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ABSTRACT 

Today remote sensing is a standard technique for mapping land cover in high spatial 

resolution over large areas. Not only land cover but also the quality and quantity of 

vegetation can be classified by the analysis of imaging spectroscopy data. In the Swiss 

National Park (SNP) we use data from the Airborne Prism Experiment (APEX) imaging 

spectrometer to expand the possibilities of vegetation analysis in alpine territories. The 

high spectral and spatial resolution of APEX data allows the correlation of the 

measured reflection with ground truth data.  

In this work a standard Normalized Differenced Vegetation Index (NDVI) and an 

optimized simple ratio index (SRI) with selected bands were generated to model the 

biomass content of the alpine grassland of one particular valley in the SNP, the Val 

Trupchun.  

The correlation between biomass insitu measurements and SRIs was non-linear, most 

likely due to sensor saturation. Our optimal SRI improved the model quality compared 

to the NDVI model. All computed models underestimated high biomass values above 

600 g/m2. The model accuracy of 57% was good considering the challenging terrain. 

However, several factors showed that the model was relatively unstable due to 

parameter input settings and external factors. Differences in APEX data between strips 

induced an important effect, due to different illumination/view angles. The variability 

analysis investigating the sample plot location demonstrated that small-scale 

geometrical shifts were insignificant compared to the overall model accuracy. The 

biomass prediction map showed plausible values for the grassland with high 

concentrations around former alps. High biomass sources were linked to former 

anthropogenic land use, dominant vegetation structure and to preferred ungulate 

habitat today.  

The high-resolution map is now a useful basis for future research in the SNP to 

investigate forage amount and analyse ungulate habitat pattern in Val Trupchun. This a 



welcoming issue for ungulate research, which is an important research area of the 

SNP. 
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1 INTRODUCTION 

Imaging spectrometry or imaging spectroscopy is a remote sensing technique recording 

the earth’s surface by a hyperspectral sensor. The technique was developed in the early 

1980s and 1990s (Goetz et al., 1985; Vane et al. 1984) and started with airborne 

instruments. Several airborne imaging spectrometers have been developed so far such 

as the hyperspectral scanner HyMAP by HyVista, Airborne Visible/Infrared Imaging 

Spectrometer AVIRIS by NASA, Airborne Imaging Spectrometer for Application AISA by 

Specim Ltd. and Airborne Prism Experiment APEX by ESA. The first imaging 

spectrometer was launched in space by NASA’s Moderate-resolution Imaging 

Spectroradiometer MODIS in 1999.  

Imaging spectrometers have been used successfully to create maps that consist of land 

cover units with discernible spectral differences in the sensor’s band set. The sensor 

collects the reflectance spectra of the earth’s surface induced by sunlight in many 

small, contiguous spectral bands (Goetz, 2009). With increased number of spectral 

bands and increased spatial resolution the technique now allows not only the mapping 

of land cover types but also the mapping of vegetation quality and quantity. 

Hyperspectral data have been used in ecological and vegetation studies analysing the 

chemical composition of plants or mapping at species level (Xiao, et al., 2004; Mutanga 

et al., 2004). These applications are of great interest for ecologists analysing vegetation 

in difficult terrain.  

The Swiss National Park (SNP) was mapped by APEX (Airborne Prism Experiment) for 

the first time in June 2010. Land cover mapping and monitoring of landscape dynamics 

are essential for the management of protected areas. Since ungulate research plays an 

important role in the SNP, the application possibilities of the APEX data are of great 

interest. The SNP is inhabited by large populations of alpine ibex (Capra ibex, L.), 

chamois (Rupicapra rupicapra, L.) and red deer (Cervus elaphus, L.). The evaluation of 
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vegetation quantity and quality can provide important information on forage 

abundance and its spatial distribution. A water content map of the valley of Trupchun 

(Val Trupchun) has already been produced using APEX data (Kneubühler, 2011). The 

mapping of biomass content of the grassland serves as an additional valuable input 

feature for the investigation of ungulate habitat patterns.  

1.1 MOTIVATION 

The high alpine territory of the SNP is challenging for vegetation analysis. As field 

sampling is difficult and time consuming due to the hard accessibility of the terrain, 

traditional field research is limited. Not only are time and accessibility restricted, but 

the personnel effort in the field would also require substantial financial resources. 

Furthermore, reliable estimates are restricted to local scales only, whereas ecologists 

require estimates at landscape scale. Remote sensing is therefore a great technique for 

an area-wide interpretation of vegetation at high spatial resolution.  

Ungulate research has a long tradition in the SNP and therefore the analysis of 

vegetation quality and quantity is an essential issue. Because ungulates need to spend 

most of their time grazing, the (local) composition of forage can explain their spatial 

distribution (Van Langenvelde & Prins, 2008). Together with other vegetation 

parameters such as water, nutrition and fibre content, the biomass model serves as a 

valuable input for the analysis of ungulate habitat and movement patterns.  

1.2 OBJECTIVE 

The aim of this MSc thesis is to generate a biomass map of the grassland of one 

particular valley of the SNP (Val Trupchun) with APEX imaging spectrometry data from 

June 2010. A semi-empirical method is implemented in the modelling process. First, a 

standard normalized-differenced-vegetation-index (NDVI) is calculated and compared 

with insitu biomass samples. To achieve a better model, a large number of simple ratio 

vegetation indices (SRI) are developed from the hyperspectral data and regressed 

against the ground truth data. Model validation is carried out by independent sample 

plots. The best model is taken to predict the grassland biomass in Val Trupchun.  
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The produced biomass map is analysed for plausibility relating to the former land use 

of the Val Trupchun. Furthermore the model is tested for stability and accuracy by 

investigating the APEX data at the overlapping zones of the different strips and 

analysed by the variability of the sample plot locations. A comprehensive discussion is 

carried out to analyse the modelling approach for accuracy, uncertainty and 

possibilities for improvement.  

The study area of Val Trupchun was chosen due to its substantial cover of grassland 

and high population of ungulates. Imaging spectroscopy induces a large data volume 

and therefore the handling has its limitations. The whole territory of the park would be 

unfeasible for this modelling approach. As the territory is complex and variable at fine 

spatial scales, many insitu samples are required to obtain a useful and satisfactory 

prediction model. Therefore the method used here not only requires strong computing 

power but also substantial effort in the field. 

1.3 METHODOLOGY 

The APEX data is provided geometrically, atmospherically and radiometrically 

corrected by the Remote Sensing Laboratory of the University of Zurich (RSL) using the 

standard procedures ATCOR-4 (Schläpfer & Richter, 2002) and PARGE (Schläpfer & 

Richter, 2002). A semi-empirical modelling approach is carried out to obtain the 

biomass prediction map. Different model settings are tested to optimise model 

accuracy. The detailed methodology of pixel-based modelling of the biomass map is 

explained in chapter 3.  

For data preparation and modelling the software ENVI 4.7 (Environment for 

Visualisation of Images) in combination with IDL (Interactive Data Language) by ITT VIS 

was used. For the cartography and simple GIS analysis the software ArcGIS 10.0 by ESRI 

was applied.  

1.4 STRUCTURE 

This MSc thesis has been carried out at the Swiss National Park in collaboration with 

the Remote Sensing Laboratories of the University of Zurich (RSL). 
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In the first chapter, an introduction to imaging spectrometry and background 

information about the Swiss National Park, the Valley of Trupchun and the APEX 

project is given. Chapter 3 explains the methodology of the modelling approach. In 

chapter 4, the results are presented, first the model variables and then the resulting 

prediction map. Furthermore results related to the model stability, accuracy and 

saturation are shown. The results are discussed in chapter 5. Different model 

parameters are reviewed here and a comprehensive uncertainty analysis is carried out. 

Finally, conclusions are derived from the study and an outlook to further potential 

studies is provided. 
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2 BACKGROUND 

Due to their high spectral and spatial resolution, image spectrometers serve many 

applications over a broad range of scientific fields such as e.g. in ecology, limnology, 

geology, atmospheric sciences, natural hazard and disaster management, and 

materials detection. Application examples are mapping of soil composition, total 

suspended matter in lakes, plant pigments and non-pigments (water, protein, 

chlorophyll, lignin, cellulose, nitrogen, etc.), vegetation structure, hydrocarbon content, 

net and gross primary production, aerosol concentration and atmospheric water 

vapour. The technique is therefore a valuable tool in the management of nature parks.   

2.1 RESEARCH IN THE SWISS NATIONAL PARK 

The Swiss National Park (SNP) was founded in 1914 as a strict nature reserve and is the 

oldest national park in the Alps. The park is situated in the canton of Graubünden 

covering an area of 170 km2, which is the largest protected area in Switzerland. It is the 

country’s only national park and is classified as a category I nature reserve (highest 

protection level - strict nature reserve /wilderness area) with the IUCN (International 

Union for the Conservation of Nature). The territory encompasses an alpine landscape 

extending over altitudes between about 1400 to 3200 meters above sea level (asl.) 

with a rich flora and fauna. Research is one official mission of the park so that the 

territory is available for the analysis of natural processes and ecosystems in the 

absence of human influence. Scientists from various research institutes use this open-

air laboratory to gain further knowledge of alpine species and habitats. Minimal 

human disturbance and the availability of results from earlier projects carried out 

during many years offer ideal conditions for a variety of research activities.  

As ecological and ungulate research have a long tradition in the SNP, many valuable 

long-term data series and publications are available. Since 1917, the vegetation has 

been monitored on more than 150 permanent plots (Braun-Blanquet et al., 1931; 
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Stüssi, 1970). In 1968 an analogue vegetation map of part of the SNP was produced in 

cartography work by Trepp/Campell at a scale of 1:10’000 (Trepp & Campbell, 1968). 

In 1992, Zoller published a vegetation map of the entire SNP (Zoller, 1992). It was 

based on observation plots and field trips, and mapped at a 1:50’000 scale. An 

interpretation of colour infra-red aerial images was conducted over the whole territory 

of the SNP as part of the project Alpine Habitat Diversity (HABITALP1) in 2006. A 

common coded interpretation key was developed to map area-wide standardized 

delimitation of land use types at a 1:5’000 scale. The interpretation allowed not only 

the classification of the habitats, but also assignment of the dominant vegetation 

species.  

Until now, vegetation mapping has been based on the interpretation of single plots 

and visual observations, which enables only limited interpolations over large areas. 

The HABITALP project has been the first study with a standardized method to classify 

vegetation types area-wide from aerial images. Not only is a classification of habitat 

types possible with the APEX data, but also pixel-based modelling of vegetation 

composition at a scale of 2 x 2 meters.  

Ungulate research in the National Park also has a long history. The SNP is inhabited by 

large populations of alpine ibex (Capra ibex, L.), chamois (Rupicapra rupicapra, L.) and 

red deer (Cervus elaphus, L.). Population counts have been carried out since the 

1920’s. Extensive ungulate projects began in the 1990’s. With the assistance of 

telemetry and GPS radio collaring, the movement of individual animals can be 

recorded and graphically represented. Results from ungulate counts and GIS 

movement tracks in combination with vegetation studies will provide information 

regarding the forage availability and migration patterns of ungulate populations. 

Despite the 100 years of protection, traces from the former land use can still be found 

on subalpine and alpine grassland. Cattle and sheep grazed the territory of the SNP for 

                                                      

1
 HABITALP – Alpine Habitat Diversity Project. INTERREG III B Alpenraumprogramm 2002-2006, 

http://habitalp.de, (last accessed on 20.03.2013) 
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several centuries until 1914 (Parolini, 1995). As a result, tall-herb communities 

dependent on nutrient enrichment from the excreta of cattle or sheep can still be 

found on several former pastures in the SNP (Braun-Blanquet, 1931; Braun-Blanquet et 

al., 1954; Pictet, 1942; Stüssi, 1970; Krüsi et al., 1995; Achermann et al., 2000).  

2.2 IMAGING SPECTROSCOPY OF VEGETATION 

Imaging spectroscopy is similar to colour photography, but the spectrometer acquires 

for each pixel many bands of light intensity data from the spectrum, instead of just the 

three bands of the RGB model. The sensor collects simultaneously spatially 

coregistered images in many spectrally contiguous bands. 

The term hyperspectral imaging is often used interchangeably with imaging 

spectroscopy. Due to its heavy use in military related applications, the civil world has 

developed a slight preference for using the term imaging spectroscopy2. 

Imaging spectrometers such as APEX sample contiguously in the optical part of the 

electromagnetic spectrum using dozens to hundreds of narrow spectral bands. For 

each image pixel, the sensor acquires the reflectance of the earth’s surface from the 

ultraviolet through the visible to the near- and mid-infrared (i.e. 250 - 2500 nm) part of 

the electromagnetic spectrum at a high spatial resolution. The data allows the analysis 

of useful and precise quantitative information about the environment. In Figure 1, a 

schematic of the function of imaging spectrometry is illustrated. 

                                                      

2
From Wikipedia, Imaging spectroscopy. http://en.wikipedia.org/wiki/Imaging_spectroscopy, last 

accessed on 20.03.2013 
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Figure 1: Working schematic of imaging spectroscopy (Image: www.apex-esa.org, last accessed 20.03.2013) 

Analysing the vegetation using remotely sensed data requires knowledge of the 

biochemical, structural and functional vegetation characteristics and its optical 

properties. Vegetation interacts with solar radiation differently from other natural 

materials, such as soils and water bodies. Vegetation optical properties in terms of 

absorbing, reflecting and transmitting solar radiation is the result of many interactions 

with different plant materials, which varies considerably with wavelength. The 

interaction of radiation with plant leaves in terms of reflection, absorption and 

transmission depends not only on the wavelength, but also on a range of structural 

and chemical characteristics such as chemical composition, leaf age, leaf thickness, 

leave structure and water content. The wavelengths cause electronic transitions in the 

atoms and molecules and transfer them into molecular vibrations (rotation, bending 

and stretching) between the C-H, N-H, O-H, C-N and C-C bonds, which are the primary 

constituents of plant tissue (Mutanga, 2004). The radiation are either emitted or 

absorbed at distinct wavelength. 
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Water, pigments, nutrients and carbon are each expressed in the reflected optical 

spectrum from 400 nm to 2500 nm, with often overlapping, but spectrally distinct, 

reflectance behaviours. The absorption characteristics of these compounds determine 

the optical properties, which as a result are then visible in e.g. the reflectance spectra. 

These known signatures allow scientists to combine reflectance measurements at 

different wavelengths to enhance specific vegetation characteristics3. 

The typical characteristics of healthy green vegetation over the wavelength range from 

400-2500 nm are shown in Figure 2. The optical spectrum is divided into four distinct 

wavelength regions (Lillesand & Kiefer, 1994): 

1.  Visible: 400 nm - 700 nm 

a.  Blue: 400 - 500 nm 

b.  Green: 500 - 600 nm 

c.  Red: 600 - 700 nm 

2.  Near-infrared (NIR): 700 nm - 1300 nm 

3.  Shortwave infrared 2 (SWIR-1): 1300 nm - 1900 nm 

4.  Shortwave infrared 2 (SWIR-2): 1900 nm - 2500 nm 

                                                      

3
 From ENVI User’s Guide: Vegetation Indices. http://geol.hu/data/online_help/Understanding_ 

Vegetation_and_Its_Reflectance_Properties.html, last accessed on 20.03.2013.  
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Figure 2: Typical spectral signature of vegetation, water and bare soil (Image: Remote Sensing, fundamental 

Concepts, from http://www.remote-sensing.net, last accessed on 06.12.2012). 

The break-down from NIR to SWIR-1 is marked by the atmospheric water absorption 

region (around 1500 nm) in which sensors can’t acquire measurements. The same 

occurs at the transition between SWIR-1 and SWIR-2 at 1900 nm. The sharp increase in 

the reflectance between the red visible (600 nm) and the NIR (800 nm) is called the red 

edge, a region that marks the boundary between absorption by chlorophyll in the red 

and scattering due to leaf internal structure in the NIR region. Increasing chlorophyll 

concentration results in a broadening of the chlorophyll absorption peak that moves 

the red edge to longer wavelengths while losses of chlorophyll as in senescence lead to 

shorter wavelengths for the red edge position (Jones & Vaughan, 2010).  

As mentioned above the photosynthetic active chlorophyll pigments have the most 

influence in the signal. Other leaf pigments such as carotenoids and anthocyanins, are 

responsible for the autumn leaf colour, also contribute a small part of the reflection in 

the visible range. At the red-edge the reflectance is strongly correlated with plant 

biochemical and biophysical parameters (Mutanga & Skidmore, 2007; Clevers, 1999). 

In the NIR, there is high reflectance and transmittance, and very low absorption. The 

physical control is the internal leaf structure (Kumar et al., 2001; Rosso et al., 2005). In 

the mid-infrared there is lower reflectance than in other spectral regions due to strong 

water absorption and minor absorption of biochemical content (Kumar et al., 2001). 

Here the reflectance receives contributions from nitrogen and various forms of carbon.   
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The reflectance properties at canopy level depend on both individual components of 

the vegetation (leaves, stems, soils, water, etc.) and the canopy architecture. 

Additionally, the scattering and absorption inside the canopy plays an important role. 

Different vegetation types, e.g. forests, grasslands, or agricultural crops have different 

reflectance properties, even though the properties of individual leaves are usually 

quite similar (Jones & Vaughan, 2010). Vegetation with mostly vertical foliage such as 

grass reflects differently from foliage with more horizontally-oriented leaves such as 

trees. The most important characteristics of canopies are the leaf area index (LAI) and 

the leaf angle distribution (LAD). The LAI defines the leaf area per unit ground area 

that represents the total amount of green vegetation present in the canopy (Campbell 

& Norman, 1998). The LAI has the strongest effect on overall canopy reflectance. The 

LAD describes the overall variety of directions in which the leaves are oriented, but is 

often simplified by specifying the mean leaf angle (MLA), which represents the actual 

distribution. The MLA is the average of the differences between the angle of each leaf 

in a canopy and horizontal (Falster & Westoby, 2003). Whereas vegetation strongly 

reflects light in the NIR portion of the spectrum, canopies strongly absorb photons in 

the visible and SWIR-2 ranges. This induces a smaller transmission into the canopy at 

these wavelengths. Therefore, vegetation indices using spectral data from the visible 

and SWIR-2 are very sensitive to upper canopy conditions. In contrast, photons are 

scattered in the near-infrared and SWIR-1 range. Hence, these photons measured by 

an instrument come from reflections throughout much of a vegetation canopy3. The 

reflectance behaviour with different LAI and MLA can be seen in Figure 3. 
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Figure 3: Canopy reflectance effects dependant with different LAI and MLA (Image: ENVI user guide, 

http://geol.hu/data/online_help/Understanding_Vegetation_and_Its_Reflectance_Properties.html#wp1159169, 

last accessed on 20.03.2013) 

When analysing mixed ecosystems such as grasslands, not only the live, green 

vegetation, but also the dead vegetation (non-photosynthetic vegetation (NPV)) has to 

be considered. NPV material is composed mainly of the carbon-based molecules lignin, 

cellulose and starch, and the reflectance signatures are characterized by these 

components. Photons in the visible wavelength region are generally efficiently 

absorbed by live, green vegetation, and in the SWIR-2 region of the spectrum, photons 

are efficiently absorbed by the water content. On the other hand, the NPV scatters 

photons very efficiently throughout the spectrum with the most scattering occurring in 

the SWIR-1 and SWIR-2 ranges. The change in canopy reflectance due to increasing 

fractional amounts of NPV is shown in Figure 4.  
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Figure 4: Changes in reflectance between dead and dry vegetation across the optical spectrum
 
(Image: ENVI user 

guide, http://geol.hu/data/online_help/Understanding_Vegetation_and_Its_Reflectance_Properties.html#wp1159 

169, last accessed on 20.03.2013). 

2.2.2 SPECTRAL INDICES 

As different materials have characteristic spectra with maxima or minima at particular 

wavelengths, there is often no need for complex physical models to determine key 

biophysical parameters. Spectral indices based on empirical or semi-empirical models 

are new variables generated by mathematical combination of two or more of the 

original spectral bands chosen in such a way that the new indices are related to the 

biophysical parameters of interest. Especially in the use of vegetation indices (VIs), 

spectral indices have been widely adopted for studying vegetation cover, chlorophyll 

content or quantifying other vegetation properties. VIs are usually dimensionless and 

indicate the amount of green vegetation. A variety of VIs have been published. The 

best known are the Normalised Differenced Vegetation Index (NDVI, Rouse et al., 

1974; Tucker, 1979), the Simple Ratio Index (SRI, Birth and McVey, 1968; Rouse et al., 

1974; Tucker, 1979) and the Red Edge Position Index (REPI, Jago et al., 1999). Most 

vegetation indices are based on the sharp increase in reflectance from vegetation that 

occurs around 700 nm (the red edge), a change that is characteristic of green 

vegetation and absent in most other natural surfaces.   

The NDVI is typically used for modelling simply and quickly the healthy green 

vegetation and its condition and is scaled between 0 and 1. This index is originally 
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introduced by Rouse et al. (1974) in order to separate green vegetation from its 

background soil brightness using Landsat MSS digital data. Today it is also used to 

quantify the photosynthetic capacity of plant canopies. It is expressed as the difference 

between the near infrared and red bands normalized by the sum of those bands. It 

retains the ability to minimize topographic effects while producing a linear 

measurement scale.  

The SRI has the same field of application and is calculated by simply dividing the 

reflectance values of the near infrared band by those of the red band. The contrast 

between the red and infrared bands clearly results, with high index values being 

produced by combinations of low red (because of absorption by chlorophyll) and high 

infrared (as a result of leaf structure) reflectance (Birth & McVey, 1968). Because of 

the ratio problems of variable illumination as a result of topography are minimized to 

some extent.  

The REPI is a narrowband reflectance measurement that is sensitive to changes in 

chlorophyll content. Increased chlorophyll concentration broadens the absorption 

feature and moves the red edge to longer wavelengths. This index is commonly used 

for crop monitoring, yield prediction, photosynthesis modelling or canopy stress.  

With the advent of imaging spectroscopy and the availability of the large amount of 

narrow spectral bands, vegetation indices can be individually designed for a specific 

vegetation property and a specific territory. By correlating the results of the VIs with 

on site field data, the optimal VI is chosen to model the desired vegetation property. 

The advantage of the index implementing two to many bands is to minimize the 

sensitivity to irradiance, illumination and to other factors such as variation in 

atmospheric transmission. The disadvantage of empirical models and VIs is that the 

structural property of the vegetation can’t be modelled. Especially for dense canopies 

(high biomass) the VI have its limitations due to saturation. 

2.2.3 STATE OF THE ART IN BIOMASS ESTIMATION USING VIS  

The quantification of vegetation parameters is an important task in climate and 

ecosystem research, biomass production (food, fibre and fuel) and when investigating 
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land-atmosphere interactions. Accurate characterization of vegetation properties and 

temporal dynamics are therefore needed for many land-cover models that are used as 

prediction maps. These maps can provide detailed spatial information on biomass 

distribution which is useful in the management of protected areas, research of animal 

distributions and grazing effects, ecological process and habitat modelling, and when 

studying the effects of natural and man-made disturbances.  

Grasslands belong to the earth’s most wide-spread land cover types and represent the 

forage source for livestock and wild herbivores (Mutanga & Skidmore, 2004). Studies 

using hyperspectral data to estimate biomass by relating field data to vegetation 

indices have been carried out under controlled laboratory conditions (Mutanga & 

Skidmore, 2004). The biomass production of mixed grassland ecosystems under 

natural conditions has been investigated in several studies using hyperspectral data 

(Rahman & Gamon, 2004; Mirik et al., 2005; Tarr et al., 2005; Beeri et al., 2007; Cho et 

al., 2007; Psomas et al., 2009). These studies show the complexity of the spectral 

response of mixed grasslands, especially in the presence of a high fraction of NPV and 

exposed soil (Beeri et al., 2007; He et al., 2006; Boschetti et al., 2007), grazing impact 

(Numata et al., 2007), and canopy architecture complexity due to mixed species 

composition and phenology (Cho et al., 2007; Numata et al., 2008). Mirik (2005) 

estimated total and live biomass with hyperspectral 1-m resolution data by SRI and 

NDVI indices. The SRI or NDVI with the best relationships for biomass were found in 

the NIR part of the spectrum for band 1 and the visible part of the spectrum for Bands 

2 with an R2 = 0.88. Beeri et al. (2007) also estimated forage quantity and quality using 

hyperspectral imagery for northern mixed-grass prairie. A narrow band NDVI (802 nm, 

673 nm) was calculated from HyMap imagery and regressed against ground truth data 

resulting in an R2 = 0.78. Cho et al. (2007) also showed an estimation of green 

grass/herb biomass from airborne hyperspectral imagery using spectral indices. The 

NDVI and REPI were calculated from HyMap data and correlated with ground truth 

samples. NDVIs involving far red-edge bands in the 725 - 800 nm range produced 

higher coefficients compared with traditional NDVIs computed from red and NIR 

bands. Another study showed that narrow-band NDVI resulted in the best models to 
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predict aboveground biomass of dry grassland sites by field spectroradiometer 

(Psomas et al., 2009). 

Using grass (Cenchrus ciliaris) grown in the greenhouse, Mutanga & Skidmore (2004) 

showed that narrow-band NDVI computed from 740 and 755 nm (both in the far RED) 

solved the saturation problem when estimating grass biomass at high canopy cover. 

The NDVIs of all possible band combinations were calculated and compared to the 

standard NDVI.  

Identification of hyperspectral vegetation indices for pasture characterization has been 

analysed by calculating SRIs and NDVIs using all combinations of bands and regressing 

them against field data (Fava et al., 2009). SRIs involving bands in NIR (770 - 930 nm) 

and in the red edge (720 - 740 nm) yielded the best performance for biomass. Another 

conclusion was that SRIs always performed better than NDVIs, but the combination 

ranges evidenced by the two indices were the same. 

Another study analysing vegetation biomass in river floodplains using imaging 

spectroscopy showed that regression models with VIs and field measurements could 

be improved when differences in vegetation structure were taken into account 

(Kooistra et al., 2006). Better regression models have been achieved for individual 

plant functional types (grassland, shrub, mixed herbaceous and softwood forest).  

To conclude, there have been numerous attempts to model biomass with 

hyperspectral data by using vegetation indices, but to our knowledge, no study exist 

that uses this technique for biomass modelling of alpine grassland.  

2.3 APEX 

The Airborne Prism Experiment (APEX) is an airborne imaging spectrometer developed 

under the scientific lead of a Swiss-Belgian collaboration between the Remote Sensing 

Laboratories (RSL, University of Zurich (CH)) and the Flemish Institute for Technological 

Research VITO (B) on behalf of the European Space Agency (ESA) PRODEX programme. 

The industrial consortium is headed by RUAG Aerospace (CH) with subcontractors such 

as OIP Sensor Systems (B) and Netcetera AG (CH). Special contracts were issued by ESA 
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for the development of a shortwave-infrared detector (Sofradir, (F)), and a calibration 

facility at the German Aerospace Center (DLR). The sensor is intended as a simulator 

and a calibration and validation device for future spaceborne hyperspectral imagers 

(Itten et al., 2008) The development started in 1993, and from 2008 - 2010 the sensor 

was in the calibration and testing phase. APEX was formally accepted by ESA at the end 

of 2010 and the sensors can be used commercially nowadays. Consequently, 2011 was 

the first year of commercial operations, resulting in two flight windows of a total of 7 

weeks (Stessens, 2012).  

APEX is built as a pushbroom dispersive imaging spectrometer recording more than 

330 spectral bands contiguously. The instrument specifications can be found in Table 

1. The APEX mission for the SNP acquired 186 km2 at a 2x2 m spatial resolution 

determined by the sensor’s instantaneous field of view (IFOV) in combination with a 

flight height of 4400 - 5400 m asl. 1000 pixels were recorded across-track with a data 

rate of 0.42 GBytes/km per flight path. The spectral configuration was set to 312 

spectral bands to be acquired simultaneously. We used 301 bands for analysis, after 

some bands had to be removed due to noise. The sensor was installed on a Research 

Aircraft Dornier DO-228 aircraft (see Figure 5).  

Table 1: Instrument specifications (from http://apex-esa.org, last accessed 20.12.2012) 

Spectral Range VNIR: 380 - 970 nm 
 SWIR: 940 - 2500 nm 
Spectral Sampling Interval VNIR: 0.55 - 8 nm over spectral range (unbinned) 
 SWIR: 5 - 10 nm over spectral range 
Spectral Resolution (FWHM) VNIR: 0.6 - 6.3 nm over spectral range (unbinned) 
 SWIR: 6.2 - 11 nm over spectral range 

Spectral Bands 
VNIR: default 114 bands, reprogrammable through 
customized binning pattern 

 SWIR 199 bands 
Spatial Pixels 1000 
FOV (across track) 28° 
IFOV 0.48 mrad 
Spatial Sampling Interval (across 
track) 

1.75 m @ 3500 m AGL (2 - 5 m at flight altitudes of 4 - 10 
km) 

Sensor dynamic range VNIR: CCD, 14 bit encoding 
 SWIR CMOS, 13 bit encoding 
Pixel size VNIR: 22.5 μm x 22.5  μm 
 SWIR: 30 μm x 30 μm 
Smile (average over FOV) 0.35 pixels 
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Keystone (frown, average over FOV) 0.35 pixels 
Co-Registration (average over FOV) 0.6 pixels 
Signal-to-Noise SNR for various applications are available upon request 

 
Highest signal to noise ratio through advanced detector 
technology and pressure / temperature stabilization 

 

  

Figure 5: Picture of the Dornier DO-228 on which the sensor was installed, and the APEX sensor (Images from RSL, 

University of Zurich) 

The instrument consists of a collimator that directs the light transmitted by the slit 

towards the prism, where a dichroic beam splitter separates it over two sensors: one 

sensitive in the VNIR and one sensitive in the SWIR wavelength range (Schaepman et 

al., 2003). The sensor is temperature and pressure stabilized and equipped with a built 

in “In-Flight” calibration facility. A control and storage unit (CSU) is available for the 

flight management to save navigation via GPS as well as the recorded data.  

 
Figure 6: Overview of APEX subsystems (image from Schaepman et al., 2003). 
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The external facilities are the Calibration Home Base (CHB) for instrument calibration, 

which is located at the DLR in Germany, and a data processing and archiving facility 

(PAF) for operational product generation, which is managed by VITO (Jehle et al., 

2010). 
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3 METHODOLOGY 

The high spectral and spatial resolution of APEX data allows the correlation of the 

measured reflection with ground truth data. The generation of the biomass prediction 

map of the grassland of Val Trupchun is carried out by a statistical model which is 

optimized by the best calibration result.  

3.1 THE STUDY AREA 

The study site is located in the upper Engadin valley in south-eastern Switzerland 

(46°40’N, 10°15’E), within the territory of the Municipality of S-chanf. Val Trupchun 

was integrated into the national park in three steps, shown in Figure 7. The left (north) 

side of the valley has belonged to the park since its foundation in 1911, while the 

innermost part of the valley including Alp Trupchun followed in 1932. The right (south) 

side of the valley was joined in 1961.  

 

Figure 7: Overview of the study site Val Trupchun and its historical park boarders 
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The area is famous for its exceptionally high densities of ungulates: alpine ibex (Capra 

ibex, L.), chamois (Rupicapra rupicapra, L.) and red deer (Cervus elaphus, L.). The valley 

covers an area of about 23 km2 and is dominated by grassland communities distributed 

over a large altitudinal range (1800 - 2600 m asl.) which represent the forage resources 

for ungulates. Forest, rocks and snow are the other land cover types to be found. The 

valley extends from east to west with very steep slopes of up to 78°. The bedrock is 

mainly composed of limestone and calcareous schist. The climate of the area is alpine. 

Average annual precipitation is ca. 700 mm with precipitation maxima in summer (June 

to August, 275 mm) and minima during the winter months (November to April ca. 215 

mm), when precipitation consists of snow. The growing season starts late, especially at 

higher altitudes and on the north side of the valley, so that the different phenological 

stages occur simultaneously. The forest, which mainly consists of mountain pines 

(Pinus mugo, Turra), larches (Larix decidua, Mill.) and some Swiss stone pines (Pinus 

cembra, L.), reaches an altitude up to about 2150 m asl., followed by grassland at 

higher altitudes. Above the slopes, the land cover consists only of rock, covered by 

year-round snow at some locations. The former alp, which originates from the land use 

before the park foundation, is located at the end of the valley at 2040 m asl., where 

the old alp hut still exists.  

3.2 FIELD DATA COLLECTION 

Fieldwork was carried out to collect ground-truth data of the grassland. Twenty-five 

plots had previously been defined, which were distributed over the valley and at 

various altitudinal gradients in order to account for differences in species composition, 

productivity, phenological stages and soil type. A map with the sample plots indicated 

is shown in Figure 8.  
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Figure 8: Locations of the 25 sample plots in Val Trupchun, where 1x1 m of vegetation was clipped. 

The first plot is located a short distance behind the park entrance in a large forest 

clearance (AX01). Two plots are located at the Alp Purcher (1860 m asl.), an old alp 

from the time before the park (AX06 and AXB01). AX07 and AX08 are situated at the 

entrance of Val Müschauns, a side valley of Val Trupchun. AXB02, AXB03, AXB04 and 

AXB05 are located further back in the valley near a picnic area close to the trail, AXB02 

and AXB03 on the Dschembrina side and AXB04 and AXB05 close to the bridge. AXF03, 

AX02, AX03, AX04 and AX05 are the plots at the northern slope of the valley covering 

an altitudinal gradient of 500 m up to 2500 m asl. at the top. Opposite are the plots 

AX17, AX16, AX15, AX14 and AX13 along the southern gradient, reaching an altitude of 

2310 m asl. AX09, AX10, AX11 and AX12 are plots at the very end of the valley, at 

about 2200 m asl. and enclosed by steep slopes. AXF01 and AXF02 are two plots at the 

southern slope at God Malögetta and God Trupchun (both 2200 m asl.). More detailed 

maps of the plots can be found in Appendix A.  

The plots were chosen at locations with vegetation as homogenous as possible, and 

squares of 6 x 6 m were marked. The corners of the plots were marked with flags and 
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measured with a differential global positioning system (GPS), device type Leica RX 

1210 T. On 24 of June 2010, on the same day as the flight, above-ground biomass was 

clipped within a 1m2 subplot located in the middle of each plot (see Figure 9). The 

vegetation samples were sealed in plastic bags and weighed the same day in order to 

determine wet biomass. Afterwards, the samples were dried in the oven at 65° for 48 

hours and weighed again to determine dry biomass.  

 

Figure 9: Apex ground truth plot design 2010 

3.3 IMAGE ACQUISITION AND PRE-PROCESSING 

The APEX flight was carried out on 24 of June under cloud free conditions. The 

acquired image data covers the whole territory of the Swiss National Park. The images 

were collected at solar noon at an average flight height of 6500 m above sea level 

(asl.). The specific study site Val Trupchun was covered by four image strips, each with 

an extend of about 2x6 km and a ground resolution of 2 m. The flight lines are SW to 

NE oriented, cross-wise to the valley and the mountain ridge (see Figure 10). The sun 

position in terms of solar zenith (SZ) and solar azimuth (SA) for the image strips were 

about SZ=66.2° and SA=166.9°. The APEX sensor comprised 301 wavebands, operating 

over a wavelength range of 380 - 2500 nm with an average spectral resolution of 3.45 

nm in the VNIR (380 - 970 nm) and 8.6 nm in the SWIR (940 - 2500 nm) (cf. chapter 2.3, 

Table 1). 
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Figure 10: Overview of the study site and the 4 flight strips (S_42, S_52, S_62 and S_72) 

The image strips were atmospherically and geometrically corrected by RSL using 

standard procedures. The atmospheric correction was computed using the ACTOR-4 

software tool to obtain hemispherical-conical-reflectance (HCRF) data (Schläpfer & 

Richter 2002). The geometrical correction was made using the Parametric 

Geocorrection (PARGE) software (Schläpfer & Richter, 2002) and data were afterwards 

transformed in the Swiss coordinate system LV 03. The geo-corrected APEX data can 

be overlaid with other auxiliary data (e.g. a digital elevation model DHM25) and 

directly related to the biomass ground-truth data. The geometric distortions of the 

orthorectified data were evaluated based on ground based GPS measurements and 

were found to be less than one pixel (+/- 2m) (Damm et al., 2012). However, there 

were differences between the reflectance of similar pixels in the overlapping regions 

between image strips due to different view angles and effects of surface anisotropy 

(Weyermann et al., 2013).  

3.4 DATA ANALYSIS 

To extract APEX reflectance data at the sample locations, the following procedure was 

applied: A square of 6x6 m around the centre coordinate of the plots was imported 
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into the ENVI 4.7 software. This square corresponded to 9 pixels (3x3 pixels) of the 

APEX data from which the average reflectance was extracted as reference value. There 

were plots lying on more than one strip because of the overlapping zone, so that two 

reference reflectance values were available for one sample. These values were 

considered as independent measurement points. Consequently, there were 43 

measurement points available, from which 18 points were double (same ground truth 

biomass value, but different reference reflectance).  

The biomass samples were divided into two groups, one used for the calibration (22 

points), and one for the validation (21 points) of the model using a stratified random 

sampling approach. An empirical model was developed based on the 22 calibration 

samples. The standard NDVI was calculated based on band 50 (664.3 nm) and band 86 

(808.8 nm) by using the following formula:  

     
       

       
  
             
             

 

where R is the reflectance at the specific wavelength.  

The calculated NDVI was regressed against the calibration biomass samples in an 

exponential regression to obtain the coefficient of determination (R2) for calibration. 

An exponential (instead of linear) regression can be implemented due to the large 

volume scattering of vegetation that induces sensor saturation at high densities. 

Since APEX provides more bands in the red (600 - 700 nm) and NIR (700 - 1300 nm), we 

tested if calibration results could be improved by calculating simple ratio vegetation 

indices (SRI) with all possible combinations of 301 bands and regressing them against 

the calibration data set.  

     
  
   

 

where Ra and Rb is the reflectance at wavelength a and b, respectively.  

Spearman’s rank correlation coefficients (R) resulting from the regression analysis 

were plotted on a 2D-contour plot to evaluate R characteristic patterns and identify 
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the best wavelength combination. This procedure allowed the selection of optimal 

bands to be used in the calculation of the index. Band combinations with maximized 

correlation with biomass were chosen, considering cause effect relationships between 

spectral bands and underlying absorption and scattering processes. For the final model 

we chose the best SRI within the range of the visible (RED) for the first band and near-

infrared (NIR) (700 - 1300 nm) region for the second band. Within this range, high 

reflection occurs on healthy biomass, and no water absorption interferes with the 

signal. With the chosen SRI we computed an exponential regression model to predict 

and map biomass content.  

Predictive performance of the biomass model was computed with the independent 

validation data set. The coefficient of determination (R2) and the root mean square 

error (RMSE) were calculated to compare the predicted with the observed values. 

Secondly, a SRI model was calculated with another band selection to test the problem 

of underestimation in the region of high biomass, usually occurring with NDVI and SRI 

models with a broad band selection. Two narrow bands in the far RED were chosen as 

this should solve the saturation problem according to Mutanga and Skidmore (2004). 

Furthermore an investigation about the APEX data regarding the overlapping zone 

between two strips was carried out. As SRI values on overlapping regions vary slightly 

between the strips, the different SRI from plots located on more than one strip are 

analysed in a scatterplot.  

Then an analysis about the variability of the APEX pixel location is conducted. The 

average SRI at the sample plot locations were extracted for the 5x5 pixels around the 

centre coordinate and compared to the result of 3x3 pixels. This value was converted 

by the SRI biomass model equation to analyse the difference with respect to the 

biomass prediction. The biomass discrepancy predicted for the sample plot locations 

are compared and discussed in a histogram.  

The biomass prediction model is only valid for grassland. A linear spectral unmixing 

method (LSU) was performed to separate different land cover classes and to extract 
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the grassland. LSU is a classification approach that can be used for hyperspectral 

imagery based on the materials’ spectral characteristics. The reflectance at each pixel 

of the image is assumed to be a linear combination of the reflectance of each material 

present within the pixel (Boardman, 1989). The measured spectrum of a mixed pixel is 

decomposed into the set of corresponding fractions (endmembers) that indicate the 

proportion of each endmember present in the pixel. Pure training pixels were manually 

defined for grassland, rock, snow and forest in selecting homogenous pixels as regions 

of interest. The linear unmixing method is then assigning each pixel into the 

predefined classes based on the abundance values of each endmember. The unmixing 

result has a data range (representing endmember abundance) from 0 - 1. 50% has 

been taken as abundance for extracting grassland.  

 



 

                                                                                                                                                                 37 

4  RESULTS 

For the calibration data set, 22 sample plots were randomly chosen out of 43 

independent reflection reference values from all sample plots. The plots lying in   

overlapping regions of two strips were taken as independent reflection references, as 

different reflectance values were available. A table with the specific calibration and 

validation points of all sample plots can be found in Appendix. For all correlations 

between biomass sample and APEX reflectance spectra, the comparison was carried 

out using the wet weight of the biomass samples. The wet weight achieved overall 

better R2 compared to the dry weight.  

4.1 FIELD SAMPLE RESULTS 

In Table 2 the results of the field campaign can be found. The dry and the wet weight 

of all 25 biomass samples are listed. The samples were overall in a reasonable range 

with a mean average of 400 g/m2 (SD = 80 g/m2) for the wet weight and 126 g/m2 for 

the dry weight (SD = 260 g/m2). The minimum was found at Alp Trupchun East (37 

g/m2). High biomass was found especially on former alp sites, at Alp Purcher (AX06), 

Alp Trupchun (AX14) and at the entrance of Val Müschauns (AX07). 
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Table 2: Overview of the raw data of all biomass samples 

Plot Height Dry weight Wet weight Location 

  m asl. [g/m2] [g/m2]   

AX11 2174 9.31 37.2 Alp Trupchun E 
AX16 2141 36.91 78.3 Alp Trupchun S ++ 
AX12 2202 16.62 90.9 Alp Trupchun E 
AX10 2193 28.03 135.1 Alp Trupchun E 
AX04 2406 61.96 181.5 Alp Trupchun N +++ 
AXF03 2141 89.39 230 Alp Trupchun Falle N 
AX05 2491 96.72 181.6 Alp Trupchun N ++++ 

AXF02 2209 49.74 207.1 God Trupchun S oben 
AXB02 2014 123.55 352.8 Dschembrina W 
AX09 2190 66.38 288.8 Alp Trupchun E 
AX13 2313 82.9 250.7 Alp Trupchun S +++++ 
AX08 1898 103.16 442.1 Val Müschauns E 
AXB03 1998 152.84 414.5 Dschembrina E 

AX02 2208 148.08 425.7 Alp Trupchun N + 
AXB04 2004 149.69 385.4 Brücke N 
AX03 2282 170.53 496.8 Alp Trupchun N ++ 
AX17 2135 192.92 464.6 Alp Trupchun S + 
AXB01 1893 97.76 424.5 Purcher S oben  

AXF01 2222 137.41 483.6 God Malögetta 
AXB05 1985 102.74 487.5 God Trupchun S unten 
AX01 1823 191.62 614.2 Trupchun Eingang Wiese 
AX15 2204 175.33 552.6 Alp Trupchun S +++ 
AX14 2297 327.4 683.1 Alp Trupchun S ++++ 
AX07 1896 248.59 858.9 Val Müschauns W 
AX06 1861 285.36 1235.4 Alp Purcher 

Mean 2127 126  (SD=80) 400  (SD=260)  

 

4.2 REGRESSION OF BIOMASS AND STANDARD NDVI 

The standard NDVI was calculated using APEX band 50 and 86 located at 664.3 nm and 

808.8 nm. A correlation with the calibration data set was computed, and an 

exponential regression yielded the best fit with an R2 of 0.74, shown in Figure 11.  
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Figure 11: Regression between the standard NDVI derived from APEX reflectance spectra from bands at 809 and 

664 nm and the wet weight biomass calibration sample data 

The validation of the model was carried out by calculating the predicted biomass using 

the calibration model at the validation sample plots and comparing them against the 

true wet weight values. The R2 and the RMSE were 0.54 and 236 g/m2 respectively, 

shown in Figure 12.  
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Figure 12: Regression between the predicted biomass value calculated from the NDVI model calibration and the 

true biomass value of the validation sample plots 

Plots AX06, AX07 and AX14 are located furthest from the 1:1 line. AX06 is located at 

Alp Purcher, next to a former alp hut, where tall-herb communities dominated by 

stinging nettle (Urtica dioica, L.) and monkshood (Aconitum napellus ssp. Vulgare, DC.) 

occur. The model predicts that there should be less biomass than the measured value. 

The biomass at AX14 is also underestimated from the model. The second value of this 

plot from strip S42 already deviates from the calibration curve. This plot is situated on 

the southern gradient at 2300 m asl. AX07 is situated at the entrance of Val Müschauns 

on a spot with ruderal vegetation.  

It can be concluded that the model based on the standard NDVI generally 

underestimates biomass values above 600 g/m2.  

4.3 REGRESSION OF BIOMASS AND OPTIMAL SIMPLE RATIO INDEX 

To optimize the model, simple ratio indices (SRI) were calculated with all possible 

combinations of bands and correlated against the calibration data set. Spearman’s 
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rank correlation coefficients (R) were plotted on a 2D-contour plot to identify the best 

wavelength combination, shown in Figure 13. 

 

Figure 13: 2D-correlation plot that shows the correlation coefficient R (Spearman’s Rank) between SR indices and 

biomass. The matrix is symmetrical. Below the diagonal, band combinations are marked in red where R>0.8.  

High correlations were found between one band in GREEN and one band in NIR, one 

band in RED and one in NIR with overall highest R = 0.823, and one band in NIR and 

one in SWIR-1. A table with band combinations R > 0.8 can be found in Appendix B.  

For our final biomass model the best SRI within the range of visible (RED) and near-

infrared (NIR) (700 - 1300 nm) region was chosen. Within this range high reflection on 

healthy biomass occurred and no water absorption interfered with the signal. Another 

argument was to choose a band close to the diagonal 1:1 line. The closer the two 



5 Results 

                                                                                                                                                                   42 

bands are, the smaller are the atmospheric and external influences. This can be 

observed by comparing the SRI values at the plot locations that lie on two strips. The 

differences between SRI of the two strips are lower with band combinations closer 

together.  

The SRI of band 92 (842 nm) and band 68 (727 nm) achieved the best R (0.823) overall 

and fulfilled the selection criteria. Figure 14 illustrates the spectrum of a typical 

grassland pixel from our site with the two chosen bands indicated.  

 

Figure 14: Reflectance spectra of a typical pixel of the grassland in Val Trupchun. The blue mark indicates the band 

at 730 nm and the red mark the band at 840 nm 

This combination was chosen for the final biomass model. An exponential regression 

model was computed again between SRI and wet weight biomass of the calibration 

data set resulting in an R2 of 0.77 (Figure 15).  
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Figure 15: Regression between SRI derived from APEX reflectance spectra from band at 842 nm and 727 nm and the 

wet weight biomass calibration sample data. 

The validation of the model was carried out by calculating the predicted biomass using 

the model equation for the validation sample plots and comparing them to the true 

wet weight values. The R2 and RMSE were 0.57 and 238 g/m2 respectively, shown in 

Figure 16. 

Generally the pattern of the plots was comparable to the NDVI model. The outliers 

were again AX14, AX06 and AX07. The calibration model under-estimated biomass 

values above 600 g/m2. 
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Figure 16: Regression between the predicted biomass value calculated from the SRI model calibration and the true 

biomass value of the validation sample plots 

4.4 REGRESSION OF BIOMASS AND NARROWBAND SRI 

According to Mutanga and Skidmore (2004) a narrow band SRI, both located in the far 

RED (around 750 nm) should solve the saturation problem which means that sample 

locations with high biomass occurrence aren’t underestimated.  

To analyse this thesis, the best R around two bands in the far RED was selected from 

the 2D-correlation plot (cf. Figure 13). The SRI between band 77 at 765 nm and band 

70 at 735 nm has an R of 0.810 and is thus only slightly lower compared to the highest 

R (0.823) for the optimal SRI at bands 92 and 68. The model was recalculated with 

these two bands to check for a possible model improvement.  

The exponential regression is shown in Figure 17. The coefficient of determination (R2) 

is 0.7697, which is only slightly lower than our best SRI (R2 = 0.7728). On the other 

hand, the validation shown in Figure 18 yielded 10% better validity (67%). High 
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biomass values were still underestimated (AX06, AX07, AX14), but at a lower level than 

with the best SRI model. 

 

Figure 17: Regression between SRI derived from APEX reflectance spectra from band at 765 nm and 735 nm and the 

wet weight biomass calibration sample data 

 

Figure 18: Regression between the predicted biomass value and the true biomass value for the prediction model 
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4.5 BIOMASS MAP 

The best SRI regression model (band 842 and 727 nm) that was found for the 

estimation of biomass was applied to the APEX image. Only image pixels representing 

grassland were considered. The grassland was extracted by carrying out an LSU 

classification with the APEX data. Figure 19 shows the resulting biomass prediction 

map.  

Estimated biomass values were generally in a reasonable range. Biomass values were 

categorized into 10 classes for cartographic reasons. The class intervals were 

computed by steps of ½ standard deviation. On the map, it can be seen that biomass 

decreases with increasing altitude at the slopes. Three locations with high biomass are 

noticeable. The highest biomass sources are located around the former Alp Trupchun. 

High sources are also visible around former Alp Purcher. Another spot with remarkably 

high occurrence is situated at the end of the valley on the bottom south slope. 
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Figure 19: Biomass map of Val Trupchun overlain on a graphical relief shading 

Figure 20 shows a close-up of the map around Alp Trupchun. To analyse the biomass 

source, the HABITALP dataset is overlaid. This map includes herb/grass functional 

types or dominant species if one vegetation unit stands out. It can be seen that high 

biomass correlates with the occurrence of monkshood. This means that excessive 

nutrients are available in this area which stem from former anthropogenic activities on 

the alp (cattle or sheep excreta). The alp hut can also be seen on the map. It’s the 

small square with zero biomass, as well as the trail, where no vegetation grows.  
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Figure 20: Detailed biomass map and monkshood occurrence of the grassland around Alp Trupchun 

A detailed map of the area around Alp Purcher can be seen in Figure 21. There is a high 

biomass concentration around the old alp hut, where the trail diverts, and also on the 

right side of the entrance to Val Müschauns. A comparison with the grass/herb 

classification of the Habitalp map shows here that there is dominant stinging nettle 

coverage around Alp Purcher, which we also noticed during fieldwork. The right part of 

the pasture around the hut is characterised by dominant tall-herb communities, 

Megaphorbiae. The pasture in Val Müschauns is covered by ruderal vegetation. This 

spot next to the riverbed has low substrate and is mainly covered by tufted hairgrass 

(Deschampisa cespitosa L.), which is a densely tufted plant with a lot of biomass and 

little water content.   
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Figure 21: Detail map of Alp Purcher with special herb/grass type  

The third spot with remarkable biomass occurrence situated at the end of the valley 

can be seen in Figure 22. The Habitalp map doesn’t indicate a special herb / grass cover 

at this spot. The remarkably high sources must derive from good exposition, soil and 

moisture characteristics. However, it can be noted that on this site grazing and resting 

ungulates, mainly red deer, can be observed frequently, especially during summer 

months. 
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Figure 22: Detailed map of the bottom south slope in the back of the valley with high biomass sources 

Figure 23 shows the histogram of the biomass map. Most values are in the range of 

200 - 400 g/m2. These are generally plausible values for alpine grassland. The average 

mean of all biomass samples on the territory of the SNP (standing crop) in 2010 was 

355 g/m2 in 2010 (SD=240 g/m2) with a minimum of 20 g/m2 and a maximum of 1235 

g/m2. These values didn’t differ much in 2011 and 2012. 
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Figure 23: Histogram of the biomass map of Val Trupchun 

4.6 DIFFERENT REFLECTANCE VALUES BETWEEN STRIPS 

For the uncertainty analysis of our model an investigation of the sample plot location 

lying on more than one strip have been carried out. The differences of the SRI between 

the overlapping image strips were analysed by the variability of the plots located on 

two strips in a scatter plot (Figure 24). The analysis is first done for our optimal SRI 

with band 842 and 727 nm. The SRI value from one strip is plotted against the same 

SRI of the other strip for the double plots. The coefficient of determination R2 is 

acceptable with 0.96. This factor is again dependent on the choice of band 

combinations because this effect is not constant over the bands. The same scatter-plot 

for the SRI with narrow bands (765, 735 nm) resulted in an R2 of 0.95 (Figure 25). 
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Figure 24: Scatter plot of the optimal SRI values of all sample plots on APEX strip a against strip b 

 

Figure 25: Scatter plot of the narrow band SRI values of all sample plots on APEX strip a against strip b 
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To quantify these differences with respect to the biomass prediction, the comparison 

was carried out implementing the modelled values. The result produced a mean error 

of 12% for the biomass on these plots.  

Investigating the individual plots, the highest differences occurred at plot AX16 (32%), 

AX06 (22%), AX17 and AX14 (both ca. 20%). The results can be found in Table 5, 

Appendix B.  

4.7 VARIABILITY OF SAMPLE PLOT LOCATION 

Another analysis with respect to the uncertainty of our model was carried out by 

investigating the location of our sample plots. The correlation of the biomass sample 

data with the APEX pixel data was done by extracting the mean value of 3x3 pixels 

around the coordinate mid point of each plot. To analyse the impact of possible shifts, 

a comparison between average reflectance of 5x5 pixels (10x10 m) and 3x3 pixels (6x6 

m) were carried out.  

The average SRI from our optimal model with band 842 and 727 nm at the sample plot 

locations were extracted for the 5x5 pixels around the centre coordinate and 

compared to the result of 3x3 pixels. This value was converted by the biomass model 

equation to analyse the difference with regard to the biomass prediction. Figure 26 

shows the biomass discrepancy in percent for all sample plots, predicted with the new 

5x5 pixels model and compared to the values of the 3x3 pixels model. A positive value 

on the y-axis means that the old model reaches a higher biomass prediction compared 

to the 5x5 pixels model and vice versa. The absolute mean difference is 4.6%, seen on 

the last bar.  
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Figure 26: Biomass discrepancy predicted for the sample plot locations between implementation of average 

reflection of 3x3 vs. 5x5 APEX pixels as reference values. 
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5 DISCUSSION 

In general high correlations with biomass ground truth were found. The optimized 

model was generated by implementing the best SRI. In the following discussion we 

found that the best calibration doesn’t bring the best validation result. Many factors 

showed that the model validation vary strongly with different model input settings. 

5.1 BIOMASS REFERENCE 

The biomass field data was available as wet and dry weight. The regression analyses 

showed that wet weight correlated better with APEX data than dry weight. The 

reflection of the actual vegetation cover showed high volume scattering due to the 

water content and the leaf architecture. It makes more sense to correlate reflectance 

with wet weight because many different plant types are found within one plot and the 

water content of the different plants isn’t constant.  

We were not able to distinguish between dead and live biomass, i.e. between 

photosynthetically active (PV) and non-active vegetation (NPV). We tried not to sample 

the dead material, but as the grassland is very mixed and weedy, this was difficult to 

accomplish. At some plots there was only very little grass coverage (especially on the 

higher plots due to the late start of the growing season), so that all available material 

had to be cut.  

5.2 COMPARISON OF NDVI AND OPTIMAL SRI 

NDVI and SR indices are functionally related (Liang, 2005), however SR indices are 

often used in mountainous regions (Boschetti et al., 2007) since they enhance the 

contrast between soil and vegetation, minimize the effects of the illumination 

conditions (Baret and Guyot, 1991) and reduce shadow effects (Boschetti et al., 2007). 

Additionally, the presented results indicate a better performance of the optimal SRI 

compared to the NDVI and an improved the predictive accuracy of the SRI for biomass. 
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The coefficient of determination R2 increased from 0.74 for the standard NDVI to 0.77 

for the SRI model. The validation is also slightly improved from 0.54 to 0.56 (R2). The 

quality of the model with an accuracy of 57% is good regarding the challenging terrain 

with slopes up to 78°. This means that 57% of the variation in biomass on an 

independent test data set could be explained by the model.  

Both models are non-linear and underestimate high biomass values (above 600 g/m2). 

Such bias can be caused by random noise or fundamentally non-linear relationship in 

the true physical relationship (Geladi et al., 1999). Another reason is saturation of NIR 

reflectance in dense vegetation, which frequently affects NDVI and slightly less SR 

indices. Broad bands for VIs, one in RED and one in NIR, have been shown to saturate 

at high biomass or high LAI (Mutanga & Skidmore, 2004). For our SRI we chose two 

closer bands (730 vs. 840 nm), still located in RED and NIR.  

However, the saturation effect should only occur typically in multilayer vegetation 

such as forests or agricultural crops, with LAI > 4 (Baret & Guyot, 1991). The grassland 

of Val Trupchun would probably have a LAI around 3. Nevertheless, our SRI model still 

underestimates high biomass. Based on this fact the model was recalculated using two 

narrow bands, both located in the far RED, as this should solve the saturation problem 

according to Mutanga and Skidmore (2004). The coefficient of determination (R2) 

between band 77 at 765 nm and band 70 at 735 nm is 0.7697, which is only slightly 

lower than our best SRI (R2 = 0.7728). On the other hand, the validation yielded 10% 

better validity (67%). It can be concluded that high biomass values were still 

underestimated, but at a lower level when avoiding the NIR domain. 

5.3 UNCERTAINTY ANALYSIS 

The 57% accuracy of the SRI model (842/747) validation means that 57% of the 

biomass variance can be explained. This is a comparatively good validation for such a 

complex terrain conducted with completely independent plots. However, several 

factors showed that the model is relatively instable. The selection of the band 

combination is one important factor that influences the model accuracy, as illustrated 

by the example with the narrow band SR index (765/735) in the far RED. The best 
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calibration should normally result in the best validation. Instead, we found a poorer 

calibration with a better validation result. This shows that our model alternates and 

that the sample size is not sufficient enough to develop a robust model. The sample 

size should be increased. 

The selection of the calibration and validation data set also has an influence on the 

accuracy. We chose the plots belonging to the calibration or the validation data sets 

completely randomly. Tests with some manual settings, for example implementing the 

highest and the lowest biomass value into the calibration data set showed that the 

model output varied. We also tried dividing the double reference points from the 

different strips, assigning one to the calibration and the other to the validation data 

sets. However, these model adaptations didn’t result in much improvement. The 

random selection for the calibration and validation data sets was justified and was 

therefore considered as the best solution. With this number of sample plots (n = 43), 

higher accuracies are almost impossible to reach. The uncertainties are mainly due to 

sensitivity to external factors, which overlap the measured signal and influence the 

model, such as atmospheric effects (cloud, haze and other scatterers), topographic 

effects (shading), illumination effects (sun angle and viewing geometry), soil effects 

(soil fraction), structural effects (scattering due to objects/leaf architecture) or random 

noise. Additionally, the sample itself also has some uncertainty derived from potential 

sampling inequality and weighting errors.  

5.3.1 DIFFERENT REFLECTANCE VALUES BETWEEN STRIPS 

The differences of the APEX data between the overlapping regions of the 4 strips are 

another point to be discussed. These differences are caused by the variations of 

illumination- viewing geometry in combination with surface anisotropy. Different parts 

of an image will view the surface at different angles, so that clear brightness gradients 

may often be detected across the image (see schema in Figure 27). In fact, the spectral 

signal reflected from surfaces such as plant canopies is determined by its intrinsic 

surface anisotropy and consequently varies as a function of the angle of view and the 

angle of illumination. Shadows are also influenced by different illumination angles. 

During the pre-calibration of the image, these effects are compensated to the best 
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possible extent during the basic Bidirectional reflectance distribution function (BRDF) 

corrections. However, notable differences usually exist as long as no sophisticated 

BRDF corrections are applied. Therefore, the reflectance of the image pixel of a strip is 

slightly different from the reflectance of the same pixel available on the neighbouring 

strip.  

 

Figure 27: Multiple view angle imaging of vegetation using airborne sensors carried on overlapping flight-paths 

using wide field-of-view sensors to obtain cross-track data. The highlighted area can be viewed at three different 

angles (image from Jones & Vaughan, 2010). 

We haven’t computed any artificial reflectance averaging to obtain one value per 

image pixel for the overlapping regions. A possibility would have been to build a 

mosaic of all four strips implementing the reflectance average or favouring one strip. 

However, each manual computation also involves uncertainties and needs to be 

justified. It was also not possible to take a single reflectance value from one strip, since 

we did not record the exact clipping time of every plot. We therefore cannot tell which 

of the strips correspond better to the biomass data measured. Therefore we decided 

not to carry out such an artificial intervention with the APEX data and keep all original 

values from the two strips as independent data. 

The scatter plot showed a coefficient of determination R2 of 0.96 for our optimal SRI 

(842/727) and 0.95 for the narrow band index (765/735) respectively. Several studies 

showed that using a narrow band combination in RED is less sensitive to varying soil 

brightness, atmospheric condition and sensor view angle compared to a broad band 

combination (Blackburn & Pitman, 1999). With this example this assumption can’t be 

confirmed. Our band selection for the optimal SRI is evidently enough narrow to keep 

this effect small. 
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The quantification of these differences with respect to the biomass prediction showed 

a mean error of 12% for the biomass concentration on the plots. Investigating the 

individual plots, the highest differences occurred at plot AX16 (32%), AX06 (22%), AX17 

and AX14 (both ca. 20%). AX06 is located at Alp Purcher, where the alp hut is located 

close to the plot. This location is therefore suboptimal and the source of error could 

derive from scattering from the building to this plot. Plots AX16, AX17 and AX14 are all 

located on the southern gradient. This area is very steep, the soil is comparatively 

stony and patches of bare soil are frequent, which are all well known sources of error. 

(cf. Table 5, Appendix B.)  

5.3.2 VARIABILITY OF SAMPLE PLOT LOCATION 

Another source of uncertainty in the model is the accuracy of the APEX pixel. In the 

field, we tried to choose homogeneous plots of 6x6 m and sampled a 1m2 subplot in 

the middle of each plot. Firstly, it was difficult to find homogenous vegetation in the 

terrain and this is therefore a subjective aspect. Secondly, APEX image spectrometer 

also has an uncertainty of about 1 pixel (2x2 m), according to RSL. To correlate the 

biomass sample data with APEX pixel data, we selected 3x3 pixels around the 

coordinate mid point of each plot. In theory, this corresponds exactly to the 6x6 m of 

the plots with the clipped square-meter lying in the centre. The reason for taking 3x3 

pixels instead of 1 was the following: The overlay of the sample plot coordinates into 

the APEX image can also involve a maximum mismatch of 1 pixel if the centre 

coordinates falls on a cell boundary. Another small shift is caused by the plot 

orientation. Our plots are oriented in direction to the slope and not to the north, as 

the APEX image is. Therefore, the average reflectance value of the 9 pixels was taken 

as the reference value.  

In Figure 28 two examples of a plot overlain by the APEX image can be seen with the 

pixel selection indicated. It is visible that the pixel selection for plot AX09 has a small 

shift because of the different orientation. 
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Figure 28: Schematic of plot AX12 (left) and AX09 (right) overlain by the APEX image. The APEX image is oriented in 

a northerly direction, whereas the plots have been measured in direction to the slope. The dots indicate the true 

mid points and the corners of the plot, respectively, the green square indicates the 3x3 APEX pixels, the blue square 

the 5x5 APEX pixel implemented for modelling. 

The comparison between average reflectance of 5x5 pixels (10x10 m) and 3x3 pixels 

(6x6 m) demonstrated how much influence small-scale offsets have and if our plots can 

be considered as homogenous. The absolute mean difference between the 

implementation of 3x3 pixels and the 5x5 pixels was 4.6%. We conclude that this is 

negligible compared to the 57% of total model accuracy. This means that our model, 

implemented from the average 3x3 pixels as a reference value, is a justified choice and 

that plots can be generally considered as homogenous. However, the discrepancy 

between plots AX07 and AX16 is more than 20% (cf. Figure 26). AX07 (entrance to Val 

Müschauns) is a plot with very high biomass occurrence and is one of the outliers in 

the model; on the other hand, AX16 (southern gradient) contains very little biomass 

and is located on a steep slope. A small modification in reflectance might induce a 

larger effect on the biomass prediction there.  
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6 CONCLUSION 

Imaging spectroscopy techniques permit not only the classification of vegetation, but 

also the quantitative mapping of different vegetation variables due to their high 

spectral and spatial resolution. This study demonstrates the utility of vegetation 

indices involving APEX bands for estimating biomass in alpine grasslands.  

SRI and NDVI models were suitable for the modelling of biomass prediction maps 

implementing biophysical parameters. We found that the correlation between biomass 

insitu measurements and SRIs was non-linear, most likely due to sensor saturation. Our 

optimal SRI improved the model quality compared to a standard NDVI model. All 

computed models underestimated high biomass values above 600 g/m2. The model 

accuracy of 57% was good considering the challenging terrain. However, several 

factors showed that the model was relatively unstable due to parameter input settings 

and external factors. Differences in APEX data between strips induced an important 

effect, due to different illumination/view angles. The quantification regarding biomass 

prediction due to these differences produced a mean error of 12% for the sample 

plots. The variability analysis investigating the sample plot location demonstrated that 

small-scale geometrical shifts were insignificant compared to the overall model 

accuracy.  

The biomass prediction map showed plausible values for the grassland with high 

concentrations around the former Alp Trupchun, Alp Purcher and on the south slope at 

the end of the valley. We found that high biomass sources were linked to former 

anthropogenic land use, dominant vegetation structure and to preferred ungulate 

habitat today.  

The high-resolution map is now a useful basis for future research in the SNP to 

investigate forage amount and analyse ungulate habitat pattern in Val Trupchun.  
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7 OUTLOOK 

The generated biomass prediction map can be used for future research in Val 

Trupchun. This work was carried out within the scope of a PhD thesis at the Swiss 

National Park analysing ungulate habitat patterns relating to biophysical and 

biochemical parameters. The APEX campaigns have been continued during the years 

2011 and 2012.  

The model produced is applicable only for the study area, since semi-empirical. These 

predictive models are site- and sensor-specific and unsuitable for application to other 

areas or to different seasons. With this model we tried to predict another area of the 

SNP, the grassland of Il Fuorn, which is located ca. 15 km north-east, and didn’t find 

suitable agreement with insitu measurements. This finding highlights the importance 

of local models, based on local measurements for small scales in complex terrain.  

Moreover, our model is only valid for the time of the image, which was June. To 

analyse temporal changes for biomass, the APEX campaign should be carried out 

several times a year.  

The main proposal for a model improvement based on this work is to increase the 

number of sample plots in the study area. With more samples covering the full range 

of biomass concentrations, we suppose that the model accuracy and stability will 

improve. Another possibility would be to clip more than 1 m2 per sample plot to get 

more than one sample out of one plot. Thus, small-scale variability could be improved, 

too. However, all improvement proposals would require a lot more effort in the field 

which is a limiting factor. 

For the APEX campaign carried out in June 2012, 100 sample plots have been 

implemented. Modelling results aren’t available yet, we are curious! 
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9 GLOSSARY 

AISA Airborne Imaging Spectrometer for Applications 

APEX Airborne Prism Experiment 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

asl above sea level 

BDRF Bidrectional reflectance distribution function 

CHB Calibration home base 
CSU Control and storage unit 
DLR Deutsches Zentrum für Luft- und Raumfahrt 
ENVI Environment for Visualisation of Images 
ESA European Space Agency  
FOV Field of view 
FWHM Full width at half maximum 
GIS Geographic Information System 
GPS Global Positioning System 
GREEN Green part of the electromagnetic spectrum 
HABITALP Alpine Habitalp Diversity project 

HCRF Hemispherical-conical-reflectance 
HyMAP Hyperspectral Mapper 

IDL Interactive Data Language 
IFOV Instantenous field of view 
IUCN International Union for the Conservation of Nature 
LAI Leaf Area index 
LSU Linear spectral unmixing method 

MODIS Moderate-resolution Imaging Spectroradiometer 

NASA National Aeronatics and Space Administration 
NDVI Normalized Differenced Vegetation index 
NIR Near infrared part of the electromagnetic spectrum 

NPV Non-photosynthetic active vegetation 

PAF Processing and archiving facility 
PV Photosynthetically active 
RED Red part of the electromagnetic spectrum 
REPI Red edge position index 
RMSE Root mean square error 
RSL Remote Sensing Laboratroy, University of Zurich 
SD Standard deviation 

SNP Swiss National Park 
SNP Signal-to-noise 
SRI Simple Ratio index 

SWIR Shortwave infrared part of the electromagnetic spectrum 
VI Vegetation index 
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VIS Visible part of the electromagnetic spectrum 
VITO Vision on Technology 



 

                                                                                                                                                                 71 

10 APPENDIX 

A) DETAILED MAP OF SAMPLE PLOT LOCATIONS 

 

Figure 29: Map of the entrance of Val Trupchun with plots AX101, AX06, AXB01, AX06 and AX07 indicated 

 

Figure 30: Detailed map of the middle part of Val Trupchun, Dschembrina, God Malgöletta and God Trupchun with 

AXF02, AXB02, AXB03, AXB04 and AXB05 indicated 
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Figure 31: Map of the Alp Trupchun and the north slope of the valley with plot AXF03, AX02, AX03, AX04 and AX05 

 

Figure 32: Map of the inner most part of the valley and the south slope of the valley with plots indicated 
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B) MODEL RESULTS 

 

Table 3: Overview of the calibration and validation data set selection (random) 

Plot Data Set 

  Calibration Validation 

1 AX01_S72 AX16_S42 
2 AX04_S52 AX17_S42 
3 AX07_S62 AX02_S52 
4 AX09_S42 AX03_S52 

5 AX09_S52 AX05_S52 
6 AX10_S42 AX10_S10 
7 AX11_S42 AX13_S52 
8 AX11_S52 AX14_S52 
9 AX12_S42 AX17_S52 
10 AX12_S52 AXB02_S52 
11 AX13_S42 AXB03_S52 
12 AX14_S42 AXB05_S52 
13 AX15_S42 AXF02_S52 
14 AX15_S52 AXF03_S52 
15 AX16_S52 AX06_S62 

16 AXB01_S72 AX08_S62 
17 AXB03_S62 AXB01_S62 
18 AXB04_S52 AXB02_S62 
19 AXB04_S62 AX06_S72 
20 AXB05_S62 AX07_S72 
21 AXF01_S62 AX08_S72 
22 AXF02_S62   

 

Table 4: Correlation hotspots with R > 0.8 from 2D contour plot 

 Bands 
Region i  j 

1 546 - 585 694 - 727 
2 540 - 552 820 - 879 
3 540 - 585 932 - 1289 
4 723 - 743 765 - 860 
5 1298 - 1308 1558 - 1672 
6 1175 - 1308 1733 - 1768 
7 1069 - 1308 2391 - 2432 
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Table 5: Calculation results of different reflectance values between stripes and effect on biomass prediction 

Plot SRI stripe a SRI stripe b Biomass a Biomass b Difference biom. Difference 

      [g/m2] [g/m2] [g/m2] [%] 

AX06 0.8895 0.8948 667.2 679.8 12.6 1.9 
AX07 0.8134 0.8161 510.2 515.1 4.8 0.9 
AX08 0.7794 0.8116 452.6 507.1 54.4 10.7 
AX09 0.7781 0.7182 450.7 364.9 -85.7 -23.5 
AX10 0.2638 0.2881 73.6 80.2 6.6 8.2 
AX11 0.1103 0.1427 42.9 48.1 5.2 10.8 

AX12 0.3784 0.3700 110.2 107.0 -3.2 -3.0 
AX13 0.7548 0.7488 415.1 406.4 -8.7 -2.1 
AX14 0.5649 0.5744 212.6 219.9 7.2 3.3 
AX15 0.7830 0.7798 458.4 453.4 -5.0 -1.1 
AX16 0.3930 0.4948 116.1 166.1 50.1 30.1 

AX17 0.6224 0.6899 260.4 330.3 69.9 21.2 
AXB01 0.8581 0.8479 597.3 576.2 -21.1 -3.7 
AXB02 0.6916 0.7283 332.2 378.0 45.8 12.1 
AXB03 0.6519 0.6921 288.9 332.8 43.9 13.2 
AXB04 0.5722 0.6546 218.1 291.7 73.6 25.2 
AXB05 0.8366 0.7820 553.7 456.9 -96.8 -21.2 

AXF02 0.6933 0.7158 334.2 361.8 27.6 7.6 

     absolute mean 11.1 

 


