -0.122 (-0.433; 0.188) 

Distribution = Poisson; link function = natural logarithm; random factors = year, round, and point_ID/pair_ID/Site 
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Fig. S1 Mean differences (± 95% CrI) in number of territories (a) or species (b) between 

close and far points within forests with a low level of recreation, when considering the path 

type (Trails versus gravel roads) 
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Fig. S2 Number (mean ± 95% CrI) of territories and species, respectively, between close 

and far points for low- and high-recreation forests for: (a) and (b) nesting-guilds, (c) and (d) 

foraging-guilds, and (e) and (f) sensitivity towards humans 
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Abstract 

Wildlife perceives humans as predators, and therefore normally flushes. Flight 

initiation distance (FID), is the distance a human can approach an animal on steady pace 

until it flushes. Recently several studies showed differences in within-species FID between 

urban and rural habitats, with urban birds showing reduced FID. However, urban and rural 

habitats also differ in structure which might affect FID. Therefore, we investigated whether 

differences in FID are also present in natural habitats (forests) differing only in the intensity 

of human use for recreation. We found distinctly shorter FIDs in forests used intensely by 

humans than in a forest hardly frequented by humans. Whether this finding is driven by 

non-random settlement of different personalities or phenotypic plasticity (habituation-

potential) cannot be assessed with our data. Studies relying on FIDs should also 

incorporate human recreation intensity, as this affects the measurements strongly. 

 

Key words: Flush distance, escape distance, human disturbance, habituation  
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INTRODUCTION 

Human disturbance through recreational activities has recently been found to 

negatively affect wildlife (Thiel et al. 2007; Kangas et al. 2010; Coppes et al. 2017; Bötsch, 

Tablado & Jenni 2017). To protect wild animals from the negative effects of recreation, 

zones with restricted access or buffer zones around breeding areas are a widely 

recommended mitigation measure (Rodgers & Smith 1995; Fernández-Juricic, Jimenez & 

Lucas 2001; Blumstein et al. 2003; Ikuta & Blumstein 2003). To define buffer zones an 

appropriate set-back distance, matching the focal species needs, has to be chosen. 

Unfortunately conservation measures often have to be defined quickly and ad hoc, without 

time for area-specific in-depth studies. Often the so called flight initiation distance (FID) 

has been used to define a minimal set-back distance. FID is the distance at which humans 

can approach a species before triggering its anti-predatory/escape behaviour. FIDs have 

been used widely for decades and still are considered a good surrogate for set-back 

distances (Samia et al. 2017). Many modulating factors have been found to affect these 

FIDs (Gutzwiller & Marcum 1997; Eason et al. 2006; Thiel et al. 2007; Carrete & Tella 

2010; Legagneux & Ducatez 2013; Cavalli et al. 2016; Wilson-Aggarwal et al. 2016; 

Lethlean et al. 2017). There are intrinsic differences between species and individuals 

(Blumstein et al. 2003; Carrete & Tella 2010), but also many habitat- and context-specific 

effects have been reported, such as shorter FIDs in denser habitats (Tablado & Jenni 

2017). Recently, studies have shown differences in bird tolerance to human approach 

across an urban-rural gradient, with urban populations showing reduced FIDs compared to 

rural conspecifics (McGiffin et al. 2013; Møller et al. 2013; Cavalli et al. 2016). These 

reduced FIDs have been attributed to habituation to humans and/or the selection of 

human-tolerant individuals (personalities) in urban environments (McGiffin et al. 2013; 

Cavalli et al. 2016; Vincze et al. 2016; Samia et al. 2017; Sprau & Dingemanse 2017). 

These studies demonstrate an effect of highly anthropogenic environments on bird escape 
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reactions. However, urban and rural habitats also differ in habitat structure which might 

affect FID (Whittingham et al. 2004; Thiel et al. 2007), and rural habitats may also be 

frequented strongly by humans. Therefore it remains unclear whether the differences in 

FIDs between urban and rural environments are due to differences between habitats or 

the frequency of humans. Moreover, little is known about the effect of lower levels of 

human presence, such as that occurring during recreation in natural areas, on bird anti-

predatory behaviour.  

Therefore, the aim of this study was to investigate whether FIDs of birds in forests near 

large urban settlements, and thus often frequented by humans, differ from bird FIDs in 

rarely visited forests of similar structure.   
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MATERIALS AND METHODS 

Study sites 

We measured FIDs in three different forests, two of which were close to cities (the 

“Allschwilerwald” near Basel (193,000 inhabitants), Switzerland, 47°32’N 7°32’E and the 

“Sihlwald” near Zurich (415,000 inhabitants), Switzerland, 47°16’N8°33’E) and therefore 

heavily frequented by humans, and one forest where human recreation occurred at a very 

low level (“Forêt de Chaux” >9km from Dole (23,000 inhabitants), Département du 

Franche-Comté , France, 47°5’N 5°41’E). These forests were all deciduous and fully free 

to access for people. The Allschwilerwald and the Forêt de Chaux are both dominated by 

pedunculate oak (Quercus robur) whereas the Sihlwald mainly consists of European 

beech (Fagus sylvatica). In 2015 we measured FIDs in the “Forêt de Chaux”, whereas in 

2016 we measured FIDs in all three forests. 

 

FID-measures 

As the vegetation density affects visibility (detection of humans by birds), and 

therefore also FID, we took FID measures only in early spring, from the beginning of 

March until the end of April, to avoid the foliated season. By measuring FIDs only in these 

two months we were also reducing the noise caused by variations in antipredatory-

responses across life-history stages. To be able to approach birds on a straight line at 

steady pace, we selected rather open forest areas, with a poor shrub layer but a closed 

canopy (for forest details see also Bötsch et al. in prep). To obtain a sufficient sample size 

we focused on a few common species: common blackbird (Turdus merula), common 

chaffinch (Fringilla coelebs), Eurasian nuthatch (Sitta europaea), European robin 

(Erithacus rubecula), great tit (Parus major), marsh tit (Poecile palustris), short-toed 

treecreeper (Certhia brachydactyla), song thrush (Turdus philomelos) and winter wren 

(Troglodytes troglodytes). 
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FID was measured by a single person approaching a located bird, that did not yet 

react visibly to our presence (e.g. by alert posture or alarm calling), at steady pace. Only 

single birds, either singing, feeding or resting were measured, as birds on a nest or birds 

in groups have been shown to flush differently (Fernández-Juricic, Jimenez & Lucas 

2002). FID was measured with range finding binoculars (ZEISS Victory 10x45 T* RF) as 

the horizontal line between the observer and the tree, bush or ground where the bird was 

before flushing. We also measured the height above ground where the bird was sitting as 

well as the distance at which the measuring person discovered the individual (starting 

distance) (Blumstein 2003).  

 

Data analysis  

We applied a generalized linear mixed model using the lme4-package in R v. 3.3.0 

(Bates et al. 2015; R Core Team 2016). 

We included as explanatory variables: starting distance, height above ground, time of day 

(daytime), Julian date, species, recreation level (low or highly frequented forest), and the 

interaction between species and recreation. All continuous variables were standardised to 

facilitate model convergence (mean=0, sd=1). We included year and observer as random 

factors to account for variability among years and the five observers. To account for 

phylogenetic relatedness between the species, we included the family of each species as 

random factor into the model. We visually checked for the goodness of fit by plotting 

residuals. 

For making inference we used a Bayesian approach (after Korner -Nievergelt et al. 

(Korner-Nievergelt et al. 2015)). We simulated 10,000 random samples from the posterior 

distribution by using the sim-function from the R-package arm (Gelman & Su 2015). From 

these random samples we used the 2.5 % and 97.5 % quantiles as the limits of the 95 % 

credible interval (CrI). To be able to investigate species-specific differences between the 
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forests, we computed posterior probabilities (PP). PPs describe the probability that the 

difference in FID (for a given species) between two forests is different from zero: PPs can 

take values between 0.5 (no difference) and 1 (different).   
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RESULTS 

For each species we had the following FID sample sizes: 73 for common blackbird, 

121 for common chaffinch, 62 for Eurasian nuthatch, 94 for European robin, 132 for great 

tit, 39 for marsh tit, 23 for short-toed treecreeper, 26 for song thrush and 74 for winter 

wren.  

For many species, we found differences in FID between heavily frequented and the 

less frequented forest (figure 1 and tables 1, 2). Overall, birds in the less frequented forest 

showed larger FIDs compared to heavily frequented forests although the strength of this 

difference was species dependent (see figure 1, table 2). Within species FIDs between the 

two heavily frequented forests never differed substantially between each other (see table 

2). 

The higher above ground a bird was located, the shorter was its FID (table 1), 

whereas the starting distance was positively correlated with the FID (table 1).  
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DISCUSSION 

We found that birds had shorter FIDs in the frequently visited forests than in the 

less frequented forest. This indicates that the shorter FID is due to human presence, 

because the habitat was very similar. It also indicates that the shorter FIDs found in urban 

than rural environments (Cavalli et al. 2016) may be mainly due to human presence rather 

than habitat differences. People may be perceived by naive wildlife as predators (Frid & 

Dill 2002; Beale & Monaghan 2004a). This may explain why we find large FIDs in forests 

where birds did not have that much experience with humans (“non-habituated”). However, 

in forests with higher human frequentation birds could have “habituated” to non-

threatening recreationists and reduce their behavioural anti-predatory response. An 

alternative possible explanation for our finding could be a redistribution of personalities, as 

recently shown by Sprau & Dingemanse (Sprau & Dingemanse 2017). That is, they 

showed that personality types are non-randomly distributed along an urban gradient with 

bolder animals being more frequent in urban areas and shyer individuals in more sub-

urban areas. This might also partially explain why we found for most species shorter FIDs 

in the heavily frequented forests, compared to the less frequented one, but whether non-

random settlement or phenotypic plasticity is the driving factor cannot be disentangled with 

our data. 

In conclusion, FID can be affected by human frequentation. Thus, when FID is to be 

used for defining set-back distances, local FIDs should be measured to avoid mismatching 

between bird tolerances in areas where the FID was measured and the ones in the local 

area where it will be applied. If human disturbance already occurred at a given site, the 

most vulnerable species or individuals might already have left the site, therefore FIDs 

always have to be used as minimal set-back distances (although mostly average FID plus 

one or two standard deviations are used). Our finding implies that future studies, 
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measuring FIDs, should also incorporate site-specific human recreation intensity as a 

modulating factor for FIDs. 
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TABLES 

Table 1: Model output of the FID-model with the mean FID estimate and the 

corresponding 95 % credible interval (CrI). The reference category is the Common 

blackbird from the Allschwilerwald. 

Variable Mean FID estimate 95% CrI 

Intercept 12.43 (6.53; 18.36) 

Starting distance 6.94 (6.38; 7.50) 

Height -2.51 (-3.06; -1.97) 

Time -0.23 (-0.72; 0.26) 

Julian date -0.09 (-0.58; 0.40) 

Forêt de Chaux (FdC) 13.69 (8.62; 18.60) 

Sihlwald (Sw) -2.99 (-6.72; 0.77) 

Common chaffinch (CC) -3.10 (-10.13; 4.12) 

Short-toed treecreeper (StT) -8.17 (-16.56; 0.24) 

Eurasian nuthatch (EN) -4.48 (-11.65; 2.81) 

Great tit (GT) -2.42 (-9.44; 4.68) 

European robin (ER) -4.14 (-11.32; 3.10) 

Song thrush (ST) -7.15 (-13.66; -0.60) 

Marsh tit (MT) -2.58 (-10.17; 5.22) 

Winter wren (WW) -4.03 (-11.32; 3.05) 

Forest (FdC) × Species (CC) -7.00 (-12.44; -1.41) 

Forest (FdC) × Species (StT) -7.49 (-15.22; 0.18) 

Forest (FdC) × Species (EN) -10.37 (-16.10; -4.50) 

Forest (FdC) × Species (GT) -12.37 (-17.66; -7.00) 

Forest (FdC) × Species (ER) -7.74 (-13.34; -2.16) 

Forest (FdC) × Species (ST) -7.36 (-15.68; 1.15) 

Forest (FdC) × Species (MT) -13.01 (-19.61; -6.48) 

Forest (FdC) × Species (WW) -11.02 (-16.81; -5.13) 

Forest (Sw) × Species (CC) 3.27 (-1.38; 7.95) 

Forest (Sw) × Species (StT) 4.89 (-3.10; 12.67) 

Forest (Sw) × Species (EN) 3.57 (-2.47; 9.53) 

Forest (Sw) × Species (GT) 2.34 (-2.79; 7.50) 

Forest (Sw) × Species (ER) 2.88 (-2.01; 7.71) 

Forest (Sw) × Species (ST) 7.76 (0.14; 15.40) 

Forest (Sw) × Species (MT) 4.48 (-2.16; 10.98) 

Forest (Sw) × Species (WW) 3.46 (-1.58; 8.38) 
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Table 2: Within species posterior probabilities between forests. Posterior probabilities can 

take values between 0.5 (no difference) and 1 (fully different) and are a measure to 

represent the strength of a difference between two measures (levels). The “Forêt de 

Chaux” (FdC) was seldom used for recreation whereas the other two forests 

(Allschwilerwald: Aw and Sihlwald: Sw) were heavily frequented by recreationists.  

Species Aw vs FdC Sw vs FdC Aw vs Sw 

Common blackbird >0.99 >0.99 0.94 

Common chaffinch >0.99 >0.99 0.59 

Short-toed treecreeper 0.98 0.91 0.70 

Eurasian nuthatch 0.98 0.88 0.59 

Great tit 0.87 0.87 0.64 

European robin >0.99 >0.99 0.52 

Song thrush 0.97 0.72 0.92 

Marsh tit 0.62 0.63 0.71 

Winter wren 0.95 0.90 0.61 
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FIGURES 

 

Figure 1: Model estimates (± 95 CrI) of species-specific flight-initiation distances for the 

three different study sites. The “Forêt de Chaux” is rarely frequented by humans (open 

symbol) whereas the two other forests (closed symbols) are highly frequented by humans. 

Explanation of the acronyms: CB: Common blackbird (Turdus merula), CC: Common 

chaffinch (Fringilla coelebs), StT: Short-toed treecreeper (Certhia brachydactyla), EN: 

Eurasian nuthatch (Sitta europaea), GT: Great tit (Parus major), ER: European robin 

(Erithacus rubecula), ST: Song thrush (Turdus philomelos), MT: Marsh tit (Poecile 

palustris), WW: Winter wren (Troglodytes troglodytes). 
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ABSTRACT 

The worldwide increase in human outdoor activities raises concerns for wildlife. 

Human disturbances, even at low levels, are likely to impact species during sensitive 

periods of the annual cycle. However, experimental studies during the putative sensitive 

period of territory establishment of birds which not only investigate low disturbance levels, 

but which also exclude the effect of habitat modification (e.g. walking trails) are lacking. 

Here, we experimentally disturbed birds in forest plots by walking through twice a day 

during territory establishment. Later we compared the breeding bird community of 

experimentally disturbed plots with that of undisturbed control plots. We discovered that 

the number of territories (-15.0%) and species richness (-15.2%) in disturbed plots were 

substantially reduced compared to control plots. Species most affected included those 

sensitive to human presence (assessed by flight-initiation distances), open-cup nesters 

and above-ground foragers. Long-distance migrants, however, were unaffected due to 

their arrival after experimental disturbance took place. These findings highlight how 

territory establishment is a sensitive period for birds, when even low levels of human 

recreation may be perceived as threatening, and alter settlement decisions. This can have 
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important implications for the conservation of species, which might go unnoticed when 

focussing only on already established birds. 

 

Key words: Forest birds, nesting guild, foraging guild, flight-initiation distance, nature-

based activities, outdoor recreation. 
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INTRODUCTION 

Outdoor recreational activities have increased substantially in the past decades 

(Boyle & Samson 1985; Balmford et al. 2009), which has led to repeated encounters 

between people and wildlife. These encounters may provoke wildlife responses, such as 

increased vigilance, heightened stress-hormone levels, anti-predator escape responses 

and, in some cases, a decrease in survival and/or reproduction or even abandonment of 

an area (Ikuta & Blumstein 2003; Thiel et al. 2008; Mathot et al. 2012; Arlettaz et al. 2015; 

Tarjuelo et al. 2015; Tablado & Jenni 2017). Wildlife responses to human recreation will 

not only depend on the characteristics of the animals involved (e.g. species, sex) and on 

the type of human disturbance (e.g. noise level, number of people), but also on the 

environmental conditions (e.g. habitat) and on the specific period in an animal’s life history 

in which the encounter with humans occurs (Tablado & Jenni 2017). 

The timing of disturbance events also warrants more attention from researchers (Buckley 

2013). Although a number of studies have been conducted during sensitive periods, such 

as reproduction or other periods of energetic constraints (Arroyo & Razin 2006; Strasser & 

Heath 2013; Arlettaz et al. 2015; Martín et al. 2015), territory establishment remains 

understudied (Götmark 1992; Tablado & Jenni 2017). During this phase, even low-

intensity and short-lasting disturbance events could prompt animals to perceive habitats as 

risky and influence their decision on where to breed, thus altering the density and species 

richness of the breeding community. An increase from no disturbance to low-level 

disturbance is likely to have a proportionally stronger ecological impact than a change 

from low to medium-level disturbance, or from medium to high-level disturbance (Hill et al. 

1997; Steidl & Powell 2006; Steven, Pickering & Castley 2011; Monz, Pickering & Hadwen 

2013). This may apply particularly to the sensitive phase of territory establishment. 

In the field of avian biology, human outdoor recreation has been linked to lower 

abundance and reduced species richness (Van der Zande et al. 1984; Patthey et al. 2008; 
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Kangas et al. 2010). However, these studies did not focus on the underlying processes 

being altered by disturbance (e.g. prevention from settling vs. later breeding failure), and 

often cannot separate direct effects of human presence from indirect effects (e.g. habitat 

alterations normally associated with recreation). That is, human recreational activities are 

mostly bound to roads or trails and, thus always occur with habitat alterations (Forman & 

Alexander 1998), which are known to impact species distribution and abundance 

(Fernández-Juricic 2000; Butler et al. 2012). Therefore, experimental studies are needed 

to determine the direct effects of human presence on birds and the processes involved 

(Hill et al. 1997; Gill 2007).  

The aim of this study was to experimentally investigate whether human recreational 

activities at relatively low levels altered bird-settlement decisions during territory 

establishment, and thus, the resulting breeding-bird community. We expected that 

experimental disturbance during territory establishment would lead to lower densities of 

breeding birds. Depending on species-specific tolerances towards disturbance, we also 

predicted changes in species richness and composition. Notably, we expected a reduction 

in the abundance and number of bird species sensitive to human disturbance, such as 

ground-nesting, ground-foraging (Langston et al. 2007; Mallord et al. 2007; Kangas et al. 

2010; Thompson 2015), and disturbance-sensitive species (Blumstein et al. 2003; Weston 

et al. 2012; Livezey, Fernández-Juricic & Blumstein 2016). 
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MATERIALS AND METHODS 

Study site  

This study was done in the “Forêt domaniale de Chaux”, a large (200 km2) oak-

hornbeam forest in eastern France (47°05’N, 05°40’E) fulfilling all legal and animal welfare 

regulations (permit number 2014157-0012 of the “Direction Régionale de l’Environnement, 

de l’Aménagement et du Logement de Franche-Comté”). This forest is subdivided into 

approximately rectangular 10 ha plots, where harvest is managed by the “Office Nationale 

des Forêts”. The plots were separated from each other by small treeless tracks but 

otherwise natural vegetation, generated by harvest-machines. One side was bordered by 

a gravel road. The forest was only accessible to the public on foot or by bike, with the 

exception of two paved roads crossing the forest. Recreational activities were 

concentrated mainly near the town of Dole (23,000 inhabitants) located at the western 

border of the forest (figure 1) and near Besançon (117,000 inhabitants) which is 15 km to 

the east of the forest. In most of the forest, the frequency of human recreational activities 

was extremely low, and occurred primarily in autumn (i.e. mushroom collection and 

hunting). During our fieldwork (continuous from March to June of 2014 and 2015, 50 h / 

week) we rarely saw people off-trail within the plots (less than one person per month) and 

approximately one person per week on the gravel roads near the study plots. 

 

Experimental design 

We used plots (mean size: 9.2 ha, range: 7.5 - 13 ha) in the centre of the forest (> 9 

km from Dole and Besançon, figure 1) where no timber harvesting occurred during the 

study period (2014-2015; as agreed with the “Office National des Forêts”). The 

composition and structure of the vegetation was homogeneous within plots and similar 

among plots. The plots were dominated by pedunculate oaks Quercus robur, many older 

than 100 years (M. Romanski pers. comm.), with admixed European beech Fagus 
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sylvatica and European hornbeam Carpinus betulus, as well as Norway spruce Picea 

abies or Douglas fir Pseudotsuga menziesii in small numbers. The plots were at least 600 

m apart from each other to prevent confounding neighbouring effects. We divided all plots 

in two halves (split-plots, mean 4.7 ha); one half was experimentally disturbed while the 

other half served as a control. The split-plots receiving the disturbance treatment were 

chosen randomly with the only constraint that half of them were bordered by the gravel 

road and the other half not. 

Since our objective was to examine the effect of human recreation during bird-

territory establishment, we only disturbed birds during the pre-breeding season, from early 

March until mid-April (7 March - 22 April) (von Blotzheim, Bauer & Bezzel 1993). 

Disturbance events consisted of a group of two or three people, carrying a loudspeaker 

(Hama, smartphone speaker, power: 3 W with a Samsung digital audio player F3) and 

walking through a pre-established mower-pattern transect with back and forth lines 

separated by 20 m (figure 1). The loudspeakers were continuously playing human 

conversations (obtained from several sources and languages; from TV shows to audio 

books) at an average human-conversation volume level (approximately 60 dB at 1 m 

distance  (Byrne et al. 1994; Hacki 1996)). The orientation of the path was turned 90 

degrees from one disturbance event to the next to reduce predictability of the disturbance. 

These disturbance events lasted around 45 minutes depending on the split-plot area 

(mean = 42 min, sd = 13 min) and occurred one to three times per day during daytime. 

The order in which the split-plots were disturbed changed daily to avoid biases in the time 

of disturbance. 

Due to logistic reasons and man-power limitations, the experimental disturbance in 

2014 was restricted to six treatment plots which were disturbed on average 1.6 times per 

day (each plot at least once each day). In 2015, we were able to extend the experiment to 

12 plots which were disturbed 2.3 times per day (each plot at least once per day). In the 
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case of the six plots that were common for both years, we switched the disturbed and 

control split-plots from one year to the next to exclude possible split-plot-specific effects. In 

2014, we therefore disturbed each of the six split-plots 73 times during 45 days, and in 

2015, each of the 12 split-plots 105 times during 46 days. The low number of disturbance 

events allowed us to examine the effects of recreation at intensities much lower than most 

previous studies in recreation ecology (see for example (Van der Zande et al. 1984; Beale 

& Monaghan 2004a)), thus enabling us to test whether even low levels of disturbance 

could have an impact when applied during sensitive periods. 

 

Bird territory mapping 

The breeding bird territories were censused in all plots three times per season in 

both years of the study (first census round 20 April – 6 May, second 6 May – 22 May, third 

28 May – 17 June) to include the breeding season of all forest-bird species, from residents 

to late-arriving long-distance migrants. We did not census earlier, to be sure that birds 

were already settled and that we did not disturb the control split-plots during the territory 

establishment period. Censuses started at sunrise and lasted 30 to 66 minutes (mean = 42 

min) depending on plot size. Censuses followed the Swiss standard breeding-bird survey 

protocol (Bibby et al. 2000; Schmid & Spiess 2008) and consisted of recording all birds 

seen or heard showing territorial behaviour on a map, while following a mower-pattern 

transect (lines 60 m apart) covering the entire plot (including both disturbed and control 

split-plots; figure 1). The censuses were performed by the same two observers in both 

years, each of which always surveyed the same plots. For each round, we determined the 

number of contacts per species, but counted pairs and families as one to approach the 

number of territories detected. Long-distance migrants were not considered as breeders, 

but as transients, if seen or heard before usual arrival dates (according to Schmid et al. 

(Schmid et al. 1998); see electronic supplementary material table S1). 
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 Vegetation surveys 

In June 2015, we characterised the vegetation of all twelve plots by using a 

stratified random sampling, i.e. distributing one survey point per 0.5 ha grid cell, which 

resulted in 7 to13 points per split-plot (210 survey points in total, figure 1). At each point 

the following variables were measured: canopy cover (visual estimation of percentage of 

cover in the observer’s visual field when looking straight up; always measured by the 

same person), ground vegetation cover (in 2x2 m quadrats), shrub cover (in 3x3 m 

quadrats), and number of trees per species and standing dead trunks with diameter at 

breast height (dbh) larger than 5 cm in 8x8 m quadrats. Before analyses, we averaged 

vegetation measures to create mean values per split-plot. There were no significant within-

plot differences in any of the vegetation variables between the disturbed and the control 

split-plots (pairwise t-tests or Wilcoxon tests, depending on data distributions, p > 0.05). 

 

Data analysis 

We tested for the effect of human disturbance during territory establishment on the 

number of territories and on species richness, both following a Poisson distribution, with 

two separate generalized linear mixed models (GLMM) (table 1). The factor disturbance 

treatment (disturbed vs. control split-plot) was included as explanatory variable. To 

differentiate between birds whose territory-establishment period overlapped with the 

experimental treatment (residents and short-distance migrants) and long-distance 

migrants arriving afterwards and not being exposed to the disturbance, both number of 

territories and species richness were calculated separately for these two groups and a 

two-level factor migration type (“long-distance migrants” vs. “others”; see electronic 

supplementary material table S1) was added to the models. To describe the structure and 

composition of the vegetation we included the following explanatory variables: ground 

vegetation cover, shrub cover, canopy cover, amount of deadwood, and tree diversity 
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(Shannon-diversity index (Spellerberg & Fedor 2003) of the main tree species: 

pedunculate oak Quercus robur, European beech Fagus sylvatica, European hornbeam 

Carpinus betulus and two species of conifers; Picea abies, Pseudotsuga menziesii). 

Additionally, we incorporated the presence/absence of a gravel road along the split-plot to 

control for further possible habitat differences between split-plots, the linear and quadratic 

effect of Julian date to account for bird-breeding phenology, and the year (2014 vs. 2015) 

to control for inter-annual differences in the intensity of disturbance and in climatic 

conditions. We also added the two and three-way interactions between year, disturbance 

and migration type. We included the split-plot area (in ha) into the models to account for 

unequal plot sizes (Connor & McCoy 1979; Korner-Nievergelt et al. 2015). For the model 

on the number of territories we had to include the logarithm of the split-plot area as an 

offset term to model territory densities (after Korner-Nievergelt et al. (Korner-Nievergelt et 

al. 2015)), while for the model on species richness, we included the quadratic effect of 

area (Split-plot area2). 

Additionally, in order to investigate the effects of experimental disturbance on the 

density and richness of specific types of birds, we classified all bird species according to 

their nesting guild (ground, open-cup, and cavity nesters (Perrins & Cramp 1998)), their 

tolerance to human approach (sensitivity; high vs. low), and their foraging guild (ground vs. 

above ground (Perrins & Cramp 1998)) (see electronic supplementary material table S1). 

For each of the three classifications, we then applied two models (i.e. for number of 

territories and species) similar to the ones above, but replacing the factor migration type 

by the factor corresponding to each classification (i.e. nesting guild, sensitivity, or foraging 

guild). These six models were performed without long-distance migrants (i.e. with only 

those species whose territory-establishment period overlapped with experimental 

disturbance). Bird sensitivity classes were approximated by using the mean flight initiation 

distance (FID) of the given species during the breeding period in non-urban areas, as 
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obtained from Díaz et al. (Díaz et al. 2013). Low sensitivity species had an average FID 

lower or equal to the overall median value of FID for all species observed breeding in our 

plots (median FID = 13.13m), whereas high sensitivity species had FID larger than the 

overall median FID. We acknowledge that FID might not always truly represent species 

sensitivity, as modulating factors (e.g. vegetation) may influence birds antipredator 

behaviour (Tablado & Jenni 2017); however, FID is an acceptable  and widely available 

measure for approximating sensitivity towards human disturbance (Blumstein et al. 2003).  

In all models, to account for observer effect we included observer (two-level factor) 

as a random factor. To account for variations among rounds and plots, census round (first, 

second, third) and split-plot-ID were nested within plot-ID. All analyses were performed in 

R 3.3.0 (R Core Team 2016) with the function glmer from package lme4 (Bates et al. 

2015). All numeric explanatory variables were standardized (mean = 0 and sd = 1) to 

facilitate model convergence. We used a Bayesian framework to calculate the 95% 

credible intervals (CrI) of the parameter estimates and model predictions. To do so we 

simulated random samples (N = 10,000) from the joint posterior distribution of the model 

parameters using the function sim from the R-package arm (Gelman & Su 2015) 

(electronic supplementary material figure S3 and S4), from which we used the 2.5% and 

97.5% quantiles as the lower and upper limit of the 95% CrI. To assess how split-plot type 

(disturbed and control) interacted with year and bird characteristics, we calculated the 

posterior probability (between 0.5 and 1; using Monte Carlo simulation) of the hypothesis 

that the mean number of territories or of species at disturbed sites was lower than at 

control sites (see figure 2 and 3). Using this approach, higher probabilities represent a 

stronger difference between treatments. Goodness-of-fit was assessed through visual 

examination of plotted residuals, and we confirmed that there was no overdispersion 

(Values of the R-function dispersion_glmer always below 1, after Korner-Nievergelt et al., 

2015). Note that the numbers of territories and species obtained are not absolute 
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numbers, since we did not account for imperfect detection. Accounting for imperfect 

detection would have added a layer of complexity to our models which would have been 

incompatible with sample size (over-parameterisation) and caused problems of 

convergence. 
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RESULTS 

Both the number of territories and species richness were substantially lower in 

disturbed split-plots than in the control ones (table 1, figure 2). Moreover, this effect was 

only observed for resident and short-distance migrant species which experienced the 

experimental disturbance (figure 2a,c). It was not observed for species arriving later in the 

season (long-distance migrants; figure 2b,d). We found a reduction of about 15% in the 

number of territories for residents and short-distance migrants per mean disturbed split-

plot compared to the control split-plot over both years (19.8% in 2014 and 10.2% in 2015). 

Species richness of resident and short-distance migrants also dropped by 15% in the 

disturbed split-plots compared to control split-plots (19.4% in 2014 and 10.9% in 2015). 

Independent of the disturbance treatment, the number of territories detected decreased 

with Julian date. 

The response to experimental disturbance varied depending on the characteristics 

of the species (electronic supplementary material figure S1 and figure S2). The effect of 

disturbance appeared to be largest on open-cup nesters compared to cavity or ground 

nesters (figure 3a; electronic supplementary material table S2). High-sensitivity species 

showed a stronger negative response to disturbance than low-sensitivity species (figure 

3b; electronic supplementary material table S3). Finally, above-ground foragers appeared 

more affected by disturbance than ground foragers (figure 3c; electronic supplementary 

material table S4). Overall, there seemed to be a stronger effect of disturbance on the 

number of territories and species richness in the first year (2014) compared to the second 

year (2015). 
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DISCUSSION 

Our findings confirm our hypothesis that even low levels of disturbance during 

territory-establishment, with no concomitant habitat alteration, can have a negative effect 

on both density of breeding birds and species richness. Such an effect was not apparent in 

long-distance migrants, as they arrived after the end of the experimental disturbance, and 

thus, were not exposed to it. These findings are in agreement with Steven et al. (Steven, 

Pickering & Castley 2011) and Monz et al. (Monz, Pickering & Hadwen 2013) which state, 

that even low levels of disturbance (as ours) can have significant importance. Contrary to 

other experimental studies, which also show a negative link between human disturbance 

and bird density and/or diversity (Riffell, Gutzwiller & Anderson 1996; Gutzwiller & 

Anderson 1999; Baines & Richardson 2007; Holm & Laursen 2009), we restricted 

disturbance to the territory-establishment period. Thus, our results suggest that territory 

establishment may be a sensitive period, in which human disturbances could greatly affect 

the density and diversity of breeding birds. 

During the territory-establishment period birds select breeding sites, and the 

presence of humans might “invisibly” lower the quality of the habitat (Reed & Merenlender 

2008). A possible explanation for the observed effects could be that birds perceive 

recreationists as predators (Beale & Monaghan 2004a). Indeed, the presence of predators 

has been shown to strongly affect breeding-site selection (Norrdahl & Korpimäki 1998; 

Fontaine & Martin 2006). Birds are therefore anticipated to select against habitats with 

more recreational activity, resulting in altered breeding-bird communities as shown in this 

study. These results emphasize the important role played by human disturbance on 

species abundance and diversity.  

As predicted, we found that the effect of experimental disturbance varied according 

to species characteristics. Open-cup nesters were more affected than cavity nesters. This 

finding is in accordance with Kangas et al. (Kangas et al. 2010) and Martin & Li (Martin & 
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Li 1992) suggesting that cavities confer extra protection, which lowers the effect of 

disturbance and predation. Surprisingly, we did not observe an effect of experimental 

recreation on ground-nesting birds, as has been previously suggested by Kangas et al. 

(Kangas et al. 2010). Similarly, there was no effect of experimental disturbance on ground-

foragers. This was probably due to the low number of ground-nesting and ground-foraging 

species in our study sites (see electronic supplementary material table S1), making an 

effect of disturbance hard to detect. As expected, we demonstrated a stronger impact of 

experimental disturbance on the more sensitive species (i.e. with larger flight initiation 

distance (FID)) than on the less sensitive species. Species with larger FID are generally 

larger-bodied species (Blumstein et al. 2005) and therefore human disturbance is 

expected to affect these species the most. 

The negative response of birds to the experimental disturbance in the first study year 

was stronger than in the second year, despite increased disturbance intensity in the 

second year. This finding could be a consequence of the greater total number of territories 

found in the second year, which could have forced birds to also accept non-preferred (i.e. 

disturbed) habitats (Komdeur et al. 1995; Reijnen et al. 1995; Ferrer & Donazar 1996; 

Rodenhouse et al. 2003), diminishing the differences between treatments in the second 

study year. Habituation effects, on the other hand, can be ruled out due to the treatment 

switching from the first to the second study year. Carry-over effects from the first to the 

second year in interaction with treatment switching, could also partially explain this inter-

annual difference in impact. That is, if birds experiencing the disturbance split-plot in the 

first year tried to avoid it in the second year, this could lead to lower starting numbers in 

this split-plot which became the control split-plot in the second year. This uneven starting 

number could have partially obscured the effect of disturbance the second year. However, 

the overall increased numbers of territories in both split-plots in the second year suggest 

that these carry-over effects, if at all present, would play only a marginal role. Another 
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partial explanation to this decreased effect in the second year could be differences in 

weather conditions or food availability was better in the second year, thus increasing the 

perceived quality of disturbed split-plots. Unfortunately, we did not measure food 

resources. 

Our findings highlight how the impacts of disturbance can go unnoticed when 

examined later in the season. Indeed, individuals and species establish breeding territories 

early in the season. A pre-selection in favour of bolder personalities and species might 

have already occurred during the pre-breeding phase of territory establishment (by tourists 

or researchers visiting and area). We should therefore be careful when planning and 

interpreting the results of studies occurring during the breeding season sensu stricto. 

Future studies should investigate the consequences of these recreation-driven reductions 

in number of territories and species for subsequent breeding parameters, survival, and 

overall population dynamics.  

In conclusion, this study emphasizes that negative effects of human recreational 

disturbance can already occur after low-intensity disturbance events, even when occurring 

over a short time period. This is especially relevant during territory establishment in early 

spring, when improving weather conditions entail an increase in outdoor recreation (at 

least in temperate regions; R. Schmidt unpublished data). Given the potential conservation 

implications of these results, we suggest that conservationists and park managers should 

not only manage disturbance during the main breeding season, but also during territory 

establishment. Disturbance management could include limiting human access to certain 

areas that are likely to be used by vulnerable species to establish breeding territories. 

Additionally, the network of trails open to the public could be reduced temporarily to 

increase the size of the undisturbed patches. Furthermore, appropriate information should 

be provided to visitors about the importance of staying on trails to minimize their impacts 

on wildlife. These measures could help protect sensitive birds (species or individuals of 
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certain personalities) that would settle in an area if there were no human activities during 

the pre-breeding season. 
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TABLES 

Table 1: Results of the GLMMs testing the effect of experimental disturbance (human 

recreation) on the number of bird territories and species richness. Represented are the 

estimates of the effect of each variable with the corresponding 95% credible intervals (CrI).  

  
Number of Territories 

 
Species richness 

Terms   Estimate CrI   Estimate CrI 

Intercept   0.8810 0.5780; 1.1814 
 

1.9444 1.6828; 2.2046 

Disturbance 
      

                 disturbed -0.2232 -0.4308; -0.0092 
 

-0.2151 -0.4790; 0.0584 

                 control / / 
 

/ / 

Type 
      

                others / / 
 

/ / 

                long-distance migrant -3.9117 -4.8799; -2.9224 
 

-3.4014 -4.3907; -2.3873 

Ground vegetation cover  0.0253 -0.0723; 0.1203 
 

-0.0261 -0.1163; 0.0664 

Shrub cover 
 

0.1084 -0.0125; 0.2260 
 

0.1057 -0.0151; 0.2272 

Canopy cover 
 

0.0294 -0.0855; 0.1478 
 

-0.0343 -0.1736; 0.1071 

Tree diversity 
 

-0.0235 -0.1224; 0.0738 
 

-0.0728 -0.1704; 0.0261 

Deadwood 
 

0.0259 -0.0806; 0.1336 
 

0.0479 -0.0782; 0.1735 

Road 
      

              presence 0.0190 -0.1559; 0.1941 
 

-0.0226 -0.2317; 0.1800 

              absence / / 
 

/ / 

Juliandate -0.1231 -0.2153; -0.0328 
 

-0.0155 -0.1327; 0.1072 

Juliandate
2
 -0.0524 -0.1555; 0.0529 

 
-0.0111 -0.1405; 0.1184 

Year 
      

                2014 / / 
 

/ / 

                2015 0.1018 -0.0801; 0.2828 
 

0.0519 -0.1757; 0.2807 

Surface -0.0502 -0.1469; 0.0461 
 

0.2374 -0.7693; 1.2876 

Surface
2
 - - 

 
0.9647 -0.1803; 2.0994 

Disturbance × Type 
     

             disturbed: long-distance migrant -0.0873 -1.5989; 1.3863 
 

-0.1135 -1.6684; 1.3940 

Disturbance × Year 
     

            disturbed: 2015 0.1131 -0.1484; 0.3746 
 

0.0966 -0.2403; 0.4227 

Type × Year 
     

           long-distance migrant: 2015 0.3329 -0.8118; 1.4819 
 

0.3098 -0.8357; 1.4698 

Disturbance × Type × Year 
     

           disturbed: long-distance migrant: 2015 0.2277 -1.4639; 1.9970   0.2847 -1.4482; 1.9820 

/ = reference categories      

- = Parameter not tested in the given model      
Distribution = Poisson; link function = natural logarithm; random factors = observer, round and split-plot ID nested within 
plot ID. 
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FIGURES 

 

Figure 1. Study site “Forêt domaniale de Chaux” (dark grey area) with the twelve different 

plots (black rectangles) and “Dole” as the next town. Shown in detail is a schematic 

representation of a study plot with the two split-plots (one disturbed, one control). The 

black-dotted line represents an example of a disturbance walk (the orientation of this 

transect was turned 90° between disturbance events). A 30 m buffer was left between the 

disturbance path and the line separating the split-plots (white-continuous line), to lower a 

potential confounding effect into the control split-plot. This distance was selected 

considering the information available in the literature about flight initiation distances (FID) 

of bird species found in this forest (FID for more than 80% of the species is below 30 m). 

The grey-dashed line represents the breeding-bird census transect and the individual 

black dots are vegetation-survey points (for simplicity depicted systematically, although 

stratified random sampling was used). 
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Figure 2. Effects of experimental human disturbance on the number of territories (a, b) and species richness (c, d) per split-plot (4.7 ha) 

according to year and migration type: the graphs (a) and (c) include only the resident and short-distance migrant species, while the  

graphs (b) and (d) only the long-distance migrants. Note the different y-axes. Represented are mean fitted values with 95% credible 

intervals (table 1) and the posterior probability (PP, from 0.5 to 1) that the difference between disturbed and control split-plots is different 

from zero. The larger the PP the more likely it is that disturbed and control split-plots are different. 

 

 

7
8
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Figure 3. Effect of experimental human disturbance on the number of territories and 

species richness per split-plot (4.7 ha) according to (a) nesting-guild (cavity, ground and 

open-cup nesters), (b) sensitivity of the species (high = FID > median FID, low = FID ≤ 

median FID), and (c) foraging guild (ground and above ground) in 2014 and 2015, 

respectively (only for residents and short distance migrants). Represented are mean fitted 

values with 95% credible intervals and the corresponding posterior probabilities (PP) that 

the differences between disturbed and control split-plots are different from zero. 
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SUPPORTING INFORMATION 

Table S1. Bird species recorded during the breeding bird censuses in 2014 and 2015 (n = 34), with their scientific and English names, as 

well as the abbreviations used for the figures (Electronic supplementary material figure S1 and S2). We also added the threshold dates 

after which a species was considered as a breeding bird and not a migrant passing through (according to [37]), and the classification into 

migration type (long-distance migrants versus others (residents and short-distance migrants)), nesting guild (cavity, ground and open-cup 

nesters), foraging guild (ground, above ground) and sensitivity according to flight initiation distance (FID); FID > median FID = high 

sensitivity,  FID ≤ median FID = low sensitivity. 

 

Scientific name Abreviation English name 
Threshold 
date Typ

1
 

Nesting 
guild

1
 

Foraging 
guild

1
 Sensitivity

2
 

Aegithalos caudatus AEGCAU Long-tailed Tit 15 April Others Open-cup Above ground Low 

Anthus trivialis ANTTRI Tree Pipit 25 April Long-distance migrant - - - 

Buteo buteo BUTBUT Common Buzzard 15 April Others Open-cup Above ground High 

Certhia brachydactyla CERBRA Short-toed Treecreeper 15 April Others Open-cup Above ground Low 

Coccothraustes coccotraustes COCCOC Hawfinch 15 April Others Open-cup Above ground High 

Columba palumbus COLPAL Common Wood Pigeon 15 April Others Open-cup Ground High 

Cuculus canorus CUCCAN Common Cuckoo 15 April Others Open-cup Above ground High 

Cyanistes caeruleus CYACAE Eurasian Blue Tit 15 April Others Cavity Above ground Low 

Dendrocopos major DENMAJ Great Spotted Woodpecker 15 April Others Cavity Above ground High 

Dendrocopos medius DENMED Middle Spotted Woodpecker 15 April Others Cavity Above ground na 

Dendrocopos minor DENMIN Lesser Spotted Woodpecker 15 April Others Cavity Above ground na 

Erithacus rubecula ERIRUB European Robin 15 April Others Ground Ground Low 

Fringilla coelebs FRICOE Common Chaffinch 15 April Others Open-cup Ground High 

Garrulus glandarius GARGLA Eurasian Jay 15 April Others Open-cup Above ground High 

Lophophanes cristatus LOPCRI European Crested Tit 15 April Others Cavity Above ground Low 

Oriolus oriolus ORIORI Eurasian Golden Oriole 10 May Long-distance migrant - - - 

8
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Parus major PARMAJ Great Tit 15 April Others Cavity Above ground Low 

Periparus ater PERATE Coal Tit 15 April Others Cavity Above ground Low 

Phylloscopus collybita PHYCOL Common Chiffchaff 15 April Others Ground Above ground Low 

Phylloscopus sibilatrix PHYSIB Wood Warbler 1 May Long-distance migrant - - - 

Phylloscopus trochilus PHYTRO Willow Warbler 25 April Long-distance migrant - - - 

Picus canus PICCAN Grey-headed Woodpecker 15 April Others Cavity Ground High 

Poecile palustris POEPAL Marsh Tit 15 April Others Cavity Above ground Low 

Regulus ignicapilla REGIGN Common Firecrest 15 April Others Open-cup Above ground Low 

Regulus regulus REGREG Goldcrest 15 April Others Open-cup Above ground Low 

Sitta europaea SITEUR Eurasian Nuthatch 15 April Others Cavity Above ground High 

Streptopelia turtur STRTUR European Turtle Dove 15 May Long-distance migrant - - - 

Sturnus vulgaris STUVUL Common Starling 15 April Others Cavity Ground High 

Sylvia atricapilla SYLATR Eurasian Blackcap 15 April Others Open-cup Above ground Low 

Sylvia borin SYLBOR Garden Warbler 10 May Long-distance migrant - - - 

Troglodytes troglodytes TROTRO Eurasian Wren 15 April Others Open-cup Ground Low 

Turdus merula TURMER Common Blackbird 15 April Others Open-cup Ground High 

Turdus philomelos TURPHI Song Trush 15 April Others Open-cup Ground High 

Turdus viscivorus TURVIS Mistle Trush 15 April Others Open-cup Ground High 

1
: Bibby et al. 2000; 

2
: Díaz et al. 2013; na: no data available, -: not included in this analysis 
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Table S2. Results of the GLMMs testing the effect of experimental disturbance on the 

number of territories and species richness according to their nesting guild (Long-distance 

migrants were not included in these analyses, see electronic supplementary material table 

S1). Represented are the estimates of the effect of each variable with its corresponding 

95% credible intervals (CrI). 

 
 

Number of territories 
 

Species richness 

Terms   Estimate CrI   Estimate CrI 

Intercept 0.0483 -0.3087; 0.3986 

 

1.1631 0.8530; 1.4874 

Disturbance 

     
                 disturbed -0.2346 -0.5455; 0.0807 

 

-0.3098 -0.7076; 0.0796 

                 control / / 

 

/ / 

Guild 

     
                cavity / / 

 

/ / 

                ground -0.6571 -1.0120; -0.3006 

 

-0.8042 -1.2656; -0.3459 

                open-cup 0.3208 0.0554; 0.5891 

 

0.3053 -0.0292; 0.6480 

Ground vegetation 0.0053 -0.0793; 0.0899 

 

-0.0471 -0.1299; 0.0360 

Shrub 0.0779 -0.0266; 0.1821 

 

0.0573 -0.0555; 0.1652 

Canopy 0.0288 -0.0787; 0.1341 

 

-0.0451 -0.1716; 0.1652 

Tree diversity -0.0213 -0.1071; 0.0660 

 

-0.0732 -0.1602; 0.0135 

Deadwood -0.0031 -0.0978; 0.0932 

 

0.0057 -0.1096; 0.1213 

Road 

     
              presence 0.0556 -0.1013; 0.2101 

 

-0.0081 -0.2001; 0.1772 

              absence / / 

 

/ / 

Julian date -0.1178 -0.2009; -0.0369 

 

-0.0326 -0.1363; 0.0759 

Julian date2 0.0118 -0.0826; 0.1046 

 

0.0229 -0.0944; 0.1363 

Year 

     
                2014 / / 

 

/ / 

                2015 0.2638 0.0094; 0.5105 

 

0.1381 -0.1785; 0.4572 

Split-plot area -0.0043 -0.0853; 0.0783 

 

0.9629 0.0471; 1.8548 

Split-plot area2 - - 

 

1.0298 0.0228; 2.0199 

Disturbance × Year 

     
            disturbed: 2015 0.1387 -0.2203; 0.4998 

 

0.2598 -0.2037; 0.7344 

Guild × Year 

     
           ground: 2015 -0.5492 -0.9891; -0.1033 

 

-0.2793 -0.8464; 0.2898 

open-cup: 2015 -0.3911 -0.7079; -0.0620 

 

-0.1872 -0.5968; 0.2193 

Disturbance × Guild 

     
           disturbed: ground 0.1008 -0.4181; 0.6215 

 

0.3193 -0.3427; 0.9934 

           disturbed: open-cup -0.1343 -0.5497; 0.2759 

 

0.0554 -0.4552; 0.5694 

Disturbance × Guild × Year 

     
             disturbed: ground: 2015 0.1248 -0.5289; 0.7614 

 

-0.2708 -1.0868; 0.5439 

             disturbed: open-cup: 2015 0.0080 -0.4928; 0.5046   -0.2207 -0.8364; 0.3924 

/ = Reference categories 

     
- = Parameter not tested in this model  

    
Distribution = Poisson; link function = natural logarithm; random factors = observer, round and split-plot ID nested within plot ID 
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Table S3. Results of the GLMMs testing the effect of the experimental disturbance on the 

number of territories and species richness according to their sensitivity towards humans 

according to flight initiation distances (only resident and short-distance migrants were 

included in these analyses, see electronic supplementary material table S1). Represented 

are the estimates of the effect of each variable with its corresponding 95% credible 

intervals (CrI). 

  

Number of territories 

 

Species richness 

Terms   Estimate CrI   Estimate CrI 

Intercept 0.2675 -0.0746; 0.6043 

 

1.3662 1.0782; 1.6631 

Disturbance 

                      disturbed -0.4433 -0.7342; -0.1508 

 

-0.3408 -0.7058; 0.0209 

                 control / / 

 

/ / 

Sensitivity 

     high / / 

 

/ / 

low 0.2790 0.0353; 0.5234 

 

0.2582 -0.0578; 0.5698 

Ground vegetation 0.0046 -0.0799; 0.0872 

 

-0.0459 -0.1264; 0.0364 

Shrub 
 

0.0751 -0.0311; 0.1820 

 

0.0539 -0.0547; 0.1647 

Canopy 
 

0.0268 -0.0801; 0.1385 

 

-0.0460 -0.1701; 0.0810 

Tree diversity 
 

-0.0223 -0.1106; 0.0623 

 

-0.0762 -0.1627; 0.0087 

Deadwood 
 

-0.0065 -0.1021; 0.0897 

 

0.0014 -0.1115; 0.1168 

Road 
 

 
 

  
 

              presence 0.0533 -0.1003; 0.2092 

 

-0.0150 -0.1983; 0.1699 

              absence / / 

 

/ / 

Julian date 
 

-0.1218 -0.2048; -0.0403 

 

-0.0369 -0.1414; 0.0713 

Julian date
2
 

 
0.0148 -0.0808; 0.1104 

 

0.0281 -0.0911; 0.1440 

Year 
 

    
 

2014 / / 

 

/ / 

2015 -0.0535 -0.2850; 0.1811 

 

0.0338 -0.2541; 0.3176 

Split-plot area 
 

-0.0060 -0.0893; 0.0742 

 

0.8990 0.0159; 1.8099 

Split-plot area
2
 

 
- - 

 

1.0680 0.0500; 2.0681 

Disturbance × Year 

 
 

  
 

            disturbed: 2015 0.2777 -0.0700; 0.6299 

 

0.1470 -0.2918; 0.5915 

Sensitivity × Year 

 
 

  
 

           low: 2015 0.0930 -0.2130; 0.3868 

 

-0.0484 -0.4248; 0.3225 

Disturbance × Sensitivity 

 
 

  
 

           disturbed: low 0.2752 -0.1038; 0.6549 

 

0.1987 -0.2661; 0.6651 

Disturbance × Sensitivity × Year 
     

             disturbed: low: 2015 -0.1892 -0.6374; 0.2749   -0.0634 -0.6258; 0.4978 

/ = Reference category 
     

- = Parameter not tested in this 
model      
Distribution = Poisson; link function = natural logarithm; random factors = observer, round and split-plot ID nested within 
plot ID 
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Table S4. Results of the GLMMs testing the effect of experimental disturbance on the 

number of territories and species richness according to their foraging guild (only resident 

and short-distance migrants were included in these analyses, see electronic 

supplementary material table S1). Represented are the estimates of the effect of each 

variable with its corresponding 95% credible intervals (CrI). 

  

Number of territories 

 

Species richness 

Terms   Estimate CrI   Estimate CrI 

Intercept 0.0164 -0.3425; 0.3790 

 

1.1662 0.8441; 1.4838 

Disturbance 

                      disturbed -0.2922 -0.6133; 0.0225 

 

-0.1403 -0.5187; 0.2421 

                 control / / 

 

/ / 

Foraging guild 

     ground / / 

 

/ / 

                above ground 0.6905 0.4285; 0.9422 

 

0.5933 0.2723; 0.9105 

Ground vegetation 0.0051 -0.0785; 0.0883 

 

-0.0467 -0.1286; 0.0360 

Shrub 0.0772 -0.0290; 0.1829 

 

0.0575 -0.0504; 0.1644 

Canopy 0.0288 -0.0823; 0.1347 

 

-0.0452 -0.1707; 0.0816 

Tree diversity -0.0205 -0.1054; 0.0660 

 

-0.0726 -0.1598; 0.0133 

Deadwood -0.0027 -0.0997; 0.0927 

 

0.0056 -0.1100; 0.1207 

Road 

    
 

              presence 0.0552 -0.1005; 0.2127 

 

-0.0093 -0.1977; 0.1792 

              absence / / 

 

/ / 

Julian date -0.1178 -0.1995; -0.0333 

 

-0.0313 -0.1372; 0.0762 

Julian date
2
 0.0101 -0.0860; 0.1057 

 

0.0220 -0.0929; 0.1379 

Year 

     2014 / / 

 

/ / 

2015 -0.2529 -0.5274; 0.0191 

 

-0.1262 -0.4515; 0.1987 

Split-plot area -0.0051 -0.0878; 0.0776 

 

0.9686 0.0647; 1.8545 

Split-plot area
2
 - - 

 

1.0306 0.0348; 2.0477 

Disturbance × Year 

                 disturbed: 2015 0.3240 -0.0733; 0.7331 

 

0.0770 -0.3888; 0.5528 

Foraging guild × Year 

                above ground: 2015 0.3637 0.0398; 0.6917 

 

0.2076 -0.1901; 0.5991 

Disturbance × Foraging guild 

                disturbed: above ground 0.0234 -0.3597; 0.4042 

 

-0.1368 -0.6103; 0.3280 

Disturbance × Foraging guild × Year 
     

             disturbed: above ground: 2015 -0.2227 -0.7073; 0.2558   0.0577 -0.5175; 0.6353 

/ = Reference category 

- = Parameter not tested in this model 

Distribution = Poisson; link function = natural logarithm; random factors = observer, round and split-plot ID nested within plot 
ID 
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Figure S1. Number of split-plots in which each species was detected at least once during 

the three breeding-bird censuses, separately for disturbed and control split-plots. In 2014 

(a) a species could be seen in a maximum of 6 split-plots while in 2015 (b) the maximum 

was 12. For species abbreviations see electronic supplementary material table S1. 
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Figure S2. Number of territories per species for disturbed and control split-plots in the six 

plots of 2014 (a) and in the 12 plots of 2015 (b). For each year, the maximum number of 

territories per species detected in each split-plot out of the three censuses was taken and 

summed over all split-plots. For species abbreviations see electronic supplementary 

material table S1. 
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Figure S3. Effect of experimental human disturbance on the number of territories (a,b) and species richness (c,d) per split-plot (4.7 ha) 

according to year and migration type: the graphs (a) and (c) include only the resident and short-distance migrant species, while the 

graphs (b) and (d) only the long-distance migrants. Note the different y-axes. Represented are mean fitted values with 95% credible 

intervals (table 1) as well as the corresponding posterior distributions. The posterior probability (PP) shows the strength of the difference 

between disturbed and control split-plots.  

 

8
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Figure S4. Effect of experimental human disturbance on the number of territories and 

species richness per split-plot (4.7 ha) according to (a) nesting-guild (cavity, ground and 

open-cup nesters), (b) sensitivity (based on flight initiation distance (FID); high = FID > 

median FID, low = FID ≤ median FID), and (c) foraging guild (ground and above ground) in 

2014 and 2015, respectively (only for resident and short distance migrants). Represented 

are mean fitted values with 95% credible intervals (Electronic supplementary material table 

S2-S4) as well as the corresponding posterior distributions and the posterior probability 

(PP) that the differences between disturbed and control split-plots are different from zero. 
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ABSTRACT 

Outdoor recreational activities are booming nowadays and animals perceive 

humans as predators, which trigger behavioural and/or physiological reactions (e.g. heart 

rate increase, activation of the Hypothalamic-Pituitary-Adrenal axis (HPA)). Hormones 

have been shown to affect the immune system of a given animal and therefore also the 

amount of maternal antibodies a female transmits to her offspring. A few studies showed 

that predator presence affected the amount of maternal antibodies deposited into eggs. 

We wanted to experimentally test, whether human recreation induces the same predator-

like effects in breeding birds, and whether these changes in maternal antibody deposition 

have an effect on the offspring. Great tit chicks of disturbed mothers had lower maternal 

antibody titres compared to control chicks. The disturbance impact was depending on the 

vegetation density, as an interaction between disturbance and shrub cover showed, with 

denser vegetation reducing the negativ impact of disturbance. The hatching success of 

great tits was positively correlated with the amount of maternal antibodies deposited. All of 

the aforementioned findings do not hold for blue tits, but they are apparently mainly 

affected by the presence of great tits. Chicks which received more maternal antibodies 

were heavier at an early stage of life, but this positive effect dilutes towards fledging. 
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Through this dilution of the positive effect of maternal antibodies during chick growth, body 

mass gain was negatively correlated with maternal antibody titres, but this does not imply 

a cost of maternal antibodies. We suggest that our findings can be explained through an 

activation of the HPA-axis, mainly an increase in corticosterone, which is known to have 

an immunosuppressive action. Therefore human disturbance can negatively affect the 

survival of chicks at an early life stage, when they are mainly relying on maternal 

antibodies, and finally this could reduce breeding success and therefore the parents’ 

fitness. 

 

Key words: Outdoor activities, human disturbance, immunology, trans-generational 

effects, Parus major, Cyanistes caeruleus 
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INTRODUCTION 

Human sport activities and recreation often occur in nature and may negatively 

impact wildlife (Larson et al. 2016; Bötsch, Tablado & Jenni 2017). Humans are often 

perceived as predators by wildlife (Frid & Dill 2002), which usually react with behavioural 

(e.g. flight response; Blumstein, 2010) and/or physiological responses, such as the 

activation of the hypothalamic-pituitary-adrenal-axis (HPA-axis; Almasi et al., 2015; 

Fowler, 1999; Thiel et al., 2008). If these behavioural and physiological responses occur 

frequently they may lead to long term increases in stress levels, which might compromise 

health and fitness (Tablado & Jenni 2017). For instance, stressed individuals tend to have 

increased levels of circulating glucocorticoid hormones (Saino et al. 2003, 2005; Hayward 

& Wingfield 2004), which in turn have been shown to have an immunosuppressive function 

(Råberg et al. 1998) and lead to a reduced amount of circulating immunoglobulins 

(Bourgeon & Raclot 2006; Hargitai et al. 2009; Gao, Sanchez & Deviche 2016). These 

altered levels of glucocorticoids and antibodies can then have trans-generational effects if 

they are transmitted to the offspring (Rubolini et al. 2005; Saino et al. 2005). In the case of 

birds, stressful events occurring during the egg-laying phase may therefore have important 

impacts on chicks, through stressed mothers depositing higher levels of the main 

glucocorticoid hormone (i.e. corticosterone in birds) and altered levels of antibodies in the 

eggs (Saino et al. 2005; Hargitai, Prechl & Török 2006; Hargitai et al. 2009; Morosinotto et 

al. 2013). 

Maternal Antibodies (matAbs) represent the mother’s entire repertoire of antibodies 

against antigens she was exposed to in her life (Lemke, Hansen & Lange 2003; Lemke, 

Coutinho & Lange 2004) and freshly hatched chicks depend almost entirely on these 

matAbs for their immune responses up to the first weeks of their life (Grindstaff, Brodie & 

Ketterson 2003; Pihlaja, Siitari & Alatalo 2006; Gasparini et al. 2009). Therefore, the 
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amount of matAbs deposited into the eggs, positively correlates with chick survival and 

growth (Pihlaja, Siitari & Alatalo 2006; Grindstaff 2008).  

The aim of this study was then to experimentally test, whether human recreational 

activities during the early breeding season, would trigger anti-predator physiological 

reactions in breeding females which in turn would result in lower matAb deposition into 

eggs (measured later in newly hatched chicks). Moreover, we wanted to examine whether 

this altered deposition of matAbs in eggs was correlated with lower hatching success and 

chick growth. We predicted that chicks hatched in areas with higher human frequentation 

would have a lower amount of matAbs compared to broods in control areas with no human 

frequentation. We also expected that the reduced amount of matAbs would be correlated 

with reduced hatching success and lower growth rate compared to control chicks.  
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MATERIALS AND METHODS 

Study area and experimental design 

The study was carried out in the early breeding season of 2014 and 2015 in the 

“Forêt domaniale de Chaux” in France (47°05’N, 05°40’E), which is a forest consisting 

primarily of pedunculate oaks (Quercus robur) and European hornbeam (Carpinus 

betulus) and whose harvest is managed by the “Office National des Forêts” (ONF). We 

worked in 12 plots (mean size 9.2 ha, range: 7.5-13 ha), which fulfilled the following 

criteria: (1) homogeneous vegetation structure, (2) well separated from each other (> 600 

m), to avoid spill-over effects, (3) no timber harvesting in the study plots during the entire 

study period, and (4) location far away from urban settlements (> 9 km) to reduce other 

sources of disturbance. In early February 2014 we installed 210 nest boxes (Schwegler, 

Type B1, with 32 mm entrance diameter) for small cavity nesters (mainly tit species) at a 

density of about two nest-boxes per ha (i.e. not exceeding the natural breeding density of 

tits; Krebs, 1971). After the first breeding season, in autumn 2014, we cleaned and 

removed the nest boxes and installed them again in February 2015, to have twice the 

same experimental setup for the two study years. 

Each plot was divided into two and each split-plot either received an experimental-

disturbance treatment (during early spring; 7 March – 22 April in 2014 and 2015, see also 

Fig. 1) or served as control. The treatment consisted in mimicking a common human 

recreational activity (i.e. people hiking in the forest), by having groups of 2 to 3 people 

walking back and forth through the split-plots on a regular mower-pattern transect 

(distance between walking lines 20 m, for details see Bötsch et al., 2017). This treatment 

was applied one to three times every day and people were carrying a loudspeaker (Hama, 

smartphone speaker, power 3W, with a Samsung digital audio player F3) broadcasting 

human conversation (e.g. TV shows or audio books) at an average volume level of 60 dB 

at 1 m distance (Byrne et al. 1994; Hacki 1996) to reproduce normal hiking conversation. 
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We varied the direction of the mower-pattern transects by 90° between visits, as well as 

the time of the day of the visit, to maintain unpredictability. Due to man power limitations in 

2014 we could only apply the treatment to 6 plots, while in 2015 the treatment was applied 

to all 12 plots. The six split-plots which were “disturbed” in 2014 became control split-plots 

the next year and vice versa. This experiment was approved by the local authorities and 

the French ringing scheme C.R.B.P.O. “Centre de Recherches sur la Biologie des 

Populations d’Oiseaux“ (permit number 2014157-0012 of the “Direction Régionale de 

l’Environnement, de l’Aménagement et du Logement de Franche-Comté” and permit 

number 15006 for blue- and great tits (Cyanistes caeruleus and Parus major, respectively) 

for 2014-2016 from the C.R.B.P.O., for details see also Bötsch et al., 2017). 

 

Blood sampling 

From 20 April all 210 nest boxes were checked every second week. Nest boxes 

with full clutches were checked daily around the estimated hatching date to determine the 

exact hatching date. Blue- and great tit chicks were blood sampled at the age of six days 

(mean=6.2 days, sd=0.6), when they were large enough to bear blood-sampling but still 

have underdeveloped immune systems, thus still maintaining the matAb titres (Grindstaff 

2008; Hasselquist & Nilsson 2009; King, Owen & Schwabl 2010). All chicks of a brood 

were weighed to the nearest 0.1g with a digital balance and a subsample of 1 - 5 chicks 

per brood were blood sampled through vein puncturing with a 0.3 mm syringe at the 

metatarsus and collecting the effluent blood with a heparinized capillary. Up to 40 µl were 

sampled and directly centrifuged in the field for 5 minutes at 8000 rpm (Hettich, EBA 3S) 

to separate the plasma from the cells. Both blood cells and plasma were then stored in 

liquid nitrogen or deep freezers (-20°C) until analysis. 

When chicks were 15 days old, they were weighed again and ringed with an 

aluminium ring from the C.R.B.P.O. The number of ringed chicks per nest box served as 
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surrogate for the number of fledglings, since chick mortality at this stage is assumed to be 

low (Lindén, Gustafsson & Pärt 1992; Oddie 2000). In 2015 we additionally marked blood-

sampled chicks with small-coloured elastic bands and therefore could identify them 

individually when ringing. Therefore the analysis of growth and weight gain is only based 

on the second study year (2015). 

 

Maternal antibody measurement 

MatAbs were measured in the lab using an Enzyme-linked Immunosorbent Assay 

(ELISA). Plates with ninety-six-wells were coated with an anti-chicken IgG (Sigma C-6409) 

diluted 1:180 in a 0.05M carbonate buffer (pH 9.6) and incubated overnight at 4°C. 

Afterwards the plates were washed three times with PBS (Phosphate-buffered 

saline)/Tween20 (3x 250 µl) and blocked (for at least one hour at room temperature) with 

250 µl 1% BSA (Bovine serum albumin) diluted in 0.01M PBS/Tween20 (from now on 

referred as BSA-PBS/Tween20). After being washed again, the test plasma was added to 

the wells. The plasma samples (3 µl) of blue tits were diluted 1:100 and those of great tits 

1:500. For each sample 100 µl were added (in duplicates) to the wells (Diluent: BSA-

PBS/Tween20), two wells were filled with the BSA-PBS/Tween20 buffer, as blanks and 

two wells were filled with an 1:160,000 diluted chicken plasma as internal control (Diluent: 

BSA-PBS/Tween20). On the same plate we added in duplicates a standard dilution series 

of a chicken plasma-pool: pure buffer as negative control and seven dilutions from 

1:10,000 up to 1:640,000 (Diluent: BSA-PBS/Tween20). All plasma-sample measures 

were then expressed relative to this standard in units per µl. The plates were incubated for 

three hours at room temperature and afterwards washed again three times with 250 µl 

PBS/Tween20. Then 100 µl of 1:3000 diluted (BSA-PBS/Tween20) peroxidase-conjugated 

rabbit anti-chicken-IgG (Sigma A9046) was added to each well, except the blanks where 

100 µl BSA-PBS/Tween20-buffer was added instead. The plates were incubated over 
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night at 4°C and again washed three times with 250 µl PBS/Tween20. Then 100 µl of the 

substrate solution was added. This substrate solution consisted of 20 ml citrate buffer (pH 

4), 80 µl of 1:40 diluted 30% hydrogen peroxide (diluted in distilled water) and 200 µl 

ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)). The plate was then put for 

15 min on a plate shaker and the absorbance measured with an ELISA plate reader at 405 

nm (BIO-RAD, Benchmark Microplate Reader). For all the consecutive analyses the mean 

of the duplicate measures were computed. 

 

Vegetation mapping 

In June 2015 we conducted a vegetation survey. With a stratified random sampling 

we distributed one survey point per 0.5 ha (n=210) and measured the following habitat 

variables: ground cover (%) on a 2x2m area, shrub cover (%) on a 3x3m area, number of 

trees (diameter at breast height > 5 cm) per species and standing deadwood on a 8x8m 

area and canopy cover (%, by looking straight up to the canopy and estimating the amount 

of covered sky by the canopy in the observer’s visual field). The vegetation measures 

were averaged within each split-plot, and from these means we computed a Principal 

Component Analysis (PCA). Since the first axis of the PCA explained 59% percent of the 

variation by itself, we used only the first axis score for further analyses. 

Statistical analyses 

Only first broods whit at least one egg laid during the experimental disturbance 

period were used (see Fig. 1). Predated broods were excluded from all analyses since 

they do not reflect the effect of human disturbance. All analyses were done using the 

lme4-package in R 3.3.0 (Bates et al. 2015; R Core Team 2016). To investigate the 

potential effect of the experimental disturbance on matAbs in great- and blue tit chicks, we 

used two linear mixed models (Table 1). MatAb measures were log (natural logarithm) 

transformed to fulfil model assumptions. As explanatory variables we included the two-
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level factor disturbance (disturbed vs. control split-plots), the vegetation, as the first 

principal component of the vegetation PCA (First principal component (vegetation)) and 

the interaction between disturbance and vegetation. Furthermore we tested for the linear 

and quadratic effect of laying date of the first egg (Julian date first egg, Julian date first 

egg2), the distance to the nearest gravel road (Distance to road [m]), the chick age and the 

difference in body mass between the measured chick and its heaviest sibling (Difference 

in body mass to heaviest sibling [g]), as a surrogate for hatching order. To account for the 

stressful effects of competition, we included the number of occupied nest boxes 

(independent of the species) within a 100m radius (total number of occupied neighbouring 

nest boxes), as a nest-box specific measure of breeding density. Given than among tits, 

great tits appear to have the most dominant behaviour we also tested for the proportion of 

nest boxes per split-plot that were occupied by great tits (i.e. number of nest boxes 

occupied by great tits divided by all occupied nest boxes occupied in a split-plot; relative 

GT occupancy). 

For the analyses investigating the relationship between matAbs and hatching 

success in both great and blue tits, we used two generalized linear mixed models with a 

binomial error distribution (Table 2), in which hatching success was introduced as number 

of hatchlings divided by the number of eggs (clutch size). Since not all broods were 

sampled for matAbs at the same exact age, the effect of matAbs was included in this 

model as the residuals of the linear model regressing average matAb titres per brood 

against average chick age per brood (with th); Residuals of mean Ab titre). We also 

controlled for the effect of Relative GT occupancy, total number of occupied neighbouring 

nest boxes, Julian date first egg, Julian date first egg2, Distance to road [m] and First 

principal component (vegetation). 

In the four aforementioned models we accounted for the non-independence of the 

different years and nest boxes by including the random factors year and a random factor 
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nest-box-ID, nested within split-plot-ID, nested within plot-ID. To account for the non-

independence of matAb measures between plates and runs (several plates per lab run), 

we included in the first two models a random factor plate-ID, nested within batch-ID. For 

the two models on hatching success, we accounted for this non-independence of plates 

with the same random factors already in the linear model where we computed the 

residuals (Residuals of mean Ab titre). 

In order to examine the relationship between matAbs and chick growth we 

performed two different types of models (Table 3). First, we modelled the variations in 

chick growth with matAbs by including an interaction between the natural logarithm of 

chick age and the matAb titre (MatAb titre [units µl-1] × log (Chick age)). We also 

accounted for the effect of Relative GT occupancy, Total number of occupied neighbouring 

nest boxes, Julian date first egg, Julian date first egg2, Distance to road[m] and vegetation 

(First principal component (vegetation)). Moreover, we also tested for the effect of brood 

size on growth by including the number of fledged chicks (Number of fledglings), and the 

effect of time of the day on chick mass (Minutes since sunrise) both alone and in 

interaction with the natural logarithm of chick age (Minutes since sunrise × log (Chick 

age)). To account for the non-independence of multiple chick measures, we included as 

random factors chick-ID nested within nest-box-ID, nested within split-plot-ID, nested 

within plot-ID. Since these data were available only in 2015, it was not necessary to 

introduce the year effect. Secondly, we did a similar model with the same explanatory 

variables, but with body mass gain per day as response variable. This variable was 

calculated as the difference in body mass between the two measures divided by the 

difference in chick age (days) and followed a normal distribution. Since in this case chick 

age was already offset in the response variable, the two interactions from the precedent 

model ceased. Consequently the matAb titre (MatAb titre [units µl-1]) was now included as 

additive factor, whereas daytime (Minutes since sunrise) was not included anymore as we 
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computed the change in body mass over several days and the random factor chick-ID was 

not necessary anymore. 

For allowing proper interpretation of the models, especially when including an 

interaction, we computed 95% credible intervals (CrI) and posterior-probabilities using a 

Bayesian framework. Therefore we simulated 10,000 random samples from the joint 

posterior distribution of the model parameters using the sim-function from the arm-

package (Gelman & Su 2015) and computed the 95% CrI (lower and upper limit, 2.5% and 

97.5% quantiles, respectively). For the posterior probabilities we computed the mean of 

the 10,000 differences between “disturbed” and “control” estimates, which were different 

from zero (either larger or smaller than zero). The resulting probability lies between 0.5 

and 1 and is a measure for the strength of the difference, with larger values representing a 

stronger difference.  
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RESULTS 

The experimental disturbance resulted in a reduction of matAbs in young nestlings, 

compared to control broods, in great tits, but not in blue tits (Fig. 2, Table 1). The 

interaction between disturbance and the first principal component (vegetation) for great tits 

showed that vegetation density (the First principal component (vegetation) is highly 

correlated with shrub-cover) modulated the impact of disturbance on matAb transmission 

(Fig. 3, Table 1). In the case of the blue tit, we did not find an effect of the experimental 

disturbance, but there seemed to be a negative effect of the relative density of breeding 

great tits on matAbs (Fig. 4, Table 1). For both species Julian date of the first egg had a 

positive effect on matAb titres while the difference to the heaviest sibling had a negative 

effect (Table 1). We also found a positive effect of chick age on the matAb titre for great 

tits (Table 1). 

We found a positive correlation between matAb titres and hatching success for 

great tits, but not for blue tits (Fig. 5 and Table 2). For great tits, we also found that the 

proportion of nest boxes occupied by conspecifics and the total number of occupied nest 

boxes in the near surroundings both had a negative effect on hatching success (Table 2). 

For both species we found that matAbs were positively correlated with chick body 

mass (Fig. 6 A,B and Table 3). At day six larger chicks had higher matAb titres, but these 

positive relationships disappeared towards fledging (Fig. 6 A,B) due to a lower variability in 

fledgling body mass. This translated in an overall lower body mass gain in chicks with 

higher matAb titres as shown in the negative correlation between body mass gain per day 

and matAb titres at day six (Fig. 6 C,D and Table 3). We also found a quadratic effect of 

Julian date of the first egg on body mass gain for both tit species, which implies that the 

earliest and latest broods show a higher weight gain per day as the broods in the middle of 

the season (Table 3).  
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DISCUSSION 

In this study we showed that experimental human disturbance during egg-laying 

reduced antibody titres in great tit chicks. We hypothesize that human disturbance 

increased circulating corticosterone in laying females, reduced their antibody titres through 

the immunosuppressive action of corticosterone, and in turn reduced the amount of 

antibodies transferred to eggs. We could not confirm the exact mechanism since, to 

prevent nest abandonment and reduce additional sources of stress (i.e. beyond the 

experimental disturbance), we could not capture laying females to measure their 

corticosterone levels. However, corticosterone is known to be released in stressful 

situations, including disturbance by humans (Müllner, Linsenmair & Wikelski 2004; Almasi 

et al. 2015). The immunosuppressive effect of corticosterone has been shown by several 

authors (see for example Rubolini et al., 2005; Saino et al., 2003; Stier et al., 2009). Thus, 

we think that this physiological cascade is a likely mechanism through which our 

experimental disturbance resulted in lower matAb titres in chicks. In line with others, we 

also found an effect of laying order on matAb titres, with later hatched chicks (assuming 

representing the laying order) having lower matAb titres (Hayward & Wingfield 2004; Love 

et al. 2008). 

Moreover, we found that the effect of human disturbance was not homogeneous 

throughout space, but that it depended on the type of vegetation. We found that higher 

amounts of shrub vegetation lowered the negative impact of the disturbance on matAb 

titres. Vegetation may have acted as protective shield, buffering the stress caused by 

human presence (Tablado & Jenni 2017). Interestingly, we did not find the same pattern in 

blue tits. In this case we did not find an effect of the disturbance treatment or interaction 

with vegetation on matAbs in nestlings, but we found an effect of the relative abundance of 

great tits in the split-plot. A plausible explanation for this would be that great tits are an 

important biological stressor for blue tits, and thus, the presence of great tits is overriding 
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or obscuring the negative effects of human presence. Great tits are dominant over blue 

tits. Our nest boxes had an entrance diameter which permitted both species to enter the 

nest box and great tits have been shown to supress the settlement of blue tits (Löhrl 

1977). 

We also found a positive correlation between matAb titres and the hatching success 

for great tits. This could be due to several reasons. MatAbs might protect from infections, 

which would otherwise cause the death either of the embryo or the freshly hatched young. 

Note that we counted the number of hatchlings at day six, and therefore we do not know 

whether failed eggs or dead young chicks caused the difference between clutch size and 

number of “hatchlings”. Additionally matAbs could be correlated with other non-measured 

variables. That is, chicks with lower matAb titres could be linked to more stressed mothers 

which are likely to have laid lower quality eggs and/or transmitted more corticosterone into 

eggs, thus resulting in lower hatching success (Hayward & Wingfield 2004). 

Similarly, we found a positive correlation of matAbs and body mass at day six, 

which was lost at later ages, which translated into reduced body mass gain with time in 

larger freshly hatched chicks. This coincides with the findings of Ismail et al., (2015). They 

suggested a cost of maternal antibodies on body mass gain. However, in our case it 

seems to be due to chicks with larger amounts of matAbs being also the largest chicks 

and thus to gain less mass to reach fledging body mass than smaller chicks (see Fig 6. 

C,D). 

Whether human recreation trans-generationally negatively affects birds, through 

changes in matAb deposition clearly also depends on several modulators. These include 

the disturbance intensity, the type of human recreation activity, the mother’s stress 

tolerance, e.g. habituation towards humans and, as we could show, the vegetation density, 

as denser vegetation lowers the disturbance impact. There are also other factors than 

disturbance, driving matAb titres, like body condition of the mother (e.g. food availability), 
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clutch size or the health status of the mother in general (Klasing & Leshchinsky 1998; 

Grindstaff, Brodie & Ketterson 2003; Boulinier & Staszewski 2008; Hasselquist & Nilsson 

2009). 

Up to now effects of human disturbance on reproduction mainly occurred through 

prevention of feeding, interruption of incubation or indirectly via noise (Safina & Burger 

1983; Zanette et al. 2011; Schroeder et al. 2012). In this study, we could show that human 

disturbance affects matAb titres and that these affect hatching rate, body mass gain and 

therefore probably also survival (see Pihlaja et al., 2006). If the disturbance would 

continue through the entire breeding season, potentially the catch up in body mass, as we 

found, would not be possible. Therefore we propose that this cascade of stress, via 

corticosterone, and reduced matAb titres, depicts a new way of how human disturbance 

affects reproduction. 
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TABLES 
 
 
Table 1: Model estimates with their corresponding 95% credible intervals (CrI) of the 

matAb model examining the effect of experimental disturbance.  

The reference categories are nests from control split-plots. The factor level of each 

categorical variable is given in parenthesis. GT: Great tit, BT: Blue tit. 

Variable GT estimate GT 95% CrI BT estimate BT 95% CrI 

Intercept 5.402 5.120; 5.674 4.030 3.659; 4.413 

First principal component (vegetation) -0.007 -0.139; 0.121 -0.076 -0.300; 0.143 

Disturbance (disturbed) -0.127 -0.279; 0.025 0.053 -0.201; 0.308 

Julian date first egg 0.212 0.099; 0.328 0.178 0.006; 0.346 

Julian date first egg 
2
 -0.054 -0.123; 0.015 -0.042 -0.182; 0.102 

Distance to road [m] -0.010 -0.099; 0.078 0.052 -0.080; 0.184 

Difference in weight to heaviest sibling [g] -0.223 -0.265; -0.179 -0.106 -0.175; -0.035 

Chick age 0.130 0.020; 0.244 0.118 -0.087; 0.320 

Relative GT occupancy -0.045 -0.157; 0.072 -0.224 -0.478; 0.022 

Total number of occupied neighbouring nest boxes -0.003 -0.087; 0.080 0.058 -0.080; 0.189 

First principal component (vegetation) × Disturbance 
(disturbed)   

0.243 0.068; 0.421 0.089 -0.149; 0.328 

Distribution: normal; random factors: year and nest box ID nested within split-plot ID nested within plot ID and plate ID nested within 
batch ID. 
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Table 2: Model estimates with their corresponding 95% credible intervals (CrI) for 

the analysis of hatching success depending on matAbs. GT: Great tit, BT: Blue tit. 

Variable GT estimate GT 95% CrI BT estimate BT 95% CrI 

Intercept 2.651 2.302; 2.998 2.050 1.636; 2.471 

First principal component (vegetation) -0.049 -0.327; 0.234 -0.054 -0.375; 0.267 

Residuals of mean Ab titre  0.223 -0.018; 0.462 -0.172 -0.507; 0.170 

Relative GT occupancy -0.348 -0.665; -0.033 -0.172 -0.589; 0.243 

Total number of neighbouring occupied nest boxes -0.243 -0.471; -0.005 0.158 -0.204; 0.521 

Julian date first egg -0.045 -0.345; 0.262 0.063 -0.278; 0.412 

Julian date first egg
 2
 -0.018 -0.225; 0.189 -0.088 -0.375; 0.193 

Distance to road [m] 0.177 -0.074; 0.427 0.050 -0.289; 0.379 

Distribution: binomial, link function logit; random factors: year and nest box ID nested within split-plot ID nested within plot ID. 
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Table 3: Estimates of the body mass development and body mass gain models 

depending on matAb titres with their corresponding 95% credible intervals (CrI) for 

great tits (GT) and blue tits (BT). 

Variable GT estimate  GT 95% CrI BT estimate  BT 95% CrI 

Effect on body mass development 
a
         

Intercept -12.429 -13.505; -11.322 -6.275 -8.219; -4.365 

First principal component (vegetation) -0.078 -0.239; 0.080 0.011 -0.331; 0.352 

MatAb titre [units µl
-1

] 0.020 0.016; 0.024 0.053 0.027; 0.079 

Log (Chick age) 11.603 11.127; 12.070 7.013 6.212; 7.838 

Minutes since sunrise -0.104 -0.643; 0.426 0.178 -0.625; 0.966 

Relative GT occupancy 0.095 -0.057; 0.246 0.115 -0.214; 0.448 

Total number of occupied neighbouring nest boxes 0.067 -0.089; 0.222 -0.087 -0.401; 0.227 

Julian date first egg 0.150 -0.008; 0.302 -0.026 -0.324; 0.265 

Julian date first egg 
2
 -0.036 -0.167; 0.097 -0.386 -0.698; -0.082 

Number of fledglings 0.017 -0.135; 0.170 -0.089 -0.384; 0.211 

Distance to road [m] -0.049 -0.200; 0.105 -0.058 -0.375; 0.254 

MatAb titre [units µl
-1

] × log (Chick age) -0.007 -0.009; -0.006 -0.021 -0.032; -0.010 

Minutes since sunrise × log (Chick age) 0.153 -0.076; 0.387 -0.147 -0.483; 0.199 

 Effect on body mass gain per day 
b
         

Intercept 1.213 1.148; 1.277 0.733 0.616; 0.854 

First principal component (vegetation) -0.010 -0.043; 0.022 -0.020 -0.074; 0.033 

MatAb titre [units µl
-1

] -0.001 -0.001; -0.001 -0.003 -0.005; -0.002 

Relative GT occupancy -0.001 -0.031; 0.028 -0.011 -0.063; 0.043 

Total number of occupied neighbouring nest boxes -0.022 -0.051; 0.007 -0.005 -0.066; 0.056 

Julian date first egg -0.009 -0.038; 0.021 0.042 -0.017; 0.099 

Julian date first egg 
2
 0.026 0.002; 0.050 0.079 0.020; 0.139 

Number of fledglings -0.012 -0.040; 0.017 0.028 -0.032; 0.088 

Distance to road [m] 0.013 -0.017; 0.041 0.034 -0.023; 0.092 
a
 Distribution: normal; random factors: chick ID nested within nest box ID nested within split-plot ID nested within plot ID. 

b
 Distribution: normal; random factors: nest box ID nested within split-plot ID nested within plot ID. 

 

  



 

108 
 

FIGURES 

 

Fig. 1. Diagram of the temporal overlap of experimental disturbance (grey square) 

and breeding stages (egg-laying and hatching). Note that the deposition of the 

maternal antibodies (matAb) in eggs overlaps with the disturbance phase, whereas 

hatching and the following feeding period do not. Breeding in the second study year (2015) 

was about 1 week later than in the first study year (2014).  
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Fig. 2. Effect of experimental disturbance on matAb titres in tit chicks. Model 

estimates ± 95% CrI of the species-specific matAb titres between disturbed and control 

split-plots with their corresponding posterior probability (PP). PPs can take values from 0.5 

to 1 and the higher the probability, the stronger is the difference between treatments. 
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Fig. 3. Effect of experimental disturbance on matAb titres in tit chicks in relation to 

vegetation (Pc1). Model estimates (solid lines) ± 95% CrI (dotted lines) of the species-

specific matAb titres depending on Pc1 between disturbed and control split-plots. Pc1 is 

positively correlated with shrub cover and negatively with ground cover and canopy cover, 

therefore representing a measure for visibility. The dots represent the data points (grey: 

control split-plots, black: disturbed split-plots). 
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Fig. 4. Effect of the split-plot specific relative great tit nest box occupancy on 

species-specific matAb titres in chicks. Represented are model estimates (solid lines) ± 

95% CrI (dotted lines). The dots represent the data points. 
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Fig. 5. Effect of matAb titres on hatching success. Model estimates for hatching 

success (with corresponding 95% CrIs; dotted lines) depending on mean matAb titres per 

brood (solid lines). Plotted are the matAb residuals (resid (matAb)) corrected for chick age. 

Open circles depict the data points. Note the different x-axes ranges.  
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Fig. 6. Body mass development and daily body mass gain until fledging, dependent 

on matAb titres. A and B: Model estimates ± 95% CrI of chick body mass development 

from day six until fledging, depending on matAb titres (three selected species-specific 

titres shown). C and D: Model estimates ± 95% CrI of chick body mass gain per day 

depending on matAb titres. A and C: Great tits (Parus major), B and D: Blue tits (Cyanistes 

caeruleus), open/closed circles represent the data points. Note the different x-axis ranges 

for figures C and D.  
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GENERAL DISCUSSION 

Diverse outdoor recreational activities are widely practiced, have many followers 

and affect most habitats during many (sometimes all) periods of a year. Wildlife is 

therefore confronted with humans almost continuously and, even when not suffering from 

consumption (e.g. hunting, fishing), face direct effects through human encounters or get 

indirectly affected through changes in their habitat (Wilkes 1977; Boyle & Samson 1985; 

Reed & Merenlender 2008). However, these effects are not always obvious or well-known. 

Although a lot of research has been done to investigate these effects, studies so far, have 

neglected two aspects: 1) disentangling the effects of direct human presence from those of 

habitat modifications linked to recreation and 2) considering the effects of low levels of 

disturbance, as most studies focus on areas with an already considerable amount of 

disturbance. In this thesis we tackled these problems by using a combination of well-

thought comparative studies and experiments in the field. 

 

Disentangling direct from indirect disturbance effects  

We define an indirect human impact as an impact of humans on a resource (e.g. 

habitat (vegetation), food, nesting sites, or flows of communication) of a given species 

which, via changing these resources, affects the individual. One of the most common 

indirect impacts of human recreation is the construction of trails. Firstly, trails entail a 

habitat change by clearing the vegetation or just by repeated trampling by humans (Monz, 

Pickering & Hadwen 2013). Secondly, previously connected habitat gets split into 

fragments, which may reduce animal movements and therefore population connectivity, 

which results in reduced gene flow (Saunders, Hobbs & Margules 1991; Reed, Johnson-

Barnard & Baker 1996; Forman & Alexander 1998; Bregman, Sekercioglu & Tobias 2014). 

The severity of trail impacts clearly depends on their extent (e.g. width, coating) and also 

on the species characteristics (small versus large and highly mobile versus less mobile). 
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Thirdly, depending on the habitat, clearing of the natural vegetation results in changes in 

abiotic factors, such as light conditions, water balance or temperature (Trombulak & 

Frissell 2000). These changes in conditions promote a change in vegetation along trails, 

with potentially negative or positive effects on birds. 

By comparing areas with similar types of trails but differences in human 

frequentation, we were able to separate the effect of the trail per se from the effect of the 

presence of people. Our study comparing bird compositions between forests with different 

intensities of human use showed that most birds avoided sites close to trails when they 

were heavily used by humans, but not when human passages were very infrequent. This 

finding implies that in these forests, although used for recreation since many years, 

humans still scare off many birds and that they apparently did not entirely habituate to 

these activities. 

On the other hand the changes in vegetation through trails, leads to trail-proximate 

habitats becoming more suitable for some species (e.g. ground nesters) but less for 

others. Ground nesters may profit from trail edges, as the improved light conditions favour 

ground vegetation, compared to the dark interior of forests, which promotes better nesting 

sites. We found that in our study ground nesters indeed preferred areas close to trails, 

however only for trails with low frequentation.  Still, the most apparent finding was, apart 

from changes in vegetation through trails, that the humans using these trails are the much 

stronger factor driving bird communities. The important effect of the degree of human 

frequentation on trails could also explain why different studies looking at trail impacts 

found opposing results (Miller, Knight & Miller 1998; Deluca & King 2014). Although trails 

might have substantial effects through changes in vegetation, and through promoting 

access into forests for both humans and certain predators, they also guide recreationists 

through space and since most of them stay on the trails, they reduce the negative effects 
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of human off-trail activities (Coppes & Braunisch 2013). This also facilitates wildlife 

habituation as the human movements on trails become predictable (Taylor & Knight 2003). 

 

Effects of human recreation in previously undisturbed areas 

By comparing the antipredator response of birds in areas with and without 

recreation, we were able to confirm that the impact of human disturbance might be 

obscured in areas where recreation has been already established for a long time. Our 

study showed that in areas with a high human frequentation, species tolerated a closer 

human approach before fleeing than in areas largely unfrequented by humans. This could 

be explained by two different processes. First, behavioural habituation towards human 

presence can occur, where birds learn that humans are not dangerous and reduce their 

reactions. This has been shown to strongly depend on the species as well as on individual 

personality (Walker, Dee Boersma & Wingfield 2006; Rodríguez-Prieto, Martín & 

Fernández-Juricic 2011; Samia et al. 2015; Vincze et al. 2016). Secondly, it may occur 

through selection of certain individuals that are more human tolerant (Carrete & Tella 

2013; Miranda et al. 2013; Sprau & Dingemanse 2017). This entails directional selection 

towards human tolerant individuals in human frequented habitats, which would drive 

evolution and therefore reduce the diversity of personalities (like Allendorf and Hard, 2009 

showed for harvested animals). These variations of reactions in birds depending on 

human frequentation would partially explain why some studies found effects on birds at 

certain levels of human recreation while other did not. 

Therefore, in order to study the real magnitude of the effect of human disturbance, 

we chose the forest that had very low numbers of visitors to experimentally test the effect 

of low levels of disturbance. With our experimental study we showed that human 

recreational activities (hiking in our study), negatively affected forest bird territory 

establishment. Consequently reduced breeding bird densities and species richness were 
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the outcomes. The season during which a disturbance event happens and its intensity 

clearly have an important influence on the strength of its impact (Tablado & Jenni 2017). 

Apparently the pre-breeding period is very important for birds, as they then decide where 

to breed and this finally can affect their fitness. These findings can only be the result of a 

direct human disturbance effect, as there was no change in habitat resulting from our 

hikes. 

Our disturbance intensity was quite low (two to three passages per day) and not 

representative for recreational hotspot areas. Still, we found that even low disturbance 

intensities can have severe impacts on bird territory establishment. In theory different 

relationships between disturbance intensity and impact severity have been proposed 

(Figure 1, adapted after: Monz et al., 2013; Steidl and Powell, 2006; Steven et al., 2011). 

 

Figure 1: Generalizations of the impact of human disturbance on the severity of its impact. 

The dotted arrow indicates the direction from more to less experience with humans. The 

dotted line depicts a theoretical impact maximum. 
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The impact severity at low disturbance levels therefore depends on the shape of the 

curve (Figure 1) which likely depends on the species, the season (pre-breeding in our 

case), and also on the individuals former experience with human recreation. What actually 

drives the shape of this curve is an open question, which needs further investigation, 

especially concerning wildlife.  

With our experiments we also could show that even low levels of disturbance can 

lead to trans-generational effects through variations in maternal antibody deposition into 

eggs by disturbed females. Mechanistically this could be driven via corticosterone, the 

main glucocorticoid in birds, which has an immunosuppressive function. That is, human 

presence would stress birds, leading to an increase in the release of corticosterone (Thiel 

et al. 2008; French et al. 2010; Almasi et al. 2015; Arlettaz et al. 2015). This increased 

corticosterone level in turn, would work as an immuno-suppressive agent reducing the 

antibodies available to be deposited into eggs (maternal antibodies; French et al., 2010; 

Pihlaja et al., 2006; Saino et al., 2003). The species or site specific short-term reactions 

(physiological and/or behavioural) can be unimportant for an individual’s survival, but not 

for its offspring where even short changes in parent behaviour can have drastic impacts 

(Zanette et al. 2011). 

 

Conclusions and implications for conservation 

Human outdoor recreation often has a negative impact on birds and it is likely to 

continue increasing in the future. In order to mitigate human recreation impact on wildlife, 

conservation measures have to be implemented specifically adapted to the season, the 

recreational activity type and the target species. In general, visitor guidance along or 

through rare habitats is highly recommended to keep the negative impacts through human 

recreation as low as possible. Human disturbances can already have severe impacts at 
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low intensities and short duration; therefore also research(er) related impacts have to be 

taken into account (Götmark 1992; Giese 1996). 

Restricted access or at least stay-on-trail directives are valuable and often 

necessary conservation measures. Therefore also trail networks should not be too dense 

and if new trails have to be constructed the surrounding habitats and the local species’ 

requirements should be taken into account (Rodríguez-Prieto et al. 2014). Also timber 

harvesting roads should be re-built/renaturalized to firstly limit the direct impact on the 

habitat and secondly to not promote human and predator access into before undisturbed 

areas. Trail effects should also be taken into account for bird monitoring schemes which 

are often conducted from trails or roads, where local abundance and species richness can 

be affected too (Hanowski & Niemi 1995; Šálek, Svobodová & Zasadil 2010). 

Human presence can have short time effects like physiological or behavioural 

reactions, which might not severely affect the individual directly, but which might affect the 

offspring (trans generational effect, as we could show with maternal antibodies) or the 

individuals fitness via reduced breeding success (Pihlaja, Siitari & Alatalo 2006; French et 

al. 2010; Almasi et al. 2015). Such impacts are much harder to detect and to investigate 

and might only gradually impact populations (Blickley et al. 2012). Permanent, high 

intensity recreational activities, on the other hand, can trigger physiological reactions 

which lower apparent survival, force wildlife to adapt their behaviour (spatially and 

temporarily) or even cause animals to leave a given area (local extinction). 

From time to time new outdoor activities pop up and sometimes get large numbers 

of followers like for example the recent trend for stand-up paddling (SUP). Such new 

activities might affect other habitat types or access new areas and therefore need to 

attract a conservationist’s attention, which then should assess its impact. Conservation 

biologists should then propose conservation measures and support their implementation to 

“bridge the gap” between researchers and practitioners (Arlettaz et al. 2010). 
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