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Summary: This paper reports on initial insights gained from a project aimed 

at the development of methods for context-aware movement analysis. We 

report on two case studies (animals and pedestrians) where we aimed to 

relate basic derived movement properties (such as speed, turning angle, 

sinuosity) to the geographic context embedding this movement. We present 

our lessons learned with respect to data requirements (granularity, accuracy) 

and pre-processing (segmenting, map matching). 
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1. Introduction 

 

GIScience has seen significant progress in analysing second order effects (O’Sullivan and Unwin, 

2010) in movement analysis, such as arrangement patterns (e.g. flocks or leadership patterns, Laube 

et al., 2005, Andersson et al., 2007) or trajectory similarity and clustering (Buchin et al., 2009, 

Pelekis et al., 2007). Much less work has been done investigating first order effects, assuming that 

movement properties and patterns also emerge due to the variability of the embedding geographical 

context – for example, a timid deer may speed up when crossing a forest clearing, but leave a sinuous 

slow trace when foraging. This paper reports on initial insights gained from a project developing 

methods for context-aware movement analysis. We report on two case studies (trajectories of animals 

and shoppers) where we related basic derived movement properties (such as speed, turning angle, 

sinuosity) to the geographic context embedding this movement. Here we present our lessons learned 

with respect to data requirements and pre-processing. 

 

2. Problem Statement 

 

On the movement side, we use GPS localization that allows for quasi-continuous tracking of moving 

individuals in space-time (Van der Spek et al., 2009). GPS trajectories allow derivation of fine-

grained descriptive movement parameters, such as speed, sinuosity, or turning angle (Figure 1). The 

geographic context enabling and constraining movement is clearly application dependent. For wild 

animals, relevant context might be habitat type or terrain, for shoppers it might include spatio-

temporal properties of the urban transit network and personal points of interest (home, work, gym, 

Figure 1). Note, we do not want to identify what context factors are important for a given movement 

process but rather quantify the movement-context interrelation when we assume we have access to 

expertise capable of identifying relevant context (i.e. habitat type for a foraging animal). 

 



 
 

Figure 1. Movement trajectory with derived movement parameters embedded in geographic context. 

 

In this paper we investigate minimal data requirements and crucial pre-processing steps for content-

aware movement analysis. In detail, we address the following questions: 

• What are crucial data pre-processing steps, for movement and context data, enabling context-

aware movement analysis? 

• Given movement trajectories and distributions of the habitat types (land use) with respect to their 

constituting fixes: Are basic exploratory statistics relating computed movement properties (speed, 

turning angle, sinuosity) to habitat types an adequate means for context-aware movement 

analysis? 

• What are minimal requirements for movement data and geographic context data for the above 

analysis (with respect to granularity, accuracy, metadata)? 

 

3. Data and Experiments 

 

Case studies were selected from urbanism and behavioural ecology, featuring data with differing 

properties in terms of temporal resolution and movement space (Table 1). First, we analysed the 

movement properties of finely sampled trajectories of pedestrians moving in the urban network space 

of the city of Delft, NL. Here, people leaving a parking deck in the centre of Delft were given a GPS 

device and their trips through the city were recorded. We used both raw GPS data as well as pre-

processed trip data where stationary phases were manually removed. Second, movement data of 

chamois foraging in the Swiss National Park were used to perform an experiment relating speed to the 

underlying habitat type. This data set reflects typical data from monitoring studies in behavioural 

ecology, where technical constraints may dictate rather coarse sampling rates. 

 

Table 1. Characteristics of case study data. 

 
 Pedestrians Delft Chamois Swiss National Park 
Temporal resolution 2sec 10min 
Space Network, OpenStreetMap Euclidean unconstrained 
Moving Objects Pedestrians (Homo sapiens s.) Chamois (Rupicapra rupicapra) 
Context Shopping and leisure points of interest (points) Habitat types (polygons) 
Data source TU Delft, Stefan van der Spek Swiss National Park 
Date 18.11.2009 04.12.2002 – 31.05.2010 
Number of points 2'300 29'100 
 

3.1 Case study #1: Filtering and Map Matching 

 

The first case study investigated effects of pre-processing movement data in an urban context. Speed 

values provided by the GPS device were compared with different ways of computing speed from 

location fixes, both for raw GPS data and manually filtered trip data (Figure 2). First, speed was 

calculated from the distance moved within consecutive fixes (sampling rate of 2 seconds, few longer 

intervals). Second, speed was computed after a naïve map matching (c.f. Bernstein and Kornhauser, 

1996, White et al., 2000) technique was applied. For the naïve map matching, fixes were snapped to 

the closest network edge, with a maximal snapping threshold of 15 meters (Figure 2). 

 



 
 

Figure 2. Example trajectory section for a pedestrian in Delft, without (green) and with naïve map 

matching (red), fix indices at sampling rate of 2 seconds. 

 

3.2 Case study #2: Relating Speed and Habitat Type 

 

The second case study aimed to relate speed to the underlying habitat type embedding the movement 

of eleven GPS-tracked chamois in the Swiss National Park (Figure 3). A dataset with a temporal 

resolution of 10 minutes was chosen to investigate whether movement data with such a coarse 

temporal granularity could be used to relate movement and context. Again, speed was calculated 

assuming constant speed between two consecutive fixes. Here, raw GPS data was segmented into 

stops (removed) and moves, using a simple algorithmic approach (Laube and Purves, 2011). Raw and 

filtered movement data was then related (point-in-polygon) to three habitat types aggregated from a 

detailed habitat data set (www.habitalp.de). 

 

 
Figure 3. Example trajectory of chamois with habitat context. 

Stationary fixes (white), moves in various colours, time of day (hh:mm:ss). 

 

4. Results 

 

For both case studies, speed values were binned and each bin resulted in an item on the ordinate of 

the box whisker plots (Figure 4). The box whisker plots show medians (horizontal bar), 25
th

 and 75
th

 



percentiles enclosing the middle 50% of the data (boxes, also interquartile range, IQR), minimum and 

maximum values (whiskers), and outliers (data points more than 1.5 times the IQR from either end of 

the box). Figure 4a shows results for the Delft pedestrians. The first two items describe speed 

measurements calculated by the GPS device itself, first for raw (r) and second for filtered data (f). 

Then follow computed speeds for raw (r), filtered (f), and both filtered and map matched data (f,mm). 

Figure 4b illustrates variable speed values over three different habitat types (grass, raw soils, forest). 

Here, for every habitat type raw GPS trajectories are compared to segmented and filtered data (stops 

removed). 

 

 
 

Figure 4. (a) Case study #1, speed for pedestrians; GPS vs. computed; raw data (r), filtered (f) and 

map matched (mm). (b) Case study #2, speed vs. habitat for chamois; raw data (r) vs. filtered (f). 

 

5. Discussion 

 

Figure 4a first illustrates that separating moves from stops has an important influence on computed 

speeds (median ~1km/h vs.  ~5km/h). Second, the median of all three filtered speed categories (GPS, 

filtered, filtered & map matched) is in the same order of magnitude. Third, the median for map 

matched is slightly below the uncorrected signal. We argue that for this result two effects must be 

considered (Figure 2): (i) Map matching introduces error at intersections, where unrealistically large 

speed values result from the distorted geometry (fixes 236 to 237 or 313 to 314). (ii) Shadow effects 

in a 3D urban setting result in positive speed artefacts due to positional inaccuracy of the GPS signal 

at building transitions (e.g. fixes 228 to 229) – an error removed through map matching. We argue 

that in our case, the latter effect (building transitions) outnumbers the first (intersections), hence the 

lower median for (f,mm). 

 

Figure 4b shows no significant difference in speed depending on the embedding habitat types. For 

grass and raw soils filtering out stops results again in higher speeds. The signal for forest is more 

complex, with a lower median but a larger range. A reason for this mixed signal could be that in 

forest, animals move more slowly in general. However, averaged values of speed over time intervals 

of 10 minutes are in general very low. We argue that such low, averaged speed values do not 

represent actual instantaneous speed of moving animals. For instance, in Figure 3 the first segment 

between 04:10:15 and 07:00:18 shows several transitions between habitat types where the granularity 

of the trajectory hardly allows for a conclusive link between speed and habitat type. 

 

6. Conclusions and Outlook 

 

From these initial experiments linking movement parameters to the embedding geographic context, 



we conclude with the following list of lessons learned: 

• Removing (filtering) stops is a paramount pre-processing step, as pseudo-movement introduced 

by inaccurate GPS fixes of stationary objects swamps any signal. 

• For network bound movement, we argue that there is an unavoidable catch-22 between 

computing derived movement parameters from unmatched fixes (which may not lie on network 

edges and are hence erroneous) or from map matched fixes (which must have an altered geometry 

and hence can’t represent the ‘true’ movement). 

• When the temporal granularity of movement data is so coarse that the interval between two 

consecutive fixes could include several stops and moves, computing instantaneous speed is not 

suitable, and hence establishing a link between such derived speed properties and movement 

context is not suitable either. 

From these lessons learned we shape our next steps. We intend to continue with the Delft pedestrian 

data, but will apply more sophisticated map matching techniques that correct for the error sources 

identified above. Furthermore we started using animal tracking data with a finer temporal granularity. 

One promising data source is avian navigation research with ample data sampled at sub-second 

sampling rates. 
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