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ABSTRACT: For populations with a density-dependent life history
reproducing at discrete annual intervals, we analyze small or mod-
erate fluctuations in population size around a stable equilibrium,
which is applicable to many vertebrate populations. Using a life
history having age at maturity o, with stochasticity and density de-
pendence in adult recruitment and mortality, we derive a linearized
autoregressive equation with time lags from 1 to « yr. Contrary to
current interpretations, the coefficients corresponding to different
time lags in the autoregressive dynamics are not simply measures of
delayed density dependence but also depend on life-history param-
eters. The theory indicates that the total density dependence in a life
history, D, should be defined as the negative elasticity of population
growth rate per generation with respect to change in population size,
D = —9InN/91n N, where \ is the asymptotic multiplicative growth
rate per year, T is the generation time, and N is adult population
size. The total density dependence in the life history, D, can be
estimated from the sum of the autoregression coefficients. We esti-
mate D in populations of seven vertebrate species for which life-
history studies and unusually long time series of complete population
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censuses are available. Estimates of D were statistically significant
and large, on the order of 1 or higher, indicating strong density
dependence in five of the seven species. We also show that life history
can explain the qualitative features of population autocorrelation
functions and power spectra and observations of increasing empirical
variance in population size with increasing length of time series.

Keywords: age structure, autocorrelation, autoregression, density
dependence, stage structure, time series.

Density dependence limits populations at high density by
decreasing population growth rate and its components of
age- or stage-specific survival and reproduction. The his-
tory of ecological studies of density dependence progressed
from debate about its occurrence (Andrewartha and Birch
1954) to its detection and measurement in experimental
and observational studies (Harrison and Cappuccino
1995) and, by inference, from population time series (Bul-
mer 1975; Pollard et al. 1987; Hanski et al. 1993; Dennis
and Taper 1994; reviewed by Turchin 1995). Ubiquitous
stochastic fluctuations in population size tend to obscure
simple deterministic patterns of density dependence in
population dynamics. Detection and estimation of density
dependence is further complicated because it usually op-
erates with a time lag due to intrinsic factors in individual
development and life history (May 1973, 1981; MacDonald
1978; Renshaw 1991; Nisbet 1997; Jensen 1999; Claessen
et al. 2000) and extrinsic factors in an autocorrelated en-
vironment (Williams and Liebhold 1995; Berryman and
Turchin 1997), including ecological interactions among
species (Turchin 1990, 1995; Royama 1992; Turchin and
Taylor 1992; Kaitala et al. 1997; Ripa et al. 1998; Hansen
et al. 1999). The relative importance of intrinsic and ex-
trinsic factors in contributing to time lags in population
dynamics may depend on the life history itself. For short-
lived species with high population growth rates, such as
some insects, ecological interactions may best explain time
lags longer than the generation time of the species (Turchin
1990, 1995; Royama 1992). For long-lived species with low
population growth rates, such as large vertebrates, most
time lags may be caused by life history (Jensen 1999; Coul-
son et al. 2001; Thompson and Ollason 2001). A major
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impediment to understanding density dependence has
been the lack of a general quantitative definition that
would allow comparisons among species with different life
histories and forms of density dependence (discussed by
Murdoch 1994).

It is widely appreciated that life history can produce
time lags in population dynamics (see references above).
The dynamics of age- or stage-structured populations of-
ten can equally well be described by univariate models
with multiple time lags and by multivariate models without
time lags (e.g., cf. Lotka 1924 and Leslie 1945; reviewed
for stage-structured models in Nisbet 1997). However, this
basic fact has not previously been incorporated into gen-
eral methods for detecting and estimating density depen-
dence from population time series (Bulmer 1975; Pollard
et al. 1987; Turchin 1990, 1995; Royama 1992; Turchin
and Taylor 1992; Hanski et al. 1993; Dennis and Taper
1994; Zeng et al. 1998). Jensen (1999) demonstrated by
simulation that stochastic fluctuations in the life history
of walleye fish could produce the pattern of delayed density
dependence detected by autoregression analysis. Coulson
et al. (2001) and Thompson and Ollason (2001) showed
that time lags in life history are important in explaining
temporal patterns of population fluctuations in Soay sheep
and in northern fulmars.

Here, we analyze density-dependent age- or stage-struc-
tured life histories to derive linearized autoregressive dy-
namics of small or moderate population fluctuations
around a stable equilibrium. We apply this theory to es-
timate density dependence in observed time series of ver-
tebrate populations reproducing at discrete annual inter-
vals. Vertebrate species with mean adult body mass >1 kg
usually have r,,, <0.1/yr (Charnov 1993), and even for
highly fecund species, such as many fish, insects, and
plants, maximum population growth rates are limited by
high density-independent mortality (Myers et al. 1999).
Such species tend to show damped fluctuations around a
stable equilibrium (May 1981) and often have a small or
moderate coefficient of variation in population size (Pimm
and Redfearn 1988; Pimm 1991).

Using a life history having age at maturity «, with sto-
chasticity and density dependence in adult recruitment and
mortality, we derive a linearized autoregressive equation
with time lags from 1 to « yr. Contrary to current inter-
pretations (Turchin 1990, 1995; Royama 1992; Turchin and
Taylor 1992; Zeng et al. 1998; and many other authors),
the coefficients corresponding to different time lags in the
autoregressive dynamics are not simply measures of de-
layed density dependence but also depend on life-history
parameters. The theory indicates that the total density de-
pendence in a life history, D, should generally be defined
as the negative elasticity of population growth rate per
generation with respect to change in population size,

D = —9InX\/9ln N, where N is the asymptotic multipli-
cative growth rate per year, T is the generation time, and
N is adult population size. We demonstrate that total den-
sity dependence in the life history, D, can be estimated
from the sum of the autoregression coefficients. We apply
this theory to estimate D in populations of seven vertebrate
species (six birds and one mammal) for which life-history
studies and unusually long time series of complete pop-
ulation censuses are available. Estimates of D were statis-
tically significant and large, on the order of 1 or higher,
indicating strong density dependence in five of the seven
species. We also show that life history can explain the
qualitative features of population autocorrelation func-
tions and power spectra, and observations of increasing
empirical variance in population size with increasing
length of time series, which are often used to describe
temporal patterns of population fluctuations.

Quantitative Definition of Density Dependence

Consider first a simple deterministic population model
with no age structure, where individuals that reach the age
of 1 yr, reproduce and then die, as for univoltine insects
or annual plants with no seed bank. With population size
in year t denoted as N(f), the dynamics are given by
N() = NN(@— D]N( — 1) where N[N(t — 1)] is the den-
sity-dependent finite rate of population increase, the prob-
ability of survival to maturity times the mean fecundity.
We assume that fluctuations in the population size are
sufficiently small for a linearized model to have good ac-
curacy. For populations without age structure, a linearized
model gives results that are accurate within 10% if the
coefficient of variation is as high as 30% (Lande et al.
1999). Let the equilibrium population size or carrying ca-
pacity be K and denote the deviation from equilibrium as
x(t) = N(f) — K. Taylor expansion of A produces the lin-
earized dynamics,

x(t) = 1 —yx(t— 1), (1a)
where vy = —(@InNd1ln N), gives the rate of return to-
ward the equilibrium. In the simple model with no age
structure (and a generation time of 1 yr), y can be used
to define the strength of density dependence as the negative
elasticity (de Kroon et al. 1986; Caswell 2001, p. 226) of
population growth rate with respect to change in popu-
lation density at equilibrium.

Density dependence in age- or stage-structured popu-
lations can be defined by interpreting A\ in equation (la)
as the asymptotic multiplicative growth rate of the pop-
ulation per year. Analysis of a general age-structured life-
history model with density dependence in age-specific fe-
cundity and first year survival (see below) indicates that



the total density dependence in the life history, D, should
be defined as the negative elasticity of population growth
rate per generation, N, with respect to change in popu-
lation density, evaluated at equilibrium. The generation
time, T, is the mean age of mothers of newborn individuals
when the population is in a stable age distribution (Caswell
2001, p. 128). Using In A" = Tln \ and that at equilibrium
AN =1orln\ = 0, we find

dln N
dInN|,
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Together equations (1a) and (1b) show that, with age
structure, the asymptotic rate of return to equilibrium is
the total density dependence in the life history divided by
the generation time at equilibrium, y = D/T. This defi-
nition of total density dependence in the life history (eq.
[1b]) also applies in the stage-structured life history an-
alyzed below, with density dependence in juvenile and
adult survival as well as recruitment.

Stage-Structured Life History

Many wild bird and mammal populations have life his-
tories in which the annual survival and reproductive rates
of adults are roughly constant and independent of age
(Deevey 1947; Gaillard et al. 1994; Nichols et al. 1997;
Loison et al. 1999). In such populations the great majority
of individuals die before reaching the age of senescence,
which is therefore of little demographic consequence. We
assume, as appears roughly accurate for some populations,
that all density dependence is exerted by the adult pop-
ulation density. This assumption would apply, at least ap-
proximately, if juveniles do not compete with adults or if
adults are long lived and juveniles compose a small fraction
of the population. The number of adults is then a dynam-
ically sufficient variable for the stage-structured life history.

We follow the standard methods of female-based demo-
graphic models (Caswell 2001). Defining « as the age in
years at first breeding and N(t) as the number of adults
(individuals of age >« in year t, the stochastic density-
dependent dynamics are given by the nonlinear recursion

N(@#) = s(N, t— )N —1)

+o(N,t—a,...,t — )Nt — o). (2a)
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The time dependence of population sizes on the right side
of (2a) is specified in the successive functional definitions
(2b) and (2c). The probability of adult annual survival is
s. The adult annual recruitment rate ¢ is the product of
annual fecundity (female offspring per adult female per
year) times first year survival, f, and the probabilities of
annual survival from age i to i + 1 during the juvenile
stages, s;

i

SN, 1=t = 1) = fN, 1 — o) [ [ s, (N 1= ).
(2b)

Environmental and demographic stochasticity affect these
vital rates through additive perturbations {(#), &(#), and
6,(t) with 0 means { = &€ =6, = 0,

fIN, £) = fIN®)] + (),

s,(N,t) = s[N(@®)] +6,(), for 1<7<a—1, (20

(N, ) = SIN@)] + £Q).

Deterministic and stochastic versions of this stage-struc-
tured model, with or without density dependence, have
been applied to a variety of species (Caswell 2001, p. 192).

The coefficient of total density dependence in equation
(1b) can be derived by implicit differentiation of the de-
terministic Euler equation for this life history (Lande
1988),

(NN =1 — §(N)/\,

where
S(N) = f(N) H 5(N)

is the adult recruitment rate in the average environment.
Finding dMN/AN, evaluating the result at equilibrium
(N = Kand A = 1), and finally using the generation time
for this stage-structured life history at equilibrium in the
average environment, T = « + §/(1 —s) (Lande 1988),
gives
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where p = 1 — 5 is the adult mortality rate. Thus, density
dependence in the stage-structured life history can be mea-
sured by the negative elasticity of the ratio of adult re-
cruitment rate to mortality rate with respect to change in
adult population density at equilibrium.

The expected lifetime production of female offspring per
female is unity at the deterministic equilibrium, which im-
plies that the recruitment rate of adults equals their mor-
tality rate at equilibrium. Denoting equilibrium values as
5= 3§K) and ¢ = $(K),

Did=1 or ¢=1-5=p 3b)

i=0

This relation also can be obtained directly from the Euler
equation at equilibrium with A = 1.

Expanding the vital rates in equation (2a) in Taylor
series around a deterministic equilibrium adult population
size, K, with deviations from equilibrium denoted as
x(t) = N(t) — K, gives the linearized autoregression for
small fluctuations:

Aﬂ=§hW—ﬂ+%) 4)

with constant coefficients
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The noise term has time lags of 1 to o years,
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Hence, even with no autocorrelation in the vital rates, the
noise in the autoregression (eq. [4]) will be autocorrelated
if the vital rates operating at different time lags are cross
correlated at a given time.

For species with age at maturity of 1 yr (o = 1), the
form of the autoregression is different and the interpre-
tation of the regression coefficient changes (the new b, is
the sum of the old b, through b,). Using (3b), the auto-
regressive equation is x(f) = bx(t— 1) + £(t), where
b, = 1 — pD and the noise £(t) = [{(t— 1) + e(t — 1)]K
with only a single time lag has no autocorrelation.

Statistical analysis of population dynamics is often carried
out using In N rather than N (Royama 1992; Turchin 1995).
The form of the linearized autoregression (each of the au-
toregression coefficients) for the dynamics of In N is iden-
tical to that for N. This can be shown by dividing both sides
of equation (4) by K and noting that for small fluctuations
x/K=In(l + x/K) = In(N/K) = InN—1InK.

Population Autocorrelation and Spectral
Density Functions

A stationary time series without cycles or deterministic
trends can be characterized either by its autocorrelation
function (correlogram) or by its spectral density function
(power spectrum), the Fourier transform of the autocor-
relation function (Box et al. 1994; Chatfield 1996). The
power spectrum for most populations shows a substantial
“red shift” toward low frequencies in comparison to the
flat power spectrum associated with “white noise” that
would describe populations with no autocorrelation
(Pimm 1991; Arifio and Pimm 1995). Deterministic pop-
ulation models in discrete time without age structure can
produce chaotic dynamics as a consequence of high rates
of population growth, 7., > 1 per unit time (May 1981),
resulting in power spectra that are blue shifted (Cohen
1995), but real population dynamics usually are not cha-
otic (Hassell et al. 1976; Ellner and Turchin 1995). Arifio
and Pimm (1995) also emphasized that the empirical (or
observed) variance in population size tends to increase
with length of the time series because of autocorrelation.
We now show that the observed patterns of red-shifted
power spectra and increasing empirical variance with time
can be explained by a stochastic density-dependent life
history producing damped population fluctuations around
a stable equilibrium.

We applied analytical methods for linear autoregressive
processes (Box et al. 1994) to derive the theoretical corre-
logram and power spectrum for adult population size in
the stage-structured life history (app. A). Although density
dependence limits population size and can confer stability
on the dynamics, strong density dependence can produce
noticeable cycles and instability (Beddington 1974; Caswell



1997; Neubert and Caswell 2000). For example, in a species
with & = 1, the autocorrelation function is p, = b|"! and
the power spectrum, which is a function of the frequency
v, is Fw) = 2/[1 + b} — 2b,cos (27v)]. The power spectrum
has an internal peak, corresponding to noticeable 2-yr cycles
in population time series, and the appearance of negative
autocorrelations at odd-numbered time lags, when b, <0
or

1
D>—,
U

(5a)

which requires very strong density dependence.

As another example, consider a species with o > 1 and
density dependence in f, the adult annual fecundity times
first year survival, but not in survival beyond the first year.
There are then only two nonzero autoregression coefficients,
b, and b,, with b, = 5 the expected adult annual survival
rate at equilibrium. The power spectrum has an internal
peak, corresponding to noticeable cycles in population time
series with the appearance of negative autocorrelations,
when b, is sufficiently negative: b, < —b,/[b, + (1 — b))/
or

_ aln]_’
alnNK

i

— ==. 5b
1+ auls (5b)

Figure 1 illustrates for this case how the strength of density
dependence in fecundity influences the sample paths, the
autocorrelation function, and the power spectrum of the
adult population, also showing how the empirical variance
in population size is expected to increase with length of
the time series.

Increase of Empirical Variance with Length of Series

The empirical (or observed) variance in census population
size tends to increase with the period of observation, over
timescales as long as decades (Arifio and Pimm 1995).
This occurs because of either autocorrelation or nonsta-
tionarity, both of which cause extreme population sizes to
be undersampled in short time series. Nonstationarity in
the form of a sustained population trend produces large
negative autocorrelations at long time lags (Chatfield
1996). For a stationary time series of population sizes cen-
sused during L consecutive years, the expected empirical
variance can be derived from a one-way ANOVA (Schefté
1959) within and among replicate time series. Regardless
of temporal autocorrelation, the variance of population
size in an infinite series, o5, can be partitioned into the
expected empirical variance within series of length L,
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E[s3], plus the expected empirical variance of mean pop-
ulation size among series of length L, Var [N],

B 1 <& > L L

Var [N] = Var —2 N@| = _NZZ
L= ) Py
L+L7211__p7’ (6a)

where p, is the autocorrelation of lag 7, that is, the cor-
relation of N(f) with N(t — 7). In the absence of autocor-
relation this reduces to the standard formula for the sam-
pling variance of the mean of L independent data points,
ox/L (Kendall and Stuart 1977). The expected empirical
variance in a stationary time series of length L depends
directly on the autocorrelation function,

E[s2] = o2 — Var[N]
I i 1—- (6b)
L =1

This closely approaches its asymptotic value o3 only when
the length of the time series greatly exceeds the net auto-
correlation, L>> 1 + 2 3%, p,. A slow increase in empirical
variance with increasing length of time series is a conse-
quence of positive autocorrelations that, in the stage-struc-
tured life-history model, are enhanced by high adult annual
survival and weak density dependence (fig. 1).

Estimating Density Dependence

The autoregression coefficients can be expressed in terms
of population autocorrelations. The maximum likelihood
estimator of the autoregression coefficients is identical to
the least squares estimator for a standard regression (app.
A). For o = 1 the autoregression coefficient is estimated
by b, = p,. More generally, the autoregression coefficients
can be estimated as the solution of the Yule-Walker equa-
tions (Box et al. 1994), b = P 'p, where p and b are
column vectors with elements p,, ..., p,and b,, ..., b,, and
P is the population autocorrelation matrix with elements
P, = p; fori,j = {1,..., o}, and p, = 1. However, these
estimators of the autoregression coefficients are biased be-
cause population sizes at a given time enter the autore-
gression as both dependent and independent variables.
This time series bias can be removed and standard errors
and significance tests on the autoregression coefficients can
be obtained by computer simulation (see app. A).

It is important to realize that the autoregression coef-
ficients in equation (4) do not directly reveal the strength
of density dependence in population dynamics. The co-
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Figure 1: Autocorrelation functions, p,, power spectra, and sample paths for small fluctuations in adult population size around a density-dependent
equilibrium in the stage-structured life history. In this illustration, all density regulation is exerted by the number of adults on the adult fecundity times
first year survival, f, and all stochasticity occurs in this vital rate alone. The increase in expected empirical variance of population size with increasing
length of the sample series is shown as a proportion of the stationary variance. Power spectra, as a function of frequency in cycles per year, are normalized
to unit area. Population sizes are plotted as deviations from the mean and standardized to unit variance. Age at maturity is « = 4 yr. Adult vital rates
are independent of age, with adult annual mortality rate = 0.05. Different lines in each panel correspond to values of density dependence in fecundity
D = —(0lnf/lolnN), = 1, 2, 4, or 8. Weak density dependence produces positive autocorrelation over long time lags and a red shift in the power
spectrum. Increasing the strength of density dependence in recruitment gives rise to negative autocorrelations and a noticeable tendency to cycle in the
sample paths, corresponding to an internal peak in the power spectrum at a frequency that increases with the strength of density dependence.



efficients of density dependence in the vital rates are con-
founded with the life-history parameters ¢ and s them-
selves. For species with a = 1, there is only a single
autoregression coefficient b, = 1 — gD from which we can
estimate pD = 1 — b,. For species with a > 1, there are «
autoregression coefficients and from equations (3) and (4)
the product of the adult mortality rate and the total density
dependence in the life history can be estimated as one
minus the sum of the autoregression coefficients:

AD=1-2,b, (7)

Time series for analysis were chosen from seven ver-
tebrate populations based on having three or more decades
of accurate annual census data with few missing obser-
vations (table 1; fig. 2). Counts of the great tit (Parus
major) and blue tit (Parus caeruleus) at Ghent, Belgium,
and the tufted duck (Aythya fuligula) at Engure Marsh,
Latvia, include the total adult population (>1 yr old). The
tit counts are almost exact since a high proportion of them
reproduce in nest boxes, but there is considerable exchange
of individuals with other populations. The grey heron (Ar-
dea cinerea) counts are for the breeding adult population
(>2 yr old that have built a nest) in southern Britain, which
therefore represents a relatively closed population. The
chamois (Rupicapra rupicapra) in the Swiss National Park
in southwestern Switzerland is a nearly closed population;
the counts are much more accurate than usual for un-
gulates but include calves and juveniles (calves composed
20%-33% of the population from 1967-1999). Counts of
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the mute swan (Cygnus olor) on the Thames, England, are
for the total population minus fledglings. We truncated
the time series for the mute swan following a several year
gap of no data during World War 11, after which there
were large increases in both adults and yearlings (Cramp
1972). Some of the mute swan annual counts may be
biased (Birkhead and Perrins 1986) and fledglings were
wingclipped during the counts to reduce emigration
(Cramp 1972); this series is included mainly for illustrative
purposes because of its length. The population of South
Polar skua (Catharacta maccormicki) at Pointe Géologie
archipelago (66°S, 140°E), Terre Adélie, Antarctica, has a
significant input of recruits from outside the archipelago.
The strong territorial behavior of adults helps to ensure
that all birds in the archipelago are metal- and color-ringed
and the counts of breeding adults are exact. Years when a
complete census was not undertaken were excluded from
the analysis of the chamois, mute swan, and South Polar
skua.

The high accuracy of these population time series based
on complete annual censuses implies that measurement
errors are negligible in comparison to the magnitude of
actual population fluctuations. We therefore have no need
for elaborate techniques, such as state space models and
Kalman filtering (Box et al. 1994), designed to deal with
measurement error in population estimates. Using basic
statistical methods for autoregressive time series analysis
(app. A), we found evidence of density dependence in five
of the seven species (tables 1 and 2). Although the theory
(eq. [4]) indicates that the noise in the population process
is autocorrelated, so that with life-history information the

Table 1: Bias-corrected parameter estimates (= SE or 95% CI) for population time series fitted to the stage-structured life-

history model

Species Years CV « b, b, b, b, uD R

Great tit 35 .30 1 465 = .159 .535%* 21
(.184, .879)

Blue tit 35 .26 1 493 £ .156 .507** 12
(.157, .849)

Tufted duck® 36 27 1 436 £ .156 .564*% 21
(.221, .907)

Grey heron” 71 .18 2 926 = .127 —.006 = .119 .081 72
(.000, .246)

Chamois 69 12 3 728 £ 133 —.057 £ .157 .045 £ .130 .283** 42
(.080, .573)

Mute swan® 116 .26 4 .850 = .100 .078 £ .127 —.002 £ .125 .011 £ .095 .062 .83
(.000, .184)

Note: See equation (4). Age of first reproduction « obtained from the literature (Owen 1960; Clobert et al. 1988; Bacon and Andersen-Harild

1989; Dhondt et al. 1990; Loison et al. 1994; Blums et al. 1996).
* Reference: Blums et al. 1993.
" Reference: British Trust for Ornithology, unpublished data.
¢ Reference: Cramp 1972.
** P<.01 for hypothesis that gD > 0 by one-tailed test.
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Figure 2: Time series, empirical correlogram, and power spectrum for annual census of adult population in seven vertebrate species. Theoretical
autocorrelation function and power spectrum (smooth curves) were calculated for each species from autoregression coefficients in the stage-structured
life-history model (eq. [4]; tables 1, 2; app. A).
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Table 2: Bias-corrected parameter estimates (= SE or 95% CI) for the 35-yr population time series of the
South Polar skua (CV 0.16) fitted to the stage-structured life-history model (eq. [4]), using different mean

ages of first reproduction «

p b, b, b, b, b 2D R

601 = 186 310 = .193 —.299 + .170 388+ 32
(.107, .864)

4 582+ 197 334 £ 217 —.257 = 200 —.070 * .180 A1 28
(.137, 1.008)

5 587 + 207 339 + 221 —.259 + 211 —.078 + 213 .0l14 + .188 397%* 22
(.103, 1.114)

** P< .01 for hypothesis that £D > 0 by one-tailed test.

population time series could in principle be analyzed as
an autoregressive moving-average process (ARMA; see Box
et al. 1994), residuals from the simple autoregression
showed no significant autocorrelations in the noise, jus-
tifying the approximation of independent errors in esti-
mation and significance testing.

Age-Structured Life History

Consider an age-structured life history with synchronized
annual reproduction and individuals enumerated imme-
diately before reproduction (Leslie 1966; Caswell 2001).
Age structure in the population at a given time is repre-
sented by a column vector n with elements n,..., n,,
where n; denotes the number of individuals of age i and
w is the maximum length of life. A nonlinear autoregres-
sive equation for the first age class (yearlings) is

n(H) = i L= Df(n, t — Dn,(t — 7), (8a)

where

7—1

1) = [1s® forr>2

i=1

is the probability of survival to age 7 at time ¢ from age
1 at time t — 7+ 1 and /,(f) = 1. The probability of sur-
vival from age 7 to 7 + 1 in year t, s.(f), is assumed to be
density independent for 7 > 1. Evidently /,(f) depends on
the sequence of age-specific survival rates 7 — 1 yr into
the past. The time dependence of age structure vectors on
the right side of (8a) is specified in the functional definition
(8b). For females of age 7, the product of fecundity times
the probability of offspring survival from age 0 to age 1
in year t, f.(n, t), may depend on the population densities
of all age classes. The product I f, is called the “net ma-
ternity function” (Keyfitz 1977; Caswell 2001, p. 220). En-
vironmental and demographic stochasticity are assumed
to add random perturbations ¢,(f) to the expected repro-

ductive rate and ,(f) to the expected survival rate of age
class 7 (with 0 means, &, = 6, = 0),

T

f(n, 1) = fn@)] + &),

s,(t) =5, +6,t) forr>1. (8b)

Letting a carat denote a deterministic equilibrium age
structure, n, the linearized autoregression for the deviation
from equilibrium of the first age class, x,(H) = n,(H) — n,,

is (see app. B)

X0 = 2 bx,(t— 1) + £0) (%)
with constant coefficients
b7 = (’i\)f - D7’ (9b)

where ¢, = Lf, represents the net maternity at age 7 at
equilibrium in the average environment. The total net ma-
ternity is the expected lifetime production of female off-
spring per female, which at equilibrium equals unity,
>%=1¢, = 1. The age-specific density dependence, D, is
the negative elasticity of the finite rate of increase per
generation, N, with respect to changes in density of age
class 7, holding the densities of all other age classes
constant,

dln N _ _i Taln)\ dlnf,

D = - - ,
7 dlnn,|, i1\ dlnfdolnn,,

(99)

where T is the generation time, or mean age of mothers
of newborns at equilibrium, T = 3¢-, 7¢,. The total effect
of changes in relative density of age class 7 on the pop-
ulation growth rate is propagated through density effects
exerted by this age class on all the age-specific fecundities
(see Caswell 2001, p. 232). The elasticity in the fecundity
at each age with respect to changes in the relative density
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of age class 7 is multiplied by the elasticity of A with respect
to changes in the corresponding fecundity evaluated at
equilibrium (Charlesworth 1994)

dlnA
dlnf),

ol
T (9d)

As before in the stage-structured life history, even in
the absence of environmental autocorrelation, the noise
term £(¢) in equation (9a) is autocorrelated when envi-
ronmental stochasticty affects vital rates that operate with
more than a single time lag, if these are cross correlated
at a given time (app. B).

Estimating Density Dependence

Assuming no environmental autocorrelation and neglect-
ing autocorrelated noise caused by life history, the Yule-
Walker equations b = P~'p provide estimators of the au-
toregression coefficients b,, ..., b, in equation (9a) that can
be corrected for time series bias by computer simulation
(app. A). An estimate of the density dependence in age-
specific fecundity can be obtained by subtracting the cor-
responding autoregression coefficient from the net ma-
ternity function at equilibrium (from eq. [9b]),

(10a)

The net maternity function at equilibrium summed over
the life history equals unity, so the sum of the autore-
gression coefficients from (9a) can be used to estimate the
total density dependence in fecundity and first year sur-
vival in an age-structured life history as

W

>D =1-2b.

7=1

(10b)

To compare the total density dependence in the stage-
structured and age-structured life-history models, we note
the following relation. Suppose that, in the age-structured
model, all density dependence is exerted by a linear com-
bination of the age classes, N = >4 ¢,n,, where c, rep-
resents the relative competitive effect of an individual of
age 7 (see Charlesworth 1994). Then A is a function only

of N and dN/on, = ¢, so that

dlnA
or =
dlnn,

AN NN

NN _ A
on,  dNon,

CT
oN

cn, dlnA
N dlnN’

Multiplying both sides by — T and summing using the first
equality of (9¢), evaluating the result at equilibrium yields

_[9In X
dlnN|,

(11

S S (9ln N
;DT= ->

=1 (911‘17’[,‘_ A

Thus D in the stage-structured model is analogous to the
total density dependence in the age-structured model.

We applied the age-structured model to analyze time se-
ries data on yearling great tits and blue tits and fledgling
mute swans from the same populations as in figure 2, as-
suming no density dependence in survivorship past age 1.
Because annual survival rates of adult tits are about 50%
(Clobert et al. 1988; Dhondt et al. 1990), few individuals
live past w = 5 yr. The longest recorded lifespan for a wild
mute swan in southern Britain is 26 yr (Bacon and An-
dersen-Harild 1989). The bias correction algorithm did not
converge for the great tit hence no estimates of the auto-
regression coefficients were obtained. For the mute swan,
bias-corrected estimates of the autoregression coefficients
could not be obtained for w > 18 yr. Standard errors of the
autoregression coefficients were large for both the blue tit
and mute swan (fig. 3). We estimated the total density de-
pendence in fecundity over the life history, which was not
significant either for the blue tit, X3-1 D, = 0.86 * 045,
or the mute swan, X1 D, = 0.62 * 0.38.

Discussion

We developed a demographic theory of stochastic fluc-
tuations around a stable equilibrium for a stage-structured
life history in which the vital rates depend on adult pop-
ulation density. We also derived a similar theory for an
age-structured life history in which age-specific fecundities
and first year survival may depend on the population den-
sities of all age classes. This theory suggests that the total
density dependence in a life history should be quantita-
tively defined as the negative elasticity of population
growth rate per generation with respect to change in pop-
ulation size (eqq. [3a], [9¢], [11]). The theory further
specifies how density dependence can be estimated from
linear autoregression equations, at least for populations
with a small or moderate coefficient of variation. This
theory is applicable to populations of many species with
an annual breeding season, especially vertebrates with low
intrinsic rates of increase and population dynamics that
are not cyclic or chaotic; it facilitates the measurement and
comparison of density dependence among species with
different life histories and forms of density regulation.
Turchin (1990, 1995), Royama (1992), Turchin and Tay-
lor (1992), Zeng et al. (1998), and others fitted nonlinear
autoregressive models with time lags of one, two, and pos-
sibly three years to population time series. They interpreted
a significant autoregression coefficient for a time lag >1
yr as evidence of density dependence with a time lag. How-
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Figure 3: Population time series and empirical correlogram for annual census of blue tit yearlings and mute swan fledglings from the same populations
as in figure 2. Also shown are autoregression coefficients (dots) +2 SE (bars) for the age-structured life-history model (eqq. [9]; app. A).

ever, the form of their models is not based on an explicit
demographic mechanism but is purely phenomenological,
often a linear autoregression in the log of census popu-
lation size. Our results (eqq. [4] and [9]) demonstrate that
the interpretation of autoregression coefficients is clarified
by deriving the form of the linearized autoregressive equa-
tion from a nonlinear stochastic life-history model. The
form of the linearized autoregression (the vector of au-
toregression coefficients) is identical when In N is used
instead of N. Contrary to the interpretation of previous
authors, the autoregression coefficients do not directly
measure density dependence operating at particular lags.
Most important, in both the stage-structured and age-
structured life-history models the autoregressive coeffi-
cients each may depend on parameters of the life history
and density dependence of a particular stage or age class.
The interpretation of autoregression coefficients differs
fundamentally between the stage-structured and the age-
structured models. In the stage-structured model, the au-
toregression coefficients of longer lags include density de-
pendence in survivorships of younger stages exerted by
adult population density, and density dependence in adult
fecundity is included in the last autoregression coefficient,
b, (eq. [4]). In the age-structured model, the autoregres-
sion coefficients of longer lags include the density depen-
dence in A exerted by the population density of older age
classes, ramifying through their effects on fecundities of
all ages (eqq. [9]).

It is instructive to consider a species with & = 1 and
autoregression coefficient b, = 0, which implies that all
autocorrelations are 0 (except p, = 1) corresponding to
a flat power spectrum or white noise process for the pop-

ulation. This would entail very strong density dependence,
D = 1/p (the inverse of the adult annual mortality rate),
despite the regression explaining none of the total variance,
R? = 0. The great tit, blue tit, and tufted duck approach
this situation, having a relatively flat power spectrum with
a small red shift and a low R’ (table 1; fig. 2). Using the
stage-structured model to analyze the chamois with
a = 3, the autoregression coefficients b, and b, do not
differ significantly from 0, yet this nevertheless allows the
detection of significant total density dependence in the life
history of this population (table 1). Thus statistical sig-
nificance of autoregression coefficients is not a valid cri-
terion for the detection of density dependence.

In the stage-structured model, density dependence op-
erates with up to o time lags. For the grey heron (North
and Morgan 1979), chamois (Loison et al. 1994), and mute
swan (Bacon and Perrins 1991) the estimated adult sur-
vivorships from life-history studies are, respectively, 5 =
0.70, 0.96, and 0.77. These are not significantly different
from the respective estimates of the first autoregression
coefficient b, = 0.93, 0.73, and 0.85 in table 1, and sub-
sequent regression coefficients up to b,_, do not differ
significantly from 0. Thus for these species we cannot reject
the hypothesis of no density dependence in survival be-
yond the first year. Any differences between estimates of
s from life-history studies and autoregression estimates
could, however, be due to different years of study or vi-
olation of assumptions in the stage-structured life-history
model.

For the South Polar skua, the average age of first re-
production is 6 yr (Jouventin and Guillotin 1979; H. Wei-
merskirch, unpublished data). Estimates of the first three
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autoregression coefficients and the total density depen-
dence in the life history are rather insensitive to values of
o ranging from 3 to 5 yr (table 2), but for a = 6 the
estimated autoregression coefficients became unreliable,
with large standard errors, apparently because there were
too many coefficients relative to the length of the series
for accurate estimation (as discussed below for the age-
structured life history). We used the results in table 2 for
a = 5 in subsequent analyses. The estimated adult sur-
vivorship from life-history studies (H. Weimerskirch, un-
published data) s = 0.85 is significantly larger than the
first autoregression coefficient b, = 0.59 and the inter-
mediate autoregression coefficients between b, and b, in-
clude some substantial (although not significant) esti-
mates, suggesting appreciable density dependence in
survivorship beyond the first year in this species, possibly
because of the strong territoriality.

Life history can explain the qualitative features of pop-
ulation autocorrelation functions and power spectra and
observations of increasing empirical variance in popula-
tion size with increasing length of time series (figs. 1, 2).
Populations of all seven species in figure 2 have power
spectra that display the usual red shift toward low fre-
quencies in comparison to the flat power spectrum for
white noise (Pimm 1991; Arifio and Pimm 1995). The
most strongly red-shifted power spectra occur in popu-
lations with low adult mortality and weak density depen-
dence corresponding to small values of pD, regardless of
age at maturity (see figures and tables). Discrepancies be-
tween the estimated autocorrelation functions and power
spectra and their theoretical counterparts obtained from
fitting the stage-structured life history (fig. 2) are attrib-
utable to sampling errors caused by the limited length of
the time series, to violation of the assumption that the
population is closed to immigration, and to specific factors
that might produce nonstationarity in some of the time
series. For example, an unusually harsh winter in 1963
caused the grey heron population to fall by nearly half
(fig. 2). The 20-yr cycle in grey heron abundance suggested
by the correlogram may be largely an artifact of this single
catastrophe. Alternatively, this departure of the grey heron
correlogram from that of the fitted stage-structured life-
history model could be interpreted as evidence for envi-
ronmental autocorrelation, which is assumed absent from
the model. For the mute swan, significant negative au-
tocorrelations at long time lags might be caused by a linear
trend (Chatfield 1996) or a long-term cycle in the data;
however, random long-term fluctuations that appear cyclic
in time series of limited duration are typical of species
with weak density dependence (see fig. 1, top sample path).

We detected strong total density dependence in five of
the seven species. This is not surprising because some form
of population regulation is required to maintain a low

coefficient of variation in population size over a long time
in a fluctuating environment, and only strong density de-
pendence is likely to be detected as statistically significant
in time series of a few decades. Comparing the strength
of total density dependence, D, between species requires
correcting the estimates of D in tables 1 and 2 via division
by the adult annual mortality rate, p. For species with
a = 1, the adult annual survival rate s = 1 — /i can be
obtained from life-history studies, which for the great tit,
blue tit, and tufted duck give estimates of s = 0.46, 0.49,
and 0.65, respectively (Clobert et al. 1988; Dhondt et al.
1990; Blums et al. 1996). For the chamois and South Polar
skua, the life-history estimates of s are 0.96 (Loison et al.
1994) and 0.85 (H. Weimerskirch, unpublished data). The
total density dependence within each of these five popu-
lations in order is then estimated as D = 0.99, 0.99, 1.61,
7.1, and 2.65. The total density dependence appears to be
strong to very strong in all of the populations in which
significant estimates were obtained, especially for the
chamois. Strong density dependence of recruitment is of-
ten observed in ungulates (Seether 1997; Gaillard et al.
2000). Lack of significant density dependence for the grey
heron and especially for the mute swan, which had the
longest time series, suggests that density dependence is
relatively weak in these species. Life-history estimates of
s for these two species are 0.70 and 0.85, respectively
(North and Morgan 1979; Bacon and Perrins 1991), which
gives corresponding estimates of D = 0.27 and 0.41.
Autocorrelated noise presents a potential complication
for the measurement of density dependence from popu-
lation time series. Autocorrelation of physical and biotic
environments have been discussed as causes of autocor-
related noise (Williams and Liebhold 1995; Berryman and
Turchin 1997). The present theory reveals that environ-
mental covariance in vital rates operating at different time
lags, creates another source of autocorrelated noise, even
in the absence of environmental autocorrelation (eqq. [4],
[9]). Observed correlations among vital rates (Sather and
Bakke 2000) may be caused both by environmental co-
variances and by density dependence in the vital rates.
Long-term life-history studies of vertebrate species often
show that estimates of recruitment of yearlings (repro-
duction times first year survival) are much more variable
among years than estimates of adult mortality (Gaillard et
al. 1998, 2000; Sxther and Bakke 2000), as observed in
the tufted duck (Blums et al. 1996), grey heron (North
and Morgan 1979), and mute swan (Cramp 1972; Bacon
and Perrins 1991). This would tend to reduce the envi-
ronmental covariance of vital rates in the stage-structured
model (eq. [4]). The present autoregression analyses, like
previous studies (Turchin 1990, 1995; Royama 1992; Tur-
chin and Taylor 1992; Zeng et al. 1998; and other authors),
assume no autocorrelation of the noise. Residuals from



the autoregressions showed no significant autocorrela-
tions, suggesting not only a negligible environmental au-
tocorrelation, but also that environmental covariance of
vital rates operating at different time lags is small.

With the age-structured life-history model, the density
dependence in age-specific fecundity can in principle be
estimated by autoregression of time series for yearlings
(age class 1), in conjunction with life-history studies. The
linear autoregression coefficient for time lag 7 equals the
net maternity at age 7 minus the age-specific density de-
pendence (eq. [9b]) measured by the negative elasticity
population growth rate per generation with respect to
change in the density of age class 7, ramifying through all
of the age-specific fecundities (eq. [9¢c]). This indicates that
the autoregression coefficient for time lag 7 must be sub-
tracted from the net maternity at age 7 to accurately es-
timate age-specific density dependence. However, because
the net maternity function sums to unity at equilibrium,
the total density dependence summed over the life history
can be estimated from one minus the sum of the auto-
regression coefficients (eq. [10b]).

We applied the age-structured model (eqq. [9]) to an-
alyze time series of great tit and blue tit yearlings and mute
swan fledglings, assuming no density dependence in mor-
tality beyond age 1 and a maximum lifespan of 5 yr for
the tits and 26 yr for the mute swan (Bacon and Andersen-
Harild 1989). The autoregression coefficients were unre-
liable, with large standard errors. For the great tit no es-
timates were obtained because the bias correction did not
converge. For the mute swan, bias corrected estimates
could not be obtained for w > 18 yr (fig. 3). In an attempt
to overcome these statistical limitations, we summed the
autoregression coefficients to estimate the total density de-
pendence for the life history, but in neither case were the
results significant, >, D, = 0.86 + 0.45 for the blue tit and
0.62 *+ 0.38 for the mute swan. Evidently, time series at
least an order of magnitude longer than the number of
autoregression coefficients, L > w, would be required to
accurately estimate the total density dependence using the
age-structured life-history model. This statistical limitation
arises in an extreme form if the age-structured model is
extended to include density dependence in survivorship
past the first year, which causes the linearized autoregres-
sion to contain all possible time lags from 1 to infinity.

Our results illustrate the advantages and limitations of
applying demographic theory both to quantitatively define
density dependence and to estimate it from population
time series. Our definition of density dependence as the
negative elasticity of population growth rate per generation
with respect to change in population size, can be evaluated
at any population size as well as at equilibrium. Estimation
of density dependence in population time series with large
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fluctuations could be accomplished using nonlinear time
series analysis (Tong 1990).
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APPENDIX A

Theoretical Correlogram and Power Spectrum

From theoretical autoregression coefficients in the stage-
structured life history, contained in the column vector b
with elements b, ..., b, the first o autocorrelations were
obtained by joint numerical solution of the Yule-Walker
equations, p = Pb, where p is a column vector with el-
ements p,, ..., p, and P is the population autocorrelation
matrix with elements P, = p,_; for i,j = {1,...,a} and
po = 1. A feasible (or physically possible) autocorrelation
function must have an autocorrelation matrix that is pos-
itive semidefinite, meaning that the eigenvalues of P
(which are all real because the matrix is symmetric; Frank-
lin 1968) must be nonnegative. The remaining autocor-
relations were obtained from the general recursion p, =
> b, for 7> . For a = 1, the autocorrelation func-
tion is p, = bl

The spectral density function is the Fourier transform
of the autocorrelation function, which has the general form
F) = 2[1 +23%=1p,cos 2w7y)], with frequency in the
range 0 < v < 1/2 cycles per year (Box et al. 1994; Chatfield
1996). In terms of the autoregression coefficients, it can
be shown from equation (3.2.9) of Box et al. (1994, p. 57)
that

F) =

2
o a—la—7

1+ 3 blb,—2cos@rm)] +2 5 3 bb,
7=1j=1

+7
=1 4

. (A1)
cos 2m7v)

If « = 1, then F(») = 2/[1 + b} — 2b, cos 27v)].
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Empirical Correlogram and Power Spectrum

In a sample time series for annual population census over
L years, on the null hypothesis of a stationary time series
with no temporal autocorrelation, small sample estimates
of autocorrelation of lag 7 years are approximately unbiased
with sampling variance 1/(L — 7) so that an estimated au-
tocorrelation with a magnitude greater than 2/vL — 7 can
be considered significant with 95% confidence (Kendall et
al. 1983). Formulas typically employed in analyzing time
series data assume long series, much longer than the time
lags of interest, L >> 7, for example, using just 1/L as the
sampling variance of an estimated autocorrelation (Chat-
field 1996). However ecological time series usually have
lengths measured in decades, and density-dependent life
history can produce autocorrelations in population size on
timescales much longer than the generation time of the
population (figs. 1, 2). We therefore utilized the sampling
variance 1/(L — 7) for small samples in testing the statistical
significance of estimated autocorrelations, so in figure 2 the
width of the confidence intervals on the correlograms in-
creases with the lag 7.

Consistent statistical estimation of the power spectrum
from time series data requires that in the Fourier transfor-
mation of the empirical correlogram short time lags should
be weighted much more heavily than long time lags, using
a set of weights or “lag window,” such as the Tukey or
Parzen lag windows (Box et al. 1994; Chatfield 1996). For
figure 2, we used a Parzen window with 1.6 JL points.

Autoregression Statistics

Estimation. Ignoring end effects as proposed by Kendall
et al. (1983) the maximum likelihood estimates of auto-
regression coefficients are the same as those obtained by
formulating the problem as a standard regression model,
with the observations being used both as dependent and
independent variables. The autoregression coefficients can
thus be estimated as the solution of the Yule-Waker equa-
tions, b = P 'p. However, the autoregression model is
very different from a standard regression model, which
uses the assumption of independent observations, while
the observations in a time series are likely to be strongly
dependent, in particular when there is weak density de-
pendence with slow return to equilibrium. The sampling
properties of the estimators may therefore be rather dif-
ferent from those derived from standard regression models
even if the noise terms are independent. In particular, the
maximum likelihood estimates of the autoregression co-
efficients are biased (Caswell 2001, p. 142), and the un-
certainty in the mean population size may be quite large
for short time series (eq. [6a]).

Bias Corrections. Even for time series that are considered
to be extremely long for ecological data, say 50-60 yr
(Powell and Steele 1995), the bias of the maximum like-
lihood estimators may be substantial, often of the same
order as the standard deviations. The bias leads to over-
estimation of the strength of density dependence. Bulmer
(1975) gave a simple first order approximation for the bias
in b, when o = 1. We estimated the bias by performing
repeated stochastic simulations of the time series with es-
timation of parameters. Numerically, the bias has been
corrected so that the mean value of b from 10,000 estimates
precisely matches the observed estimates. By performing
the simulations with a fixed random number seed at the
beginning of each set of 10,000 simulations, giving re-
peatable sequences of the stochastic variables, the problem
can be solved numerically by iteration, using the fixed
point method with initial values of b from the Yule-Waker
equations. Convergence of the bias corrected values usually
is rapid, within a few iterations.

Standard Errors. Standard errors are estimated by para-
metric bootstrapping, simulating the processes using the
bias corrected estimates.

Significance Testing. The test statistic for the hypothesis
D > 0 is the maximum likelihood estimate of D (bias cor-
rection is not necessary and not recommended here. The
critical values will in any case be chosen so that the test
has the required significance level). This statistic is sim-
ulated 10,000 times to determine the critical values. An
interesting and important property of these models is that
the distributions of the maximum likelihood estimators
do not depend on the unknown variance of the noise term
in the model (the total demographic and environmental
variance). No correction corresponding to using the ¢ dis-
tribution in regression is therefore required. However, in
regression, the distribution of test statistics for regression
coefficients does not depend on the other coefficients, that
is, those not entering the definition of the null hypothesis.
This is not the case in time series, and therefore the sim-
ulations must be performed using the bias corrected es-
timates for these parameters. The null hypothesis only
specifies the value of D (or the sum of the betas), that is,
only one out of o parameters. The distribution of the test
statistic will depend on the unspecified parameters, usually
called nuisance parameters in statistical terminology, so
this distribution can not be found exactly, not even by
performing stochastic simulations. In practice, however,
these parameter can be replaced by their estimates to ob-
tain an approximation for the distribution. We have done
this by keeping the ratios between the coefficients equal
to their maximum likelihood estimates. However, we have



checked that the critical values only depend weakly on
these parameters.

Confidence Intervals. Confidence intervals are found by
stochastic simulations adopting the technique of Belviken
and Skovlund (1996). This utilizes the general relation
between hypothesis testing and confidence intervals. The
set of all parameter values that are not rejected by a test
with significance level y constitutes a confidence region
with coverage 1 — . However, we make the prior as-
sumption that the model is stationary and do not include
in the confidence intervals parameter sets corresponding
to nonstationary time series. If the end of the interval turns
out to be on the border of the stationary region (D = 0)
we cannot conclude with statistical significance that the
series actually is stationary. The technique used by
Bolviken and Skovlund (1996) is to perform each test by
stochastic simulations from different null hypotheses. By
performing the simulations with a given fixed seed for the
random number generator the endpoints of the confidence
interval can be found just by solving a numerical equation
with respect to the parameter of interest. The nuisance
parameters have been dealt with as in the tests described
above.

APPENDIX B

Linearized Autoregression for Age-Structured
Life History

The approximate dynamics of small fluctuations in the age
structure, x(f) = n(f) — n, can be obtained by using Taylor
expansions of the density-dependent fecundities in the av-
erage environment,
~ - a]_fk
=f+ D |—=
i Z an,

filn(@)] FICESNS

Substituting this into (8a) and linearizing produces

X0 = E é,x,(t— 7)

+Z¢k?2(ﬂ) =D +elt—1)

+”1iz¢k = T—(t

=l7=1 k—1

All age classes can be reduced to yearlings in the past by
using the basic demographic relation n.(f) = I(t—
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Dn,(t — 7 + 1), which can be linearized around the equi-
librium 7, = L, to give

() = Lx(t—7+1) + %TEM.

j=1 ST*].

Substituting this in the previous equation yields

o0 = 2|3, +2¢>k( f) x(t—7) + &0, (B

7=1

where

b0 = 7 DM ST
k 7=1 k—7
Slolnf| T8, (t—j—1)
2 dlnn j; ol 5, '

Recognizing (9d) and using it to substitute for ¢A>k in (B1)
gives (9a)—(9c¢).
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