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Abstract Air pollution affects forest health through
atmospheric deposition of acidic and nitrogen com-
pounds and elevated levels of tropospheric ozone
(O3). In 1985, a monitoring network was established
across Europe and various research efforts have since
been undertaken to define critical values. We mea-
sured atmospheric deposition of acidity and nitrogen
as well as ambient levels of O3 on 12, 13, and 14
plots, respectively, in the framework of the Swiss
Long-Term Forest Ecosystem Research (LWF) in the
period from 1995 to 2002. We estimated the critical
loads of acidity and of nitrogen, using the steady state
mass balance approach, and calculated the critical O3

levels using the AOT40 approach. The deposition of
acidity exceeded the critical loads on 2 plots and
almost reached them on 4 plots. The median of the
measured molar ratio of base nutrient cations to total
dissolved aluminium (Bc/Al) in the soil solution was
higher than the critical value of 1 for all depths, and
also at the plots with an exceedance of the critical
load of acidity. For nitrogen, critical loads were
exceeded on 8 plots and deposition likely represents
a long-term ecological risk on 3 to 10 plots. For O3,

exceedance of critical levels was recorded on 12 plots,
and led to the development of typical O3-induced
visible injury on trees and shrubs, but not for all plots
due to (1) the site specific composition of O3 sensitive
and tolerant plant species, and (2) the influence of
microclimatic site conditions on the stomatal behav-
iour, i.e., O3 uptake.

Keywords acid deposition . critical levels . critical
loads . forest . ICP-Forests Level II . LWF. nitrogen .

risk assessment . tropospheric ozone . Switzerland

1 Introduction

The release of pollutants such as sulphur dioxide (SO2),
nitrogen oxides (NOx) and ammonia (NH3) into the
atmosphere has increased massively during the last
century, raising concerns about the effects of resulting
changes in atmospheric deposition and ambient air
concentrations on forest ecosystems in Central Europe
and elsewhere (Percy and Ferretti 2004).

In Switzerland, the concentrations of SO2, NOx and
NH3 increased significantly between 1950 and 1990.
Since the 1990s, SO2 concentrations have been
reduced to pre-1950 levels through the implementation
of various measures. Although NOx and NH3 were
also reduced, the target concentrations (pre-1950s
levels) have not yet been reached (SAEFL 2002).
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Increases in acidic atmospheric deposition, i.e., the
deposition of sulphur and nitrogen compounds, have
been shown to accelerate soil acidification, possibly
leading to toxic levels of aluminium or manganese in
the plant-available soil water. The molar ratio between
the exchangeable base nutrient cations Ca++, Mg++

and K+ (Bc) and aluminium (Al), Bc/Al in the soil
solution, has been widely accepted as an indicator for
plant toxicity (Sverdrup and Warfvinge 1993).

Furthermore, nitrogen can act as a fertilizer
(Spiecker 1999a). In the case of nitrogen saturation
(Aber et al. 1989), increased nitrogen concentrations
in soil solution may also lead to nutrient imbalances
for trees or to changes in the composition of ground
vegetation and increased nitrate leaching into ground
or surface waters.

NOx and other gases are precursors for tropospher-
ic ozone (O3). Uptake of O3 at ambient concentrations
through the stomata and the related accumulation of
reactive oxygen species within plant leaves can cause
the collapse of parenchym cells leading to decreased
rates of photosynthesis and plant growth (Kärenlampi
and Skärby 1996). Ozone-induced injuries present a
wide range of visible symptoms (e.g., Gravano et al.
2004; Innes et al. 1996, 2001; Novak et al. 2003).

In the framework of the Convention on Long-
Range Transboundary Air Pollution (LRTAP), the
International Co-operative Program on the Assess-
ment and Monitoring of Air Pollution Effects on
Forests in Europe (ICP-Forests) was established in
1985 (de Vries et al. 2003; Fischer et al. 2005). The
ICP-Forests program consists of (1) an annual survey
of forest condition on several thousands of Level I
plots, and (2) intensive monitoring of forest ecosys-
tems including measurements of atmospheric deposi-
tion and air pollutants on about 800 Level II plots. In
this context, the concept of critical loads and critical
levels (CL) was introduced for the assessment of the
effects of air pollution on ecosystems. The CL was
defined at the Workshop in Skokloster (Nilsson and
Grennfelt 1988) as “a quantitative estimate of an ex-
posure to one or more pollutants below which sig-
nificant harmful effects on specified elements of the
environment do not occur according to present
knowledge.”

For forest ecosystems, critical loads for acidity (CLA)
(Workshops in Skokloster 1988 and in Copenhagen
1999; see Nilsson and Grennfelt 1988), for nitrogen
(CLN) (Workshops in Skokloster 1988, in Lökeberg

1992, in Geneva 1995, and in Berne 2002; see
Achermann and Bobbink 2003; Grennfelt and
Thörnelöf 1992) and critical levels of ambient O3

(CLO3) (Workshops in Kuopio 1996, in Gerzensee
1999, and in Gothenburg 2002; see Kärenlampi and
Skärby 1996; Karlsson et al. 2003) were determined or
discussed based on the database available at that time,
e.g., based on the ICP-Forests monitoring program.
Maps of exceedances of critical values were refined
using modelled N and S deposition and O3 concen-
trations (Posch et al. 2003). However, there is little
literature comparing exceedance with the response of
forest ecosystems (e.g., Reynolds et al. 1998). Further-
more, monitoring investigations within the ICP-Forests
framework were conducted based on the critical loads
and levels as defined in the past. In the meantime,
however, the broad database of ICP-Forests as well as
new findings have initiated further discussions about
the air pollutant effects on forest ecosystems and the
Level II approach (e.g., Graf Pannatier et al. 2004;
Novak et al. 2003; Schaub et al. 2003; Schmitt et al.
2005; Suutari et al. 2001; Thimonier et al. 2005).

Thus, our objectives are (1) to assess the ecological
risks, and (2) to evaluate the current CL concept
based on the findings of the Swiss Long-Term Forest
Ecosystem Research Programme (LWF), the Swiss
contribution to the ICP-Forests Level II assessment.

In order to achieve these objectives, we estimated
the exceedance of critical loads and levels on the
Swiss Level II plots, and we compared indicators
for possible effects with the respective levels of
exceedance.

2 Methods

2.1 Study sites

The investigations on the Swiss Level II plots were
carried out according to the guidelines as described
within the ICP-Forests Manual (ICP-Forests 1998 and
updates). The plots were selected according to various
criteria including the relevance of the forest commu-
nity type, the homogeneity, and the sensitivity to
environmental changes (Cherubini and Innes 2000;
Kräuchi 1996; Thimonier et al. 2001) and are located
across the five main geographic regions of Switzer-
land (Fig. 1). Table 1 describes the main character-
istics of the plots.
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2.2 Sampling and measurements

Each of the 16 Swiss Level II plots covers an area of
1–2 ha. This area includes a 43×43 m intensive
monitoring plot, subdivided into 16 subplots of
100 m2 with a spacing of 1 m between neighbouring
subplots. Most measurements for this study were
carried out on these subplots. On 13 Level II plots,
we determined the solute fluxes in throughfall precip-
itation in the forest, as well as the fluxes in the bulk
precipitation in a nearby open field, which was at a
distance between 0.15 and 2.8 km from the respective
forested stand. Sampling was carried out with snow (1–
4 replicates) or rainfall (3–16 replicates) collectors and
bi-weekly collection intervals as described in detail by
Thimonier et al. (2005) for at least 1 year during the
period from 1995 to 2001 for each plot. The total
deposition of sulphur (S), nitrogen (N), and the base
cations Ca++, Mg++, K+, and Na+ (BC) was calculated
annually based on the canopy budget model of Ulrich
(1983), applying the equations recommended in the
ICP-Forests Technical Report (de Vries et al. 2001)
that include a ratio of 1:6 for the uptake of NH4

+ and
H+ by the canopy. On 16 Level II plots, layer-wise
sampling and chemical analyses of the soil matrix (16
replications) were carried out during the period from
1995 to 1998 (Walthert et al. 2003). On 8 Level II
plots, the soil solution was sampled at depths of 15,

50 and 80 cm every 2 weeks with suction cups (8
replicates) from 1999 to 2002, and analysed chemi-
cally as described by Graf Pannatier et al. (2004). The
soil solutions was sampled throughout the year except
at Celerina, where it was frozen during winter.

On 14 Level II plots, bi-weekly mean ozone
concentrations (ppb) were measured throughout the
2002 growing season with passive samplers (Passam,
Switzerland). These passive samplers were installed
in triplicate at 2 m above ground level in the open-
field next to the bulk deposition collectors (ICP-
Forests Manual 1998). The measurement, data and
quality assurance methods used in connection with
these samplers are reported by Sanz, Calatayud, and
Sanchez-Peña (2006).

In the same year, an assessment survey of
symptoms of O3-induced visible injury was carried
out at the light-exposed forest edge closest to the O3

monitoring site.

2.3 Exceedances

We applied the steady-state mass balance approach
for calculating critical loads for acidity and nitrogen
(Sverdrup and de Vries 1994) and the AOT40
approach for critical ozone levels and their exceed-
ance (Fuhrer et al. 1997), both as described by the
Mapping Manual of LRTAP (Spranger et al. 2004).

Fig. 1 Location of the Swiss
Long-Term Forest Ecosystem
Research (LWF)-plots (ICP-
Forests Level II plots of
Switzerland)
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2.3.1 Acidity

The exceedance of the critical loads for acidity
ExCLA (keq ha−1 a−1) was calculated with

ExCLA ¼ LA � CLA ð1Þ
where LA (keq ha−1 a−1) is the acid deposition and
CLA (keq ha−1 a−1) the critical load of acidity. LA was
calculated with the following equation:

LA ¼ TDs þ TDN ð2Þ
where TDS and TDN are the total atmospheric
deposition of sulphur (S) and nitrogen (N), and we
used a factor of 2 and 1 eq mol−1 of deposited S and
N, respectively.The critical loads for acidity CLAwere
estimated based on the following equation:

CLA ¼ TDBC þ BCw � Bcnetup þ Nnet
up þ Ni

þ Nde � ANCcrit
le ð3Þ

where TDBC (keq ha−1 a−1) is the total atmospheric
deposition of base cations (BC = Ca2+, Mg2+, K+ and
Na+), BCw (keq ha−1 a−1) is the neutralization
capacity produced by the weathering of base cations,
Bcup

net (keq ha−1 a−1) and Nup
net (keq ha−1 a−1) are the net

uptake of base cations (Bc = Ca2+, Mg2+, K+) and
nitrogen in the tree biomass that is removed perma-
nently from the system by wood harvesting, Ni (keq
ha−1 a−1) the nitrogen immobilization rate in the soil,
Nde (keq ha−1 a−1) the denitrification rate, and ANCle

crit

(keq ha−1 a−1) the critical leaching of acid neutralising
capacity. Bcup

net was estimated by multiplying the
regional mean wood harvesting volume with the mean
wood density, the mean concentration of the base
cations in the wood, and their charge (eq mol−1). Nup

net

was estimated similarly using a charge of 1 eq mol−1

for N. The nitrogen immobilization rates Ni were
approximated according to Rihm’s (1994) assignment
of Ni values to the soil types of the Swiss soil map.
The denitrification was assumed to be neglegible,
Nde = 0. Two criteria were been applied to define
ANCle

crit: (1) over long term, the ratio of Bc/Al in the
soil solution should remain higher than 1 (Bc/Al>1)
and (2) Al leaching (A13þle ) should not be in excess of
the Al produced by the weathering (A13þw ) of primary
minerals (A13þle < A13þw ). The latter criteria aims at
preventing the depletion of secondary Al phases and
complexes which may cause structural changes in the
soil.T
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It is assumed that an excess of acidic inputs results
in leaching of H+ and Al3+ (Hþ

le , A1
3þ
le ) from the soil,

according to equation (4):

ANC1e ¼ Hþ
le þ A13þle : ð4Þ

The gibbsite equilibrium equation (5) describes the
relationship between the concentrations of H+ and Al3+

in the weathering process, with

Hþ½ � ¼ Al3þ½ �
K1=3

Gibb

ð5Þ

where KGibb is the gibbsite equilibrium constant.
For the conversion of concentrations into fluxes,

we estimated the leaching water flux Q (mm a−1) with

Q ¼ P� ET� SR ð6Þ

where P (mm a−1) is the measured precipitation, ET
(mm a−1) the evapotranspiration, and SR (mm a−1) the
surface runoff estimated with

ET ¼ a � H b ð7Þ

where H (m) is the altitude of the plot a = 693 mm
a-1, b = 0.18 mm a-1m-1 and

SR ¼ 0:1� P: ð8Þ

For BCW, we used Rihm’s (1994) estimates of
specific weathering rate BCw

class (eq m−3 a−1) for each
class of the Swiss soil map (Table 1) including his
correction for the soil temperature T (K), hence

BCW ¼ BCclass
w �D�C1

1
T � 1

C2

� �
�C3 ð9Þ

where D (m) is the depth of the rooting zone, T (K) the
mean annual temperature C1 = 3800 K, C2 = 283 K
constants and C3 = 104 m2 ha-1 a unity conversion
factor. In an initial run (I), we estimated D(I) was
0.5 m for altitudes below 1600 m a.s.l. and 0.3 m for
altitudes above 1600 m a.s.l using the method of
Rihm (1994). In a second run (II), we estimated D(II) as
the depth to the uppermost limit for roots observed in
the soil profile at the plot, such as a permanently
oxygen-free horizon, a compact rock surface or a
horizon with a fine material density higher than 1.8 g
cm−3. We used D(II) = 1.2 m in case that no such limit
was found to the depth of 1.2 m.

The first criterion (Bc/Al > 1) as described above
was applied by estimating A13þle with Bc/Al from the
leaching of base cations (Bcle), with

A13þle ¼ 1

Bc=A1
Bcle; ð10Þ

leading to the first equation (11) for A13þle limitation:

A13þle < Bc1e ð11Þ
For Bcle we used

Bc1e ¼ XBc=BC BCW þ Bcdep � Bcnetup

� Bc1e minð ÞQ ð12Þ
where XBc/BC is between 0.6 and 0.8 (eq eq−1) and is
the fraction of Ca++, Mg++, and K+ of the base cations
Ca++, Mg++, K+ and Na+ supplied by weathering.
Bcle(min), the residual Bc concentration in the soil
solution below which the trees are not able to take up
base cations, was approximated as 15 eq m−3.

The second criterion (A13þle � A13þw ) was applied
by using an approximate value of 1.5 for the A13þw /
BcW ratio, which typically ranges from 1 to 3:

A13þw ¼ 1:5 BcW; ð13Þ
leading to the second equation (14) for A13þle
limitation:

A13þle � 2:5 BcW: ð14Þ
The lower limit for A13þle from the equations 11

and 14 was used to calculate ANCle
crit and the critical

load of acidity (CLA).

2.3.2 Nitrogen

An empirical value for critical loads for nitrogen
(CLN

emp) in temperate forests, between 10 and 20 kg
ha−1 a−1, depending on plot characteristics, was
determined at the Workshop in Berne in 2002
(Achermann and Bobbink 2003), and is currently
recommended by the LRTAP.

Applying (i) the N saturation and (ii) the steady-
state mass balance (SMB) concepts, we calculated the
critical loads (CLN

SMB) by taking some of the plot
characteristics into account:

CLSMB
N ¼ Nle accð Þ þ Nu þ Ni þ Nde ð15Þ
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where Nle(acc) of 4 and 5 kg ha−1 a−1 is the acceptable
leaching of nitrogen compounds into the surface and
subsurface waters for coniferous and deciduous
forests, respectively. Here, the denitrification rate
Nde is approximated with the approach proposed by
de Vries at the Workshop in Lökeberg (Grennfelt and
Thörnelöf 1992),

Nde ¼ f de Ndep � Nu � Ni

� � ð16Þ

applying Rihm’s (1996) estimation of fde-values for the
drainage condition classes used by the Swiss National
Forest Inventory. These fde-values are comparable
to the values proposed by Downing et al. (1993).

2.3.3 Ozone

The critical level for O3 was defined according to the
AOT40 concept (Accumulated O3 over the Threshold
of 40 ppb). The AOT40 value is calculated as the sum
of the hourly ozone concentrations, [O3]i (ppb),
exceeding the threshold C4 = 40 ppb over the course
of the vegetation period as defined from April 1 to
September 30. Only daylight hours when global
radiation (R) exceeds Rmin = 50 W m−2 are
considered (Fuhrer and Achermann 1999; Kärenlampi
and Skärby 1996):

AOT40 ¼
X

O3½ �i > C4 R > Rmin

O3½ �i � C4

� � ð17Þ

The critical AOT40 level for ozone (CLO3) is based
on the criteria to protect the trees from a 10% biomass
loss and has been determined to be 5 ppm h (Work-
shop in Gothenburg 2002). Hourly ozone data [O3]i
were derived from the measured bi-weekly values
based on the function of Loibl and Smidt (1996)
which describes the ozone daily profile as a function
of relative altitude. The detailed modelling methods
for the hourly ozone concentrations are described by
Gerosa et al. (2006).

2.4 Effects

2.4.1 Acidification of the soil solution

The Bc/Al ratio (mol mol−1) in the soil solution,
where Al stands for the total dissolved aluminium

concentration, was calculated for the 8 Level II plots
where the soil solution was sampled. For plots
without soil solution sampling, the Bc/Al ratio was
approximated from the base saturation BS in the soil
matrix with

Bc=A1le ¼ m �BS ð18Þ
where m = 0.3, i.e., the lower limit of the range of
regression coefficients (0.3–0.5) for the plots where
soil solution and soil matrix have both been analyzed
(Graf Pannatier et al. 2004).

In addition, the Bc/Al3+ ratio, where only the Al3+

species is considered, was calculated for 5 Level II
plots with acid mineral horizons (Graf Pannatier et al.
2004). We calculated the median of the Bc/Al and
Bc/Al3+ ratio for each soil depth (15, 50 and 80 cm)
and used the lowest of these three ratios as an
indicator for the soil acidification status.

2.4.2 Ozone injury

Ozone-induced visible injury was reported in late
summer 2002 within the framework of the ICP-
Forests program on the Assessment of Ozone Injury
on European Forest Ecosystems at the light-exposed
forest edge of 16 Level II plots. Symptoms like
ozone-induced visible injury observed on native tree
and shrub species are validated against symptoms
reproduced in open-top chamber facilities, such as in
southern Switzerland at the Lattecaldo Cantonal
Forest Nursery (e.g., Innes et al. 1996; Innes et al.
2001; Novak et al. 2003) and compared to the
extensive ICP-Forests database for ozone injury (see
http://www.gva.es/ceam/ICP-forests and http://www.
ozone.wsl.ch).

3 Results

For acidity, the atmospheric deposition was calculated
for 12 plots and ranged from 0.63 to 3.29 keq ha−1 a−1

(Fig. 2). The lowest values resulted from low S and N
inputs and were measured in the Alps at the plots of
Celerina (0.64 keq ha−1 a−1) and the National Park
(0.63 keq ha−1 a−1). For Visp and Lens, no deposition
measurements were available. In the Lower Alps, on
the Central Plateau and in the Jura, the values ranged
from 1.02 to 1.96 keq ha−1 a−1, except for Schänis,
where the acid deposition was as high as 2.56 keq
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ha−1 a−1. The highest deposition was found at
Novaggio in the Southern Alps. For Chironico and
Isone, no values were available. The critical loads for
acidity were very high at the plots in the Jura, at the
National Park, and at Visp due to calcareous soils
which buffer the acidic inputs. For the other plots, the
critical loads for acidity were low. In general the
rooting zone depths D(II) estimated based on the soil
profile examinations (Table 1) were higher than
Rihm's (1994) estimate D(I) (equation 9). Consequently
the critical loads for the first run (I) were in general

lower than those for the second run (II), except for
Alptal (I: 2.9 keq ha−1 a−1 II: 2.5) and Beatenberg
(I: 1.3, II: 1.4). The acid deposition exceeded the
critical loads of the first run (I) at 2 plots (at Novaggio
by 1.0 keq ha−1 a−1 and at Othmarsingen by 0.6) and
approached them at 4 plots (Lausannne, Vordemwald,
Schänis, Beatenberg) but they did not exceed the
critical loads of the second run (II) (Fig. 2).

The lowest Bc/Al ratios in the soil profile (Fig. 2)
were close to the critical value of 1 and were
measured at Beatenberg (1.2), Vordemwald (1.9),
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Fig. 2 (a) Atmospheric deposition and critical loads for
acidity and the lowest of the median Bc/Al and Bc/Al3+ ratio in
soil solution at 15, 50, or 80 cm depth. Critical loads were
calculated with Rihm’s (1994) estimate of the rooting zone
depth (critical I) and with a rooting zone depth estimated based

on soil profile examinations (critical II). (b) Atmospheric
deposition and critical loads for nitrogen. (c) Measured and
critical levels of ozone and percentage of species at a nearby
forest edge with ozone-induced visible injury symptoms (2002)
for ICP-Forests Level II plots of Switzerland
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and Novaggio (2.0), where the acid deposition
approached the critical loads. In contrast, the Bc/Al
ratios were much higher at Othmarsingen (5.4),
Lausanne (3.5) and Schänis (>10) although that the
acid deposition approached or even exceeded the
critical loads at these plots (see also Fig. 3a and b).

For N, deposition was available for 13 plots. It
ranged from 4.4 to 34 kg N ha−1 a−1 and its pattern
was similar to that for acid deposition. The critical
loads for nitrogen (CLN

SMB) were within the range
from 8 to 20 kg N ha−1 a−1 and thus less variable than
those for acidity. They were exceeded at Novaggio
(25 kg N ha−1 a−1) and Chironico (14) in the Southern
Alps, at Schänis (15) in the Lower Alps, and at 5 plots
on the Central Plateau and in the Jura. Further, they
were approached at the other 2 plots in the Lower
Alps (Alptal and Beatenberg). In the Alps (Celerina
and the National Park), the deposition of nitrogen was
far below the critical load.

For ozone, actual AOT40 levels ranged from 2.6 to
39 ppm h in 2002 (Fig. 2) and its spatial pattern
differed from that of the deposition. The highest
levels were measured at Isone (39.0 ppm h) and
Novaggio (37.6) in the Southern Alps, at Beatenberg
(35.7) in the Lower Alps and at Lausanne (28.9) on
the Central Plateau. The lowest levels were regis-
tered at Othmarsingen (2.6) and Vordemwald (5.3)
on the Central Plateau. The critical AOT40 level of
5 ppm h was exceeded on 12 out of 14 plots.

Figure 3c shows the percentage of the species
which were growing at the forest edge closest to the

plot and developed ozone-induced visible injury.
Highest percentages of affected species were found
at Schänis (52%), Bettlachstock (45%), National Park
(23%), and Visp (21%). Despite high exceedances of
the critical level, few symptoms of ozone-induced
visible injury were found at Beatenberg (9%), Alptal
(8%), and Lausanne (17%) and no ozone-induced
visible injury was found at Novaggio, Isone, and
Celerina (Fig. 3c). Conversely, we found typical
ozone-induced visible injury at Schänis (52%) and
Othmarsingen (14%) although the critical AOT40
level was not exceeded there.

4 Discussion

The relatively high deposition loads of S and N at
Novaggio and Schänis are typical for areas at the edge
of sharply rising mountain chains in the proximity of
industrialized and densely populated areas such as the
Italian Po Plain and the Swiss Central Plateau (Della
Lucia et al. 1996; Schmitt et al. 2005; Thimonier
et al. 2005). These exposed areas are subjected to
similar high pollutant concentrations in the air as in
the plain, but receive higher precipitation. In contrast,
Celerina and National Park are located within moun-
tain chains, remote from densely populated areas.

Since around 1985, the loads of acidity have
decreased in Europe, mainly due to a reduction in
sulphur dioxide emissions from road traffic and
industrial activities (SAEFL 2002). Klöti et al. 1989
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Fig. 3 (a) Lowest of the median Bc/Al and Bc/Al3+ ratio in soil
solution at 15, 50 or 80 cm depth plotted against the ratio of
atmospheric deposition to critical loads for acidity I calculated
in the initial run (I) with root zone depths according to Rihm
(1994). (b) Lowest of the median Bc/Al and Bc/Al3+ ratio in
soil solution at 15, 50 or 80 cm depth plotted against the ratio

of atmospheric deposition to critical loads for acidity II
calculated in the second run (II) with rooting zone depth
estimated based on the soil profile examinations. Bc/Al < 1
indicates aluminium toxicity. (c) Percentage of species at
nearby forest edge with ozone-induced visible injury symptoms
vs. ratio of actual ozone level over critical ozone level
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determined a sulphur deposition of about 1.8 keq ha−1

a−1 at Lägern in the Central Plateau of Switzerland
between June 1986 and June 1987, while our annual
values for S deposition between 1995 and 2001
ranged from 0.1 to 1.0 keq ha−1 a−1. In comparison,
in 1988 during the massive forest decline, Dambrine
et al. (1993) measured S and N deposition of 4 and
3 keq ha−1 a−1, respectively, at Naèetin in the Krušné
hory Mts. (Erzgebirge, Czech Republik) where the
soils are poorly buffered. According to Kurz et al.
(1998), the critical loads for acidity were exceeded for
about 60% of the forested area in Switzerland using
the 1986–1990 acid deposition. They determined
median acid deposition of about 3.5, 4.5 and 2.5 k
eq ha−1 a−1 for the Jura, the Central Plateau, and the
Alps, respectively. Hence, the reduction of sulphur
emission successfully decreased the acid deposition to
below the critical loads for acidity for numerous plots
(see also Posch et al. 1999).

However, the critical loads for acidity presented
here include uncertainties such as the estimate of the
weathering rate as shown by varying the main rooting
zone depths (D), applied in equation (9). Our
impression that Rihm's (1994) estimate of D seems
to underestimate the rooting zone depths remains to
be proven. Moreover, the uncertainty of the specific
weathering rate could be reduced substantially by
including the soil chemistry and mineralogy measure-
ments into the calculations of the weathering rates and
by using dynamic models. Such a soil chemistry
model (PROFILE) was applied by Kurz et al. (1998)
for 770 sites in Switzerland with a known chemistry
of the soil matrix, but the model has neither been
calibrated nor validated with Swiss soil solution
chemistry measurements.

No relationship could be found between the
exceedance of critical loads and the Bc/Al ratios.
The field data indicate that the ecological risks related
to the critical Bc/Al ratio might be lower than those
estimated with the model. When determining the
speciation for Al in the soil solution, Graf Pannatier
et al. (2004) found that much of the Al consists of less
toxic Al species rather than Al3+ at Beatenberg and
Vordemwald. At Vordemwald, Othmarsingen, and
Lausanne, the lowest Bc/Al ratios were found in the
uppermost layer at 15 cm depth with increasing
values towards the lower layers (Graf Pannatier et al.
2004). Adapted root systems may compensate for the
low ratio in the topsoil by increased uptake of base

cations from lower layers (Walthert et al. 2006). In
addition, Grigal and Ohmann (2005) have shown that
upwards diffusion of cations may also be important
and should be considered for the CL models. In
contrast, at Beatenberg, the lowest Bc/Al ratio was
recorded at 80 cm depth in the mineral layer clearly
below the rooting zone and may thus not affect the
plant roots (Graf Pannatier et al. 2004).

However, the concept is based on the steady-state
assumption, although the atmospheric deposition has
changed in the past few decades. Therefore, the Bc/Al
ratio is not necessarily expected to correlate to the
exceedance at the moment, but over long-term. As the
soil solution sampling on the Swiss Level II plots
started only in 1999, no trend analysis could be
conducted for Bc/Al ratios. Consequently, we have
no information whether the measured state is the result
of soil formation or it is, in addition, influenced by
accelerated soil acidification during the last few
decades. Long-term measurements of the Bc/Al ratio
at Copera in Southern Switzerland showed a decreas-
ing trend during the last 16 years (Graf Pannatier et al.
2005). Hence, despite the successful reduction of the
sulphur emission, a long-term risk of an accelerated
soil acidification is still likely for some forested areas
in Switzerland with poorly buffered soils and high
atmospheric deposition of acidity, e.g., at Novaggio.
One possible effect, a lower storm resistance of trees,
has been recently discussed by Mayer et al. (2005)
and others.

The atmospheric deposition of nitrogen still
exceeded the critical loads for a number of plots, in
particular for two plots in the Southern Alps (Novag-
gio: TDN-CLN

SMB = 25.2 kg N ha−1 a−1, Chironico:
13.8) and for one plot in the Lower Alps (Schänis:
15.4). The high N deposition is largely related to the
emissions from road traffic, agriculture, industry, and
heating systems in Switzerland and the neighbouring
countries. Most of the calculated CLN

SMB were within
the range of CLN

EMP. The SMB calculations of the
critical loads for nitrogen include uncertainties,
especially the terms of Nde and Ni. The uncertainties
might be in the range of the difference between
calculated deposition and critical loads for up to about
7 plots. Further, the SMB concept does not take into
account the actual N saturation status of a plot. At
Alptal for example, experimentally added N was still
immobilized in the soil (Schleppi et al. 1998) and we
suppose that many other sites are not yet N saturated.
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Increasing soil N pools can be remobilized after
disturbances such as clear-cuts or storm damage
(Hegg et al. 2004). Consequently, the atmospheric
deposition of nitrogen may represent a long-term risk
for forest ecosystems at several sites in Switzerland
leading to increasing growth rates, nutrient imbalan-
ces, or reduced stress tolerance for trees and increased
nitrate leaching (see, e.g., Flückiger and Braun 1999;
Mayer et al. 2005; Spiecker 1999b).

The levels of ozone on 14 Swiss Level II plots
were spatially variable and the AOT40 values ranged
from 2.6 to 39 ppm h. The high levels at Isone
(39.0 ppm h), Novaggio (37.6), Beatenberg (35.7),
Lausanne (28.9) and Bettlachstock (23.2) might be
related to (1) the proximity of these plots to emission
sources such as intensively used traffic axes and
industrialized agglomerations, and (2) to the exposure
of the emitted precursors to sunlight and high
temperatures. Slightly or considerably lower levels
were registered at plots which are very remote from
larger cities such as the National Park (22.6), Celerina
(19.5), and Alptal (15.7). Yet, lowest levels were
recorded at plots in close vicinity of NOx emission
sources such as Othmarsingen (2.6) and Vordemwald
(5.3). These low levels can be explained by the fact
that high NOx levels enhance ozone decomposition.

The levels of ozone exceeded the critical AOT40
value at 12 out of 14 plots. The derivation of AOT40
values from bi-weekly passive sampling measure-
ments implies some uncertainty. Furthermore, ozone
concentrations are subject to high inter-annual vari-
ability and we included measurements from 2002
only. The species composition at the forest edges and
their sensitivity to ozone differ from plot to plot. This
limits the comparability of the quota of plant species
showing ozone-induced visible injury versus O3-
tolerant species.

On the other hand, plants may respond to increased
vapour pressure deficit and reduced soil water avail-
ability by reducing the stomatal opening, leading to a
reduced O3 uptake despite peak ozone levels (e.g.,
Schaub et al. 2003). This influence by environmental
site conditions is not taken into account with the
AOT40 concept as stated for example by G. P.
Karlsson, P. E. Karlsson, Soja, Vanermeiren, and
Pleijel (2004). In the Southern Alps, for example, in
particular at Novaggio and Isone, high summer
temperatures combined with low relative humidity
leading to high vapour pressure deficits at the leaf

level limit the stomatal uptake. These conditions are
common and frequent for southern Switzerland,
which may explain the lack of ozone-induced visible
injury despite of the occurrence of some of the
highest O3 concentration values across Europe. In
order to take the influence of environmental factors
on the physiological plant behaviour into account, the
estimate of a critical O3 uptake may be more
biologically relevant than the concentration based
AOT40 concept (e.g., Matyssek et al. 2004).

5 Conclusions

The atmospheric deposition of acidity exceeded the
critical loads at 2 plots and approached them at 4 out
of 12 Swiss Level II plots. Therefore, we cannot
exclude long-term ecological risks related to Al
toxicity and Al depletion in Switzerland in areas with
high deposition loads of acidity and poorly-buffered
soils. The results of the critical loads calculations with
the steady-state mass balance showed no relationship
with the measured Bc/Al ratio in the soil solution, but
we cannot exclude a correlation in future when the
system reaches steady state. However, the frequently
used method that we applied here includes a large
uncertainty due to estimation method of the weather-
ing rate. The calculation of critical loads could be
substantially improved by (1) modelling the weather-
ing process based on the physical and chemical
measurements on the plots, (2) using dynamic
models, (3) validating the models with the measured
soil solution chemistry, (4) including Al speciation,
and (5) cation diffusion. In addition, long-term soil
solution chemistry data are of key importance for the
assessment of the soil acidification risk in Swiss
forests.

For nitrogen, the critical loads were clearly
exceeded for 3 out of 5 Swiss Level II plots in the
Lower and the Southern Alps, whereas they were not
exceeded at the plots in sparsely populated areas in
the Alps. In the Jura and on the Central Plateau, the
critical loads were lower but were still exceeded at 5
out of 6 plots. Considering calculation uncertainties,
the actual deposition is likely to represent a long-term
risk for 3 to 10 out of 13 plots. In the long-term, such
exceedance may lead to increasing tree growth,
decreased stress tolerance of trees, nutrient imbalan-
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ces, changes in species composition, and increased
nitrate leaching into ground water.

Critical levels of O3 were exceeded on 12 out of 14
Swiss Level II plots. The quota of the plant species
showing ozone-induced visible injury does not corre-
spond to the exceedance of the AOT40 critical level
of 5 ppm h O3. Partly, this lack of correlation may be
due to the differing species composition of O3-
sensitive versus O3-tolerant species. Another source
of uncertainty may lie in the estimation of the AOT40
statistics based on data from bi-weekly passive
sampling. The variation due to the differing species
composition among plots may be eliminated with the
planting of O3-sensitive bio-indicator species, which
would allow a sound comparison of onset and
severity of negative ozone effects such as visible
injury among the plots. The calculation of the
effective ozone uptake rather than the exceedance of
a certain concentration-based threshold, in combina-
tion with the bio-indicator approach would, further-
more, allow a more biologically meaningful ozone
risk assessment for forest ecosystems.
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