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Abstract — Today remote sensing is a standard technique for mapping land cover in high spatial resolution over large areas. Not only land 

cover but also the quality and quantity of vegetation can be classified by the analysis of hyperspectral data. In the Swiss National Park 

(SNP) we use data from the Airborne Prism Experiment (APEX) imaging spectrometer to expand the possibilities of vegetation analysis in 

alpine territories. The high spectral and spatial resolution of APEX data allows the correlation of the measured reflection with ground truth 

data. We tested a standard Normalized Differenced Vegetation Index (NDVI) and an optimized simple ratio index (SRI) with selected bands 

to model the biomass content of the alpine grassland of one particular valley in the SNP, the Val Trupchun. The correlation between 

biomass insitu measurements and SRIs was non-linear, most likely due to sensor saturation. Our optimal SRI improved the model quality 

compared to the NDVI model. All computed models underestimated high biomass values above 600 g/m
2
. The model accuracy of 57% was 

good considering the challenging terrain. However, several factors showed that the model was relatively unstable due to parameter input 

settings and external factors. Differences in APEX data between strips induced an important effect, due to different illumination/view 

angles. The variability analysis investigating the sample plot location demonstrated that small-scale geometrical shifts were insignificant 

compared to the overall model accuracy. The biomass prediction map showed plausible values for the grassland with high concentrations 

around former alps. High biomass sources were linked to former anthropogenic land use, dominant vegetation structure and to preferred 

ungulate habitat today. The high-resolution map is now a useful basis for future research in the SNP to investigate forage amount and 

analyse ungulate habitat pattern in Val Trupchun. This a welcoming issue for ungulate research, which is an important research area of the 

SNP. 
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1 INTRODUCTION                                                                     

Imaging spectrometry or imaging spectroscopy is a remote sens-

ing technique recording the earth’s surface by a hyperspectral sensor. 

With increased number of spectral bands and increased spatial reso-

lution the technique allows today not only the mapping of land cover 

types but also the mapping of vegetation quality and quantity.  

An imaging spectroscometer samples contiguously in the optical 

part of the electromagnetic spectrum using dozens to hundreds of 

narrow spectral bands. For each image pixel, the sensor acquires the 

reflectance of the earth’s surface from the ultraviolet through the 

visible to the near- and mid-infrared (i.e. 250 - 2500 nm) part of the 

electromagnetic spectrum at a high spatial resolution. 

In Fig. 1 a schematic of the function of an imaging spectrometer 

is illustrated.  

Analysing the vegetation using remotely sensed data requires 

knowledge of the biochemical, structural and functional vegetation 

characteristics and its optical properties. Water, pigments, nutrients 

and carbon are each expressed in the reflected optical spectrum from 

400 nm to 2500 nm, with often overlapping, but spectrally distinct, 

reflectance behaviours. The absorption characteristics of these com-

pounds determine the optical properties, which as a result are then 

visible in e.g. the reflectance spectra. These known signatures allow 

scientists to combine reflectance measurements at different wave-

lengths to enhance specific vegetation characteristics
1
. Vegetation 

indices (VIs) have been widely adopted for studying vegetation 
 

1
 From ENVI User’s Guide: Vegetation Indices. http://geol.hu/data/ 

online_help/Understanding_Vegetation_and_Its_Reflectance_Properties.html, last 
accessed on 20.03.2013.  

cover, chlorophyll content or quantifying other vegetation properties. 

As different materials have characteristic spectra with maxima or 

minima at particular wavelengths, there is often no need for complex 

physical models to determine key biophysical parameters. VIs based 

on empirical or semi-empirical models are new variables generated 

by mathematical combination of two or more of the original spectral 

bands chosen in such a way that the new indices are related to the 

biophysical parameters of interest. A variety of VIs have been pub-

lished so far. Well-known and simply applicable VIs are the Normal-

Fig.  1: Working Schematic of a imaging spectrometer (Image: 

www.apex-esa.org, last accessed 20.03.2013) 
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ised Differenced Vegetation Index (NDVI, Rouse et al., 1974; 

Tucker, 1979) and the Simple Ratio Index (SRI, Birth and McVey, 

1968; Rouse et al., 1974; Tucker, 1979). These indices are typically 

used for modelling the healthy green vegetation or quantifying the 

photosynthetic capacity of plant canopies. With the advent of imag-

ing spectroscopy and the availability of the large amount of narrow 

spectral bands, vegetation indices can be individually designed for a 

specific vegetation property and a specific territory. By correlating 

the results of the VIs with on site field data, the optimal VI is chosen 

to model the desired vegetation property. The advantage of the index 

implementing two to many bands is to minimize the sensitivity to 

irradiance, illumination and to other factors such as variation in 

atmospheric transmission. The disadvantage of empirical models and 

VIs is that the structural property of the vegetation can’t be mod-

elled. Especially for dense canopies (high biomass) the VI have its 

limitations due to saturation. 

Studies using hyperspectral data to estimate biomass by relating 

field data to vegetation indices have been carried out in several stud-

ies. (Mutanga & Skidmore, 2004; Rahman & Gamon, 2004; Mirik et 

al., 2005; Tarr et al., 2005; Beeri et al., 2007; Cho et al., 2007; Pso-

mas et al., 2009). These studies show the complexity of the spectral 

response of mixed grasslands, especially in the presence of a high 

fraction of NPV and exposed soil (Beeri et al., 2007; He et al., 2006; 

Boschetti et al., 2007), grazing impact (Numata et al. 2007), canopy 

architecture complexity due to mixed species composition and 

phenology (Cho et al., 2007; Numata et al. 2008), and sensor satura-

tion occurring at high biomass concentration (Mutanga & Skidomre 

2004). Using grass (Cenchrus ciliaris) grown in the greenhouse, 

Mutanga & Skidmore (2004) showed that narrow-band NDVI com-

puted from 740 and 755 nm (both in the far RED) solved the satura-

tion problem when estimating grass biomass at high canopy cover. 

The Swiss National Park (SNP) was mapped by APEX (Airborne 

Prism Experiment) for the first time in June 2010. Land cover map-

ping and monitoring of landscape dynamics are essential for the 

management of protected areas. Since ungulate research plays an 

important role in the SNP, the application possibilities of the APEX 

data are of great interest. Until now, vegetation mapping has been 

based on the interpretation of single plots and visual observations, 

which enables only limited interpolations over large areas. Since 

1917, the vegetation has been monitored on more than 150 perma-

nent plots (Braun-Blanquet et al., 1931). In 1968 an analogue vegeta-

tion map of part of the SNP was produced in cartography work by 

Trepp/Campell at a scale of 1:10’000 (Trepp & Campbell, 1968). In 

1992, Zoller published a vegetation map of the entire SNP (Zoller, 

1992). It was based on observation plots and field trips, and mapped 

at a 1:50’000 scale. An interpretation of colour infra-red aerial im-

ages was conducted over the whole territory of the SNP as part of the 

project Alpine Habitat Diversity (HABITALP
2
) in 2006. The HABI-

TALP project has been the first study with a standardized method to 

classify vegetation types area-wide from aerial images. With APEX 

not only a classification of habitat types is possible, but also pixel-

based modelling of vegetation composition at a scale of 2 x 2 meters. 

Despite the 100 years of protection, traces from the former land 

use can still be found on subalpine and alpine grassland. Cattle and 

sheep grazed the territory of the SNP for several centuries until 1914 

(Parolini, 1995). As a result, tall-herb communities dependent on 

nutrient enrichment from the excreta of cattle or sheep can still be 
 

2
 HABITALP – Alpine Habitat Diversity Project. INTERREG III B 

Alpenraumprogramm 2002-2006, http://habitalp.de, (last accessed on 20.03.2013) 

found on several former pastures in the SNP (Braun-Blanquet, 1931; 

Braun-Blanquet et al., 1954; Achermann et al., 2000). 

2 OBJECTIVE 

The aim of this MSc thesis is to generate a biomass map of the 

grassland of one particular valley of the SNP (Val Trupchun) with 

APEX imaging spectrometry data from June 2010. A semi-empirical 

method is implemented in the modelling process. First, a standard 

normalized-differenced-vegetation-index (NDVI) is calculated and 

compared with insitu biomass samples. To achieve a better model, a 

large number of simple ratio vegetation indices (SRI) are developed 

from the hyperspectral data and regressed against the ground truth 

data. Model validation is carried out by independent sample plots. 

The best model is taken to predict the grassland biomass in Val Trup-

chun. The produced biomass map is analysed for accuracy and plau-

sibility relating to the former land use of the Val Trupchun. 

3 METHODOLOGY 

3.1 The study area 

The Swiss National Park (SNP) was founded in 1914 as a strict 

nature reserve and is the oldest national park in the Alps. The park is 

situated in the canton of Graubünden covering an area of 170 km
2
, 

which is the largest protected area in Switzerland. The national park 

is classified as a category I nature reserve (highest protection level - 

strict nature reserve /wilderness area) with the IUCN (International 

Union for the Conservation of Nature). The territory encompasses an 

alpine landscape extending over altitudes between about 1400 to 

3200 meters above sea level (asl.) with a rich flora and fauna. The 

study site Val Trupchun is one particular valley of the park, located 

in the north (46°40’N, 10°15’E) within the territory of the Munici-

pality of S-chanf. 

3.2 The APEX instrument 

The Airborne Prism Experiment (APEX) is a airborne imaging 

spectrometer developed under the scientific lead of a Swiss-Belgian 

collaboration between the Remote Sensing Laboratories (RSL, Uni-

versity of Zurich (CH)) and the Flemish Institute for Technological 

Research VITO (B) on behalf of the European Space Agency (ESA) 

PRODEX programme. 

APEX is built as a pushbroom dispersive imaging spectrometer 

recording more than 330 spectral bands contiguously. The instrument 

specifications can be found in Tab. 1. The APEX mission for the 

SNP acquired 186 km
2
 at a 2x2 m spatial resolution determined by 

the sensor’s instantaneous field of view (IFOV) in combination with 

a flight height of 4400 - 5400 m asl. 1000 pixels were recorded 

across-track with a data rate of 0.42 GBytes/km per flight path. The 

spectral configuration was set to 312 spectral bands to be acquired 

simultaneously. We used 301 bands for analysis, after some bands 

had to be removed due to noise. The sensor was installed on a Re-

search Aircraft Dornier DO-228 aircraft (see Tab. 1).  
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Tab. 1: Instrument specifications (from http://apex-esa.org, last 

accessed 20.03.2013) 

Spectral Range VNIR: 380 - 970 nm 

 SWIR: 940 - 2500 nm 

Spectral Sampling Interval 
VNIR: 0.55 - 8 nm over spectral range 

(unbinned) 

 SWIR: 5 - 10 nm over spectral range 

Spectral Resolution 

(FWHM) 

VNIR: 0.6 - 6.3 nm over spectral range 

(unbinned) 

 SWIR: 6.2 - 11 nm over spectral range 

Spectral Bands 

VNIR: default 114 bands, reprogram-

mable through customized binning 

pattern 

 SWIR 199 bands 

Spatial Pixels 1000 

FOV (across track) 28° 

IFOV 0.48 mrad 

Spatial Sampling Interval 

(across track) 

1.75 m @ 3500 m AGL (2 - 5 m at 

flight altitudes of 4 - 10 km) 

Sensor dynamic range VNIR: CCD, 14 bit encoding 

 SWIR CMOS, 13 bit encoding 

Pixel size VNIR: 22.5 μm x 22.5  μm 

 SWIR: 30 μm x 30 μm 

Smile (average over FOV) 0.35 pixels 

Keystone (frown, average 

over FOV) 
0.35 pixels 

Co-Registration (average 

over FOV) 
0.6 pixels 

Signal-to-Noise 
SNR for various applications are avail-

able upon request 

 

Highest signal to noise ratio through 

advanced detector technology and 

pressure / temperature stabilization 

3.3 Field data collection 

Fieldwork was carried out to collect ground-truth data of the 

grassland. Twenty-five plots had previously been defined, which 

were distributed over the valley and at various altitudinal gradients in 

order to account for differences in species composition, productivity, 

phenological stages and soil type. A map with the sample plots indi-

cated is shown in Fig.  2.  

The plots were chosen at locations with vegetation as homoge-

nous as possible, and squares of 6 x 6 m were marked. The corners 

of the plots were marked with flags and measured with a differential 

global positioning system (GPS), device type Leica RX 1210 T. On 

24 of June 2010, on the same day as the flight, above-ground bio-

mass was clipped within a 1m
2
 subplot located in the middle of each 

plot. The vegetation samples were sealed in plastic bags and weighed 

the same day in order to determine wet biomass. Afterwards, the 

samples were dried in the oven at 65° for 48 hours and weighed 

again to determine dry biomass. 

3.4 Image acquisition and pre-processing 

The APEX flight was carried out on 24 of June under cloud free 

conditions. The specific study site Val Trupchun was covered by four 

image strips, each with an extend of about 2x6 km and a ground 

resolution of 2 m. The flight lines are SW to NE oriented, cross-wise 

to the valley and the mountain ridge. The image strips were atmos-

pherically and geometrically corrected by RSL using standard proce-

dures. The atmospheric correction was computed using the ACTOR-

4 software tool to obtain hemispherical-conical-reflectance (HCRF) 

data (Schläpfer & Richter 2002). The geometrical correction was 

made using the Parametric Geocorrection (PARGE) software 

(Schläpfer & Richter, 2002). The geometric distortions of the 

orthorectified data were evaluated based on ground based GPS 

measurements and were found to be less than one pixel (+/- 2m) 

(Damm et al., 2012). However, there were differences between the 

reflectance of similar pixels in the overlapping regions between 

image strips due to different view angles and effects of surface ani-

sotropy (Weyermann et al., 2013).  

3.5 Data analysis 

To extract APEX reflectance data at the sample locations, the follow-

ing procedure was applied: A square of 6x6 m around the centre 

coordinate of the plots was imported into the ENVI 4.7 software. 

This square corresponded to 9 pixels (3x3 pixels) of the APEX data 

from which the average reflectance was extracted as reference value. 

There were plots lying on more than one strip because of the over-

lapping zone, so that two reference reflectance values were available 

for one sample. These values were considered as independent meas-

urement points. Consequently, there were 43 measurement points 

available, from which 18 points were double (same ground truth 

biomass value, but different reference reflectance).  

The biomass samples were divided into two groups, one used for 

the calibration (22 points), and one for the validation (21 points) of 

the model using a stratified random sampling approach. An empirical 

model was developed based on the 22 calibration samples. The stan-

dard NDVI was calculated based on band 50 (664.3 nm) and band 86 

(808.8 nm) by using the following formula:  

where R is the reflectance at the specific wavelength.  

The calculated NDVI was regressed against the calibration bio-

mass samples in an exponential regression to obtain the coefficient 

of determination (R
2
) for calibration. An exponential (instead of 

linear) regression can be implemented due to the large volume scat-

tering of vegetation that induces sensor saturation at high densities. Fig.  2: Locations of the 25 sample plots in Val Trupchun, where 1x1 

m of vegetation was clipped. 
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Since APEX provides more bands in the red (600 - 700 nm) and 

NIR (700 - 1300 nm), we tested if calibration results could be im-

proved by calculating simple ratio vegetation indices (SRI) with all 

possible combinations of 301 bands and regressing them against the 

calibration data set.  

where Ra and Rb is the reflectance at wavelength a and b, respec-

tively. 

Spearman’s rank correlation coefficients (R) resulting from the 

regression analysis were plotted on a 2D-contour plot to evaluate R 

characteristic patterns and identify the best wavelength combination. 

This procedure allowed the selection of optimal bands to be used in 

the calculation of the index. Band combinations with maximized 

correlation with biomass were chosen, considering cause effect rela-

tionships between spectral bands and underlying absorption and 

scattering processes. For the final model we chose the best SRI 

within the range of the visible (RED) for the first band and near-

infrared (NIR) (700 - 1300 nm) region for the second band. Within 

this range, high reflection occurs on healthy biomass, and no water 

absorption interferes with the signal. With the chosen SRI we com-

puted an exponential regression model to predict and map biomass 

content.  

For all correlations between biomass sample and APEX reflec-

tance spectra, the comparison was carried out using the wet weight 

of the biomass samples. Predictive performance of the biomass 

model was computed with the independent validation data set. The 

coefficient of determination (R
2
) and the root mean square error 

(RMSE) were calculated to compare the predicted with the observed 

values. 

The biomass prediction model is only valid for grassland. A lin-

ear spectral unmixing method (LSU) was performed to separate 

different land cover classes and to extract the grassland. LSU is a 

classification approach that can be used for hyperspectral imagery 

based on the materials’ spectral characteristics. The reflectance at 

each pixel of the image is assumed to be a linear combination of the 

reflectance of each material present within the pixel (Boardman, 

1989). The measured spectrum of a mixed pixel is decomposed into 

the set of corresponding fractions (endmembers) that indicate the 

proportion of each endmember present in the pixel. The linear un-

mixing method is assigning each pixel into the predefined classes 

based on the abundance values of each endmember. 

4 RESULTS 

4.1 Regression of biomass and standard NDVI 

The standard NDVI was calculated using APEX band 50 and 86 

located at 664.3 nm and 808.8 nm. A correlation with the calibration 

data set was computed, and an exponential regression yielded the 

best fit with an R
2
 of 0.74, shown in Fig. 4. 

The validation of the model was carried out by calculating the 

predicted biomass using the calibration model at the validation sam-

ple plots and comparing them against the true wet weight values. The 

R
2
 and the RMSE were 0.54 and 236 g/m

2
 respectively. 

Plots AX06, AX07 and AX14 differ most from the prediction. 

AX06 is located at Alp Purcher, next to a former alp hut, where tall-

herb communities dominated by stinging nettle (Urtica dioica, L.) 

and monkshood (Aconitum napellus ssp. Vulgare, DC.) occur. The 

model predicts that there should be less biomass than the measured 

value. The biomass at AX14 and AX07 is also underestimated from 

the model. AX07 is situated at the entrance of Val Müschauns on a 

spot with ruderal vegetation.  

It can be concluded that the model based on the standard NDVI 

generally underestimates biomass values above 600 g/m
2
. 

4.2 Regression of Biomass and Optimal Simple Ratio 
Index 

To optimize the model, simple ratio indices (SRI) were calcu-

lated with all possible combinations of bands and correlated against 

the calibration data set. Spearman’s rank correlation coefficients (R) 

were plotted on a 2D-contour plot to identify the best wavelength 

Fig.  3: Regression between the standard NDVI derived from APEX 

reflectance spectra from bands at 809 and 664 nm and the wet 

weight biomass calibration sample data 

Fig.  4: 2D-correlation plot that shows the correlation coefficient R 

(Spearman’s Rank) between SR indices and biomass. The matrix is 

symmetrical. Below the diagonal, band combinations are marked in 

red where R>0.8. 
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combination, shown in Fig. 4. 

For our final biomass model the best SRI within the range of 

visible (RED) and near-infrared (NIR) (700 - 1300 nm) region was 

chosen. Within this range high reflection on healthy biomass oc-

curred and no water absorption interfered with the signal.  

The SRI of band 92 (842 nm) and band 68 (727 nm) achieved the 

best R (0.823) overall. This combination was chosen for the final 

biomass model. An exponential regression model was computed 

again between SRI and wet weight biomass of the calibration data 

set resulting in an R
2
 of 0.77. 

The validation of the model was carried out by calculating the 

predicted biomass using the model equation for the validation sam-

ple plots and comparing them to the true wet weight values. The R
2
 

and RMSE were 0.57 and 238 g/m
2
 respectively. 

Generally the pattern of the plots was comparable to the NDVI 

model. The outliers were again AX14, AX06 and AX07. The calibra-

tion model under-estimated biomass values above 600 g/m
2
. 

4.3 Regression of biomass and narrowband SRI 

According to Mutanga and Skidmore (2004) a narrow band SRI, 

both located in the far RED (around 750 nm) should solve the satura-

tion problem which means that sample locations with high biomass 

occurrence aren’t underestimated.  

To analyse this thesis, the best R around two bands in the far 

RED was selected from the 2D-correlation plot (cf. Fig.  4). The SRI 

between band at 765 nm and band  at 735 nm has an R of 0.810 and 

is thus only slightly lower compared to the highest R (0.823) for the 

optimal SRI at bands 92 and 68. The model was recalculated with 

these two bands to check for a possible model improvement.  

The coefficient of determination (R
2
) is 0.7697, which is only 

slightly lower than our best SRI (R
2
 = 0.7728). On the other hand, 

the validation yielded 10% better validity (67%). High biomass 

values were still underestimated, but at a lower level than with the 

best SRI model. 

4.4 Biomass map 

The best SRI regression model (band 842 and 727 nm) that was 

found for the estimation of biomass was applied to the APEX image. 

Only image pixels representing grassland were considered. The 

grassland was extracted by carrying out an LSU classification with 

the APEX data. Fig. 6 shows the resulting biomass prediction map.  

Estimated biomass values were generally in a reasonable range. 

On the map, it can be seen that biomass decreases with increasing 

altitude at the slopes. Three locations with high biomass are notice-

able. The highest biomass sources are located around the former Alp 

Trupchun. High sources are also visible around former Alp Purcher. 

Another spot with remarkably high occurrence is situated at the end 

of the valley on the bottom south slope. It can be concluded that high 

biomass concentration occurs where former anthropogenic activities 

took place (cattle or sheep excreta). 

4.5 Variability of sample plot location 

For the uncertainty analysis of our model an investigation of the 

sample plot location lying on more than one strip have been carried 

out. The differences of the SRI between the overlapping image strips 

were analysed by the variability of the plots located on two strips by 

a scatter plot, illustrated in Fig.  7. 

The analysis is done for our optimal SRI with band 842 and 727 

nm. The SRI value from one strip is plotted against the same SRI of 

the other strip for the double plots. The coefficient of determination 

R2 is acceptable with 0.96. 

The quantification of these differences with respect to the bio-

mass prediction produced a mean error of 12%. 

5 DISCUSSION 

5.1 Comparision of NDVI and optimal SRI 

NDVI and SR indices are functionally related (Liang, 2005), 

however SR indices are often used in mountainous regions 

(Boschetti et al., 2007) since they enhance the contrast between soil 

and vegetation, minimize the effects of the illumination conditions 

(Baret and Guyot, 1991) and reduce shadow effects (Boschetti et al., 

2007). Additionally, the presented results indicate a better perform-

ance of the optimal SRI compared to the NDVI and an improved the 

predictive accuracy of the SRI for biomass. The coefficient of deter-

mination R
2
 increased from 0.74 for the standard NDVI to 0.77 for 

the SRI model. The validation is also slightly improved from 0.54 to 

0.56 (R
2
). The quality of the model with an accuracy of 57% is good 

Fig. 5: Regression between SRI derived from APEX reflectance 

spectra from band at 842 nm and 727 nm and the wet weight bio-

mass calibration sample data. 

Fig.  6: Biomass map of Val Trupchun 
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regarding the challenging terrain with slopes up to 78°. This means 

that 57% of the variation in biomass on an independent test data set 

could be explained by the model.  

Both models are non-linear and underestimate high biomass val-

ues (above 600 g/m
2
). Such bias can be caused by random noise or 

fundamentally non-linear relationship in the true physical relation-

ship (Geladi et al., 1999). Another reason is saturation of NIR reflec-

tance in dense vegetation, which frequently affects NDVI and 

slightly less SR indices. Broad bands for VIs, one in RED and one in 

NIR, have been shown to saturate at high biomass or high LAI (Mu-

tanga & Skidmore, 2004). For our SRI we chose two closer bands 

(730 vs. 840 nm), still located in RED and NIR.  

However, the saturation effect should only occur typically in mul-

tilayer vegetation such as forests or agricultural crops, with LAI > 4 

(Baret & Guyot, 1991). The grassland of Val Trupchun would proba-

bly have a LAI around 3. Nevertheless, our SRI model still underes-

timates high biomass. Based on this fact the model was recalculated 

using two narrow bands, both located in the far RED, as this should 

solve the saturation problem according to Mutanga and Skidmore 

(2004). The coefficient of determination (R
2
) between band 77 at 765 

nm and band 70 at 735 nm is 0.7697, which is only slightly lower 

than our best SRI (R
2
 = 0.7728). On the other hand, the validation 

yielded 10% better validity (67%). It can be concluded that high 

biomass values were still underestimated, but at a lower level when 

avoiding the NIR domain. 

5.2 Uncertainty Analysis 

The 57% accuracy of the SRI model (842/747) validation means 

that 57% of the biomass variance can be explained. This is a com-

paratively good validation for such a complex terrain conducted with 

completely independent plots. However, several factors showed that 

the model is relatively instable. The selection of the band combina-

tion is one important factor that influences the model accuracy, as 

illustrated by the example with the narrow band SR index (765/735) 

in the far RED. The best calibration should normally result in the 

best validation. Instead, we found a poorer calibration with a better 

validation result. This shows that our model alternates and that the 

sample size is not sufficient enough to develop a robust model. The 

sample size should be increased. 

The selection of the calibration and validation data set also has 

an influence on the accuracy. Plots belonging to the calibration or the 

validation data sets have been chosen completely randomly. Tests 

with some manual settings, for example implementing the highest 

and the lowest biomass value into the calibration data set showed 

that the model output varied. We also tried dividing the double refer-

ence points from the different strips, assigning one to the calibration 

and the other to the validation data sets. However, these model adap-

tations didn’t result in much improvement. The random selection for 

the calibration and validation data sets was justified and was there-

fore considered as the best solution. With this number of sample 

plots (n = 43), higher accuracies are almost impossible to reach. The 

uncertainties are mainly due to sensitivity to external factors, which 

overlap the measured signal and influence the model, such as atmos-

pheric effects (cloud, haze and other scatterers), topographic effects 

(shading), illumination effects (sun angle and viewing geometry), 

soil effects (soil fraction), structural effects (scattering due to ob-

jects/leaf architecture) or random noise. Additionally, the sample 

itself also has some uncertainty derived from potential sampling 

inequality and weighting errors. 

5.3 Different reflectance values between strips 

The differences of the APEX data between the overlapping re-

gions of the 4 strips are another point to be discussed. These differ-

ences are caused by the variations of illumination- viewing geometry 

in combination with surface anisotropy. Different parts of an image 

will view the surface at different angles, so that clear brightness 

gradients may often be detected across the image. In fact, the spec-

tral signal reflected from surfaces such as plant canopies is deter-

mined by its intrinsic surface anisotropy and consequently varies as a 

function of the angle of view and the angle of illumination. Shadows 

are also influenced by different illumination angles. During the pre-

calibration of the image, these effects are compensated to the best 

possible extent during the basic Bidirectional reflectance distribution 

function (BRDF) corrections. However, notable differences usually 

exist as long as no sophisticated BRDF corrections are applied. 

Therefore, the reflectance of the image pixel of a strip is slightly 

different from the reflectance of the same pixel available on the 

neighbouring strip.  

We haven’t computed any artificial reflectance averaging to ob-

tain one value per image pixel for the overlapping regions. A possi-

bility would have been to build a mosaic of all four strips implement-

ing the reflectance average or favouring one strip. However, each 

manual computation also involves uncertainties and needs to be 

justified. It was also not possible to take a single reflectance value 

from one strip, since we did not record the exact clipping time of 

every plot. We therefore cannot tell which of the strips correspond 

better to the biomass data measured. Therefore we decided not to 

carry out such an artificial intervention with the APEX data and keep 

all original values from the two strips as independent data. 

The scatter plot showed a coefficient of determination R
2
 of 0.96 

for our optimal SRI (842/727). The same analysis for the narrow 

band index (765/735) resulted an R
2
 of 0.95. Several studies showed 

that using a narrow band combination in RED is less sensitive to 

varying soil brightness, atmospheric condition and sensor view angle 

compared to a broad band combination (Blackburn & Pitman, 1999). 

With this example this assumption can’t be confirmed. Our band 

selection for the optimal SRI is evidently enough narrow to keep this 

effect small. 

Fig.  7: Scatter plot of the optimal SRI values of all sample 

plots on APEX strip a against strip b 
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6 CONCLUSION 

Imaging spectroscopy techniques permit not only the classifica-

tion of vegetation, but also the quantitative mapping of different 

vegetation variables due to their high spectral and spatial resolution. 

This study demonstrates the utility of vegetation indices involving 

APEX bands for estimating biomass in alpine grasslands.  

SRI and NDVI models were suitable for the modelling of bio-

mass prediction maps implementing biophysical parameters. We 

found that the correlation between biomass insitu measurements and 

SRIs was non-linear, most likely due to sensor saturation. Our opti-

mal SRI improved the model quality compared to a standard NDVI 

model. All computed models underestimated high biomass values 

above 600 g/m
2
. The model accuracy of 57% was good considering 

the challenging terrain. However, several factors showed that the 

model was relatively unstable due to parameter input settings and 

external factors. Differences in APEX data between strips induced an 

important effect, due to different illumination/view angles. The quan-

tification regarding biomass prediction due to these differences pro-

duced a mean error of 12% for the sample plots.  

The biomass prediction map showed plausible values for the 

grassland with high concentrations around the former Alp Trupchun, 

Alp Purcher and on the south slope at the end of the valley. We found 

that high biomass sources were linked to former anthropogenic land 

use, dominant vegetation structure and to preferred ungulate habitat 

today.  

The high-resolution map is now a useful basis for future research 

in the SNP to investigate forage amount and analyse ungulate habitat 

pattern in Val Trupchun. 

7 OUTLOOK 

The generated biomass prediction map can be used for future re-

search in Val Trupchun. This work was carried out within the scope 

of a PhD thesis at the Swiss National Park analysing ungulate habitat 

patterns relating to biophysical and biochemical parameters. The 

APEX campaigns have been continued during the years 2011 and 

2012.  

The produced model is applicable only for the study area, since 

semi-empirical. These predictive models are site- and sensor-specific 

and unsuitable for application to other areas or to different seasons. 

With this model we tried to predict another area of the SNP, the 

grassland of Il Fuorn, which is located ca. 15 km north-east, and 

didn’t find suitable agreement with insitu measurements. This find-

ing highlights the importance of local models, based on local meas-

urements for small scales in complex terrain.  

Moreover, our model is only valid for the time of the image, 

which was June. To analyse temporal changes for biomass, the 

APEX campaign should be carried out several times a year.  

The main proposal for a model improvement based on this work 

is to increase the number of sample plots in the study area. With 

more samples covering the full range of biomass concentrations, we 

suppose that the model accuracy and stability will improve. Another 

possibility would be to clip more than 1 m
2
 per sample plot to get 

more than one sample out of one plot. Thus, small-scale variability 

could be improved, too. However, all improvement proposals would 

require a lot more effort in the field which is a limiting factor. 
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