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A B S T R A C T

The pairwise statistical comparison of ring-width series is the basic analysis of dendro-provenancing studies. It is
assumed that statistical proximity indicates similar provenance, but this assumption often remains untested.
Especially for small areas with high topographic complexity, it is unknown to what extent statistical proximity
and geographical provenance are correlated.

In this paper, dendro-provenancing is framed as a search for statistical Nearest Neighbors. The ‘k-Nearest
Neighbors leave one-out cross-validation’ process (k-NN) is proposed as a method for validating dendro-pro-
venancing approaches. Furthermore, it allows researchers to consistently compare and evaluate different
proximity measures with respect to their suitability for dendro-provenancing. The validation process is de-
monstrated on a data set of 401 ring-width series of Norway spruce (Picea abies (L.) H. Karst.) encompassing 15
sites along elevational gradients in north-eastern Switzerland. Moreover, a new type of plot, the so-called scissor
plot, is introduced to visualize the k-NN validation process.

Results indicate that dendro-provenancing depends heavily on differences in between sites high-frequency
signal. Mean classification success for the relevant stages of the k-NN (CSR¯ open)1 ranged from 71.8% to 79.2% for
the best performing measures. Classification errors occurred mainly between sites at elevations of 1000–1198m
a.s.l. At all other elevations and between different regions of the study area, only moderate differences in
classification performance were detected. Thus, the results indicate that dendro-provenancing may be princi-
pally feasible even in a small region as studied here.

1. Introduction

Knowing the site of tree growth for timber in archaeological or
historical structures and artefacts (e.g., buildings, paintings, ships, etc.)
provides crucial information for reconstructing timber trade routes,
determining the provenance and authenticity of art historical objects,
or estimating forcing factors on tree growth (Wazny, 2002; Eissing and
Dittmar, 2011; Jansma et al., 2014; Hellmann et al., 2017). The bulk of
this so-called dendro-provenancing relies on pair-wise comparisons be-
tween ring-width series of unknown provenance and chronologies or
single series representing potential sites of origin. Therefore, local re-
ference chronologies form the backbone of dendro-provenancing. Re-
ference chronologies may either be established from living trees or, for
provenancing of historical and archaeological timber, they need to be
constructed from series of historical or archaeological objects that are
thought to represent local timber-sources. The proximity between a

reference of known and an object of unknown provenance is usually
expressed in statistical terms by calculating either t-values or Glei-
chläufigkeit (percentage of common signs of year-to-year growth
changes; cf. Bridge, 2012; Buras and Wilmking, 2015). The spatial
distribution of matches is then visualized on maps, which allow for
narrowing down the area of provenance to the best matches (Eckstein
and Wrobel, 2007; Daly and Nymoen, 2008). Such dendro-provenan-
cing relies on three assumptions:

1. Tree growth varies sufficiently within the study area, thus causing
the formation of regionally or locally characteristic ring-width pat-
terns.

2. The (dis-)similarity of tree growth can be quantified by statistical
measures of proximity.

3. Highest statistical proximity indicates closest geographical neigh-
bors.
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1CSR¯ open is a figure for the classification success rate of a k-NN and is described in detail in the Methods section.
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A review on dendro-provenancing was provided by Bridge (2012).
Recently, the ‘classical’ method described above has been refined. For
example, Jansma et al. (2014) combined topographical, geomorpholo-
gical and soil type information to reconstruct potential sites of origin for
Quercus petraea and Quercus robur in the Roman epoch. Similarly,
Eissing and Dittmar (2011) used maps of the potential natural vegeta-
tion of Thuringia and Bavaria to determine areas for medieval har-
vesting of Picea abies and Abies alba. In addition, they consulted his-
torical sources on timber rafting and considered the hydrological
system upstream of a city to locate likely sites of timber supply (Eissing
and Dittmar, 2011). However, the original assumptions stated above
remain crucial for both studies (Eissing and Dittmar, 2011; Jansma
et al., 2014). For a very recent approach of assessing the reliability of
best statistical matches, see Drake (2018), who developed a probabil-
istic framework for dendro-provenancing based on statistical hypoth-
esis testing and Bayesian inference.

While the quantification of similarity in tree growth using proximity
measures constitutes a virtually unchallenged assumption, the first and
third assumptions are discussed controversially (Bridge, 2000; Haneca
et al., 2005; Savva et al., 2006; Garcia-Gonzalez, 2008; Eissing, 2007;
Eissing and Dittmar, 2011; Jansma et al., 2014). Concerning the first
assumption of regional growth patterns, cluster analysis has sometimes
been used to investigate statistical proximity in relation to the spatial
distribution of site conditions, albeit often with limited success (Bridge,
2000; Haneca et al., 2005; Savva et al., 2006; Garcia-Gonzalez, 2008).
Although Garcia-Gonzalez (2008) found that the clusters actually re-
present specific ecological conditions, in the studies by Bridge (2000)
and Haneca et al. (2005) the spatially diffuse results of the cluster
analysis could not be correlated with site factors. Savva et al. (2006)
found that the clearest clusters followed elevational belts. Moreover,
motivated by studies that showed distinct elevation-specific climate-
growth relationships, models predicting the elevational provenance of
ring-width series were formulated (Wilson and Hopfmüller, 2001;
Frank and Esper, 2005; Eissing and Dittmar, 2011; Dittmar et al., 2012;
King et al., 2013; Kolář, Čermák et al., 2017; Lyu et al., 2017). Besides
elevation-specific differences, results of pointer year studies suggest
distinct regional to site-specific differences in tree growth (Dittmar and
Elling, 1999; Rolland et al., 2000; Neuwirth et al., 2004, 2007).

The third assumption was discussed even more controversially.
Eissing and Dittmar (2011) pointed out that imported timber was fre-
quently used for the construction of the larger, communal buildings in
many old town centers of the medieval and modern epoch. Hence, in
such cases reference chronologies for dendro-provenancing cannot be
thought of as reflecting local tree growth (Eissing, 2007; Eissing and
Dittmar, 2011; Jansma et al., 2014). Best matches to such references
must be scrutinized and interpreted critically. Also, a close and strong
relation of geographical and statistical proximity is not granted from an
ecological point of view (Haneca et al., 2005; Bridge, 2012; Fowler and
Bridge, 2015). For example, Bridge (2000) studied oak stands in eastern
England and compared oak ring-width series within the studied sites as
well as with other British sites, suggesting that series from Hockley
Woods (Essex) featured higher statistical proximity when compared to a
270-km distant site chronology from Peckforton (Cheshire), than when
compared to much closer sites inside a 100-km radius around Hockley
Woods. The contradiction was explained by the fact that both Hockley
Woods and Pechforton were located on well-drained, steep slopes, i.e.
they were ecologically quite similar in spite of a large geographical
distance. Most previous dendro-provenancing studies were conducted
in areas that are under an Atlantic climate regime and have only low
topographical complexity, such as the Polish, Belgian and Baltic coastal
areas and their hinterland (Bridge, 2012). There are only a few such
studies in Alpine and pre-Alpine environments (Eissing and Dittmar,
2011). In these latter environments, the complex topography may be
advantageous for dendro-provenancing. However, even when there is
high diversity of site conditions and micro climate, statistical neighbors
may be located at distant sites, where similar environmental factors

limit tree growth (Bridge, 2000; Haneca et al., 2005; Boschetti-Maradi
and Kontic, 2012).

Inspite of all controversies, dendro-provenancing remains popular
and is widely applied. Its core method (i.e., the provenancing via pair-
wise statistical comparisons), however, has never been evaluated in a
small-scale mountain environment. Thus, the objectives of this study
are:

1. To develop a statistical procedure for validating the three funda-
mental dendro-provenancing assumptions.

2. To investigate the suitability of different proximity measures for
dendro-provenancing.

3. To assess the most problematic provenancing errors encountered to
be able to determine the growth signal that is relevant for dendro-
provenancing and thus provide a basis for future research dedicated
to a better understanding of this signal in Alpine and pre-Alpine
environments.

2. Materials and methods

2.1. Tree-ring data

779 increment cores of Norway spruce (P. abies (L.) H. Karst.) were
collected between winter 2015 and fall 2016. At 15 sites in the foothills
and mountains of the north-eastern Swiss Alps 15–32 healthy spruce
with a diameter at breast height (DBH) ≥ 30 cm were sampled (Table 1,
Figs. 1, A1). The sampling plots were relatively small, ranging between
1110m2 and 7840m2 and were chosen to represent typical site con-
ditions of the area. For most sites, two cores were extracted per tree. In
Sihlwald-Streuboden (sw), however, a pilot study was conducted where
only one core per tree was acquired.

The measurement of total ring width and cross-dating were per-
formed using standard dendrochronological procedures (Cook and
Kairiukstis, 1990; Speer, 2010). Only a few ring-width series had to be
excluded from further analysis, after they had failed final cross-dating
checks with the program COFECHA (Grissino-Mayer, 2001). Finally, for
trees with more than one series of radial measurements, mean ring-
width series were calculated. Thus, a data set of 401 ring-width series
was created (Table 2, ring-width data in the Online Supplementary
Material).

2.2. Dendro-provenancing as a k-Nearest Neighbor Analysis (k-NN)

Dendro-provenancing can be framed as a Nearest Neighbor (NN)
Analysis (Cover and Hart, 1967; Schmitt, 2006). In One Nearest
Neighbor Analysis (1-NN), for example, the object being classified is
assigned the same class as its statistical NN. However, in order to
evaluate the robustness of a classification, NN Analysis may relate to
more than just the 1-NN and inquire the consistency of classifications
based on any number k of NN. If k = 10, for example, the 10 NN are
considered for classification. Consequently, the object (ring-width
series) is assigned the same class (site label) as the most abundant class
among the 10 NN. This k-Nearest Neighbor (k-NN) approach is pursued
here. The procedure involves the following steps:

1. A ring-width series is ‘anonymized’. All other series of the data set
are assigned classes corresponding to their site provenance.

2. A proximity measure is chosen and values are calculated for each
pairwise comparison between the anonymized series and all other
series of known provenance.

3. Proximity values are sorted in ascending order and ranked accord-
ingly. The number of highest ranking values (k) is chosen and the
classes of the respective NN are evaluated. The most abundant class
among those k NN determines the class attributed to the anon-
ymized series. Thus, for each possible k (here, k∈ {1, … 400}), the
class of the anonymous series is predicted.
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Table 1
Site factors. Elevation in m a.s.l. Slope in degrees. Determination of root penetration depth (root pen. depth), nutrient storage capacity (nutr.stor.), and waterlogging
(water log.), according to digital soil suitability map of Switzerland (Federal Office for Agriculture: map.geo.admin.ch, 17.8.2017). Duration of growing season in
days (grow.s.), annual temperature average in C° (t.av.), and annual precipitation sums in mm (precip.), derived by calculating the mean for the period 1930–2010.
Growing season calculated according to the ETCCDI definition (etccdi.pacificclimate.org, 7.9.2018) with R Package climdex.pcic (Bronaugh, 2018). Monthly and daily
mean temperatures and precipitation sums for 1930–2010 were provided by the Land Use Dynamics Research Group at WSL. These data had been derived by a spatial
interpolation of data from the MeteoSwiss network using DAYMET (Thornton et al., 1997) to a grid with cell size of 1 h.

Site Region Elevation Slope Exp. Root pen.depth Nutr.stor. Water log. Grow.s. t.av. Precip.

hw: Glarus-Haltenwald Linth 627 18 NE Medium Medium Moist 236 8.7 1522
nb: Sool-Nuebaennli Linth 845 40 S Very superficial Very Low No moist 224 7.6 1603
how: Sool-Hohwald Linth 1022 41 S Very superficial Very low No moist 213 6.7 1712
gand: Elm-Gandwald Linth 1180 27 E Superficial Low No moist 212 6.6 1518
ww: Spiringen-Waengiwald Linth 1707 19 N Very superficial Very low No moist 144 2.4 2019
rw: Elm-Raminerwald Linth 1723 26 SW Superficial Low No moist 146 2.5 1924
bw: Schmerikon-Bannwald Obersee 472 15 N Deep Medium Low wet 242 9 1487
ew: Eschenbach-Eggwald Obersee 618 14 NW Medium Low Moist 234 8.4 1546
sb: Gommiswald-Steibruch Obersee 856 10 NW Deep Medium Low wet 213 6.8 1853
chw: Eschenbach-Cholwald Obersee 1106 20 N Medium Good Low wet 192 5.5 1853
sw: Sihlwald-Streuboden Sihl 646 6 NE Deep Good Low wet 233 8.3 1357
fri: Feusisberg-Friesischwand Sihl 829 15 N Medium Medium Low wet 219 7.2 1660
kar: Unteriberg-Karenstockwald Sihl 1000 26 NW Superficial Low Moist 193 5.5 2049
gw: Oberiberg-Gschwaendwald Sihl 1198 13 SE Superficial Medium Wet 194 5.5 2043
furg: Alpthal-Furggelenstock Sihl 1506 16 E Superficial Medium Wet 171 4 2243

Fig. 1. Map of sites (46° 48′ 37″ – 47° 29′ 24″ N, 8° 26′ 50″ – 9° 16′ 23″ E). Full names of sites see Table 1. Reproduced by permission of swisstopo (BA17135).
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4. The classification is checked by comparing the true class (i.e., the
site of provenance) of the anonymized series with its predicted class.

The k-NN is based on individual ring-width series. Reference
chronologies are not used because such chronologies implicitly assume
that all individual series share a site-specific growth signal, which is one
of the key assumptions (c.f. Introduction) that is investigated here.

2.3. Measures of proximity

In cluster analysis, the term proximity measure is used to denote
measures of distance, similarity and dissimilarity (see Everitt et al.,
2011, p. 43). Similarly, in this paper the term proximity measure is used
to refer to any value calculated to express statistical proximity, be it
measures of distance, similarity or dissimilarity.

Most of the measures applied in this study (Table 3) are well known
and frequently used in dendrochronology. Thus, the reader is relegated
to the cited references and Supplementary Online Material for more

information.
Besides the measures that are based on the agreement of the growth-

sign (GL and FGGL, Table 3), two correlation coefficients were in-
vestigated: Pearson's correlation coefficient (Pearson, 1895) and
Spearman's rank correlation (Hollander and Wolfe, 1973; Best and
Roberts, 1975; Table 3). For both correlation coefficients, t-values can
be calculated (Kendall and Gibbons, 1990). Thus, the dependence on
sample size, i.e. years of overlap, of the correlation coefficient is re-
duced (Wigley et al., 1987). No p-values are calculated here because
classic dendro-provenancing has almost always been done based on t-
values (Wazny, 2002; Haneca et al., 2005; Eckstein and Wrobel, 2007;
Daly and Nymoen, 2008; Eissing and Dittmar, 2011; Hellmann et al.,
2017).

Both correlation coefficients are sensitive to trends and other low
frequency fluctuations (Wigley et al., 1987), thus, preprocessing is ne-
cessary. However, growth patterns of approximately 5 to 20 years in
length, i.e., medium-frequency patterns, are possibly relevant for pro-
venancing, as they may reflect similar local forest management or other
growth reactions due to spatially limited disturbances, e.g. storm da-
mages. Thus, several k-NNs were calculated from the raw ring-width
series. Additionally, low-frequency tolerant preprocessing methods,
such as DET and SPL67pct (Table 3), were applied. All calculations and
statistical analyses were done using the statistical software R version
3.4.3 (R Core Team, 2017). The R code for the main analyses is pro-
vided in the Online Supplementary Material.

2.4. Cross-validation using scissor plots

2.4.1. The scissor plot
Because the true class (i.e., the site of provenance) of the anon-

ymized series is known, classifications accomplished by k-NN can be
validated rigorously by iteratively anonymizing each ring-width series
of the data set once, then predicting its class (i.e., site) for different
numbers of k. This kind of cross-validation method is known as leave-
one-out cross-validation (Arlot and Celisse, 2010). From the cross-vali-
dated classifications, the classification error rate (CER) is derived by
dividing the number of wrong classifications by the total number of
classification trials.

The probability for a correct classification rises if more NN come
from the same site as the anonymized ring-width series. Thus, these on-

Table 2
Chronology and signal strength statistics as well as site-wise mean classification
success rate (CSR) for k-NN stages k=40 till k=1 conducted with the measure
tHO (Table 3) on the complete data set. Mean replication was calculated ex-
cluding the years of a chronology with a replication<2.

Site n Mean
s.length

First yr. Last yr. Mean
replic.

Rbar EPS Mean CSR

bw 27 126.33 1885 2016 25.84 0.32 0.92 87.69
chw 24 93.25 1860 2016 14.60 0.37 0.90 29.06
ew 26 105.85 1875 2016 20.19 0.36 0.92 75.38
fri 31 115.00 1880 2016 26.02 0.47 0.96 93.15
furg 19 210.63 1645 2015 11.23 0.42 0.89 81.18
gand 25 104.84 1890 2015 20.96 0.43 0.94 89.10
gw 15 127.00 1795 2015 13.38 0.38 0.89 48.33
how 23 107.78 1897 2016 20.82 0.49 0.95 62.61
hw 30 130.23 1878 2014 28.72 0.39 0.95 98.67
kar 30 81.90 1881 2016 21.36 0.39 0.93 59.17
nb 30 155.30 1851 2016 28.07 0.49 0.96 97.42
rw 32 160.16 1773 2015 21.09 0.48 0.95 95.94
sb 30 66.77 1938 2016 25.99 0.34 0.93 85.92
sw 30 97.40 1904 2014 27.27 0.26 0.90 71.92
ww 29 184.69 1755 2015 20.67 0.42 0.94 88.19

Table 3
Overview of proximity measures.

Abbreviation Correlation t statistic Preprocessing/transformation Reference

r Pearson -none- -none- Pearson (1895)
t Pearson Yes -none- Edgell and Noon (1984)
tHO Pearson Yes Log first differences Hollstein (1980)
tDIFF Pearson Yes First differences Stock and Watson (2015)
tBP Pearson Yes 5 year running mean Baillie and Pilcher (1973)
tAR Pearson Yes ar-model Brockwell and Davis (1996)
tSPL67pct Pearson Yes spline 2/3 series, 0.5 freq. resp. Cook (1981)
tSPL30yrs Pearson Yes spline 30 years, 0.5 freq. resp. Cook (1981)
tSPL10yrs Pearson Yes spline 10 years, 0.5 freq. resp. Cook (1981)
tDET Pearson Yes Deterministic detrending Fritts (1976)
tARS Pearson Yes Double-detrending & ar-model Cook (1985)
s Spearman -none- -none- Best and Roberts (1975)
ts Spearman Yes -none- Kendall and Gibbons (1990)
tsHO Spearman Yes Log first differences Hollstein (1980)
tsDIFF Spearman Yes First differences Stock and Watson (2015)
tsBP Spearman Yes 5 year runnig mean Baillie and Pilcher (1973)
tsAR Spearman Yes ar-model Brockwell and Davis (1996)
tsSPL67pct Spearman Yes spline 2/3 series, 0.5 freq. resp. Cook (1981)
tsSPL30yrs Spearman Yes spline 30 years, 0.5 freq. resp. Cook (1981)
tsSPL10yrs Spearman Yes spline 10 years, 0.5 freq. resp. Cook (1981)
tsDET Spearman Yes Deterministic detrending Fritts (1976)
tsARS Spearman Yes Double-detrending & ar-model Cook (1985)
GL -none- -none- Falling (-) or ascending (+) yearly intervals Huber (1943)
FGGL -none- -none- Like GL but class 1 intervals (Table A1) excluded von Jazewitsch (1948)
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Fig. 2. Scissor plot for measure tHO; complete
data set. Scissor plots visualize the leave-one-
out cross-validation process. During this pro-
cess, each ring-width series of the data set is
anonymized once and values for on-site-NN/
off-site-NN ratio and potential ratio are calcu-
lated (ratios plotted as percentages on y-axis,
see Methods for details). As the complete data
set encompasses n=401 ring-widths series,
the box-plots represent 401 values. Of the total
400 box-plots that would result from each
possible setting for k, only 100 box-plots are
visualized on the x-axis as the figure would get
too large otherwise. This subset is called k
%-NN (see Methods for details). There is no
box-plot for the classification error rate as this
rate is a single number, which equals the per-
centage of wrongly classified series at each
setting for k.

Fig. 3. Scissor plot for measure tHO; high-elevation subset.

Fig. 4. Scissor plot for measure tHO; medium-elevation subset.
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site Nearest Neighbors (on-site-NN) are traced for all numbers of k and
calculated for all iterations of the leave-one-out cross-validation (i.e.,
400 iterations for the complete data set). Box plots are particularly
useful to visualize the spread of the percentages of on-site-NN over all
the iterations of the leave-one-out cross-validation (Fig. 2). Analo-
gously, the number of NN coming from a different site than the anon-
ymized ring-width series can be visualized. These NN are called off-site
Nearest Neighbors (off-site-NN). Because the two box plot series of off-
site-NN and on-site-NN resemble the crossing blades of a scissor, the
result is called a scissor plot (Figs. 2–5). The third box plot series drawn
for the potential is explained further below.

A complete k-NN encompasses kmax= n− 1 classifications, where n
is the sample size. As n gets larger, the classifications become increas-
ingly challenging to visualize. Hence, often only a selection is plotted.
To create a subset for k-NNs with kmax≥ 100, the ranked proximity
values are divided into percentiles and classifications are calculated for
each percentile of NN. In this paper, such a subset of a k-NN is referred
to as a k%-NN.

2.4.2. Rating a proximity measure with a scissor plot
The k%-NN data visualized on scissor plots (for data sets where

kmax≥ 100) represents an arbitrary selection of the data underlying a
complete k-NN. However, the information of a scissor plot can be ex-
pressed in numbers, and these can be calculated from the complete k-
NN data without having to plot the data.

• The rating procedure is based on four indicators (Fig. 6):
○ openingratio
○ CSR¯
○ on− site−NNratio

○ potentialratio
• These indicators are summarized by the rating score. In addition,

CSR¯ open provides a more intuitive rating figure (Fig. 6).

1. openingratio. An opening is defined as a classification stage
k∈ {1… kmax} for which the 25% quantile of the on-site-NN box plot
series does not overlap with the 75% quantile of the off-site-NN box plot
series (for a barely opened scissor plot, cf. k=8, Fig. 2; for a clear
opening, cf. k=16, Fig. 5). In these stages, more than 75% of all
iterations of the k-NN allow for more on-site-NN than off-site-NN
among the set of classifiers. Thus, the probability for a correct classi-
fication is high. The openingratio is the sum of open stages (Nopen) ex-
pressed as a percentage of the total number of classification stages
(kmax):

=
k

opening
N

*100ratio
open

max (1)

2. CSR¯ . The stability of the classification error rate (CER) or of its
complement, the classification success rate (CSR), is crucial for asses-
sing the classification performance of a proximity measure. The overall
classification performance is evaluated by calculating the mean classi-
fication success rate (CSR¯ ):

=
∑ −

=

k
CSR¯ (100 CER )i

k
i1

max

max

(2)

3. on− site−NNratio. In general, the higher the on− site−NNratio,
the higher the probability of a correct classification of an anonymized
ring-width series. The on-site-NN box plot series of a scissor plot shows
the spread of the on-site-NN for each stage (Fig. 2). For the rating of the
on-site-NN over all stages, the following ratio is calculated, where

− −
∼on site NNi is the median on-site-NN percent at the k-NN stage
i= k∈ {1… kmax}:

− − =
∑ − −
∼

=

k
on site NN

on site NNi
k

i
ratio

1

max

max

(3)

4. potentialratio. The potential characterizes the portion of on-site-NN
at a specific stage k of the k-NN (red box plot series in Fig. 2). It takes
the value of 100% if all on-site-NN in the data set are found. A high
value for potential is a sign of a strong common growth signal within the
on-site ring-width series. It is also a sign of high signal difference be-
tween on-site-NN and off-site-NN. The potentialratio is defined as follows,
where

∼potentiali is the median potential at k-NN stage
i= k∈ {1… kmax}:

=
∑
∼

=

k
potential

potentiali
k

i
ratio

1

max

max

(4)

Rating score. These four indicators range from a minimum of 0% to a
maximum of 100%. Thus, the overall rating score is calculated as:

=
+ + − − +

ratingscore
opening CSR¯ on site NN potential

4
ratio ratio ratio

(5)

CSR¯ open. Although the rating score provides the mean of the key
indicators of a scissor plot, this mean remains difficult to interpret. The
CSR presents a much more intuitive figure. Whenever an opening is
present in a scissor plot, the mean classification success rate from the first
opening up to stage k = 1 (CSR¯ open) can be calculated. However, for some
k-NN, CSR¯ open cannot be calculated as there is no opening in the scissor

Fig. 5. Scissor plot for measure tHO; low-elevation subset.
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plot.

2.4.3. Applying k-NN to the data set
In a first step, k-NNs were calculated on the complete data set for

every proximity measure (Table 3). In a second step, k-NNs were cal-
culated on regional subsets. The three subsets, i.e. Sihl, Linth and
Obersee, represent three different watersheds in the study area (for
assignment of site to region cf. Table 1, Fig. 1). Because tree growth
strongly depends on elevation (Frank and Esper, 2005; Savva et al.,
2006; Dittmar et al., 2012; King et al., 2013; Kolář, Čermák et al., 2017;
Lyu et al., 2017), in a third step k-NNs were calculated for elevation-
specific subsamples of the data set. These subsamples correspond to
three elevational bands, representing low (< 1000m a.s.l.), medium
(1000–1500m a.s.l.) and high elevation sites (> 1500m a.s.l.). To
identify the site pairs that were most difficult for the classification, of

each site 15 series were randomly selected and scissor plots were drawn
for all possible site pairs. Then, the rating scores were visualized via a
so-called heat plot (see Section 3.4).

Due to space constraints, scissor plots are shown for tHO only
(Figs. 2–5). For the rest of the proximity measures, the results are
presented based on the rating scores (Tables 4–6).

3. Results

Firstly, the results for the complete data set are presented. They
provide the basis for discussing the suitability of different proximity
measures for k-NN classification (see Section 4). Secondly, the results
for the regional subsamples, and thirdly, the results for the elevational
subsamples are presented. The two subsampling strategies aim at de-
tecting regional and elevational differences in the k-NN classification

Fig. 6. Indicators used for rating a scissor plot (see Methods for detailed mathematical definitions). Subplot A shows a complete scissor plot (i.e., the plot for tHO;
high-elevation subset) with all indicators on one plot. Subplots B-F illustrate how, for each indicator, the numeric score is connected to the visual representation on
the scissor plot.
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Table 4
Rating summary part 1. For information on proximity measures see Table 3. For details on the abbreviated rating figures see Method section.

All sites r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- -none- -none- -none- 0.2 0.2 0.8 0.8 0.8 0.8 0.8 0.8
on− site−NNratio 12.9 13.1 12.6 13.1 17.9 18.3 18.7 18.7 18.6 18.7 18.5 18.6
potentialratio 72.8 73.1 72.8 73.3 86.7 87.4 88.2 88.1 87.6 88.2 87.5 88.2
CSR¯ 24.0 24.1 23.6 24.7 36.0 36.6 38.2 38.0 39.5 39.1 40.6 41.4
rating score 27.4 27.6 27.3 27.8 35.2 35.6 36.5 36.4 36.6 36.7 36.9 37.2
CSR¯ open -none- -none- -none- -none- 76.3 75.3 79.2 76.9 75.9 76.7 78.5 76.0

All sites tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 0.5 0.5 -none- -none- -none- -none- -none- -none- 0.8 0.5 -none- -none-
on− site−NNratio 17.9 18.1 13.5 13.5 15.4 15.4 16.7 16.6 18.4 18.4 15.4 16.5
potentialratio 87.8 87.7 73.7 74.3 80.7 81.2 84.2 84.1 87.6 87.9 83.0 84.9
CSR¯ 36.3 37.1 28.5 30.1 34.0 34.5 33.8 34.2 36.7 37.5 35.5 35.6
rating score 35.6 35.8 28.9 29.5 32.5 32.8 33.7 33.7 35.9 36.1 33.5 34.2
CSR¯ open 75.3 72.0 -none- -none- -none- -none- -none- -none- 75.7 71.8 -none- -none-

Sihl subset r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- -none- -none- 1.6 9.7 11.3 14.5 16.9 19.4 16.1 18.5 19.4
on− site−NNratio 37.7 38.1 37.8 38.2 43.3 43.1 44.9 44.7 45.4 45.2 44.8 44.9
potentialratio 71.5 72.0 72.0 72.6 77.9 77.5 79.2 79.0 79.7 79.4 79.0 79.0
CSR¯ 47.9 48.5 47.5 48.4 55.1 54.3 57.8 57.5 61.2 59.6 60.9 60.6
rating score 39.3 39.6 39.3 40.2 46.5 46.5 49.1 49.5 51.4 50.1 50.8 51.0
CSR¯ open -none- -none- -none- 70.1 85.2 84.9 88.4 88.1 90.0 88.7 89.7 91.4

Sihl subset tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 14.5 13.7 0.8 0.8 4.0 4.0 4.0 2.4 10.5 10.5 2.4 -none-
on− site−NNratio 43.3 43.6 37.4 38.1 38.3 39.1 38.9 39.3 43.1 43.1 39.5 41.2
potentialratio 77.7 78.2 71.3 72.1 71.4 72.2 72.1 72.7 76.9 77.2 73.5 75.7
CSR¯ 57.3 58.4 47.1 47.3 53.5 55.3 55.5 55.5 55.5 56.1 51.2 52.8
rating score 48.2 48.5 39.2 39.6 41.8 42.6 42.6 42.5 46.5 46.7 41.6 42.4
CSR¯ open 87.4 87.3 68.5 75.2 78.9 75.8 79.2 76.0 85.0 85.8 73.7 -none-

Linth subset r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- 0.6 -none- -none- 17.3 19.6 16.7 18.5 16.1 16.1 17.3 17.9
on− site−NNratio 30.8 31.0 30.0 30.3 40.9 41.2 41.3 41.1 40.7 41.1 40.8 41.3
potentialratio 74.7 75.0 73.2 73.7 86.1 86.3 86.4 86.6 86.1 86.5 85.8 86.5
CSR¯ 44.2 44.7 43.8 45.5 57.6 59.7 56.3 57.5 54.0 57.4 57.5 59.0
rating score 37.4 37.8 36.8 37.4 50.4 51.7 50.2 50.9 49.2 50.2 50.4 51.2
CSR¯ open -none- 77.5 -none- -none- 89.2 89.8 90.8 89.5 87.8 88.5 91.6 90.2

Linth subset tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 14.9 15.5 1.2 1.2 5.4 3.0 10.7 10.1 16.1 20.2 1.8 13.7
on− site−NNratio 41.2 41.4 32.3 32.4 37.4 37.7 39.4 39.7 41.3 41.5 36.7 38.6
potentialratio 86.1 86.7 75.5 75.7 81.9 81.8 84.6 84.7 86.5 86.8 83.0 84.5
CSR¯ 55.0 57.0 49.1 50.5 55.0 55.6 55.0 55.5 56.7 58.2 57.6 58.8
rating score 49.3 50.1 39.5 39.9 44.9 44.5 47.4 47.5 50.1 51.7 44.8 48.9
CSR¯ open 89.8 90.5 72.2 70.2 82.5 81.8 86.8 86.5 89.4 90.2 73.5 87.0

Obersee subset r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- -none- -none- -none- 11.3 13.2 22.6 17.9 25.5 21.7 17.9 20.8
on− site−NNratio 37.1 37.1 36.8 37.0 44.5 45.9 46.5 45.4 47.1 46.5 46.1 46.2
potentialratio 65.1 65.1 64.9 65.1 74.0 75.2 75.6 75.0 76.0 75.9 75.4 75.4
CSR¯ 50.4 50.8 49.6 50.1 63.9 67.1 64.9 68.6 69.3 71.3 66.9 69.9
rating score 38.2 38.2 37.8 38.1 48.4 50.4 52.4 51.7 54.4 53.9 51.6 53.1
CSR¯ open -none- -none- -none- -none- 81.1 84.2 84.9 87.5 89.7 90.1 87.4 89.1

Obersee subset tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 14.2 6.6 -none- -none- 1.9 -none- 4.7 2.8 20.8 20.8 -none- 0.9
on− site−NNratio 44.9 44.4 35.2 35.9 41.0 40.9 42.9 42.0 46.2 46.1 40.9 41.7
potentialratio 74.1 74.2 62.1 63.0 69.4 69.5 70.9 71.0 75.1 75.6 71.8 71.4
CSR¯ 67.4 66.7 49.3 50.0 59.8 58.7 63.6 63.6 67.5 68.9 63.1 61.2
rating score 50.1 48.0 36.7 37.2 43.0 42.3 45.5 44.9 52.4 52.8 44.0 43.8
CSR¯ open 86.1 80.2 -none- -none- 70.7 -none- 80.1 76.4 88.3 87.1 -none- 66.7
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performance (discussed in Section 4).
Finally, the results emerging from investigating classification errors

are presented. Because performance was low for the medium-elevation
subsample (see Section 3.3), this subsample was further split into one
consisting of the sites between 1000 and 1106m, and the other between
1180 and 1198m. Surprisingly, these subsamples posed no difficulties
for the classification. To identify other subsets of sites that are parti-
cularly difficult for the classification, k-NNs were calculated for all site
pairs. The effect of the thus identified, problematic sites on classifica-
tion performance was quantified by dropping the respective sites from
the complete data set and calculating k-NNs anew. Based on these re-
sults potential causes underlying the classification errors are discussed
in Section 4.

3.1. Complete data set

All k-NNs calculated on the complete data showed poor

performance using correlation-based proximity measures that lacked
preprocessing (see upper two blocks of Table 4; i.e., r, s, t and ts). None
of these measures showed an opening and the rating score was quite
low (cf. Table 4). In fact, the score increased progressively the more
rigorously the preprocessing removed the medium- and low-frequency
variation. The highest rankings were accomplished by measures that
were based on either AR, ARS, BP, SPL10yrs, HO or DIFF preprocessing
whereas preprocessing methods that removed only little of the medium-
to low-frequency variation such as DET or SPL67pct performed worse
(Table 4; Fig. 2). Particularly, they showed no opening and reached low
rating scores only.

Differences in performance depending on the correlation coefficient
in use were rather small (cf. Table 4). Except for the DIFF methods, all
measures using the Pearson correlation coefficient attained a slightly
higher CSR¯ open than their Spearman counterparts. The rating score,
however, was very similar for both correlation coefficients, and for both
coefficients openings were limited to stages with small values of k

Table 5
Rating summary part 2. For information on proximity measures see Table 3. For details on the abbreviated rating figures see Method section.

High-elevation sites r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- 1.3 -none- -none- 24.1 31.6 31.6 25.3 26.6 27.8 26.6 24.1
on− site−NNratio 43.5 44.4 43.6 43.8 54.2 56.4 54.6 54.6 53.2 54.0 54.7 55.8
potentialratio 57.7 57.8 58.1 58.2 66.2 68.0 66.6 66.7 66.1 66.4 66.6 68.2
CSR¯ 49.0 49.2 49.9 50.2 69.2 72.7 72.4 71.5 69.4 70.6 71.1 71.4
rating score 37.6 38.2 37.9 38.1 53.4 57.2 56.3 54.5 53.8 54.7 54.7 54.9
CSR¯ open -none- 76.2 -none- -none- 91.1 91.2 94.2 90.5 90.7 89.3 91.3 89.5

High-elevation sites tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 30.4 27.8 3.8 -none- 8.9 15.2 20.3 30.4 22.8 30.4 6.3 22.8
on− site−NNratio 55.6 56.4 47.0 46.4 51.1 52.4 54.8 56.8 54.9 56.2 49.6 52.3
potentialratio 67.4 68.3 59.9 60.2 64.4 65.8 66.7 68.7 66.8 68.1 63.8 64.6
CSR¯ 70.8 72.0 53.9 55.6 62.5 65.7 68.1 70.5 68.6 71.9 65.4 70.2
rating score 56.0 56.2 41.1 40.5 46.7 49.8 52.4 56.6 53.3 56.6 46.3 52.5
CSR¯ open 92.4 91.0 71.2 -none- 80.9 82.7 86.4 87.1 92.4 91.8 77.3 88.9

Medium-elevation sites r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- -none- -none- -none- 2.6 0.9 2.6 2.6 6.0 3.4 5.2 4.3
on− site−NNratio 32.5 32.7 32.6 32.8 37.8 38.0 38.8 38.8 37.5 37.9 37.6 38.1
potentialratio 68.0 68.6 67.7 68.1 72.9 74.1 73.8 74.8 73.9 74.9 73.8 74.3
CSR¯ 37.3 36.6 36.7 36.1 56.7 56.6 59.5 60.2 66.0 63.4 63.4 62.2
rating score 34.5 34.5 34.3 34.2 42.5 42.4 43.7 44.1 45.9 44.9 45.0 44.7
CSR¯ open -none- -none- -none- -none- 75.0 76.1 77.1 79.0 81.6 79.4 80.3 81.9

Medium-elevation sites tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 2.6 0.9 -none- -none- 0.9 -none- 2.6 -none- 3.4 4.3 -none- -none-
on− site−NNratio 38.0 37.1 32.7 33.4 35.0 33.7 36.5 35.5 38.7 38.4 31.4 33.7
potentialratio 74.0 73.3 67.7 68.0 70.1 69.4 71.1 70.5 73.2 73.9 67.4 68.9
CSR¯ 57.1 55.7 42.5 44.5 52.5 52.1 57.3 56.6 58.5 59.4 48.6 59.1
rating score 42.9 41.7 35.7 36.5 39.6 38.8 41.9 40.7 43.5 44.0 36.9 40.4
CSR¯ open 74.2 76.1 -none- -none- 68.1 -none- 75.9 -none- 78.3 77.4 -none- -none-

Low-elevation sites r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- -none- -none- -none- 1.5 3.0 6.4 5.4 6.9 7.4 5.4 5.4
on− site−NNratio 25.8 26.1 25.1 25.7 32.0 32.4 32.6 32.6 33.2 33.6 32.7 33.3
potentialratio 72.2 72.5 71.0 71.8 79.2 80.6 80.7 80.7 81.3 81.9 80.5 81.7
CSR¯ 42.8 43.2 41.7 43.1 53.4 53.4 61.6 59.2 64.4 61.3 63.9 63.5
rating score 35.2 35.4 34.5 35.1 41.5 42.3 45.3 44.5 46.5 46.0 45.6 46.0
CSR¯ open -none- -none- -none- -none- 79.2 82.5 89.3 87.0 89.4 88.2 87.3 85.7

Low-elevation sites tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 3.4 2.0 -none- -none- -none- -none- 1.0 1.0 5.9 4.9 -none- -none-
on− site−NNratio 31.3 31.9 23.9 24.4 27.0 27.6 28.9 29.0 32.3 32.4 27.8 29.7
potentialratio 79.1 80.3 67.4 68.4 72.6 73.9 75.6 76.1 80.1 80.8 76.4 77.7
CSR¯ 57.1 56.3 44.3 46.0 50.2 49.3 48.5 48.9 56.7 56.9 53.5 54.7
rating score 42.7 42.6 33.9 34.7 37.5 37.7 38.5 38.8 43.7 43.7 39.4 40.5
CSR¯ open 83.6 79.8 -none- -none- -none- -none- 72.5 73.2 88.1 86.3 -none- -none-
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Table 6
Rating summary part 3. For information on proximity measures see Table 3. For details on the abbreviated rating figures see Method section.

Subset 1000–1106m r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio 1.3 2.6 3.9 2.6 26.3 39.5 27.6 36.8 35.5 38.2 40.8 38.2
on− site−NNratio 49.2 49.7 50.4 50.6 54.5 55.8 56.6 57.1 56.0 56.4 56.6 57.0
potentialratio 62.5 62.7 62.6 62.7 69.7 71.9 70.5 71.3 70.5 71.9 71.1 71.2
CSR¯ 58.6 58.5 59.9 59.7 75.6 77.1 76.3 79.8 81.2 81.2 81.0 81.0
rating score 42.9 43.4 44.2 43.9 56.5 61.1 57.8 61.3 60.8 61.9 62.4 61.8
CSR¯ open 71.0 72.7 72.0 73.0 87.9 88.3 88.5 92.7 94.9 93.9 92.8 92.7

Subset 1000–1106m tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 31.6 31.6 5.3 7.9 18.4 11.8 22.4 26.3 28.9 34.2 13.2 21.1
on− site−NNratio 55.8 55.0 50.7 51.1 53.1 52.5 53.9 54.4 55.7 56.6 50.4 51.4
potentialratio 69.7 70.2 65.8 66.7 66.9 67.1 67.0 67.7 69.5 70.8 66.9 68.3
CSR¯ 76.6 76.3 65.0 64.1 69.5 69.5 72.1 72.0 77.2 77.5 71.4 77.5
rating score 58.4 58.3 46.7 47.5 52.0 50.2 53.8 55.1 57.8 59.8 50.5 54.6
CSR¯ open 89.2 91.1 77.7 79.7 81.6 82.1 86.4 84.1 90.6 89.2 81.1 87.0

Subset 1180–1198m r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio 69.2 69.2 69.2 69.2 46.2 33.3 59.0 61.5 69.2 69.2 69.2 69.2
on− site−NNratio 85.6 85.6 85.7 85.9 85.7 84.8 85.6 86.3 79.7 82.4 80.3 82.3
potentialratio 70.3 70.3 70.1 70.1 66.9 65.9 67.3 68.1 67.0 67.5 68.0 68.0
CSR¯ 83.8 83.7 83.8 83.9 74.1 71.0 78.8 79.5 85.5 83.4 84.7 83.7
rating score 77.2 77.2 77.2 77.3 68.2 63.7 72.7 73.9 75.4 75.6 75.6 75.8
CSR¯ open 93.3 93.2 93.5 93.6 83.8 79.1 89.7 89.2 95.7 92.7 94.6 93.1

Subset 1180–1198m tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 69.2 69.2 61.5 69.2 69.2 69.2 61.5 61.5 41.0 51.3 56.4 46.2
on− site−NNratio 83.6 83.5 81.3 79.9 79.6 78.4 78.0 75.4 85.6 84.1 79.0 80.0
potentialratio 68.2 67.5 68.4 68.8 66.9 66.6 66.2 64.0 66.8 66.0 65.1 65.8
CSR¯ 84.6 83.9 79.1 80.7 84.0 82.0 80.1 78.0 74.7 73.7 75.1 71.5
rating score 76.4 76.1 72.6 74.6 74.9 74.1 71.5 69.7 67.0 68.8 68.9 65.8
CSR¯ open 94.4 93.4 89.9 89.3 93.5 90.6 91.1 87.7 88.1 81.5 82.8 77.5

Data without subset 1000–1106m r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- -none- -none- -none- 1.9 2.8 4.3 4.3 5.0 5.0 5.0 4.0
on− site−NNratio 16.5 16.8 16.4 16.7 23.5 24.0 23.9 23.9 24.0 24.1 23.8 24.1
potentialratio 73.8 74.1 73.3 74.0 88.5 89.4 89.4 89.9 89.2 90.0 88.8 89.6
CSR¯ 29.4 29.8 29.5 30.6 41.2 41.4 43.9 43.0 45.6 44.3 46.6 46.6
rating score 29.9 30.2 29.8 30.3 38.8 39.4 40.4 40.3 40.9 40.9 41.0 41.1
CSR¯ open -none- -none- -none- -none- 81.1 83.6 89.3 87.7 89.3 88.7 88.5 86.5

Data without subset 1000–1106m tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 3.4 2.8 -none- -none- -none- -none- 0.9 0.9 3.7 4.0 -none- -none-
on− site−NNratio 23.4 23.7 17.2 17.4 20.0 20.2 21.6 21.4 23.7 23.8 20.7 21.9
potentialratio 89.5 89.9 74.7 75.4 82.5 83.3 86.1 86.2 89.1 89.5 85.5 87.1
CSR¯ 42.2 42.3 33.8 35.1 39.5 39.4 38.5 38.7 42.1 43.0 40.9 41.1
rating score 39.6 39.7 31.4 32.0 35.5 35.7 36.8 36.8 39.6 40.1 36.8 37.5
CSR¯ open 87.2 83.4 -none- -none- -none- -none- 76.4 75.6 87.5 85.9 -none- -none-

Data without chw, gw, how, kar r t s ts tBP tsBP tHO tsHO tDIFF tsDIFF tAR tsAR

openingratio -none- -none- -none- -none- 3.2 3.9 5.2 5.2 5.8 5.5 5.2 4.5
on− site−NNratio 17.2 17.6 17.2 17.5 24.8 25.2 25.0 25.2 25.1 25.4 25.0 25.4
potentialratio 72.8 73.2 72.5 73.1 88.5 89.3 89.2 89.6 88.8 89.6 88.4 89.1
CSR¯ 31.1 31.3 31.1 32.2 43.1 43.2 45.8 44.5 46.9 45.8 48.0 48.0
rating score 30.3 30.5 30.2 30.7 39.9 40.4 41.3 41.1 41.6 41.6 41.6 41.8
CSR¯ open -none- -none- -none- -none- 83.1 85.4 91.0 89.0 90.0 89.1 88.9 86.9

Data without chw, gw, how, kar tARS tsARS tDET tsDET tSPL67pct tsSPL67pct tSPL30yrs tsSPL30yrs tSPL10yrs tsSPL10yrs GL FGGL

openingratio 3.6 2.9 -none- -none- -none- -none- 1.0 1.0 5.2 5.5 -none- 0.3
on− site−NNratio 24.6 24.9 18.0 18.3 21.0 21.4 22.8 22.9 24.9 25.2 21.8 23.2
potentialratio 89.0 89.4 73.9 74.6 81.8 82.6 86.1 86.2 89.2 89.4 85.3 87.0
CSR¯ 43.6 43.7 35.2 36.6 41.1 40.9 39.8 40.1 43.9 44.5 42.6 43.0
rating score 40.2 40.2 31.8 32.4 36.0 36.2 37.4 37.5 40.8 41.2 37.4 38.4
CSR¯ open 86.8 83.9 -none- -none- -none- -none- 76.9 77.0 89.5 87.9 -none- 75.4
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(≤5).
The performance of the sign-based proximity measures GL and

FGGL lay somewhat above the performance of the measures that relied
on DET or SPL67pct preprocessing. However, both GL and FGGL per-
formed much better than the correlation-based methods that lacked
preprocessing (i.e., r, s and t). Still, neither GL nor FGGL showed an
opening. Additionally, the rating score of these two measures was dis-
tinctly lower than that of the correlation-based proximity measures
using high-pass filters.

3.2. Regional subsamples

There were few differences in classification performance between
the regions (see lower six blocks of Table 4). The subsample Linth had a
higher k-NN performance than the other two subsamples, i.e. Sihl and
Obersee. The more rigid detrending methods, e.g. SPL67pct, and the
sign-based methods, especially FGGL, performed quite well with the
Linth subset. For all measures, the overall rating scores were somewhat
higher for the regional subsets than for the complete data set. Similar to
the complete data set, correlation-based proximity measures that used
high-pass filters performed best.

3.3. Elevation-specific subsamples

For the high-elevation subsample, k-NN classification was quite
successful. Scissor plots opened for most of the measures (Table 5).
Rating scores and CSR¯ open reached relatively high values for some
measures that in other subsamples performed only poorly, such as
tSPL67pct, tsSPL67pct, tDET, FGGL and GL. Again, high-pass filter

based measures performed best, with some accomplishing CSR¯ open ≥
90% (e.g. tHO, tAR, sAR, tSPL10yrs).

Within the medium-elevation subsample, k-NN classification issues
were more common than within the other two elevation-specific sub-
samples (Table 5; cf. Figs. 3–5). The performance for the medium-ele-
vation subsample dropped for all measures when compared to the
performance reached for the high-elevation subsample. In addition, for
most measures the performance was lower with the medium-elevation
subsample compared to the low-elevation subsample. This was espe-
cially true for the best performing measures tHO, tsHO, tAR, tsAR,
tDIFF, tsDIFF, tSPL10yrs and tsSPL10yrs.

On the low-elevation subsample, only correlation-based measures
that relied on high-pass filters performed well (Table 5). Consequently,
rating scores decreased rapidly the more low-frequency variation was
left in an index series (SPL67pct, DET, ts, t, r, s). The sign-based mea-
sures both did not show any opening. FGGL again reached a distinctly
higher rating score than GL. The rating score of FGGL even lay above
that of the low-frequency tolerant, correlation-based measures
(SPL67pct, DET, ts, t, r, s).

3.4. Classification errors

Heat plots of all high-performance measures (i.e., tHO, tsHO, tDIFF,
tsDIFF, tAR, tsAR and tSPL10yrs) were very similar; thus only one ex-
ample is shown (tHO, Fig. 7). The generally high rating scores indicated
that most pairs of sites were distinguished easily via k-NN. However,
there were also some lower rating scores, most of which were asso-
ciated with the site Unteriberg-Karrenstock (kar). A second, less pro-
nounced set of low rating scores was found for Eschenbach-Cholwald

Fig. 7. Heat plot with rating scores accomplished by tHO. Rating scores were calculated from pairwise scissor plots that were drawn for all sites of the data set.
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(chw). Also, a somewhat low rating score resulted for the site pair Sool-
Hohwald (how) and Sool-Nübännli (nb). These problematic cases
formed a subset consisting of the sites at 1000–1106m.

Generally, CER calculated on the complete data set decreased ap-
proximately linearly until k≈ 40. Afterwards, it decreased very slowly
for most measures, or even stagnated (Fig. 8). An abrupt rise in CER
occurred at stage k=2 (Figs. 8 and A2) for all proximity measures. But
overall, the stages k=40 to k=1 exhibited a relatively stable CER,
and thus a relatively stable CSR, for most measures (Fig. 8). However,
exactly in these stages, the sites chw, kar and how had a distinctly lower
mean CSR than the others (Table 2), which coincided with the findings
from the heat plot (Fig. 7). In addition, the site Gschwändwald (gw)
attained a very low mean CSR although the heat plot indicated classi-
fication difficulties for the site pair gw-kar only. These four sites belong
to the medium-elevation subsample, mostly misclassified to either sites
on the same elevation, or sites that are located on the next lower ele-
vational band (i.e., fri, nb and sb; Fig. 9). Moreover, some classification
errors were caused by direct geographical neighbors (e.g., how series
that were frequently misclassified as nb series; Fig. 9).

k-NN calculations excluding the sites chw, how and kar exhibited a
rise in rating scores by an average of 3.4% (range 2.5% to 4.3%; blocks
5 and 6 in Table 6). In addition, CSR¯ open rose by an average of 10.8%
(range 4.8% to 14.1%). However, the rating scores and CSR¯ open ex-
hibited only a marginal further increase when the small sample of gw
(n=15) was excluded as well.

Classification errors occurred especially often in cases where the
difference between the median of proximity values calculated for
within-site comparisons and the median of proximity values calculated

for between-site comparisons was low (e.g., for the site pairs kar-sb and
how-nb, Table 7). In contrast, the classification worked well between
pairs of sites for which the difference of median proximity values cal-
culated for between-site and within-site comparisons was high (e.g., site
pairs kar-sw and ww-rw, Table 7).

4. Discussion

The main objective of this paper is to present a consistent method
for evaluating the three key assumptions of dendro-provenancing stated
in the Introduction. The k-NN classification was designed as a method
whose success is highly dependent on the validity of the three key as-
sumptions. Thus, the k-NN classification results need to be discussed
before any inference on the validity of the dendro-provenancing as-
sumptions can be drawn.

4.1. Suitability of different proximity measures for dendro-provenancing

Most proximity measures tested here involved preprocessing of the
raw ring-widths prior to calculating a proximity value. Thus, the k-NN
classification performance indicates which preprocessing method is
most successful in enhancing the growth signal that is relevant for
dendro-provenancing.

Correlation-based proximity measures that relied on high-pass fil-
ters performed best for all regional and elevation-specific subsets (i.e.,
tHO, tsHO, tDIFF, tsDIFF, tAR, tsAR, tSPL10yrs and tsSPL10yrs).
Interestingly, the differencing-based methods, i.e. HO and DIFF, were as
efficient in enhancing the high-frequency variation as the very flexible

Fig. 8. Trend in classification error rate: Almost linear decrease until k ≈ 40; afterwards, only slow further decrease or even stagnation (except for the jump at k =
2).
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smoothing-splines of SPL10yrs or the auto-regressive modeling of AR.
Using either the Pearson correlation coefficient or Spearman's rank
correlation coefficient scarcely affected the classification performance.
Although the Pearson correlation coefficient is known for its sensitivity
to outliers (Edgell and Noon, 1984), this did not flaw the k-NN per-
formance. In fact, the synchronous high frequency outliers (i.e., pointer
years) to which the Pearson correlation coefficient is even more sensi-
tive than the Spearman's rank correlation seem to occur often at the site
level and thus are potentially provenancing-relevant.

The performance of ARS did not reach that of AR for the bulk of
subsets, and the total data set. Hence, double detrending largely had a
negative effect on classification performance. In contrast, although

direct autoregressive modeling of raw ring-width series probably re-
sulted in biased autocorrelation coefficients (Monserud, 1986;
Monserud and Yamaguchi, 1989; Cook and Kairiukstis, 1990; Stock and
Watson, 2015), the autoregressive residual series as used by tAR and
tsAR were successful here (cf. Supplementary Online Material).
Nevertheless, future studies could profit from the individual single
detrending of each series and the subsequent use of autoregressive
moving-average (ARMA) models, which often are more parsimonious
than AR models (Monserud, 1986; Monserud and Yamaguchi, 1989;
Speer, 2010).

Measures implementing the BP transformation frequently reached
quite high ratings, but not in all settings. Especially on the medium-
elevation subsample, they performed worse than HO, DIFF, AR and
SPL10yrs. Facing these alternatives, the BP transformation is con-
sidered a suboptimal choice for enhancing the provenancing relevant
signal. Moreover, running mean transformations have been shown to
cause spurious correlation (see Monserud, 1986. This most likely
caused the lower k-NN classification performance of BP.

The relatively low performance of the sign-based measures FGGL
and GL further supports that high-frequency filters in combination with
correlation coefficients should be used for enhancing the signal relevant
for dendro-provenancing. The rating for FGGL was close to that of tBP
for many subsets. Moreover, FGGL, which takes the amplitude of
growth changes into account (cf. Supplementary Online Material),
performed much better than GL, which relies purely on sign-agreement.
This again underlines the importance of synchronous high-frequency
outliers for dendro-provenancing.

Even GL, with its rather low rating scores, performed better than the
correlation-based methods that preserved low-frequency variation or
completely lacked preprocessing (i.e., DET, ts, t, r, s). Clearly, preser-
ving the low-frequency variation did not pay off in terms of classifica-
tion success, as demonstrated by the worsening performance of the
sequence SPL10yrs, SPL30yrs, SPL67pct, DET, ts, t, r, and s. However,
the 1180–1196m subsample featured completely diverging persistence
patterns, but it consisted of just two sites (gw and gand). In this ex-
ceptional case, the high-pass filtering removed the diverging persis-
tence patterns and thus removed the feature that differed most between
the ring-width series of both sites. Nevertheless, high-pass filter based
methods performed just a little worse on this subsample than low-fre-
quency tolerant methods. Moreover, persistence patterns, like those
differentiating the sites of the 1180–1196m subsample, lost their re-
levance for classification as soon as the data set was extended. Thus, in
the data set studied, similar medium- to low-frequency patterns were
not as site-specific as similarities in high-frequency variation.
Correlation coefficients can only detect common trends and medium-
frequency growth patterns in the time domain when the preprocessing
preserves these patterns. At the same time, exactly these patterns (i.e.,
trends and medium frequency patterns) obscure the high-frequency
correlation. Hence, other proximity measures are probably more sui-
table to reveal persistent growth variations that could be relevant for
dendro-provenancing. This may be accomplished for example by mea-
sures that account for distances in the frequency domain or calculate
distances between auto-regressive model coefficients (Hennig, 2016).

Fig. 9. Distribution of misclassified series per site. Upper right corner: site label
of the site investigated (full names of sites see Table 1). The sites to which series
have been misclassified are on the x-axis. The ‘TIE’ label denotes classification
errors that resulted from a tie, i.e., no site label had a majority. The number of
classification errors is on the y-axis and represents the sum of errors over the
stages k=40 till k=1.

Table 7
Median t-values (tHO) for within-site and between-site pairwise comparisons. Due to space constraints, only these exemplary results are presented and are limited to
tHO, as the findings were quite similar for all high-performance proximity measures (i.e., tHO, tsHO, tAR, tsAR, tDIFF, tsDIFF, tSPL10yrs and tsSPL10yrs).

site A site B within A within B between AB within A -
within B

within A-
between AB

within B -
between AB

kar sb 2.97 4.31 2.57 −1.34 0.40 1.74
how nb 5.91 7.82 5.33 −1.92 0.57 2.49
kar sw 2.97 4.05 1.71 −1.08 1.27 2.34
ww rw 6.87 6.86 5.79 0.01 1.08 1.07
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4.2. Regional and elevation-specific differences in classification
performance

The regional subsets consist of sites spread across all elevational
belts of a region, whereas climate-growth relationships are known to be
most pronounced along elevational gradients (Frank and Esper, 2005;
Savva et al., 2006; Eissing and Dittmar, 2011; Dittmar et al., 2012; King
et al., 2013; Kolář, Čermák et al., 2017; Lyu et al., 2017). Hence, dif-
ferences in between-site growth variation within a regional subset are
likely attributable to differences in elevation. As the classification
performance was similar for all regional subsets, the effect of elevation
on the between-site growth variation seems to be equal across the re-
gions.

Within the elevational subsets, which comprise sites of all regions,
series were successfully classified to their original sites by correlation-
based measures that involve high-pass filtering. Thus, the high-fre-
quency variation between sites of the same elevation differs strongly
enough in most cases, except for the medium-elevation subsample.

4.3. Analysis of classification errors

Classification difficulties arose for all measures when the classifi-
cation was based on two NN. In such instances just one off-site-NN
needed to be among the pair of classifier-NN to cause a tie. Since the
classification error rate increased dramatically at k=2, many of the
ring-width series must have had at least one off-site NN among their
two NN.

Besides this k=2 classification problem, notable difficulties were
caused by medium-elevation sites that were misclassified to sites at
829–1198m. Investigating the within-site and between-site median
tHO values showed that the lack of signal difference between on-site
and off-site series increased the frequency of classification errors. Thus,
between-site variability was seemingly less pronounced between upper
low-elevation and medium-elevation than at other elevational belts.
Within the upper low-elevation and medium-elevation belt, classifica-
tion errors were not exclusively confined to sites that exhibited similar
site-factor combinations and/or were located in direct geographical
proximity (such as the site pairs kar-gw, how-nb, chw-sb and chw-fri; cf.
Table 1 and Figs. 7, 9). Problems also arose between distant sites with
differing site-factor combinations (such as kar-sb, kar-gand; cf. Table 1
and Figs. 7, 9). This contrasts the findings of Bridge (2000) who found
good matches between series from distant sites provided that they share
key site factors.

Between-site high-frequency variability is thought to be controlled
primarily by climatic factors and weather conditions (Fritts, 1976).
Studies of the climate-growth relationship of spruce in the Bavarian
forest (Dittmar and Elling, 1999; Wilson and Hopfmüller, 2001) may
offer some preliminary explanation for the classification problems en-
countered here, as discussed below.

Wilson and Hopfmüller (2001) found that growth below 680m was
predominantly controlled by moisture availability. In their study, no
significant correlations between growth and climate parameters were
found for sites between 780 and 970m. Even at ≥1070 m, site
chronologies still exhibited a relatively weak climate signal. Un-
expectedly, temperature had no dominant control upon growth at these
higher sites.

Dittmar and Elling (1999) also investigated climate-growth re-
lationships, but in their study the sites where no dominant controls on
growth could be identified lay somewhat lower than those reported by
Wilson and Hopfmüller (2001), i.e. at elevations between 600 and
800m, and above 800m temperature gradually became the dominant
factor limiting growth. Below 600m, water supply was found to pre-
dominantly control growth, which agreed with the finding by Wilson
and Hopfmüller (2001).

Thus, although their findings agreed in some cases, the two studies
found somewhat different elevational belts to be most challenging for

interpreting climate-growth relationships. Hence, more research is
needed to determine the elevational belt where such complex interac-
tions occur within the region studied here. However, Wilson and
Hopfmüller (2001) found that sites between 780–970m shared much of
the year-to-year variability with chronologies located at ≥1070 m (of
these chronologies, four are located at 1070–1230m and two are lo-
cated at 1325–1420m). This elevational belt with lower between-site
variability and no significant correlations between growth and me-
teorological data matches well with the elevational belt where k-NN
classification problems occurred here (829–1198m).

5. Conclusions

Scissor-plot rating of k-NN offers a consistent method for evaluating
the three fundamental dendro-provenancing assumptions prior to de-
termining the provenance of wood. The successful k-NN classification of
ring-width series to their original site indicates that growth of spruce
diverges sufficiently within the study area to allow for the rise of site-
specific high-frequency growth patterns. Thus, the first assumption of
dendro-provenancing seems to be adequate for the data set studied
here. Moreover, the results imply that similar growth can be quantified
by statistical measures of proximity (the second assumption), and that
best proximity values are closely correlated with geographical neigh-
bors (except for classifications using k=2), which is the third key as-
sumption of dendro-provenancing.

The between-site variation of the high-frequency signal is para-
mount for a successful classification. Consequently, correlation-based
measures that rely on high-pass filters performed best (tHO, tsHO,
tDIFF, tsDIFF, tAR, tsAR, tSPL10yrs and tsSPL10yrs). Preserving the
mid- to low-frequency variation did not have any positive effect on
classification performance.

Classification problems arose where the difference between within-
site and between-site signal was small. In the data set presented here,
such small differences were predominantly limited to medium-eleva-
tion sites between 1000 and 1198m. Moreover, the low performance of
the classification using k=2 illustrated that relying on a single setting
for k may easily lead to unreliable classifications. The climatic and
possibly ecological causes underlying the between-site growth variation
need to be analyzed further.

Using scissor plots, the stability of classifications can be in-
vestigated. In the future, scissor plots could also be evaluated for k-NN
classifications based on tree-ring variables other than ring-width data,
such as blue intensity, density, or stable isotopes.
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